
Real Inferno

Eric Grosse

Bell Laboratories

Murray Hill NJ 07974 USA

ehg@bell-labs.com

19 August 1996

Abstract

Inferno is an operating system well suited to applications that need

to be portable, graphical, and networked. This paper describes the fun-

damental oating point facilities of the system, including: tight rules on

expression evaluation, binary/decimal conversion, exceptions and round-

ing, and the elementary function library.

Although the focus of Inferno is interactive media, its portability across

hardware and operating platforms, its relative simplicity, and its strength in

distributed computing make it attractive for advanced scienti�c computing as

well. Since the appearance of a new operating system is a relatively uncom-

mon event, this is a special opportunity for numerical analysts to voice their

opinion about what fundamental facilities they need. The purpose of this short

paper is to describe numerical aspects of the initial release of Inferno, and to

invite comment before the tyranny of backward compatibility makes changes

impossible.

Overviews can be found at http://inferno.bell-labs.com/inferno/, but for our

immediate purposes it may su�ce to say that Inferno plays the role of a tradi-

tional operating system (with compilers, process control, networking, graphics,

and so on) but can run either on bare hardware or on top of another operat-

ing system like Windows95 or Unix. Programs for Inferno are written in the

language Limbo and compiled to machine-independent object �les for the Dis

virtual machine, which is then implemented with runtime compilation for best

performance. Files are accessible over networks using the Styx protocol; together

with the presentation of most system resources as �les and the manipulation of

�le namespaces, this permits integration of a collection of machines into a team.

Limbo looks somewhat like a mixture of C and Pascal, augmented by modules

(to cope with the namespace and dynamic loading needs of large programs) and

by a channel facility for convenient (coarse-grain) parallel programing. Array

references are bounds-checked and memory is garbage collected.

The rest of this paper covers the fundamental oating point environment

provided by the Limbo compiler and math module, the \elementary functions,"

1



and �nally some comments on why particular de�nitions were chosen or why

certain facilities were included or excluded. This discussion assumes the reader

is familiar with scienti�c computing in general and the IEEE oating point

standard in particular.

1 Floating point

In Limbo, arithmetic on literal and named constants is evaluated at compile

time with all exceptions ignored. Arithmetic on variables is left by the compiler

to runtime, even if data path analysis shows the value to be a compile time

constant. This implies that tools generating Limbo source must do their own

simpli�cation, and not expect the compiler to change x=x into 1, or �(y � x)

into x � y, or even x � 0 into x. Negation �x changes the sign of x; note that

this not the same as 0� x if x = 0.

The compiler may perform subexpression elimination and other forms of

code motion, but not across calls to the mode and status functions. It respects

parentheses. The evaluation order of a + b + c follows the parse tree and is

therefore the same as for (a + b) + c. These are the same rules as for Fortran

and C.

Contracted multiply-add instructions (with a single rounding) are not gen-

erated by the compiler, though they may be used in the native blas libraries.

All arithmetic follows the IEEE oating point standard [6], except that denor-

malized numbers may not be supported; see the discussion in section 3.

The most important numerical development at the language level recently

has been accurate binary/decimal conversion [1][4][12]. Thus printing a real

using %g and reading it on a di�erent machine guarantees recovering identi-

cal bits. (Limbo uses the familiar printf syntax of C, but checks argument

types against the format string at compile time, in keeping with its attempt to

help the programmer by stringent type checking.) A good strtod/dtoa is, un-

fortunately, 1700 lines of source (15kB compiled), though with modest average

runtime penalty. This code must be used in the compiler so that coe�cients are

accurately transferred to bytecodes. Smaller, faster, but sloppier, runtimes will

also be provided when mandated by limited memory and specialized use. How-

ever, programmers may assume the features described in this paper are present

in all Inferno systems intended for general computing.

Each thread has a oating point control word (governing rounding mode

and whether a particular oating point exception causes a trap) and a oating

point status word (storing accumulated exception ags). Functions FPcontrol

and FPstatus copy bits to the control or status word, in positions speci�ed by

a mask, returning previous values of the bits. getFPcontrol and getFPstatus

return the words unchanged.

The constants INVAL, ZDIV, OVFL, UNFL, INEX are non-overlapping

single-bit masks used to compose arguments or return values. They stand for

the �ve IEEE exceptions:

� \invalid operation" (0=0,0 +NaN ,1�1,

p

�1)

2



� \division by zero" (1=0),

� \overow" (1:8e308)

� \underow" (1:1e� 308)

� \inexact" (:3 � :3).

The constants RND NR, RND NINF, RND PINF, RND Z are distinct bit

patterns for \round to nearest even", \round toward�1", \round toward +1",

\round toward 0", any of which can be set or extracted from the oating point

control word using RND MASK. For example,

� to arrange for the program to tolerate underow, FPcontrol(0,UNFL).

� to check and clear the inexact ag, FPstatus(0,INEX).

� to set directed rounding, FPcontrol(RND PINF,RND MASK).

By default, INEX is quiet and OVFL, UNFL, ZDIV, and INVAL are fatal.

By default, rounding is to nearest even, and library functions are entitled to

assume this. Functions that wish to use quiet overow, underow, or zero-

divide should either set and restore the control register themselves or clearly

document that the caller must do so. The \default" mentioned here is what a

Limbo program gets if started in a fresh environment. Threads inherit oating

point control and status from their parent at the time of spawning and therefore

one can spawn a \round toward 0" shell and re-run a program to e�ortlessly

look for rounding instabilities in a program.

2 Elementary functions

The constants In�nity, NaN, MachEps, Pi, Degree are de�ned. Since Inferno

has thorough support of Unicode, it was tempting to name these 1, ", �, and

o

, but people (or rather, their favorite text editing tools) may not be ready yet

for non-ascii source text. In�nity and NaN are the positive in�nity and quiet

not-a-number of the IEEE standard, double precision. MachEps is 2

�52

, the

unit in the last place of the mantissa 1:0. The value of Pi is the nearest machine

number to the mathematical value �. Degree is Pi/180.

Three useful functions fdim, fmax, fmin are adopted from the Numerical C

extensions [13]. The unusual one of these, often denoted (x� y)

+

, is de�ned by

fdim(x; y) = x � y if x > y, else 0. The compiler may turn these into e�cient

machine instruction sequences, possibly even branch-free, rather than function

calls. There are two almost redundant mod functions: remainder(x,y) is as

de�ned by the IEEE standard (with result jrj � y=2); fmod(x,y) is xmod y,

computed in exact arithmetic with 0 � r < y. Limbo has a \tuple" type,

which is the natural return value in the call (i; f) = modf(x) to break x into

integer and fractional parts. The function rint rounds to an integer, following

the rounding mode speci�ed in the oating point control word.

3



For a good-quality, freely-available elementary function library, math uses

the IEEE subset of fdlibm [11]. Of course, a conforming implementation may

use entirely di�erent source, but must take care with accuracy and with special

arguments. There are the customary power, trigonometric, Bessel, and erf func-

tions, and specialized versions expm1(x) = e

x

� 1, log1p(x) = log(1 + x). An

additional function pow10(n) = 10

n

is de�ned; in the default implementation

this is just fdlibm's pow(10:; n) but it is provided so that separate trade-o�s of

accuracy and simplicity can be made [10]. fdlibm uses extra precise argument

reduction, so the computed sin(n�Pi) is small but nonzero. If demands warrant,

degree versions of the trigonometric functions will be added, but for now the

style sin(45 �Degree) is used. The library also provides IEEE functions ilogb,

scalbn, copysign, �nite, isnan, and nextafter.

The functions dot, norm1, norm2, iamax, gemm are adopted from the blas

[3] to get tuned linear algebra kernels for each architecture, possibly using extra-

precise accumulators. These are de�ned by �x

i

y

i

, �jx

i

j,

p

�x

2

i

, i such that

jx

i

j = max, and C = �AB + �C with optional transposes on A and B. Since

Limbo has only one oating-point type, there is no need here for a precision

pre�x. Limbo array slices permit the calling sequences to be more readable

than in Fortran77 or C, though restricted to unit stride. This encourages better

cache performance anyway. The matrix multiply function gemm remains general

stride (and is the foundation for other operations [7]).

Limbo is like C in providing singly-subscripted arrays with indexing starting

at 0. Although Limbo o�ers arrays of arrays, as in C, for scienti�c work a

better choice is to adopt the style of linearizing subscripts using Fortran storage

order. This promotes easier exchange of data with other applications and reuses

e�ort in organizing loops to achieve good locality. In previous language work

[5], we implemented a C preprocessor that allowed the programmer to choose a

convenient origin (such as 1) and have it compiled into 0 for the base language;

because we passed arrays as dope vectors, we were even able to allow di�erent

origins for the same array in calling and called functions. The main lesson

we learned from that experience, however, was that permutations become a

nightmare when there is anything but dogmatic adherence to a single origin. So

for an m by n matrix A, the programmer should use loops with 0 � i < m and

0 � j < n and access A[i+m � j].

For interoperability with foreign �le formats and for saving main memory in

selected applications, functions are provided for copying bits between and reals

and 32-bit or 64-bit IEEE-format values.

Finally, math provides a tuned quicksort function sort(x,p) where x is a real

array and p is an int array representing a 0-origin permutation. This function

leaves the contents of x untouched and rearranges p so that x[p

i

] � x[p

i+1

].

This is usually what one wants to do: sort an array of abstract data types based

on some key, but without the need to actually swap large chunks of memory.

4



3 Rationale

This section discusses why certain numerical features were included or not.

3.1 Rounding modes and accumulated exceptions

Directed rounding is only needed in a very few places in scienti�c computing,

but in those places it is indispensable. Accumulated oating point exceptions

are even more useful. User trap handling is a harder problem, and may be worth

leaving for later, possibly with a default \retrospective diagnostics" log [8].

Note that the exception masks must be architecture independent, since they

reside in the Limbo bytecodes, and therefore the implementation involves a

small amount of bit �ddling. Still, it is e�cient enough to encourage use. Ports

to the Alpha, ARM, and Hal processors will be a severe challenge, since their

architects chose to put rounding modes statically in instruction opcodes rather

than providing the dynamic model speci�ed in section 2 of the IEEE standard.

Perhaps on these machines, rounding modes will simply be ignored.

3.2 Sudden underow

Some processor vendors make supporting gradual underow just too hard. (One

must struggle upon the system trap to reconstruct exactly which instruction was

executing and what the state of the registers was. On the MIPS, it is said to be

30 pages of assembler.) So Inferno supports denormalized numbers only if the

hardware makes this easy. Providing underow that is correct but very slow, as

some systems do, is not necessarily doing the user a favor.

To determine portably if a particular system o�ers gradual underow, mask

o� UNFL and do trial arithmetic.

3.3 Speed

Computers with slow (software) gradual underow usually provide a fast ush-

to-0 alternative. This often su�ces, though there are important examples where

it forces an uglier and slower coding style. A worse situation is if the hardware

uses system traps for In�nity and NaN arithmetic. The resulting slowdown will

make otherwise excellent and natural algorithms run slowly [2].

We considered providing syntax to declare a certain program scope within

which precise IEEE behavior was required, and relaxing the rules outside such

scopes. (The numerical C extensions [13] use pragma for this purpose.) These

scope declarations would need to be in the bytecodes, since signi�cant opti-

mization may be attempted by the runtime compiler. After some discussion,

and with some trepidation, it was agreed that instead all compilers would be

required to preserve the same result and status as for an unoptimized version.

5



3.4 Comparison

The standard C operators == != < <= > >= are the only comparisons pro-

vided, and they behave exactly like the \math" part of Table 4 of the IEEE

standard. Programs interested in handling NaN data should test explicitly.

This seems to be the way most people program and leads to code more under-

standable to nonexperts. It is true that with more operators one can correctly

write code that propagates NaNs to a successful conclusion|but that support

has been left for later. NaN("tag") should be added at that same time.

3.5 Precision

All implementations run exclusively in IEEE double precision. If the hardware

has extra-precise accumulators, the round-to-double mode is set automatically

and not changeable, in keeping with Limbo's design to have only one oating

point type. Extended precision hardware, if available, may be used by the

built-in elementary function and blas libraries. Also, we contemplate adding

a dotsharp function that would use a very long accumulator for very precise

inner products, independent of the order of vector elements[9]. But reference

implementations that use only double precision, avoid contracted multiply-add,

and evaluate in the order 1 up to n will always be available for strict portability.

At the time the decision was made to restrict the system to 64-bit oating

point, Limbo integers were almost exclusively 32-bit and the consistency ar-

gument to have a single real type was compelling. Now that Limbo has more

integer types the decision might be reconsidered. But so many engineers need-

lessly struggle with programs run in short precision, that o�ering it may do

as much harm as good. On most modern computers used for general purpose

scienti�c computing, 64-bit oating point arithmetic is as fast as 32-bit, except

for the memory tra�c. In cases where the shorter precision would su�ce and

memory is a crucial concern, the programmer should consider carefully scaled

�xed point or specialized compression. To e�ciently interoperate with data �les

that use the short format, programmers may use the provided realbits32 func-

tion. While there are surely appropriate uses for a �rst-class 32-bit real type,

for now we follow Kahan's sarcastic motto \why use lead when gold will do?"

3.6 BLAS

The few blas in the core library were chosen for readability and, in case of

gemm, for optimization beyond what a reasonable compiler would attempt. We

expect that compilers will (soon) be good enough that the di�erence between

compiling y+ = a �x and calling daxpy is small. Also, as mentioned above, dot

and gemm might reasonably use combined multiply-add or a long accumulator

in some optional implementations.

6



3.7 �(x)

To avoid confusion with the C math library, which de�ned gamma as ln �,

we o�er only lgamma for now. This function and modf return an (int,real)

tuple rather than assigning through an integer pointer, in keeping with Limbo's

design. The opportunity has been taken to drop some obsolete functions like

frexp. Other functions are unchanged from the C math library.

3.8 Future

A prototype preprocessor has been written to allow the scienti�c programmer

to write A[i; j] for an A that was created as a Matrix(m;n) and to have the

subscript linearization done automatically. Here Matrix is an Limbo abstract

data type containing a real array and integers m, n, and column stride lda used

as in typical Fortran calling sequences.

The Limbo compiler is soon expected to implement the type complex.

Higher level numerical libraries will also be provided, and although that

topic is beyond the scope of this paper, opinions about what should come �rst

would be welcome.

Distributed computing has not been mentioned here because it involves rela-

tively few considerations speci�c to oating point computation. However, it may

be worth noting that in the default environment (with underow trapped, so

that presence or absence of denormalized numbers is not signi�cant) programs

run independently on heterogeneous machines nevertheless get precisely iden-

tical results, even with respect to thread scheduling. This implies that certain

communication steps can be avoided, and that regression testing is considerably

simpli�ed.

Please direct comments on these numerical aspects of Inferno to Eric Grosse.

More general technical comments can be directed to the principal developers of

Inferno: Sean Dorward, Rob Pike, Dave Presotto, Howard Trickey, and Phil

Winterbottom. I am grateful to David Gay, Bell Labs, to David Hook, Univer-

sity of Melbourne, and to participants of the IFIP WG2.5 Working Conference

on Quality of Numerical Software for insightful comments on a �rst draft of

this paper. Inferno, Limbo, and Dis are trademarks of Lucent Technologies Inc.

Unix is a trademark of Unix Systems Laboratories. Windows95 is a trademark

of Microsoft.

References

[1] W. D. Clinger. How to read oating point numbers accurately. In Pro-

cedings of the ACM SIGPLAN'90 Conference on Programming Language

Design and Implementation, pages 92{101, 1990.

[2] James W. Demmel and Xiaoye Li. Faster numerical algorithms via excep-

tion handling. In Jr. Earl Swartzlander, Mary Jane Irwin, and Graham

7



Jullien, editors, Proceedings: 11th Symposium on Computer Arithmetic.

IEEE Computer Society Press, 1993.

[3] Jack J. Dongarra, Jeremy Du Croz, Sven Hammarling, and Richard J. Han-

son. Algorithm 656: An extended set of Basic Linear Algebra Subprograms.

ACM Trans. on Mathematical Software, 14(1):18{32, March 1988.

[4] D. M. Gay. Correctly rounded binary-decimal and decimal-binary con-

versions. Numerical Analysis Manuscript No. 90-10, AT&T Bell Lab-

oratories, Murray Hill, NJ, 1990. freely redistributable, available at

http://netlib.bell-labs.com/netlib/fp/.

[5] E. H. Grosse and W. M. Coughran, Jr. The pine programming lan-

guage. Numerical Analysis Manuscript 83-4, ATT Bell Laboratories, 1983.

ftp://cm.bell-labs.com/cm/cs/doc/92/pine.ps.Z.

[6] IEEE. Standard for binary oating-point arithmetic. Technical Report Std

754-1985, ANSI, 1985.

[7] Bo Kagstrom, Per Ling, and Charles Van Loan. Portable high performance

GEMM-based Level 3 BLAS. In R. F. Sincovec et al., editor, Parallel

Processing for Scienti�c Computing, pages 339{346. SIAM Publications,

1993. /netlib/blas/.

[8] W. Kahan. Lecture notes on the status of IEEE Standard 754 for binary

oating-point arithmetic. Technical report, Univ. Calif. Berkeley, May 23

1995. Work in Progress.

[9] U. Kulisch andW.L. Miranker. Computer arithmetic in theory and practice.

Academic Press, 1980.

[10] M. D. McIlroy. Mass produced software components. In Peter Naur

and Brian Randell, editors, Software Engineering, pages 138{155, 1969.

Garmisch, Germany, October 1968.

[11] Kwok C. Ng. fdlibm: C math library for machines that sup-

port ieee 754 oating-point. freely redistributable; available at

http://netlib.bell-labs.com/netlib/fdlibm/, March 1995.

[12] G. L. Steele and J. L. White. How to print oating point numbers accu-

rately. In Procedings of the ACM SIGPLAN'90 Conference on Program-

ming Language Design and Implementation, pages 112{126, 1990.

[13] X3J11.1. Chapter 5, oating-point C extensions. Technical report, ANSI,

March 29 1995.

8


