1. Can hold 510 digit numbers.
2. Each number is outpulsed at the proper rate at the touch of a inglo key.
3. The current drain is very low. When not pulsing the battery drain is only 40 ticroamps. A single 9 V alkaline battery will powerit for a year of on time, unlike Peter Piper's crogrammable box (TAP $\% 6$ ) which takes two $9 V$ batteries and pulls 24 ma in etandby

Disadvantages of M1lo's Box

1. The box is complex.
2. Because of its complexity it is bulkior than the usual manual box.

The enclosed schematic is of working Milo Fonebill BB. It took one hell of a lot of study to figure it out from Milo's drewings. I'll describe how it works in 3 sections: 1 , Number entry; 2, Playing back the numbers, or RUN; 3, Clearing the Box.

1. Number entry. Assume the box has been cleared and - 11 in all 64 bits of each register. I'll get to the resson for this later. The switch enabling the keyboard is closed. Now essure that the KP key is pressedthen lines 1100 and 1700 go low. A "O" ( 0 is low, 1 is high) is placed on pin 15 (Data In) of IC $9 \& 12$ but the data is not entered yet. At the same timepir 4 of ICSA and pin 13 of IClCgo low wilch drives pin ll of IClLC low. This in turn makes pin 10 of all the shift registers low through ICla and ICl6B. This puts the shift registers in data entry mode. Meanwhilo charge is leaking off C3 through R14 and after about 9 ma@ 0 goes high and KD'goes low. This delay is to allow for contact bounce in the keyboard switches. QD high drives pin 2 (clock infut) of all the shift registers high. The data present at pin 15 of all the shift registers is now entered. KD' $^{\prime}$ went low after 9 ms which, through IC6A, 1C17A-F, and IC21E \&F turns on the output amolifier (LM,86) giving an audible click and lights the pulsing gate indicator LED. The LED stays lit as long es any key is depressed.

Let me repeat, a is entered into the 1100 and 1700 shift registers and a 1 is entered in the $700,900,1300$, and 1500 shift registers when XP is pressed on the keyboard.

The Schmitt triggers (ICl8E\&F) reolace the 4047 used in Milo's box. I could not get the 4047 to work in this application. Besides the 7 LCl 4 Schmitt trigger is cheapor. Note also that the $P$ gate indicator driver should be a non-inverting buffer and not an inverting buffer as Milo shows it.

The $40 \times 1$ shift register, unlike other CVOS ICs, hes a large clock input capacitance (pin 2) so I play safe and drive them with 3 inverting buffers rather tion 1 ns rilo does. The 4031 is clocked by the positive edge of the clock end not just a high lovel so the clock input needs - aharply rising wavo form to clock it.

2, RUN Mode. Assume that 2 ten digit numbers esch with a prefix of KP and a suffix of $S$ have been entered into the shift registers. Before going on I will describe the 1 of 2 data solector composed of the 3 NAND gates IC3B, C, \& D and the inverting buffer ICl6C. Two clock rates are used: 1280 Hz supplied by the oscillator IC23; 10 Hz at the output (fin 3) of thedivide by 128 counter (IC20). The 1280 Hz clock, roes to one input of the data selector (pin 9, IC3D) and the 10 Hz clock goes to the other input(pin 12, IC3C). The control signal appears at pin 4 of the NOR gate ICl5B. When this control voltage is low then the output of the data selector (pin 4, ICSB) follows the aigh speod elock. When this pin is high then the output of the dati selector follows the low speed clock.

Now, let's press the RUN key. Imrediately pin 4 of IC4B goes high and stays high for 50ms (I'll explain the reason for the 50 ms later) and the output of the NOR latch composed of ICIIC \& D (pin 10, ICIXD) goes high winich sends pin 3 of IClifi low. After 50ms this turns on the clock oscillator (pin 4, IC23) and drives pin 1 of IC6A high which turns on the output amplifier and the $P$ gate indieator. Which clock will be used by the data solector 9 a total of 24 digits have been entered into the shift rogisters. Since these are 64 bit shift registers the data is 40 bits away from apooaring at the outout. The 2 NAND gates IC5B and IC4D see all "ls" at the 2 output (pin 6) of the shift registers. This through ICI5D end IE15B selects the high speed clock. So, at a rate of 1280 Hz data is atepped through the shift registers.

MAR-APR 1980

NO. 62

After 40 elock cycles two things hamen, eitner of wich will reset the RUN latch and turn of $f$ the clock. The " $\mathrm{E} . \mathrm{d}$ of Regieter" ( ECR ) counter (TC19) has reached a count of 64 (it also counts when the numbers are entered) plecing a high levol on pin 6 of ICl4B. Also the $K_{1}+K_{2}$ detector composed of the 3 NAND gates IC2C \& $D$ and IC3A tas detected $\mathrm{KP}_{1}$ at the $\overline{\mathrm{Q}}$ output $(\vec{\gamma}=$ not $Q$ ) output ( p in 7 ) of the 1100 and 1700 shift registers. This places high level at the other input ( 5 in 5) of the NCR gate ICllB. The negative going pilse at pin 6 of the reset generator (1C22) triggera a 2 ms output pulse at pin 10. This resets the RUN latch, the EOR counter (IC19), the divide by 128 counter (IC20), and turns off the clock. All this happened in 81.25 ms , 5 Cms dolay before the clock turned on plus 31.25 me to silft 40 bite at 1280 Hz .

But wo still haven't nlayed our numbers back. The next press of the RUN key gets the first number. KP of the first number is at the output of the $1100 \& 1700$ shift registors. The output of the $K_{1}+K_{2}$ dotector is high making the trigger input ( $n$ in 6) of the reset generator low but this doesn't do anything. The reset generator is negative edge triggered. Lat's press RUN again. Again we get the 50ms delay before the clock turns on. The "No Jata Detect" gates seo data present at the shift registers so the data selector selects tho low speod clock. Pin 13 of the NOR gate IClEC goes low and pin 12 of tho same IC is also low because it takes 64 clock cycles before pin 3 of 1620 will go high. ICl50 then drives one input of all the output NaND gates high (IClA, B, C, D, IC2A \& B). Pins 7 of shift registers IC9 and ICl2 are also high so tho output of liNND gates ICIC (1100) and IC2B (1700) go low which turns on the 1100 and 1700 tone goneretors. The output amplifier and the $P$ gate indicator are also on so we have 100 ms of KP as per Milo's specs. KP is 100 ms because of the 50 ms deley before the clock starts running. This is the reason for the 50 ms dolay. Therefore R2 and C2 should be chosen to give a 50 ms delay.

Pin 3 of IC20 goes high 100 ms gfter RUN is keyed. This turns of the tone generators and clocks the shift registers to the next number. After 50 ms of silence pin 3 of IC20 goes low for 50 ms and we get 50 ms of tones for what ever number is after KP and so on for each number until KP of the next number is regched. Then the $K_{1}+K_{2}$ detector output, which went low after KP of the first number was shifted past, again goes high trigeting the reset generator which stops the elock and resets overything.

A second press of the RUN key plays the second number in the same way. After the second number is played there ore 40 bits of no deta so the "No Data Detect" selects the high speed elock which raoidly ( 31.25 ms ) recirculates KP of the first number to the output of the shift registers and overything stops. The box is now ready to replay the first number.

3, CLEAR. When the CLEAR key is pressed pin 1 of ICIZA goes high. This is one input of the NCR latch composed of IC13A and B. This drives pin 3 of IC13A low which, through IC4A and IC16B drives low pin 10 of all the shift registers. This changes the shift registers from the recirculato mode to the data entry mode. At the same time the other outfut of tho NOR latch (pin4, IC13B) goes high. This through IC15B causes the data solector to select the high speed clock. The shift registers are now clocked at 1280 Hz with their inputs (pin 15) all high. This loads a "l" in all 64 locations of wll the shift registers. Since the complement outout ( $\mathbb{Q}$ ) is used the shift registers are cleared. After 64 counta the EOR counter goea high (pin 3, IC19) and resets the CLEAR NOR latch. The box in now ready to accept new numbers

The 4017e are the oacillatora and aro operated at 10 times the dosired output frequoncy. The output of anch oscillator ls fod into digital aine wave generator (eee Don Lancastor'a "cmes Cookbook") which gives a 10 step approximation of a 1 ne wavo at $1 / 10$ tho input frequency Unlike. aquare wave whose firat harmonic is the 3rd at $1 / 3$ the pouer of the fundamental, the first harmonic of a 10 otep aine zonarator is the gth at only $1 / 9$ the powar of the fundemontal. Thus nome of $\mathrm{vil} 10^{\prime} \mathrm{a}$ olaborate pilter notwork is required. Juat lately I'vo learned (TAP of th oourse) that square vaves work ai veli as sine wators at soard could be eimplified by oparating the digital oine wave the eorrpat

The output amplifier (LMB86) ie very conveniont an The output output voltage is automatically biased the suiply voltage. Ite output 1 mpedance 1: 8 ohma to ateh the most common spoakera. It is deaigned for battery aperation and has a low quiencent ourrent drain.

Milo's achomatie did not inelude it, but the voltage regulator is required. The frequency of the 4047 s is come regulator $\frac{18}{}$ dequndent. Do not make any component substitutione in thie regulator. It is dasignad for cMos aircuits and has a vory low powor drain but can atill supply quite a blt of current whon necessary. When the box 1 outpulaing for instance. You cen find more ebout enifications, regulator in the Natio

Por ANTl-7 buffere on the $\log i e$ board do not substitute 40 Por the buffere on 4049 or 4050 . The latter 2 can the 4009 or 4010 for the first mentioned pair.

Two tipe for working with cMos oircuite. Pirst, the inputs are sroumd yourelf through a meg reaistor when handing CMOS ground yourself through a meg roilstor devices must go somb alrcuita. Second, the poitivo or nogative supply, or tiad to whore, elifing input. Inpute cannot be left floting or tho function oscillate which will pull a lot of stand by currom Penemer that CMOS circuits theoretically drav no current when thay are not switching.

I have not shown the positive and negative supply leads the varioungates on the logic board. Just rasember, all the gate packagee need positive and negative supplied.

5.6V OUT
MEGULATED

Lo
品




$$
\begin{aligned}
& \text { (B.a.f., Niethis etner or intsethylether), the armert..tts }
\end{aligned}
$$

$$
\begin{aligned}
& \text { etiviery es tha - } t=\text { the past wale thorec. eer } \\
& \text { (those irterestec car zeter to "-ivit e:c Hicicis hric" } \\
& \text { U frecker onc the "etrer PeEn heve fi ther eer ch..e }
\end{aligned}
$$

reviewe, ether hee the Ci y, Mor.cies :eci o: hfircur is a
sefe arc effective recreaticritl crac.
The cril: real arawick to ether is the cornoteticre of
werrifitit thet its uae conjures li, chit cer. ho e
iroolec: ince consur: tion, cewes the stror solvert s: eli,
ofirfortea ferili; iencers fric irierce teno to cet quite
corcemec (anc eothes guite notrile) wher. they rotice it.
nith clue, you :ucrir' decencrete, ou. fest afsirec,
a otrer carcerous incustried eciverits.
hrother
whele, enerti aren. Sther atce ether liweo ore oxtreiel
retcres, etc. if you choose to forketor tis erebarc this,
remerser that erdifo up ir a licepital burt wrodor core
proteoly frimithe it tr. the rerultite extlesion of teerir.
:ldees ire cost undeasatit wejs to coctee acmp...

Evecything you alwas wanted tu know about lojs az tones but vere atraid to ask by the Yagician

As Tany of you know, there is a fourth tone used in the rouca lone natrix that is not incluaed on standard rouch tone phones. This tone 151633 ilz and can be obtalned in three vays. You can try to -ocate a military 16 button phone, but this 2 s usually very difficult. The other choices ate to buy a 10 button loucts tone encoder used by uad railo oprrators or tu iodify a dell touch Tone pnone by ajding an adaitional switch to the Lnuthlizpa tap on the torvid transfurmer.

Now that you know ays to yellerate 1033 Hz , you miunt wonler what it is used iur. The min use of this trequency is tor control signalling in Abluvun (military ana bul aulumatic voice ne(vork). rae suttons in the extracosumil are Geinghateu Fldsh overriae (16ss + 6yt Hz). Flasn (lojs * 770 Hz ), Intermedrate (loss + 852 Hz ), and Pilority (1033 + 441 ifz), top to buttum. bach kutcon supercedes the one bulow dr, with rlash uverifue leserved for the fresident in the event ur \# mational eaeryency" .

The other use of 16 Js hz is in AM mell culitroi sighalling. It can be ustal to setup tolt-tree loup-aiounds, mass conierence calts, amd -ven lets yuu becole the Intornation uperaros. When you place a call fur loho distance information, you are routed thiouyh dil act (hutomatac ciall Distributor). In about bú of the area codes in the US, $2 t$ as possible to access Acb internals via jojs tiz (e.t. area code jub is alway anfuradtion operdtor as usual (1+305-5b5-121i). As the cals qoes through, keep the rrivilty button pressed; tae noment the operator answers, you are thrown into acis abl you will recerve a dad tone pulsed abuut unce per secund.

Tae functions now available to jou througn ACD are docuaented inthe ind bell book inotes on bictance maling' as the 100 jeries lest lodes'. Just use the last digit of the codt fege $10<$ would be executed Ly pressing $i$ and wid piovide a loJJ Hz tone). The cudes ot interest to us are o and 7. code b enters you into one siue of a loop-around and sifice tae dhforation number as hun-supervising, the cast is tolf-tree!! Have your partner in crime decess $A C D$ and use coaf 7 to access the otner side of the loop-around (sume ared codes are gettiag siart and paseinq unly lubu :12). It the code oferson hangs up and rat codt 1 person hanss un, aCD will sometines aaltuhction and route all information calls to the code person instead of the real intormation operator. now that you are the information uperator, give thoie folks some sital information like the duaress to subecribe to 1AI. Thls same techingue provides for mss conferencing since adl callers to that information number are conhected together:!!

ACD 25 neat dul phun to experiment with as lung as you don't stay on too long. I'm nut sure how legal it is to zess with ACD sance gou'se not defraudanu rélio of its lawtul cuarues, but as soun as you cun-ect to ancther persoif, juu aioht quadify for arrest under wire traud statutes boy. aren't you lucky?!
please teel tree to send guestions, comments, etc. to The gagician, c/o iki.

UPDATE ON MANUFACTURING SEALS by Agent MDA
RE: TAP Issue \#50.8 (May-June '78). This method of manufacturing seals for birth certificates and other official documents uses a clay called "FIMO" that is made in Germany and may be difficult to purchase locally. An acceptable substitute called "Repla-Cotta" can be purchased from American Handicrafts stores. (Stock \#049-3021.) A two pound block costs five dollars, and it is a sufficient amount to make at least a hundred seals. If there is no American Handicrafts store nearby, the company can be contacted by writing: American Handicrafts, Division of Tandycrafts, Inc., Ft. Worth Texas, 76107. Also, retail prices for tools have skyrocketed, and the price of a set of $3 / 32$ " re $=$ verse letter punches is now twice the thirty three dollars quoted in TAP \#50 -- \$66.00:

A novel and easy method of obtaining seals has been published by Eden Press, P.O. Box 3410 , Fountain Valley, CA, 92708, in The Paper Trip II, 1979 Edition, pages 88-39, price $\$ 14.95$. (This book was formerly called The New Paper Trip, and the seal section has been revised, too.) Basically, the Paper Trip II method uses two or more' seals -which can be purchased at seal and rubber stamp stores -- and by cutting and filing away the unwanted parts of each seal, the seal desired can be effected by embossing them in succession, one over the other. For example, to make the seal of "Bumfugg, Maine", order a seal that says something like "Moose Club -- Bumfugg, Maine" and have an engraving put in the center portion of the seal. When the raised lettering that says "Moose Club" is filed off the seal, only the center engraving, town \& state name, and the border will be embossed. Another seal is still needed to be purchased; for this one, just have "Vital Statistics" on the top and "Moose Club" ci the bottom. File off the raised letters of the "Moose Club" and the seal will only emboss "Vital Statistics" and the border. The border will have to be removed from one of the seals of course, but after the second seal is embossed over the first seal, it will read "Vital Statistics Bumfugg, Maine" with a neat engraving in the center portion which will be good enough to fool almost any bureaucrat.

In comparison to the TAP \#50 method, the FT II method has two noteworthy advantages: First, it is less work because it is more of a method of getting a seal rather than a method of making a seal; a passable seal can be obtained the first time around. Second, the initial outlay of cash for one seal may be a few dollars less; on the other hand, the TAP \#50 method is less expensive for a large quantity of seals. Therefore, if one needs only a seal or two, and his desire to spend hours modeling clay and plastic is low, the Paper Trip II method is ideal.

## Nitchhiker Pioks the Wrong Car

dom of dom of the open road was briel for
escaped convict Roy Dean, 29. He hitched a ride that took him straight back to jail. Lt. Pat Ruch of the Santa Clara
County sheriff's office said she usual-
y does not pick up hitchhikers, but Dean was "rresistible His pants were Shenciled "County Jail. ust for said Dean, in Jail since August for burglary, offered no resistance. "He just looked very disap-
pointed," she said.

Back Insues are $60 \%$ each. Issue (15) is $\$ 1$. (0) Subscriptions - 10 issues - US Bulk rate $\$ 5$. Canada \& Mexico First Class \$7. Foreign $\$ 9$.
MPORTANT1 Include mailing label or Xerox copy when writing to TAF about your subscription. Elech onics Courses - 50, each. A - DC Basics B-AC Basice, C-Phone Rasics, D-Amplifiers. TAP Mung - \$4.!
TAP T-shirts - \$4. 50. Specify size and color : Small, Medium, Large, Extra Large. Black or red T-shirt with white TAP logo
IAP "Cracked Bell" Button-504 each. Joe Engselte Tape - $\$ 3.50$. Hear Capt Crunch, Al Bell, Engressia, and Bell Security Chiel John Doherty. TAP "The Telephine, H1" artist print - \$3. ©J. Mi unting instructions for $\mathrm{E} \%$ © $\quad$ neealrient included. TAP "Ma pell is A cbeap Mother" patch - $\$ 1,5)$,

Taxes are not levied for the benefit of the taxed. Robert Heinlein.

## $T$-eed off



[^0]
[^0]:    ASHEBORO. N.C IUPI - Service station attendant Orlando McIntosh had no doubt what to do when a man waiked into his station Sunday night. He followed the instructions printed on the man's T-shirt

    The shirt said "stick em up." uhich McIntosh did, handing over 8454 to the bandit who carried a 22 caliber handgun
    Interstate 85 .

