## introduction

A modern Coin Telephone set must provide new features that will become telephone industry standards as coin telephone services are upgraded by Operating as coin telephone services are upgraded by operating
Companicg . Among these are a high quality, reliable electrontc coin value signalling system and variable inftel rate cotn totsilizing cireuit. A new electrontc tone generating circuit has replaced the mechancal gong gyetem of signaling coin values in pay phones. The algnalling circuit produces the coded audible tone signala which have been adopted by most Morth American telephone operating companies to signal coin denontinarions from coin telephona to toll operator. In addicion, it provides coin value pulsed which are counted by a Variable lnitial hate (VIR)
totalizing circuig.

The coin aignaling circuit, developed for neu oingle-slot coin telephones, eliminates the bulky echanical gonga, making room for a new fraid resio ant coin chute. It improves the quality of coin consistent sound which varies less in level with the normal variations in line length between the telephon set and the awitching office. Signaling security ia eproved by muting the telephone handset recelver during the time that the conea are on the line.

The totalizing eircuit tllustrates the flexibility gained by using electronica in coin sets. It will allow the operating company to eelect the desired Sc amount by wery aimplefleld modification rate in the iet is wed with awitching office which providea a free emergency calling ervice, the output of the totalizing circuit ary be used to control an electron ic sultch which is interrogated by the auitching office. With such aystem, the coin set is opersit without coin deposit but the switching office will deny aervice to all but free calla unless the inftial rate is deposited.

## SELECTION OF TECHNOLOC:

The coin signalling problem has been approached in the past with a combination of electromechanical and bipolsar technologica. However, problems arlse the celephane itne betveen the aid the need to soitch the celephone voice circuit. Thus, impartant cidesigi objectives for the nev coln circuit vere to operate on the power avallable from the telephone line and to be directly connected in parallel uith the voice circuit of the telephone set. Complementary MOS technology vas chosen for the coin signalling circuit because of its low nower consumption, excellent nolse immunity, and wide supply voltage and temperature tolerance. It is ideally suited to the Coin Telephone Set application which demands high performance in each of these characterisetics. The major part of the system, all the digital logic functions and three linear ampliffers for the tone oscillator, ore fabricated on two integrated circuits using metal gate cios technologr. Discrete devices are provided for circult reset and pover handing situations such as relay driving, and
trensient and polarity protection.




In 3 cmos 10m Outurn

## CIRCUIT DESCRIPTION

When the telephone handset is lifted, a ine sultch contact applies central office battery to the circuit via the Ring and Tip leada (Fig. 1). A power supply voltage by approximately $1.8 v$ de to anintain he minlmum $3 v$ de requirement of the circuit, correctict line voltage polarity, and protects the circuit aselin transients on the line. An external reset circuit provides an enabling input to the coin iignailing ond Vir IC's after a 300 asec delay. The same circuit gives an irsmediate disabiling input after any break in the power supply which dissblez the circuit during operatione whet dial puising and coin collect/refund. Coin inputs appear as contact closurea on three different Input leads, one for each of the 5, 10 and 25 S denomInations. The chos merecircuit tranalates these into oded tone bursta for trananission to the cencral office (Fig. 2). Digital nignals are also provided at celver muting latching reed relay. The oscillator ceeds ativer datching reed relay. The oscillator feeds "driver transiator Tl which is nornally biased of to present a high impedance to the 11 ne . R1 con totalizer circuit receives from the coin algalling circuit a pulee for every se increment of deposited coinage. It totalizes the amount and when the preset Initial Rate is reached, actuates a relay. This relay may be used to enable the dial or In seta vith free emergency calling capability, to activate an electronic witch. The initial rate may be varied from se to 40 es in sc increments.

To 1 mprove the line balance ground isolation is provided. This circult senses the presence of loop current and opens the ground path during the talking
period.

## gos tune oscillator

The gateable CHOS sine wave oscillator used in the coin sifnalling circuit utilizes three chos inverters ( $A_{1}, A_{2}, A_{3}$ in $\mathrm{Fig}_{\mathrm{g}}$. 3) in the following way. Inverter $A_{2}$ is connected as a Colpicts type obciliato With the irequency determining elements beini inductor $t_{1}$ and the two capacitor: $C_{1}$ and $C_{2}$ connected in sefies. Fecdback of correct phase and magnitude is applied to the gate of $A_{2}$ by providing an ac ground at the node of $C_{1}$ and $C_{2}$. The se ground ls provided by connecting the input and output of is together. $\mathrm{R}_{2}$ provides etabilization of the output resistance of $A_{2}$ to control frequency difift. Limitink diodes $D_{1}, D_{2}$ and thernietor Ryl atablilize the oselliator output voltag tions. Pover for $A_{1}$ and $A_{2}$ is provided viege varla-n-type devices which are sultched by logic level "B (HIg. 2). The sine wave is present throughour the Fignalling cycle. Tone burste are created by gatin the osciliator output into A3 using the coin value code pulses anerated by the lopic. This method of fiating a constant alne wave was chosen to achieve a fast rise time for the output tone burgt. To have turned the oscillator on and off vould have required a considerable number of off chip components to achieve all aceeptably fast rise time. With this eechnique, the only "off chip" components are gain and frequency controlling elements.

# MAR - APR 1981 

## NO. 66

Fig. 4 shows the luvel of tone bursts measured at a 900 ohm cermination at the c.o. for different temperatures and line lenp:ths.

## Conclusion

The concept of the neu coin agnal ing and cotalizing circuit involves the use of a micropower cechnology uieh eapability for implementinf. linear at vell az digital functions, a toletance for a wide range of power supply voltages and very high nolse technology having ins and the power supply. With be placed directly in parallel uith the system cal speech network vithout causins tranemi seion Whout changing the equalization charectertans. the speech network, and withour eotns to the adila expense of a local power supply.

Systems for improving the security of Coln Telephone tignalling and for providing automated long distance calling (DDD) are under investigation. While the detals of such systems are not settled, it a clear that they will require much more digital procesaing at the coin station. tmproved signaling between switching office and coln set as vell as expanded totalizing and storage functions can be those that have provery and design methods based on coin atgnalling and cotalizing circuits present

## LETTERS FROM READERS

On Long Island if you dial 958 you get a computer with voice which announces the number from which you are calling. I have been told that if there is a tap on the line the voice doesn't say anything so it's one way of checking a line for a tap-- I don't know if this is a fact and, if so, it is because of some condition on the line which prevents the computer from uttering anything or if the phone co programs the computer not to respond to 958 calls which come from numbers they have taps on-- or what happens If it isn't a MA Bell approved tap. I also don't know if 958 produces any response from fones outside of my own area-- but In Long Island it does produce a response. I've been to people's homes where they have an unlisted phone and have thoughtfully removed the number from the phone so their casual guests can't get ito- ol' 958 has come through every time!

Free magazines? Easy! Next time you do to a doctor or dentist's office, sort through the mags in his waiting room. See any you like? Pull off the address sticker on the front cover, attach it to the change of address coupon in the magazine, and send it back to the publisher. In a few weeks you'll be getting the magazine (hopefully at your P.O. box). Sometimes it takes the better part of the year before Doc realizes what happened and then gets it straightened out: Good luck!



MORE on Autovon
I reallyenjoyed ted vail's discussion of autovon (tap 60) and it started the old synapses firing again has think the answer some basic facts about AUTOUSN and Matime. bet start with 1) AUTOVOH uses BELL's Iong distance line
2) It follous that auTovor signaling must be compatable.
4) '2-of-6, codes with 6 evenly spaced frequencies as arease The military doesn't have the ability to create their own
system.

It looks like the 'USAF 412 L , matrix is just like the BELL
 know the y can only used to transmit digits to the central
 the BELifirequencies are metyi
frequencies are evenly spaced.


AUTOVON doesn't use and $*$, and the $A, B, C, D$ has been replaced with Fo. Fi, ip. These letters designate which priority class yourequest for your call. Fo is FLASH OVERIDE, F is
 The 'priority reguest' is first handled on the ealling end to see if the desired classis available if not callex is bumped off and the higher priority takes his line. once an outgoing inne is captured the called number is tyanslated into number is the IDENTIFICATION DIGIT, which Bein uses to disi tinguish pay phones. home phones, and hotel phones in believe tinguish pay phones home phones, and hotel phones in believer
called party.

The article raised some questions in my mind so refered to my references and found some interesting data in the ccitc orange Book $\begin{gathered}\text { AUTOVON has many points of similingity uith bell }\end{gathered}$ signaling system R2. R2 uses 2 sets of G frequencies (two These frequencies are insted below and the reader oangnaling a matrix for study if desired.

Forward: $1380,1500,1620,1740,1860$, and 1980.
Backward: $1140,1020,1$
$900,780,660$, and 540.
1060) Some of these frequencies (1020, 1140, 1380 , 1620 , 1740 and used in the Autovor tr, and it should come as no surprise that 1260 is this frequency. Notice that all R2 frequencies are spaced frequencies hiso note that the AUTOVON frequencies are bounded of this article.

This brings up the possibility that $A U T O V O N$ is only a special case of R2 If this is true then we have problems 2 he because r2 does not use in-band line controls. ráuseskizas
out-of-hand control for line signals and as a tasi-locking frequency
with of course we know the military and they couldn't come up with this systen by themselvesi It spossible that the 412 l system is only used for touch tone ond the frequencies were chosen for convienence.
in with the R1, an with the international signaling systems where AF 412 m is
let's draw out the BELL matrix and the Army TA341 matrix for comparison. Take the BELL matrix and add 1200 hz to everv frequency.

|  | 900 | 1100 | 1300 | 1500 | 1700 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 700 | 1 | 2 | 4 | 7 | 11 |
| 900 | 3 | 5 | 8 | 12 |  |
| 1100 |  |  | 6 | 9 | $K \mathrm{P}$ |
| 1300 |  |  |  | 0 | KP2 |
| 1500 |  |  |  |  | ST |

## $190--$ 1900 21000 2300 8500 2700

21002300250027002900

Bell MF tones
autovon mp tones
Well, need $I$ say more? The only thing missing is the order of suspect they will be the same as bell. Both matrices represent a i-of-6 code. Since bell long distance lines are used in the hurovorsystem, it scems reasonable that Aurovon would use acompatable signaling system Mr tones before heing placed on the iong distance network
another possibility is that bell has special equipment to Another possibility is that Bell has special equipment to find out and let me know. find out and let me know.

## Write me in care of TAp

Readers with scanners might wish to tune their attention to the following frequencies which are used by Ma Bell's maintenance crews:
Primarily used in rural and suburban areasBase \& Mobiles: 35.16151 .985 MHz
Mobiles only: $43.16 \quad 158.34 \mathrm{MHz}$
Primarily used in metropolitan areas:
$451.30451 .325451 .35451 .40 \quad 451.45 \quad 451.50$ In some heavily populated areas the following frequencies may secondarily be used when all other frequencies are assianed:
451.175451 .225451 .275451 .375451 .425
451.475451 .525451 .575451 .625451 .675
462.475462 .525

Additionally, the following frequencies are available in selected metro areas as noted: Boston MA 471.3125 to 471.3875 MHz
Los Angeles CA $473.3125471,4125 \quad 507.3125$
507.4125 MHz

New York NY 472.9625472 .9875478 .9625
478.9875 MHz

Mobile telephone operators are most often found operating on: $152,51152.54152 .57152 .60$
152,63 152,66 152,69 152,72 152,75 152.78-there are also other frequencies used between 454.375 and 454.65 . Not all frequencies used in all areas. Ship-to-shore phone calls most often heard ont $161,80161,85161,90161.95$ $162,00 \quad 161.825 \quad 161.875 \quad 161.925 \quad 161.975$. A listing of mobile operator \& ship-to-shore frequencies used at spectfic locations is called TELE-COMM and is available for $\$ 3.95$, ppid, from CRB Research. Box 56, Commack NY 11725.

## Postal breakthroughs

WASHINGTON - While many people nave complained about a first-class stamp oing up from is cents to 15 cents,
I talked to one of the men who developeo the 15 -cent stamp and he considers it one of the greatest breakthroughs in mail dell very since the invention of the zip code.
"For years we've dreamed of a 15 -cen tamp, but if is ore thing to have the con cept and another to make it a reality. Eve since the people usstairs sald they wanted It, we have been working day and night to develop one according to their needs." "What specifically did they want?"
"They sald they wanted a stamp lighter in weight so we could get more letters on an airplane. At the same time it had to tike a beating from hail and sow and sieet. The stamp also had to be flextble enough to bend when it was bougt in rolls instead of sheets. And the most important instead of sheets. And the most important agatin when the post office failed to cancel h."
"How ad you solve the last problem?" "That was the most difficult," he sald "The post office has been losing between $\$ 10$ million and $\$ 20$ million a year because When people sot a letter with a stamp that ued it again. Tha is a federal crime, but very
"They say It ls too difficult to find a jury that will convict someone for recycling postage stamp. So the people upstairs told 4 we had to come up with a Atamp that couldn't be uged twice. It wasn't an easy assignment. The first thing we developed was a glue with an explosive base. When a person tried to pry off an uncanceled stamp from a letter, the stamp would blow has hand off. We thought we had the solvtion, but the Oceupational Safety and Health Administration raised objections
"Blessed are the young. for they shall inherit th Hoover.

# Locksmiths pick away at Caan's 'Thief' 

of thizir property and possessions, and create a lecling of insecurity and anger amongst those victims against whom such information may be used," Kenneth R. Lussier Sr., chairman of the Prolessional Locksmiths Coordinating Council of California, wrote the producers of the film in a letter dated Jure 30.
"We do not believe that the general public has the need to know how to drill open a ate or otherwise gain entry into probibited areas in which an individual, human or corporate, secures his possessions," Lussier continued.

In a telephone interview. "Thief" direcor Michael Mann agreed the film is graphic - It does show sophisticated ways to pick open a safe.
"But eriminalogically," Mann said, "the letter is inaccurate. You might know how to drill a safe after seeing the movie, but you'd also have to have 15 years of experience to put the methods shown into operation."

Mann and Caan do not have that kind of experience, so they hired someone who did. had worked as a barglar for more than a decde.

50 we had to go back to the drawing board.
"That was tough luck," I said, "because It would have done sway, because erime.
"Then we came up with a blue dye. If you tried to get the sump off the efvelops you wowld be covered from head to fool miun cisis indelible dye, and then our postal mospectors would be able to make a loolprool ifrest."
that?" people upstairs didn't so lor hat?
'"They did, but the postal workers kept setting the dye all over their clothes and wanted the service to pay for new uni forms."
What was the answer?
"A secret glue which makes it imposs Ible to steam the stamp off. It self-des tructs if anyone tampers with it after it has been stuck on an envelope. It's the big gest breakthrough since the invention of air mall."
"Will the new 15 -cent stamp speed up "he dellvery of mail?

I should bope mo. Whth less welght and more stable corners, our new 15 -cen tamp could treak the record from New Yort to Washington by 48 minutes. A first class letter can now get to any place with m 500 miles in less than four days."


HOLLIVOOD - Jaimes Caan's nex Hie. Thien, is not due out untir Febrary. already it has gotten its first review ing Council of California and assorted safe manacturers do not like the movie. Too raphic they say.
or four safecracking

We believe the information this movie ould provide to the criminal this be used by them to deprive the general public
















