APPENDIX C

FORMULAS

SINE BAR OR SINE PLATE SETTING

Sine bars or sine plates usually have a length of 5 inches or 10 inches. These standard lengths are commonly used by the tool maker or inspector. The sine bar or sine plate is used for accurately setting up work for machining or for inspection. Gage blocks are usually used for establishing the height.

Rule for determining the height of the sine bar setting for a given angle: multiply the sine of the angle by the length of the sine bar. The sine of the angle is taken from the tables of trigonometric functions.

Problem: What would be the height to set a sine bar for establishing an angle of 23041^{\prime} ? Solution: The sine of $23^{\prime} 41^{\prime}$ is 0.40168 . Multiply this by 5 because a 5 -inch sine bar is used; $5 \times 0.40168=2.0084$, which is the height to set the sine bar.

RULES FOR FIGURING TAPERS

TO FIND
Taper per inch
Taper per foot
Taper per foot
Diameter at small
end in inches
Diameter at large
end in inches
Distance between two given
diameters in inches
Amount of taper in a certain
lenggth given in inches

TO FIND

Taper per inch
Taper per foot
Taper per foot

Diameter at small end in inches

Diameter at large
end in inches

Distance between two given diameters in inches

Amount of taper in a certain length given in inches

GIVEN
Taper per foot
Taper per inch
End diameters and length of taper in inches

Large diametre, length of taper in inches, and taper foot

Small diameter, length of taper in inches, and taper per foot

Taper per foot and two diameters in inches

Taper per foot

RULE

Divide the taper per foot by 12 .
Multiply the taper per inch by 12 .
Subtract small diameter from large, divided by length of taper, and multiply quotient by 12 .
Divide taper per foot by 12 , multiply by length of taper, and subtract from large diameter.

Divide taper per foot by 12 , multiply by length of taper, and add results to small diameter.

Subtract small diameter from large, divide remainder by taper per foot and multiply quotient by 12 .
Divide taper per foot by 12 and multiply by given length of tappered part

To find the circumference of a circle $\Xi \mathrm{xD}$ or $\mathrm{D} / 0.3183$.
To find the diameter of a circle $0.31831 \times \mathrm{C}$ or C / Ξ.
To find the area of a circle Ξ r2.
To find size of round stock needed to machine a hexagon, $\mathrm{D}=1.1547 \mathrm{x}$ distance across the flats
To find size of round stock needed to machine a square, $\mathrm{D}=1.4142 \mathrm{x}$ distance across the flats
To find the area of a square, square one side
To find the area of a rectangle, multiply length times width
To find the volume of a cube, multiply length times width times depth
To find the volume of a square prism, multiply length times width times depth
To find the volume of a cylinder, multiply Ξ times radius squared times height
To find the area of a triangle, multiply base times height divided by 2
To find the area of a ring, subtract the area of inside diameter from the area of the outside diameter.

TRIGONOMETRY FORMULAS Formulas for Finding Functions of Angles

Formulas for Finding the Length of Slides for Right-Angle Triangle When an Angle and Side are Known

Length of	Hypotenuse * sine Hypotenuse/cosecant side adjacent
	Side adjacent * tangent Side adjacent/cotangent
Length of	Hypotenuse *ine Hypotenuse/secant
side adjacent	Side opposite cotangent Sength of Side opposite/tangent
hypotenuse	Side opposite * cosecant
	Side opposite/sine
	Side adjacent * secant
Side adjacent/cosine	

RIGHT TRIANGLES

KNOWN	SIDE a	TO FIND SIDE b	SIDE C
Side c, Angle B	Cosine B \times c $\frac{o r}{\text { or } C}$	$\begin{aligned} & \text { Sine } B \times c \\ & \frac{\text { or } \quad C}{\text { Cosecant } B} \end{aligned}$	Angle $A=$ $90^{\circ}-B$
Side c. Angle A	$\begin{aligned} & \text { Sine } A \times C \\ & \text { or } \quad C \\ & \text { Cosecant } A \end{aligned}$	$\begin{aligned} & \hline \text { Cosine } A \times C \\ & \text { or } \quad C \\ & \hline \text { Secant } A \\ & \hline \end{aligned}$	$\begin{gathered} \text { Angle } \mathrm{B}= \\ 90^{\circ}-\mathrm{A} \end{gathered}$
Side b, Angle B	Cotangent $8 \times b$ $\frac{o r}{\text { Tangent } B}$	$\begin{gathered} \text { Angle } \mathrm{A}= \\ 90^{\circ} \cdot \mathrm{B} \end{gathered}$	$\begin{gathered} \hline \text { Cosecant } B \times b \\ \frac{\text { or } b}{\text { Sine B }} \\ \hline \end{gathered}$
Side b, Angle A	$\begin{aligned} & \text { Tangent } A \times b \\ & \text { or } \quad b \\ & \text { Cotangent } A \end{aligned}$	$\begin{gathered} \text { Angle } \mathrm{B}= \\ 90^{\circ} \cdot \mathrm{A} \end{gathered}$	$\begin{aligned} & \hline \text { Secant } A \times b \\ & \frac{\text { or } \quad b}{\text { Cosine } A} \\ & \hline \end{aligned}$
Side a, Angle B	$\begin{gathered} \text { Angle } \mathrm{A}= \\ 90^{\circ} \cdot \mathrm{B} \end{gathered}$	Tangent B $\times \mathbf{b}$ $\underset{\text { Corangent }}{ } \quad$ a	$\begin{aligned} & \text { Secant } B \times b \\ & \frac{\text { or } a}{\text { Cosine } B} \end{aligned}$
Side a, Angle A	$\begin{gathered} \text { Angle } \mathrm{B}= \\ 90^{\circ}-\mathrm{A} \end{gathered}$	Cotangent $\mathrm{A} \times \mathrm{a}$ $\frac{\text { or } \quad a}{\text { Tangent } A}$	$\begin{gathered} \text { Cosecant } A \times a \\ \frac{\text { or } a}{\text { Sine } A} \\ \hline \end{gathered}$
ANGLE A		ANGLE B	SIDE X
Side c and b	$\begin{aligned} & \text { Cosine } A=b+c \\ & \text { or }=b=c+b \end{aligned}$	Sine $B=b+c$ or Cosecant $\mathrm{B}=\mathrm{c}+\mathrm{b}$	$\begin{aligned} & \hline \text { Side } A= \\ & \hline c^{2} \cdot b^{2} \end{aligned}$
Side c and a	Sine $A=a+c$ or Cosecant $A=c+a$	$\begin{aligned} & \text { Cosine } B=a+c \\ & \text { Secant } B=c+a \end{aligned}$	$\begin{aligned} & \text { Side } \mathrm{b}= \\ & \frac{\mathrm{c}^{2} \cdot \mathrm{a}^{2}}{} \end{aligned}$
Side c and a	Tangent $A=a+b$ or Cotangent $A=b+a$	Cotangent $B=a+b$ or Tangent $B=b+a$	$\begin{aligned} & \text { Side } c= \\ & \hline a^{2} \cdot b^{2} \end{aligned}$

