
T U T O R I A L S

CryptoTutorials
by Israel Torres

PART 3
Cryptography Fundamentals
– Crypto With Keys

CryptoTutorials

PART 3 Cryptography Fundamentals
– Crypto With Keys

CryptoTutorials

PART 3 Cryptography Fundamentals
– Crypto With Keys

CryptoTutorials
By: Israel Torres

There are quite a number of cryptographic
implementations out there that allow
you to encrypt/encode/encipher your

communications (PM (Private Messages),
IM (Instant Messages), Tweets, IRC (Internet
Relay Chat), e-mail (electronic mail), snail-mail
(postal), SMS/MMS, voice, etc). In your encrypted
communications you are often lead to believe
your communications are secure; if you are lucky
you get to know the algorithm used (whether it is
public/private), and if you are even luckier you get
to play with the open source code to make your
affirmations sound. Most of the time you are kept
guessing as to what you are sending on that cool
99 cent app is secure or not.

A lot of homegrown implementations out there
are some type of text rotation (shifting letters
from left to right) or XORing (bitwise-eXclusive-
OR). This topic/demo will cover ASCII text
messages – results you can copy and paste
into text-based clients and how to protect them
using a simple technique. The difference here is
you’ll understand how it works and how to make
it better.

Note
As this is a tutorial it is certainly encouraged that
you play with the source code provided as you like
however it is important to understand that if you
really need to make sure no one other than yourself
or others you trust sees a communique you should
really use a known algorithm/implementation such
as AES-256, blowfish, twofish.

I’ve provided the source C file ct3-crypto-

keys.c (Figure 1) which demonstrates a few of
the exercises we’ll be going over in this tutorial.
(if you can’t locate the source code contact me

What you will learn...
crypto fundamentals, how to use a key to encrypt your commu-
nications

What you should know...
basic C programming for programmatic implementation

Figure 1. ct3-crypto-keys console output

CryptoTutorials

PART 3 Cryptography Fundamentals
– Crypto With Keys

CryptoTutorials

PART 3 Cryptography Fundamentals
– Crypto With Keys

– info below) Compile and run it with this one-liner in
terminal:

 gcc ct3-crypto-keys.c -o ct3-crypto-keys && .

 /ct3-crypto-keys

If you don’t understand C it’s ok I’ve named the
variables, documented and chunked up the code so it
is easy to understand even by someone that doesn’t
code.

For brevity let’s state that our test string will aptly
be THESECRETMESSAGE however instead of relying on the
ASCII Decimal values of 65-90 for A-Z we are going
to convert them to something more familiar 1-26. It’s a
simple matter of subtracting the value of 65 – here’s an
example:

 char alpha[ALPHABET]=”\0”; int counter=0, numlist=0;

 for (;counter < ALPHABET; counter++){

 alpha[counter]=(counter+ALPHAUPP);

 printf(„%c\t%d\n”,alpha[counter], counter+1);

 }

which outputs 26 lines: A = 1 ... Z = 26. This is handy
when using familiar number systems (before
the days of using personal computers to do all
the dirty work). In another tutorial we’ll go over
how to use a similar system to handwrite a key
system using these same values and then some
but do it all by hand instead of using a computer.
(note in this particular block we’ve made counter
to be 1-based instead of 0-based as the rest of
the code uses).

In the first block we are declaring the secret
message and saving it in a string (character
array) labeled teststring and printing it out to the
console. (Figure 2). We’ll be using teststring a
couple of more times so whether we print it to
the console or not we’ll still need to declare it.
(Later you can convert this to a more dynamic
input handler but that is out of the focus of this
tutorial).

In the second block we use the length of
teststring (so we match index value for index
value) to generate a pseudo-random value (in this
case 0-9) and populate the values in a numeric
(integer) array labeled keystream. keystream
will save the key for encrypting and decrypting
against. keystream is also the value you want
to guard as it is the key to your secret message.
Without knowing the value of keystream it will
take longer to attack your message.

In the third block we use teststring and add the values
of keystream so for example the value of teststring[0]
is T which is ASCII Decimal 84 which minus 65 is 19
which is the alphabetic number 20 on a 0-based index
(which we are using in our for loops) and 20 is the 20th
letter in the alphabet known as T. Our keystream[0] in
turn rolls out an integer value of 5. Adding 19 with 5 we
get a value of 24 which again 0-based is the 25th letter
in the alphabet being Y. To reverse this symmetrically
we subtract the same value (5) to get us back to where
we were. We go through this routine for the entire
length of teststring until it is complete and show the
transformed message from [THESECRETMESSAGE] using the
keystream of [5865043852571467] to our encrypted array
values of [YPKXEGUMYOJZTEML]. In this simple example
we are using the keystream as a one-time-pad (OTP)
as long as we only use it once. Done correctly (with
a better randomizer) the cryptanalyst (the attacker in
this case) will have a very difficult time restoring the
message correctly as the keystream is the other half
needed to ensure that the communication is decrypted
properly.

The fourth and final block puts the encrypted values
against the keystream into a decrypted array by simply

Figure 2. ct3-crypto-keys C source code

CryptoTutorials

PART 3 Cryptography Fundamentals
– Crypto With Keys

reversing the process as mentioned above to be able to
read the message as intended.

The keystream can be anything from randomly
generated numbers, timestamps, rss feeds, anything
that is constantly changing and non-repeating is
recommended. The bad part with public streams is
that the attacker also has access to them. It becomes
quite dangerous if the communications use things like
headers (which is usually a lot how patterns are found
and eventually decrypted by unintended parties). The
lesson learned there is don’t use headers in your
messages or anything that creates a template and
lastly never repeat words in the same places. One of
the reasons that OTPs are frowned upon is the next
problem: key distribution (how to get your secret key
to your partners in crime). Since you have to have
synchronized keys to match your encrypted messages
getting the keys to parties not local to you can be quite
challenging in more ways than one. We’ll have to cover
that another time. :)

Web Links and References
• http://en.wikipedia.org/wiki/AES
• http://en.wikipedia.org/wiki/Blow�sh_(cipher)
• http://en.wikipedia.org/wiki/Two�sh
• http://en.wikipedia.org/wiki/ASCII
• http://en.wikipedia.org/wiki/One-time_pad

Notes
All source code created and tested on:
Mac OS X 10.7 11A511
Darwin Kernel Version 11.0.0
gcc version 4.2.1

ISRAEL TORRES
Israel Torres is a hacker at large with interests in the hacking
realm.
hakin9@israeltorres.org http://twitter.com/israel_torres
Got More Time Than Money?
Try this month’s crypto challenge:
http://hakin9.israeltorres.org

Source:
ct3-crypto-
keys.c

http://en.wikipedia.org/wiki/AES
http://en.wikipedia.org/wiki/Blowfish_(cipher)
http://en.wikipedia.org/wiki/Twofish
http://en.wikipedia.org/wiki/ASCII
http://en.wikipedia.org/wiki/One-time_pad
mailto:hakin9@israeltorres.org
http://twitter.com/israel_torres
http://hakin9.israeltorres.org

