Glossary/Index

A

Abbreviated electron configuration, of multi-electron atoms 433–436

Absolute zero Zero kelvins (K), the lowest possible temperature, equivalent to −273.15 °C. It is the point beyond which motion can no longer be decreased. 18

Accuracy How closely a measured value approaches the true value of the property. 20

Acetaldehyde, determining Lewis structure 464–465

Acetamide 668

Acetate ion, solubility of compounds with 141

Acetic acid 162–165, 664 dissolved in water 164 formulas 162 freezing point of 162 glacial 162 molecular structure of 162 as organic acid 162 production 528, 654 solubility in water 593 taste of 160 uses 162, 654 as weak acid 163

Acetone 666 boiling point of 546 evaporation of 536 use 567 vapor pressure of 540

Acetylene 451, 662 molecular structure of 451 water solubility of 580

Acid. See also Arrhenius acid binary. See Binary acid bleach and 188 Brønsted-Lowry 188–192 conjugate acids and bases 189 carboxylic acid. See Carboxylic acid characteristics 160 classification of strong or weak 166, 176–177 defined 188 diprotic. See Diprotic acid identifying 176–177 monoprotic. See Monoprotic acid names and formulas of 168–170 oxyacid. See Oxyacid pH 178–179 polyprotic. See Polyprotic acid in saliva 177 strong 165

Study Sheet, indentifying 176

taste of 177 triprotic. See Triprotic acid types 162 weak 163–165

Acid-base reaction 180–188 strong acid with hydroxide base 181–185 uses 180 writing equations 183

Acidic paper, preserving books with 187

Acidic solution A solution with a significant concentration of hydronium ions, H₃O⁺. 160

Acid rain 167 pH and 178

Acrylamide 621

Activated complex 611

Activation energy The minimum energy necessary for reactants to reach the activated complex and proceed to products. 612

Active site A specific section of the protein structure of an enzyme in which the substrate fits and reacts. 690

Actual yield The amount of product that is actually obtained in a chemical reaction. 382

Adams, Mike 674

Addition, rounding off for 299–300

Addition polymer A polymer that contains all of the atoms of the original reactant in its structure. This category includes polyethylene, polypropylene, and poly(vinyl chloride). 693–694

Adipic acid 351

Adults effects of ionizing radiation on 730 fingerprints of 541

Aerosol can 541

Agent Orange 364

Aging, oxidizing agents and 212

Agitation, rate of solution and 590–591

Agricultural Research Service of North Carolina State University 266

AIDS 673

Air 509–510 density of 302 gases in 510 internal combustion engine and 492 in lungs 493

Air bags 526

Air pollution catalytic converters and 221 ozone and 266–267 volatile organic solvents and 514

Alanine (Ala, A) silk and 690 structure of 678

Alar 361

Alcohol Compounds that contain a hydrocarbon group with one or more -OH groups attached. 84, 663. See also Methanol, Ethanol, and 2-propanol hydrogen bonds and 555

Aldehyde A compound that has a hydrogen atom or a hydrocarbon group connected to a -CHO group. 665

Aldol, molecular structure of 669

Alka-Seltzer 526

Alkaline earth metals Group 2 (or 2A) on the periodic table; See also Beryllium, Magnesium, and Calcium 43 ion charges of 97

Alkali metals Group 1 (or 1A) on the periodic table; See also Lithium, Sodium, Potassium, and Cesium 43 ion charges of 96–97

Alkane A hydrocarbon (a compound composed of carbon and hydrogen) in which all of the carbon-carbon bonds are single bonds. 661

Alkene A hydrocarbon that has one or more carbon-carbon double bonds. 662

Alkyne A hydrocarbon that has one or more carbon-carbon triple bonds. 662

Alpha emission The process of releasing an alpha particle by atoms that have too many protons to be stable. 720 nuclear equations for 723–725

Alpha helix 680–681

Alpha particle The emission from radioactive nuclides that is composed of two protons and two neutrons in the form of a helium nucleus. 720 effects on body 730–731 penetration of the body 731

Alternate Synthetic Pathways Award 621

Alternative Solvents/Reaction Conditions Award 272

Alum. See Aluminum sulfate

Aluminum 44 ion formation 49, 97

Aluminum bromide, production and use 235

Aluminum chloride 108

Aluminum fluoride, production and use 401
Amphoteric substance A substance that can act as either a Bronsted-Lowry acid or a Bronsted-Lowry base, depending on the circumstances. 191
Amylase 688
Amylopectin 676–677
Amylose 676–677
Analogies, to electron behavior 414
Anastas, Paul T. 5
Anderson, Carl 437
Androstenedione 686, 687
Aniline, production and use 399, 402
Animal fat 585
Anion An ion formed from an atom that has gained one or more electrons and thus has become negatively charged. 49
formation 95–96
in batteries 225–226
in classifying types of compounds 78
in ionic bond formation 75–76
monatomic 96
naming 98–99, 104–106
polyatomic 101–103
structure of ionic compounds 100
writing formulas 107–108
Anode The electrode at which oxidation occurs in a voltaic cell. It is the source of electrons and is the negative electrode. 225
Antacid
Antacids
Antacid 48
Antidepressants 48
Antidesmotic 48
Antioxidant, aging and 48
Antioxidants 48
Antirheumatism 48
Antiseptic, iodine as 48
Antisocial behavior 48
Antisocial personality disorder 48
Antique 48
Antiseptic 48
Antiseptics 48
Antivenin 48
Antiviral 48
Antivirals 48
Aperture 48
Appendix 48
Aperture, in lenses 48
Aperture, in photography 48
Appetite 48
Appetizers 48
Appetizing 48
Appetizing, an 48
Application, in scientific method 8–9
Appliances, electrical 48
Aquaporin 48
Aqueous solution A solution in which water is the solvent. 134
Arene (or aromatic compound) A compound that contain the benzene ring. 662–663
Arginine (Arg, R), structure of 679
Argon
in air 510
in incandescent light bulbs 496
in neon lights 509
Aromatic. See Arene A compound that contain the benzene ring.
Aromatic compounds. Compounds that contain the benzene ring. See Arene
Arrhenius, Svante August 160
Arrhenius acid According to the Arrhenius theory, any substance that generates hydronium ions, H₃O⁺, when added to water. 160–167. See also Acid
binary acid 162
compared to Bronsted/Lowry acids 188–192
defined 160
names and formulas for 168–170
organic (or carbon-based) acid 162
oxyacids 162
reactions with bases 180–187
strong and weak 163–166
Arrhenius base A substance that produces hydroxide ions, OH⁻, when added to water. 174–178. See also Base
compared to Bronsted/Lowry bases 188–192
defined 173
reactions with acids 180–187
strong and weak 173–176
Arsenic (As) bonding patterns of 452
most common bonding pattern 455
Asparagine (Asn, N), structure of 679
Aspartame 705, 711
Aspartic acid (Asp, D)
in salt bridges 682
structure of 679
Asphalt, London forces in 556–557
Asymmetry, in polar molecules 552, 553
Atmosphere, layers 268
Atmosphere (atm), as unit of pressure 485
Atmospheric pressure 485
boiling-point temperature and 545–546
Atom The smallest part of the element that retains the chemical characteristics of the element itself. 46–48
atomic numbers of 51
chemical bonds between 73–77
in chemical reactions 126–128
counting by weighing 331–334
electron 48
electron configurations and orbital diagrams 424, 431, 456
excited and ground state 421
as formula unit 339
mass numbers of 51–52
molar mass of 335–336
nuclear reactions of 720–724
nuclear stability of 718
oxidation numbers of 213–220
protons, neutrons, and electrons 47
radioactive decay of 720–724
size of 47
size of nucleus 47
structure of 46–50
Atomic mass The weighted average of the masses of the naturally occurring isotopes of an element.
calculations 336
defined 333
relative 333
Atomic mass unit (u or amu) One-twelfth the mass of an atom of carbon-12. Carbon-12 is the isotope of carbon that contains 6 protons, 6 neutrons, and 6 electrons. 47, 332–333
Atomic number The number of protons in an atom’s nucleus. It establishes the element’s identity. 51 in nuclear equations 722–726 in nuclides 716–717
Atomic orbitals
1s 416–418
2p 421
2s 419–420
3d 422
electron cloud 418
electron spin and 426
for first 10 elements 427
order of filling 425, 428–430
probability and 418
relative energies 420
shapes 419
Atomic weight See also Atomic mass 333
Attraction. See also Gravitational attraction; Electrostatic attraction; Strong force; Particle-particle attractions between gas particles 484
between liquid particles 534
intermolecular 547–557
particle-particle attraction 547–562
Aurum 41
Automobile Exhaust 71
Average, weighted 331
Avogadro’s Law Volume and the number of gas particles are directly proportional if the temperature and pressure are constant. 491
Avogadro’s number The number of atoms in 12 g of carbon 12. To four significant figures, it is \(6.022 \times 10^{23}\). 333–334

B
Bacon, Roger 287

Bacteria 236
tooth decay and 186
Baking powder 73
Balance, electronic 23, 300
Balanced chemical equation coefficient 127
coefficients to conversion factors 369–370
in equation stoichiometry 368–375
Balancing chemical equations 128–133
steps in 129
Study Sheet 129
Ball-and-stick model A representation of a molecule that uses balls for atoms and sticks for covalent bonds. 54
of acetic acid molecule 162
for acetylene 471
for boron trifluoride 470
for ethane 471
for methane 468
for organic molecules 660
of ammonia 87
of methane 87
of water 88
Band of stability On a graph of the numbers of neutrons versus protons in the nuclei of atoms, the portion that represents stable nuclides. 719
Barium ion, solubility of compounds with 141
Barium sulfate 143
Barnes, Randy 687
Base 173–177. See also Arrhenius base Arrenius 174
Bronsted-Lowry 188–192
carbonate 175
classification of strong or weak 176–177
conjugate 190
defined 173
identifying 175–176
in acid-base reactions 180–188
pH 178–179
strong 173
Study Sheet, indentifying 176 weak 174–175
Base units The seven units from which all other units in the SI system of measurement are derived. 10–11

Basic solution A solution with a significant concentration of hydroxide ions, OH\(^{-}\). 173
Battery A device that has two or more voltaic cells connected together. The term is also used to describe any device that converts chemical energy into electrical energy using redox reactions. 224–229. See also Voltaic cell defined 224, 225
dry cell 226–227
nickel-cadmium batteries 228
rechargeable 228
zinc-air 229
Beef fat 584–585
Bends, the 596
Benitoite 362
Bent geometry The molecular geometry formed around an atom with two bond groups and two lone pairs or two bond groups and one lone pair. 469
Benzedrine 582
Benzene 351
Berkelium (Bk) 725
Beryllium (Be) electron configuration and orbital diagram 426
formation of 742
Beta emission The conversion of a neutron to a proton, which stays in the nucleus, and an electron, called a beta particle in this context, which is ejected from the atom. 720
nuclear equations for 723–725
Beta particle A high-velocity electron released from radioactive nuclides that have too many neutrons. 720
effects on body 730–731
penetration of the body 731
Bet sheet 680
Big Bang 742
Binary acid Substances that have the general formula of HX(aq), where X is one of the first four halogens: HF(aq), HCl(aq), HBr(aq), and HI(aq). 162
formulas 168
naming 168
Binary covalent compound A compound that consists of two nonmetallic elements. memorized names 90
names without prefixes 93
naming 91–92
prefixes used to name 91
recognizing from formulas 91
recognizing from names 93
systematic names 90–92
writing formulas 93–94
Binary ionic compound An ionic compound whose formula contains one symbol for a metal and one symbol for a nonmetal. 104
A polar covalent bond, which has an atom with a partial positive charge and an atom with a partial negative charge. 549
Bond polarity, predicting 548–552
Books, preserving 187
Boron (B)
 brain cancer treatment and 741
 covalent bonding pattern 454
 covalent bond formation 453
 electronic configuration and orbital diagram 426
nuclear power plant control rods and 740
 and 740
 Boron trifluoride 453
 Bovine pancreatic trypsin inhibitor (BPTI) 680–682
Boyle’s Law The pressure of a gas is inversely proportional to the volume it occupies if the number of gas particles and the temperature are constant. 486–487
Brain, intoxicating liquids and 89
Brain cancer, treatment for 741
Brandes, Jay A. 641
Breathing 493
Bristlecone pines and carbon-14 dating 734
Bromide ion, solubility of compounds with 141
Bromine (Br) in halons 272
 most common bonding pattern 455
 structure 55
 use 570
Bromomethane, and threshold limit value, or TLV 522
Bronsted-Lowry acid A substance that donates protons, H+, in a Bronsted-Lowry acid-base reaction. See Acid, Bronsted-Lowry
Bronsted-Lowry acid-base reaction A chemical reaction in which a proton, H+, is transferred. See Acid-base reaction, Bronsted-Lowry
Bronsted-Lowry base A substance that accepts protons, H+, in a Bronsted-Lowry acid-base reaction. See Base, Bronsted-Lowry
Bubbles in boiling liquid 544
 how form in liquid 542–544
 in soft drinks 596
Bunsen burner, hottest part of flame 314
Bureau International des Poids et Mesures (BIPM) 11
Butadiene 524
Butane, molecular structure of 82
 1,4-Butanediol (BD) 354
Butanoic acid
 molecular structure of 583, 664
 solubility of 583
 2-Butanone 666
Butylated hydroxytoluene (BHT) 662
Butyl ethyl ether 660
Butyric acid 664
C
Cadaverine 667
Cadmium (Cd)
 in nickel-cadmium batteries 228
 nuclear plant control rods and 740
Caffeine 597
 removal from coffee 515
 taste of 159
Calamine 364
Calcium (Ca), ion formation 97
Calcium carbide, production 402
Calcium carbonate 126, 264, 616
 acid rain and 167
 as antacid 506
 formation in pipes of 144
 in limestone caverns 204
 natural sources of 144
 oil production and 186
 precipitation reaction 137–140
 solubility in water 593
Calcium chloride 126
Calcium dihydrogen phosphate, production and use 407
Calcium hydrogen sulfite, production and use 243
Calcium nitrate 108, 137–138
Calcium phosphate (or photophor), empirical formula for 348
Calorie (with an uppercase C), Cal The dietary calorie. In fact, a Calorie is a kilocalorie or 4184 joules. 257
calorie (with a lowercase c), cal A common energy unit. Equivalent to 4.184 joules. 257
Cancer, boron fusion and 741
Capsaicin 583
Carbohydrate Sugar, starch, and cellulose. Also called saccharides. 674–677
Carbon-13 733
Carbon-14, radioactive decay of 733
Carbon-14 dating The process of determining the age of an artifact that contains material from formerly living plants or animals by analyzing the ratio of carbon-14 to carbon-12 in the object. 733–734
Carbonate ion 175
 reaction with acids 185
 solubility of compounds with 141
 in weak bases 175
Carbonic acid 597
Carbon (C) 48
 bonding pattern 82
 combustion and 219
 covalent bond formation 450–451
 diamond as 47
 electron configuration and orbital diagram 426–427
Carbonated soft drinks 273
Carbon-12 733
Carbon-13 733
Carbon-14, radioactive decay of 733
Carbon-14 dating The process of determining the age of an artifact that contains material from formerly living plants or animals by analyzing the ratio of carbon-14 to carbon-12 in the object. 733–734
Carbonate ion 175
 reaction with acids 185
 solubility of compounds with 141
 in weak bases 175
Carbonic acid 597
Carbon (C) 48
 bonding pattern 82
 combustion and 219
 covalent bond formation 450–451
 diamond as 47
 electron configuration and orbital diagram 426–427
Cathode
in heavy-ion therapy 52
isotopes of 333
medical use 52
most common bonding pattern 455
in pig iron 509

Carbon black 381
Carbon dioxide
in automobile exhaust 71
as dry ice 255
catalytic converter and 221
in combustion reactions 219
decaffeinating coffee and 515
global warming and 384
greenhouse gas 597
Lewis structure of 83
polarity 552
in soft drinks 596
solid to gas 576
solubility in water 593
spray painting and 514
supercritical 514
Carbon dioxide torpedos 597
Carbon monoxide
catalytic converters and 221
covalent bond formation 453
in hydrogen gas production 622
incomplete combustion and 221
Lewis structure of 453
as pollutant 221
in synthesis gas 622
Carbon tetrachloride, use and production 526
Carboxylic acid A compound that have a hydrogen atom or a hydrocarbon group connected to a -COOH (or -CO_2H) group. 162, 185, 664
in acid-base reactions 185
forming name of 169
Carboxypeptidase, in digestion 688
Carnegie Institution 641
Carothers, W. H. 691
Catalyst A substance that speeds a chemical reaction without being permanently altered itself. 270, 618–621
automobile catalytic converter 221
chlorine atoms as 271
from chlorofluorocarbons 271
defined 270
equilibrium and 638–639
green chemistry and 621
homogeneous and heterogeneous 620–621
nitrogen oxides as 270
in producing hydrogen gas 622
Catalytic converter 221, 620–621
Cation An ion formed from an atom that has lost one or more electrons and thus has become positively charged. 49
formation of 95, 96–97
monatomic
naming 99
roles in body 100
names 105
polyatomic 101
produced by ionizing radiation 730
Celgene Corporation 673
Cellulose 674, 676–677
molecular structure of 677
Celsius scale 18–19
Celsius to Fahrenheit conversion 312–314
Celsius to Kelvin conversion 312–314
Cesium (Cs), electron configuration of 434
Cesium-137 730
Cesium chloride, crystal structure of 101–102
Chain-growth (or addition) polymers A polymer that contains all of the atoms of the original reactant in its structure. This category includes polyethylene, polypropylene, and poly(vinyl chloride). 693
Chain reaction A process in which one of the products of a reaction initiates another identical reaction. 739
Chapter Objectives 6
Charge
in atoms 47
in chemical bonds 76, 548–551
in HCl molecules 74
in hydrogen bonds 553
of ions 95–98
in London forces 556
in molecules 552–553
in water molecules 87
Charge cloud, for electrons 48, 418–421
Charles’ Law The pressure of a gas is inversely proportional to the volume it occupies if the number of gas particles and the temperature are constant. 489
Chemical bond An attraction between atoms or ions in chemical compounds. Covalent bonds and ionic bonds are examples. 73–77. See also Ionic bond; Covalent bond angles between 86–88, 468–474
double bond 83
ergy and 253–254
ionic bond 75–77
most common bonding patterns 83
nonpolar covalent 74
polar covalent 74
predicting bond type 77–79, 548–549
summary 76
triple bond 83
Chemical change. See Chemical reaction
Chemical compound. See Compound
Chemical Elements. See Element
Chemical engineering 609
Chemical equation 126–133
for acid-base reactions 183–187
balancing 128–133
polyatomic ions 129, 132
Study Sheet 129
chemical calculations and 367
complete 140
complete ionic 139
heat and 128
interpreting 126–128
molecular 140
net ionic 140
physical states and 127
special conditions and 127–128
Chemical equilibrium. See Equilibrium
Chemical formula A concise written description of the components of a chemical compound. It identifies the elements in the compound by their symbols and indicates the relative number of atoms of each element with subscripts. 70–71. See also Chemical nomenclature
for acids 168–170
for binary covalent compounds 93
in chemical equations 127
conversion factors from 342–345
for monatomic ions 98
of polyatomic ions 103
of polymers 691–694
Chemical nomenclature
binary acids 168
binary covalent compounds 90–94
memorized Names 90
names without prefixes 93
naming 91–92
prefixes used to name 91
recognizing from formulas 91
recognizing from names 93
systematic names 90–92
ionic 104–108
oxyacids 169
summary 171–172
Glossary/Index G-5
Chemical reaction The conversion of one or more pure substances into one or more different pure substances.
126

- acid-base 180–189
- chemical equations for 126–128
- collision theory for 610
- combination 218
- combustion 219–221
- completion 164
- converting to names 171–172
- decomposition 219
- double-displacement 136
- endothermic 264–265
- energy and 263–265
- equilibrium constants for 626–631
- exothermic 263–264
- neutralization 180–187
- oxidation-reduction 208–211
- precipitation 137–143. See also Precipitation reaction

- predicting extent of 626–629
- rate 616–620
- concentration effect 617–618
- temperature effect 616–617
- reversible 163, 621–622
- reversible reaction and equilibrium 621–625
- single-displacement 222
- synthesis 218
- types of 218–224

Chemistry The structure and behavior of matter. 4. See also Organic chemistry; Biochemistry

- combinatorial 673
- Green. See Green Chemistry
- nucleus 715–725
- organic 657–672
- suggestions for studying 5

Chemists 4

Children

- effects of ionizing radiation on 730
- fingerprints of 541

Chili peppers 583

Chloral hydrate 464

Chloride ion 49

- in sodium chloride 70
- solubility of compounds with 141

Chlorine (Cl)

- as anion 75–76
- bleach and 188
- catalyst for ozone destruction 618–620
- in chlorofluorocarbons 270
- diatomic molecules of 55
- electrolysis and 227
- in ionic bonds 75
- ion formation 95
- Lewis structure of 80
- most common bonding pattern 455
- product of the electrolysis of salt 39
- reaction with alkali metals 42
- structure 55
- threshold limit value, or TLV, and 522
- use and production 525, 604
- valence electrons 456

Chlorine-36 734

Chlorine gas, molecules of 80

Chlorobutane, formation of

Chlorination

- as process 221
- chlorine gas involved in 221
- natural 221

Chloralkanes 221

Chlorofluorocarbon, CFC Compound composed of just carbon, chlorine, and fluorine. 270–272

Chromate (CrO4)2–

- empirical formula of 83

Chromia

- empirical formula of 83

Chromium (III) oxide 108

- as catalyst 622
- catalytic converter and 221
- empirical formula of 346
- production and use 401, 408

Chromium (Cr), sources of 365

Chromosome

- 83

Chromosome mutation 36

Chromotrope

- in digestion 688

Citric acid

- taste of 177

Citro

- taste of 177

Citrine 362

Clark, Desmond 733

- mixture 71
- pure substance 71
- Study Sheet 72, 500, 507, 512, 550

Classifying compounds 78

Cleaning with soap and detergent 586–587

Clean Air Act of 1967 523

Clinton, Bill 5

Coal, acid rain and 167

Cobalt

- 60
- cancer radiation treatment and 731
- food irradiation and 735
- gamma ray emission and 722

Coefficients The numbers in front of chemical formulas in a balanced chemical equation. 127

Coffee

- pH of 179
- removing caffeine 515

Cold-start emissions, catalytic converters and 221

Cold packs 264

- orientation 615
- steps 610–612
- summary 615–616

Combination (or synthesis) reaction The joining of two or more elements or compounds into one product. 218

Combinatorial chemistry 673

Combined gas law equation 500

Combustion analysis, empirical and molecular formulas from 353

Combustion reaction Rapid oxidation accompanied by heat and usually light. 219–220

- incomplete 221
- Study Sheet 220

Complete (or molecular) equation A chemical equation that includes uncharged formulas for all of the reactants and products. The formulas include the spectator ions, if any. 140

Complete combustion 219–220

Complete electron configuration 430–432

Complete ionic equation A chemical equation that describes the actual form for each substance in solution. For example, ionic compounds that are dissolved in water are described as separate ions. 139

Completion reaction 164

Compound A substance that contains two or more elements, the atoms of these elements always combining in the same whole-number ratio. 70

- binary covalent 90
- binary ionic 104
- classification 78
- element versus 70
- ionic 78
- molar masses of 337–341
- molecular 78
- as pure substance 70–73

Computer-based tools that accompany this text 7

Concentration The number of particles per unit volume. For gases, it is usu-
ally described in terms of moles of gas particles per liter of container. Substances in solution are described with molarity (moles of solute per liter of solution). 617

disruption of equilibrium and 634
equilibrium constants and 626–629
rate of reaction and 617–618

Condensation The change from vapor to liquid. 534
dynamic equilibrium between evaporation and 537–539
rate of 537

Condensation (or step-growth) polymer A polymer formed in a reaction that releases small molecules, such as water. This category includes nylon and polyester. 691

Condensation reaction A chemical reaction in which two substances combine to form a larger molecule with the release of a small molecule, such as water. 680
Condensed formula 659
Confirmation, in scientific method 9

Conjugate acid The molecule or ion that forms when one H\(^+\) ion is added to a molecule or ion. 189

Conjugate acid-base pair Two molecules or ions that differ by one H\(^+\) ion. 189–190

Conjugate base The molecule or ion that forms when one H\(^+\) ion is removed from a molecule or ion. 190

Conservation of Energy, Law of 252

Control rods Rods containing substances such as cadmium or boron (which are efficient neutron absorbers), used to regulate the rate of nuclear fission in a power plant and to stop the fission process if necessary. 740

Conversion factor A ratio that describes the relationship between two units. 288–290

atomic mass as 335
density as 303
English-metric 292
in equation stoichiometry 372
formula mass as 340
from percentage 306
metric-metric 289
molecular mass as 337
percentage 306

Cooling, in evaporation 536–537
Copper(II) ion, voltaic cells and 224–226

Copper(II) oxide, in catalytic converter 221
Copper sulfate, reaction with zinc 222–223
Corliss, Jack 641
Corundum 359
Counting by weighing 331–333

Covalent bond A link between atoms that results from their sharing two electrons. 54
common bonding patterns 454
double bonds 83
formation of 74
most common bonding patterns 455
polar or nonpolar 548
triple bond 83

Creatine 687

Critical temperature 514

Cronenberg, David 7

Crude oil 556–557

Crystals Solid particles whose component atoms, ions, or molecules are arranged in an organized, repeating pattern. 139

Cubic centimeter 15
Cubic meter 12
Cyanide ion, determining Lewis structure 461–462

Cycle, in electromagnetic radiation 261

Cyclopropane 713

Cysteine (Cys, C) disulfide bonds between 682 structure of 679

D

d block, on periodic table 428–429

Dacron, as polyester 693

Dalton’s Law of Partial Pressures The total pressure of a mixture of gases is equal to the sum of the partial pressures of each gas. 509–513, 547–551, 621–625

Dead Sea Scrolls 734

Decaffeination 515

Decimal place

calculators and 294
measurements and 293
rounding for addition and subtraction and 299

Decomposition reaction The conversion of one compound into two or more simpler substances. 219

Denature To change the tertiary structure of a protein, causing it to lose its natural function. 689

Density, mass Mass divided by volume. 301–305
calculating for gases 498
of common substances 302
definition 301
determination of 304–305
substance identification and 302
temperature and 301
units of 302

Designing Safer Chemicals Award 5

Detergent 587
cleaning with 586–587
pH and 179

Deuterium 50–51
in heavy water 313

DEZ treatment 187

Diamond 47
atoms in 48, 334
London forces in 558–559

Diatomic Composed of paired atoms. The diatomic elements are H\(_2\), N\(_2\), O\(_2\), F\(_2\), Cl\(_2\), Br\(_2\), and I\(_2\). 55

Dichlorine monoxide, production and use 247

Dichloromethane, in decaffeinating coffee 515

Dietary calorie, Cal Equivalent to 4.184 kJ 257

Dietary Supplement and Health Act of 1994 687

Diethyl ether, structure of 665

Diethyl zinc (DEZ), in book preservation 187

Difference in electronegativity, in predicting bond type and polarity 548–549

Digestion The process of converting large molecules into small molecules that can move into the blood stream to be carried throughout the body. 688–690

Digestive enzymes 688–690

Digital readouts 23

Dihydrogen phosphate, as amphoteric 191

Dimensional analysis. See Unit analysis

Dimethyl ether, Lewis structure for 464

Dipole A molecule that contains an asymmetrical distribution of positive and negative charges.

bond 549
induced 556–557
instantaneous 556–557
Dipole-dipole attraction The intermolecular attraction between the partial negative end of one polar molecule and the partial positive end of another polar molecule. 547
hydrogen bonds and 554
London forces and 556

Diprotic acid An acid that can donate two hydrogen ions per molecule in a reaction. 162
Dirac, Paul Adrien 437
Direct-contact method 515

Disaccharide Sugar molecule composed of two monosaccharide units. 676
digestion products 688
Dispersal forces. See London forces Disproof, in scientific method 9
Disruption of equilibrium 634–640
catalysts and 638–639
concentrations and 634–637
Le Chatelier's Principle 638–640
Distance, between particles of gases 484
Distillation, of salt water 39

Disulfide bond A covalent bond between two sulfur atoms on cysteine amino acids in a protein structure. 682
Division, rounding off for 294
DNA (deoxyribonucleic acid)
agging and 212
hydrogen bonding in 554
Dolomite rock, hard water and 144
Dopamine, Parkinson's disease and 8

Double-displacement reaction A chemical reaction that has the form:
AB + CD to AD + CB 136
acid-base 184
precipitation 136–139
Double-exchange reaction. See Double-displacement reaction
Double-replacement reaction. See Double-displacement reaction

Double bond A link between atoms that results from the sharing of four electrons. It can be viewed as two 2-electron covalent bonds. 83, 451
Dow Chemical Company 272
Drug design 673
Dry cell battery, chemistry of 226–227
Dry ice 576

Dynamic equilibrium A system that has two equal and opposing rates of change, from state A to state B and from state B to state A. There are constant changes between state A and state B but no net change in the amount of components in either state. See Equilibrium

E
E.I. Du Pont de Nemours and Company 691
Earth, elemental composition of 743
Electric cars, zinc-air batteries in 229
Electric current, base unit of 11
Electric field, in electromagnetic radiation 261
Electric power plant, using nuclear fission 738–741
Electric spark, ozone created by 266
Electrode A electrical conductor placed in the half-cells of a voltaic cell. 225

Electrolysis The process by which a redox reaction is pushed in the spontaneous direction or the process of applying an external voltage to a voltaic cell, causing electrons to move from what would normally be the cell's cathode toward its anode. 227

Electrolyte The portion of a voltaic cell that allows ions to flow. 226

Electromagnetic radiation. See Radiant energy

Electron A negatively charged particle found outside the nucleus of an atom. 48, 414–418
in atoms 48–50
in batteries 224
as beta decay 720–721
in chemical bonds 74, 448–454
constructing Lewis structures and 456
electronegativity and 548
in ions 48–50
in isotopes 50–51
like guitar strings 414–416
in metallic elements 56
in multi-electron atoms 424
octets of 80
in oxidation-reduction reactions 208–211
particle interpretation of the wave character 418
as standing wave 416
valence 79
waveform of 416

Electron-dot symbol A representation of an atom that consists of its elemental symbol surrounded by dots representing its valence electrons. 79–80, 83, 450

Electronegativity A measure of the electron attracting ability of an atom in a chemical bond. 548–551
Study Sheet 550

Electron capture In radioactive nuclides that have too few neutrons, the combination of an electron with a proton to form a neutron, which stays in the nucleus. 721
nuclear equations for 723–725

Electron cloud 48, 418

Electron configuration A description of the complete distribution of an element's electrons in atomic orbitals. 424, 426–427
abbreviated 433–436
Study Sheet 431, 456

Electron group geometry A description of the arrangement of all the electron groups around a central atom in a molecule or polyatomic ion, including the lone pairs. 469

Electron sharing, in chemical bonds 74
Electron spin 424, 426

Electron transfer, in chemical bond formation 75–76

Electron volt (eV) An energy unit equivalent to 1.6 × 10^-19 joules. It is often used to describe the energy associated with nuclear changes. 737

Electroplating 227

Electrostatic force (or electromagnetic force) The force between electrically charged particles. 718

Element A substance that cannot be chemically converted into simpler substances; a substance in which all of the atoms have the same number of protons and therefore the same chemical characteristics. 38–57
artificial 52
atomic mass of 335
compound versus 70–71
diatomic 55
electronegativities of 548
electron configurations and orbital diagrams 431, 456
isotopes of 50–51
list of common 41
magic numbers for 737
making new elements 52
metallic 56–57
metalloids or semimetals 44
metals 43
molar masses of 335–336
names of 40, 41–42
naturally occurring isotopes 51
nonmetals 43
nuclear stability of 718–719
English-metric unit conversion factors
292, 369

English system, metric system versus 14,
291

Environment, chemistry and 4

Environmentally Benign Chemistry.
See Green Chemistry

Environmental Protection Agency 5,
728

Enzyme A naturally occurring catalyst.
618, 688–690
digestive 688–690
metallic cations in 100
why specific 690

Epitectus 288

Epinephrine 582

Equation. See Chemical equation,
Nuclear equation; Ideal gas equation

Equation stoichiometry Calculations
that make use of the quantitative
relationships between the substances
in a chemical reaction to convert
the amount of one substance in the
chemical reaction to the amount of
a different substance in the reaction.
371–375

ideal gases and 502–509
molarity and 388–392
Study Sheet 391

Equilibrium 621–622

disruption of 634–640
dynamic 538–540

effect of catalyst 638–639
effect on changing concentrations
634–637
gas solutions and 594–595
heterogeneous 630–631
homogeneous 624
Le Chatelier’s Principle and 638–
640
reversible reactions and 621–633
saturated solution and 592–593
ski shop analogy for 625

Equilibrium constant A value that de-
scribes the extent to which reversible
reactions proceed toward products be-
fore reaching equilibrium. 626–629

calculating values for 627–628
extent of reaction and 629
with heterogeneous equilibria
630–632
table of 628

temperature and 632–633
writing expressions for 626–627

Equilibrium constant expression An
expression showing the ratio of the con-
centrations of reactants for a reversible
reaction at equilibrium. 626

Equilibrium vapor pressure The par-
tial pressure of vapor above a liquid in
a closed system with a dynamic equi-
librium between the rate of evaporation
and the rate of condensation.
539–540
in bubble formation 543–544
temperature and 540

Ester A compound with two hydrocar-
bon groups surrounding an oxygen
atom. 666–667
in fingerprints 541
olestra as 684–685

Estadiol, structure of 686

Ethamidene 668

Ethene 82

solubility in hexane 581

1,2-Ethanediole 663

Ethanolic acid 664

Ethanol (or ethyl alcohol)
in combustion reactions 219
density of 301
hydrogen bonds in 554–555
as intoxicating liquid 89

Lewis structure 84
mixing with water 576–577
production of 628

solubility in water 593

Ethene. See Ethylene

Ether A compound with two hydrocar-
bon groups surrounding an oxygen
atom. 665

Ethylene (or ethene) 451
polyethylene formation and 693

Ethylene dibromide 272

Ethylene glycol 663

in polyester formation 692
Ethylene oxide, use and production 527
Ethyl alcohol. See Ethanol
Ethyl butanoate 667

Ethyne. See Acetylene

Evaporation The conversion of a liquid
to a gas. 37, 535–536
cooling and 536
rate of. See Rate of evaporation

Exact numbers, significant figures and
295

Examples, in this book 6

Excited state The condition of an atom
that has at least one of its electrons in
orbitals that do not represent the low-
est possible potential energy. 421

Exercises, in this book 6
Exergonic changes Changes that release energy. 254
energy diagram 614
Exhaust 71
Exhaust systems, catalytic converters and 221
Exothermic change A change that leads to heat energy being released from the system to the surroundings. 264
Expansion, of solids 35
Experimentation, in scientific method 8–9
External kinetic energy 259

F
f block, of elements 429
Fahrenheit scale 18–19
 Fahrenheit to Celsius conversion 312–313
Family All the elements in a given column on the periodic table; also called group. 43
Fat 683
 digestion products 688
Fertilizer
 ammonia and 621
 nitric acid and 496
Feynman, Richard 418
15-minute rule 6, 7
Fingerprints 541
Fireworks
 calcium nitrate in 108
 light emitted from 421
Fire extinguishers, sodium carbonate in 175
Fission Nuclear reaction that yields energy by splitting larger atoms to form more stable, smaller atoms. 738–739
Flame retardant, phosphates in 103
Flash tubes 523
Flerov Laboratory of Nuclear Reactions 52
Fluorapatite, tooth decay and 186
Fluoride ion, tooth decay and 186
Fluorine (F)
 covalent bond formation 449–450
 diatomic molecules of 55
 electron configuration and orbital diagram 427
 how made 365
 hydrogen bonds and 553
 most common bonding pattern 455
 oxidation numbers and 214
 production of 396–397
 structure of 55
 valence electrons of 449
 Fluorine-18
 positron emission tomography and 732
Food
 Calories in 258
 digestion of 688–690
 food, important substances in 674–685
 Food and Drug Administration (FDA) 515
 Food irradiation 735
 Force, weight as 16
 Forensic chemistry 541
 Formaldehyde 652, 665
 determining Lewis structure 460–461
 in herbicide formation 621
 production and use 237, 653
 Formic acid, molecular structure of 664
 Formula. See Chemical formula; Empirical formula; Molecular formula
 Formula mass The weighted average of the masses of the naturally occurring formula units of the substance. It is the sum of the atomic masses of the atoms in a formula unit. 340–341
 calculations 341
 Formula unit A group represented by a substance's chemical formula, that is, a group containing the kinds and numbers of atoms or ions listed in the chemical formula. 339
Fortrel® 693
 Fractional charge, in chemical bonds 74
 France, zinc-air batteries in 229
 Free radicals Particles with unpaired electrons. 730
 Fructose 674–675
 Functional group A small section of an organic molecule that to a large extent determines the chemical and physical characteristics of the molecule. 662
 Furnace method 368
 Fusion Nuclear reaction that yields energy by combining smaller atoms to make larger, more stable ones. 738, 742
Gamma ray A stream of high-energy photons. 261, 722
 antimatter and 437
 harmful effects of 730–731
 penetration of the body 731
 in radioactive decay 722
Gas The state in which a substance can easily change shape and volume. 34, 37–38.
 Avogadro's Law 491
 in book preservation 187
 breathing and 493
 calculations 502
 equation stoichiometry 502
 Study Sheet 507–508
 using the combined gas law 500–502
 Study Sheet 500
 using the ideal gas equation 494–499
 Study Sheet 495
 using the molar volume at STP 503
 Charles' Law 489
 concentration effect on reaction rates 617
 study sheet 512
 densities of 302
 equilibrium constants and 626–627
 expansion 575
 Gay-Lussac's Law 488
 greenhouse gases 384–385
 heterogeneous equilibria and 630–632
 ideal 485
 ideal gas calculations 494–502
 instrument-carrying balloons and 493
 internal combustion engine and 492
 liquids changing from and into 534–536
 model 484
 molar volume 503
 noble 43
 partial pressure of 509–513, 595
 particle collisions 484
 pressure 485
 pressure and industrial safety 501–502
 properties of 485
 race cars and air density 499
 real 484

G
Galactose 674–675
Galapagos Islands, global warming experiments at 385
Galileo Galilei 9
Galium-67, radioactive decay of 724
Galvanizing nails 132
Gamma aminobutyric acid, gamma aminobutyric acid, or GABA 669
 intoxicating liquids and 89
Glossary/Index
relationships between properties 484–491
relationship between number of gas particles and pressure 490
relationship between number of gas particles and volume 491
relationship between pressure and temperature 488
relationship between volume and pressure 486–487
relationship between volume and temperature 489
solubility of 594–595
typical particle velocities 484
universal gas constant 494
vapor as 534
volume occupied by particles 484
Gaseous elements 45
Gasoline 221, 661
in catalytic converters 221
burning of 219
composition of 82
in internal combustion engines 492
Gastric juice 506
pH and 179
Gas pressure. See also Gas boiling-point temperature and external 542–544
breathing and 493
in bubble formation 542–544
in combined gas law equation 500–502
Dalton’s Law of partial pressures 509–513
equilibrium vapor 539–541
in gas stoichiometry 502–509
in ideal gas equation 494
internal combustion engine and 492
number of gas particles and 490
standard 503
temperature and 488
volume and 486–487
Gas stoichiometry 502–509
Gay-Lussac’s Law The pressure of a gas is inversely proportional to the volume it occupies if the number of gas particles and the temperature are constant. 488
Geometric sketch 86
Geometry 467–471. See Molecular shape
Study Sheet 472
German Cancer Research Center 52
Gesellschaft fur Schwerionenforschung (GSI) 52
Gide, Andre 33
Giga (G) prefix 13
Girard, Georges 11
Glacial acetic acid 162
Glialoma 741
Global warming 384–385, 597, 621, 673, 687, 741
Glucose 674–675
empirical and molecular formulas of 346
Glutamic acid, structure of 679
Glutamine, structure of 679
Glycerol or glycerin 663
Glycine, structure of 678
Glycogen 676–677
Gold (Au) atom of 47
as malleable 43
origin of name 41
scanning tunneling microscope image of 46
Gold-198, radioactive decay of 724
Graduated cylinder 21
Gravitational attraction, weight and 16
Greenhouse gases 384, 597
Greenspan, Alan 48
Green Chemistry 5
decaffeinating coffee and 515
Designing Safer Chemicals Award 5
development of new and better catalysts 621, 673, 687, 741
Green Chemistry Challenge Awards 5
Green Chemistry Program 5
Making Chemicals from Safer Reactants 351
Sea-Nine antifoulant and 5
spray paint and 514
Ground state The condition of an atom whose electrons are in the orbitals that give it the lowest possible potential energy. 421
Group All the elements in a given column on the periodic table; also called family. 43
Guitar strings, like electrons 414–416
H
Half-life The time it takes for one-half of a sample to disappear. 726–728
Half-reaction Separate oxidation or reduction reaction in which electrons are shown as a reactant or product. 210
Halogen bonding pattern 81
covalent bond formation 454
ion formation 95
London forces in 556–557
in periodic table 43
Halons 272
Hard water, soaps and detergents in 587
Hearst, William Randolph 167
Heat The thermal energy that is transferred from a region of higher temperature to a region of lower temperature as a consequence of the collisions of particles. 260
in chemical equations 128
in endothermic reactions 265–266, 614–615
as energy 260
transfer 259–260
Heat of reaction 264
Heavy-ion therapy 52
Heavy water, freezing point of 313
Heidelberg Radiology Clinic 52
Helium to avoid the bends 596
formation 742
Helium-4, in treating brain cancer 741.
See also Alpha particles
Hematite 363
Hemoglobin 221
carbon monoxide poisoning and 221
iron ions in 100
Heptane, octane rating and 661
Heterogeneous catalyst A catalyst that is in the same phase as the reactants (so that all substances are gases or all are in solution). 620
Heterogeneous equilibrium An equilibrium in which the reactants and products are not all in the same phase (gas, liquid, solid, or aqueous). 630–631
Hexane, solubility in 578–581
1-Hexanol 660
3-Hexanol, molecular structure of 660
High-density polyethylene (HDPE) 693
Histidine, structure of 679
Homogeneous catalyst A catalyst that is in the same phase as the reactants (so that all substances are gases or all are in solution). 620
Homogeneous equilibrium An equilibrium system in which all of the components are in the same phase (gas, liquid, solid, or aqueous). 624
Hormone 685
Huber, Claudia 641
Hydrazine, production and use 410
Hydride ion 98
Hydrogen (H)
- production and use 407, 654
- catalytic converters and 221
- combustion reactions 219
- internal combustion engines 492
- London forces 556–557
- solubility 579

Hydrochloric acid 160–161, 621
- as binary acid 162
- dissolving basic hydroxides 184
- dissolving in water 160
- dissolving limestone 186
- formation of magnesium chloride 247
- forming name of 168
- in gastric juices 506
- in processing corn syrup 160
- production and use 74, 161, 236, 325, 525
- reaction with calcium carbonate 126
- as strong acid 163, 165, 166

Hydrochlorofluorocarbons (HCFCs) 272

Hydrofluoric acid
- forming name of 166
- light bulbs and 237
- used to make CFCs 236

Hydrogenation
- A process by which hydrogen is added to an unsaturated triglyceride to convert double bonds to single bonds. This can be done by combining the unsaturated triglyceride with hydrogen gas and a platinum catalyst. 683

Hydrogen (H)
- in acid-base reactions 180–192
- acids and 160–165
- atomic orbitals 416–423
- from Big Bang 742
- in Bronsted-Lowry acids and bases 188–190
- combustion 126, 219, 263
- covalent bond formation 450
- electronegativity of 548
- formation from water 219
- formation of hydrogen molecules 450
- in formation of water 126–127
- ion formation 96
- isotopes of 50–51
- nuclear fusion of 742
- oxidation number of 214
- position on periodic table 45
- production and use 244, 621–624
- structure 54
- in synthesis gas 622

Hydrogen atom, electron wavefunctions in 416–423

Hydrogen bond
- The intermolecular attraction between a nitrogen, oxygen, or fluorine atom of one molecule and a hydrogen atom bonded to a nitrogen, oxygen, or fluorine atom in another molecule. 553–555
- in ethanol/water solutions 576
- predicting existence of 559
- in proteins 682

Hydrogen bromide, threshold limit value, or TLV 522

Hydrogen carbonate ion
- as amphoteric 191
- as weak base 175

Hydrogen chloride 74
- chemical bonds in 74 dipole-dipole attractions 547
- dissolved in water 160
- Lewis structure of 80–81
- solubility in water 593

Hydrogen cyanide 621
- molecular geometry of 471

Hydrogen fluoride
- hydrogen bonds and 553
- Lewis structure of 81

Hydrogen halides, as polar molecules 553

Hydrogen iodide, Lewis structure of 81

Hydrogen peroxide
- aging and 212
- composition of 73 dark bottles and 243
- empirical and molecular formulas of 346
- as oxidizing agent 212

Hydrogen sulfate ion
- as cleaning agent 188
- as weak acid 166

Hydrogen sulfide
- Lewis structure of 81
- threshold limit value, or TLV 522

Hydrolysis
- A chemical reaction in which larger molecules are broken down into smaller molecules by a reaction with water in which a water molecule is split in two, each part joining a different product molecule. 689

Hydronium ion
- H₃O⁺ 160–161
- in acid-base reactions 180–185

Hydrophilic (“water loving”) A polar molecule or ion (or a portion of a molecule or polyatomic ion) that is attracted to water. 582

Hydrophobic (“water fearing”) A nonpolar molecule (or a portion of a molecule or polyatomic ion) that is not expected to mix with water. 582

Hydrothermal vent 641–642

Hydroxide ion
- covalent bond formation 453
- Lewis structure of 101
- solubility of compounds with 141

Hydroxides
- Compounds that contain hydroxide ions. 173

Hydroxyapatite, in tooth enamel 186

3-Hydroxybutanal

Hydroxyapatite, in tooth enamel

Hydrolysis
- in bleach 188
- sunlight and swimming pools 241

Hypothesis, in scientific method 8–9

Ideal Gas
- A gas for which the ideal gas model is a good description. 485
- calculations involving 494–502 equation stoichiometry and 502–507

Ideal gas constant (R) 494

Ideal Gas Equation
- combined gas law equation and 500 equation stoichiometry and 504–509

Ideal gas model
- The model for gases that assumes (1) the particles are point-masses (they have mass but no volume) and (2) there are no attractive or repulsive forces between the particles. 485

Incandescent light bulbs 496

Induced dipole 556

Industrial chemistry 4, 5

Infrared (IR) radiation 262

Inner transition metals
- The 28 elements at the bottom of the periodic table. 44

Insoluble substances 140–141, 578–581

Instantaneous dipole 262

Intermolecular attraction
- Attraction between molecules. 553–557 dipole-dipole attraction 547 hydrogen bonds 553–555
Ion
Any charged particle, whether positively or negatively charged. 48–50
 anion 49. See also Anion
cation 49. See also Cation
charges on monatomic 98
formation of 75
monatomic anion charges 96
monatomic anion names 98
monatomic cation. See Cation,
 monatomic
polyatomic. See Polyatomic ion
predicting charges 95–98
size of 100
spectator 139–140
symbols for 49

Ionic bond
The attraction between a cation and an anion. 75–77
 in ionic compounds 78
 predicting existence of 548–551

Ionic compound
A compound that consists of ions held together by ionic
 bonds. 78, 94–108
 as bases 175
 binary 104, 107, 208–210
 formulas to names 104–106
 formula mass of 340–341
 names to formulas 107–108
 polyatomic ions is 101–103
 reactions of acids with 181
 recognizing from formulas 104
 solubility of 141
 solution of 133–135
 as strong and weak bases 175
 structure of 100–102
 types of 104
 uses of 94, 102

Ionizing radiation
Alpha particles, beta particles, and gamma photons, which
 are all able to strip electrons from atoms as they move through matter,
 leaving ions in their wake. 730
Iridium (Ir), in catalytic converter 221
Iridium-192, checking pipe joints and 735
Iron(II) sulfate, in global warming experiments 385
Iron(III) sulfate, formula mass calculations for 341, 343
Iron-59 736
Iron (Fe)
 electron configuration and orbital diagram for 432
 formation of 743
 formation of pig 218, 509
 global warming and 384–385
 as limiting reactant in global warming 384
Island of stability, of nuclides 719
Isobutene, use 662
Isoleucine (Ile, I), molecular structure of 678
Isomers
Compounds that have the same molecular formula but different
 molecular structures. 464
 Lewis structures of 464–465
 of organic compounds 658
Isooctane 661
Isopropyl alcohol. See 2-propanol

Isotopes
Atoms that have the same number of protons but different numbers of neutrons. They have the same
 atomic number but different mass numbers. 50–52
 of artificial elements 52
 atomic numbers of 51
 of carbon 333
 mass numbers of 51
 in nuclear reactions 722
 symbol for 716–717
Isovaleraldehyde 665–666

J
Jeans, James Hopwood 48
Jesus of Nazareth 734
Jewelry, elements in 41
Joule, J
The accepted SI unit for energy. 257

K
Kaposi’s sarcoma 673
Kelvin, a temperature unit 19
Kelvin scale 11, 18–19
 gas temperature and 485
 temperature conversions for 312–314
Kerosene, London forces and 556

Ketone
A compound that have a hydrocarbon group connected to a -CHO group. 666

Kettering, Charles F. 414
Khirbat Qumrân 734
Kilocalorie (kcal, Cal) 257
Kilogram (kg) 11
Kilojoule (kJ) 258
Kilometer (km) 13
Kilopascal (kPa) 485
Kilo (k) prefix 13

Kinetic energy, KE
The capacity to do work resulting from the motion of an object. 251
 chemical reactions and 263–264
 in formation of water 263
 internal and external 259
 mass and 251
 of reactant molecules 611–612
 solution of ammonium nitrate and 264
 velocity and 251
Kinetic molecular theory. See Particle
 nature of matter

Knockout drops 464
Krypton, light bulbs and 499
Krypton-81 717, 734

L
Lactase, in digestion 688
Lactic acid, in cosmetic lotion 205
Lactose, or milk sugar 676
Laskowski, Edward R. 687
Latent fingerprints 541
Lawrence Laboratory 725

Law of Conservation of Energy
Energy can be neither created nor destroyed, but it can be transferred from
 one system to another and changed from one form to another. 252
groups as far apart as possible. It leads to angles of 180° between the groups.

Linear molecules 471, 472

Line drawing 582, 659

Ling Po 7

Liquid The state in which a substance has a constant volume at a constant temperature but can change its shape. 34, 36

boiling 542–544

dissolving gases in 594

dissolving solids in 588–593

dynamic equilibrium between vapors and 595

heterogeneous equilibria and 630–631

Liquid-liquid solutions 136

Liquid elements 45

LITER 12

Lithium-7, in treating brain cancer 741

Lithium (Li)

from Big Bang 742

electron configuration and orbital diagram 426

formation of 742

Lithium batteries 229

Lithium hydroxide, uses 173

Litmus, detecting acids and bases with 180

London forces The attractions produced between molecules by instantaneous and induced dipoles. 556–557

molecular size and 556

Lone pair Two electrons that are not involved in the covalent bonds between atoms but are important for explaining the arrangement of atoms in molecules. They are represented by pairs of dots in Lewis structures. 80, 450

Los Angeles, photochemical smog in 266

Low-density polyethylene (LDPE) 693

Lucretius 177

Luminous intensity, base unit for 11

Luminous tubes 501

Lungs, gases in 493

Lye. See Sodium hydroxide

Eye soap 586

Lysine (Lys, K)

molecular structure of 679

in salt bridges 682

M

“Mickey Finn” sedative 464

Magic numbers and nuclear stability 52, 737

Magnesium (Mg), meals ready to eat (MREs) and 573

Magnesium chloride, production and use 247

Magnesium oxide 106

Magnesium sulfate, use 205

Magnetic field, in electromagnetic radiation 261

Magnetic resonance imaging (MRI) 732

Main-group element The elements in groups 1, 2, and 13 through 18 (the “A” groups) on the periodic table; also called representative elements. 44

Malleable Capable of being extended or shaped by the blows of a hammer. 43

Maltase, in digestion 688

Maltose, molecular structure of 676

Manganese (Mn)

in dry cell batteries 226–227

how made 360

Manganese(II) oxide, naming 105

Manganese(II) phosphate production and use 242

uses 205

Manganese dioxide, in dry cell batteries 226–227

Marble, acid rain and 167

Margarine 683

Martin, John 384–385

Mass The amount of matter in an object. Mass can also be defined as the property of matter that leads to gravitational attractions between objects and therefore gives rise to weight. 16–17

base unit of 11

density and 301–303

of elements and compounds 342–346

English-metric unit conversions of 309

kinetic energy and 251

measuring 16–17

percentage by 306–307

range of 17

weighted average 331

weight and 16–17

Mass density Mass divided by volume (usually called density). 301–305

as conversion factor 303–305

Mass number The sum of the number of protons and neutrons in an atom’s nucleus. 51

binding energy versus 738

L-dopa 8

Lead(II) ion, solubility of compounds with 141

lead-206, in radioactive decay series 729

Lead-acid batteries, chemistry of 229

Lead (Pb)

in creating elements 110 52

density of 301

gasoline and 244

Lebowitz, Fran 287

Leclanché cell 226–227

Length 14–15

range of 15

Leucine (Leu, L), structure of 678

Levi, Primo 3

Levodopa, in Parkinson’s disease 8

Levodopa, in Parkinson’s disease 8

Lewis electron-dot symbols 79

Lewis structure A representation of a molecule that consists of the elemental symbol for each atom in the molecule, lines to show covalent bonds, and pairs of dots to indicate lone pairs. 80–84, 450, 455–465

general steps for drawing 458, 484

resonance and 465–467

simple procedure 83–85

Study Sheet 456–457

Le Chatelier’s principle If a system at equilibrium is altered in a way that disrupts the equilibrium, the system will shift so as to counter the change. 638–640

Libraries, of drugs 673

Life

hydrogen bonds and 554

origin of 640–641

Light bulbs

argon gas in 512

filament evaporation in 496, 499

flash tubes 523

fluorescent 521

“Like dissolves like” guideline, for solubility 578–581

Lime 245

Limestone 186, 616

acid rain and 167

increasing permeability of 161

Limestone caverns 204

Limiting reactant The reactant that runs out first and limits the amount of product that can form. 376–381

global warming and 384–385

how chosen 376–377

Study Sheet 380

Linear geometry The geometric arrangement that keeps two electron
covalent bond formation 451
in hydrogen gas production 621–624
molecular shape 86–87, 468
solubility in water 593
Methanethiol, in natural gas 219
Methanoic acid 664
Methanol 447
density of 304
hydrogen bonds and 555
as polar molecule 553
production and use 244, 527, 627
water solubility of 580
Methionine (Met, M), structure of 679
3-Methylbutanal 665–666
Methylene chloride, in decaffeinating coffee 515
2-Methylpropane 662
Methyl alcohol 83. See also Methanol
Methyl bromide 272
determining Lewis structure 458–459
ozone layer and 3
threshold limit value, or TLV, and 522
Methyl cyanoacrylate, molecular structure of 473
Methyl ethyl ketone or MEK, molecular structure of 666
Metric-metric unit conversions 289–291
Metric prefixes 12–13
table of 13
Metric system 10. See also International System of Measurement
MeV (million electron volts) 737
Microwaves 262
micro (µ) prefix 13
Mifepristone 705
Milk, pH of 179
Millimeter of mercury (mmHg), as unit of pressure 485
milli (m) prefix 13
Miscible Can be mixed in any proportion without any limit to solubility. 576
Mixture A sample of matter that contains two or more pure substances and has variable composition. 71
gases 509
Model A simplified approximation of reality.
calculating 387
collision theory as 610–616
gases 37
ideal gas 485
of liquids 36
of metallic elements 56
of solids 34–35
strengths and weaknesses of 448
valence-bond 449–454
Moderator A substance in a nuclear reactor that slows neutrons as they pass through it. 740
Molarity (abbreviated M) Moles of solute per liter of solution. 387–392
equation stoichiometry and 388–392
Molar mass The mass in grams of one mole of substance. 335–338
from atomic mass 335
calculations using atomic mass 336
calculations using ion formula mass 341
calculations using molecular mass 338
in equation stoichiometry 370–374
in ideal gas equation 495
from ion formula mass 340
from molecular mass 337–338
Molar volume at STP 503
Mole (mol) The amount of substance that contains the same number of particles as there are atoms in 12 g of carbon 12. 11, 333–334
in equation stoichiometry 502–509
in ideal gas equation 503
Molecular compound A compound composed of molecules. In such compounds, all of the bonds between atoms are covalent bonds. 78
attractive forces in 559
in oxidation-reduction reactions 211
water solubility of 579
Molecular dipole A molecule with an asymmetrical distribution of positive and negative charge. 547
Molecular equation. See Complete equation
Molecular formula The chemical formula that describes the actual numbers of atoms of each element in a molecule of a compound. 346
from empirical formula 350–353
empirical formulas versus 346
Study Sheet 352
Molecular geometry The description of the arrangement of all the atoms around a central atom in a molecule or polyatomic ion. This description does not consider lone pairs. 467–474. See also Geometry
Monosodium glutamate (MSG), taste and 177
Monosaccharide Sugar molecule with one saccharide unit. 674
Monosodium glutamate (MSG), taste and 177
Monsanto Company 621
Moss Landing Marine Laboratories 384
Mount Everest, atmospheric pressure at the top 545
MTBE 665
Multiplication rounding off for 294–299 significant figures for 294–299
Mylar, as polyester 693
N Names for acids 168–170 for binary covalent compounds 90 for chemical compounds 171–172 for elements 40–41 for ionic compounds 98–106 for organic compounds 661
Nano (n) prefix 13
Natrium 41
Natural gas 447
Nature, elements found in 40
Neon (Ne) electron configuration and orbital diagram 427 luminous tubes and 501 in neon lights 501, 513
Nerve cells intoxicating liquids and 89 taste and 177
Neutralization reaction A chemical reaction between an acid and a base. See Acid-base reaction
Neutron An uncharged particle found in the nucleus of an atom. 47 in nuclear fission 738–739 as nuclear glue 718 nuclear stability and 718–719
Newton (N), a unit of force 16 NiCd batteries. See Nickel-Cadmium batteries Nickel (Ni), in the creation of elements 110 and 111 52 Nickel-60, gamma ray emission by 722 Nickel-cadmium battery, chemistry of 228 Nicotine 361 Nippoldt, Todd B. 687 Nitrate ion resonance and 465–467 solubility of compounds with 141 Nitric acid acid rain and 167 formation of 640 forming name of 169 production and use 241 reaction with sodium hydroxide 181–183, 181–185 solution of 181 as strong acid 165 Nitride ion, forming name of 98 Nitril hydratase 621 Nitrogen-13, radioactive decay of 724 Nitrogen-14, in radiocarbon dating 726 Nitrogen (N) covalent bond formation 451 diatomic molecules of 55 electron configuration and orbital diagram 427 ion formation 96 Lewis structure 83 liquid 257 London forces and 558 most common bonding pattern 81, 455 structure of 55 triple bonds in 83 Nitrogen dioxide acid rain and 167 nitric acid and 640 ozone production and 266–267 threshold limit value, or TLV and 522 Nitrogen molecules, velocities of 484 Nitrogen monoxide 620 in acid rain 167 catalytic breakdown of 620 how made 496 oxidation-reduction and 211 Nitrogen narcosis 596 Nitrogen oxides in automobile exhaust 257 ozone and 266–267 Nitroglycerine, in decomposition reactions 219 Nitrosyl chloride, production and use 655 Nitrosyl fluoride, molecular geometry 473 Nitrous oxide, formation of 130 Noble gases, structure 53 Node The locations in a waveform where the intensity of the wave is always zero. 415 Nomenclature. See Chemical nomenclature
Nonmetals The elements that do not have the characteristics of metals. Some of the nonmetals are gases at room temperature and pressure, some are solids, and one is a liquid. Various colors and textures occur among the nonmetals. 43
forming anions 95
most common bonding patterns 83
Nonpolar covalent bond A covalent bond in which the difference in electron-attracting ability of two atoms in a bond is negligible (or zero), so the atoms in the bond have no significant charges. 74
predicting existence of 548–551
Nonpolar molecular substance, solubility and 578–579
Normal boiling-point temperature The temperature at which the equilibrium vapor pressure of the liquid equals one atmosphere. 545
North Carolina State University 266
Notation, for nuclides 716–717
Nuclear chemistry The study of the properties and behavior of atomic nuclei. 715
Nuclear decay series A series of radioactive decays that lead from a large unstable nuclide, such as uranium-238, to a stable nuclide, such as lead-206. 729
Nuclear energy 737–742
Nuclear equation The shorthand notation that describes nuclear reactions. It shows changes in the participating nuclides’ atomic numbers (the number of protons) and mass numbers (the sum of the numbers of protons and neutrons). 722–726
Nuclear fission 738–739
Nuclear fusion 742
Nuclear power plant 740–741
Nuclear reaction A process that results in a change in an atomic nucleus (as opposed to a chemical reaction, which involves the loss, gain, or sharing of electrons). 722–726
Nuclear reactors 738–741
Nuclear stability 718–719, 737–738
Nucleon number The sum of the numbers of protons and neutrons (nucleons) in the nucleus of an atom. It is also called the mass number. 716
Nucleons The particles that reside in the nucleus of atoms (protons and neutrons). 716
Nucleus The extremely small, positively charged core of the atom. 47
of atom 47
creation of new elements and 52
electrons around 416–422
of helium atoms 53
mass number and 51
stability of 718
Nuclide A particular type of nucleus that is characterized by a specific atomic number (Z) and nucleon number (A). 716
band of stability of 719
in nuclear equations 722–726
radioactive 727
symbol 716–717
uses for radioactive (table) 736
Numbers, exact or not 295
Nutrients, for phytoplankton 384
Nylon 691
molecular structure of 691
production of 350, 691–692
Nylon-66 350–351
Oil “Oil rig” mnemonic 209
Objectives 6
Observation, in scientific method 8–9
Octane rating 661
Octet of electrons 80–81, 456–457
Oil 186, 556–557
Oil industry 186
Olestra 684–685, 742–743
Oligopeptide 680
Open-chain forms, of monosaccharides 674–675
Orange juice, pH of 179
Orbitals See Atomic orbitals
Orbital diagram A drawing that uses lines or squares to show the distribution of electrons in orbitals and arrows to show the relative spin of each electron. 424, 426–427
Study Sheet 431, 456
Organic acid Carbon-based acids. 162
Organic chemistry The branch of chemistry that involves the study of carbon-based compounds. 82, 658–672
Organic compound 658–672
alcohol 663
aldehyde 665
alkane 661
alkene 662
alkyne 662
amine 668
amine 667–668
arane 662–663
carboxylic acid 664
condensed formula 659
ever 666–667
ether 665
how to describe 658–660
ketone 666
line drawing 582, 659
table of types 670–671
Organophosphorus compounds 361
Oxalic acid 664
uses 160
Oxidation Any chemical change in which at least one element loses electrons, either completely or partially. 208–209, 211
Oxidation-reduction reaction The chemical reactions in which there is a complete or partial transfer of electrons, resulting in oxidation and reduction. These reactions are also called redox reactions. 208–211
within batteries 224–229
half-reaction 210
oxidation 208
oxidation numbers (or states) 213–218
reduction 209
uses of 207
Oxidation number (or state) A tool for keeping track of the flow of electrons in redox reactions. 213–218
assignment of oxidation numbers 214
Study Sheet 214
Oxidation state. See Oxidation number
Oxidizing agent A substance that gains electrons, making it possible for another substance to lose electrons and be oxidized. 210
aging and 212
defined 210
oxidation numbers and 213–218
ozone as 266
Oxoacid. See Oxyacid
Oxyacid (oxoacid) Molecular substances that have the general formula H₂XₐOₖ. In other words, they contain hydrogen, oxygen, and one other element represented by X; the a, b, and c represent subscripts. 162
names for 169
as polar molecule 553
Oxygen (O) absorbing ultraviolet radiation 269 bonding patterns 81, 455 in combustion reactions 219–221 covalent bond formation 452–453 diatomic molecules of 55 electronegativity of 548 electron configuration and orbital diagram 427 in formation of water 126–127 in internal combustion engines 492 ion formation 95–96 oxidation numbers for 214 in ozone layer 269 structure 55 Ozone 266–273 absorbing ultraviolet radiation 269 chlorine catalyzed destruction 618–620 damage from chlorofluorocarbons 270 destruction 269–270 as greenhouse gas 384 as pollutant 266 process of destruction 610–614 ultraviolet radiation and 269 uses 266 Ozone hole 271 Ozone layer CFCs and 270 effect of halons on 272 formation of 269

P

p block, of elements 428–430 Paint spraying, preventing air pollution 514 Palladium, in catalytic converter 221 Pancreatic amylase, in digestion 688 Pancreatic lipase, in digestion 688 Paper, saving acidic 187 Parkinson's disease 7–8 positron emission tomography and 437 scientific method and 7–8 Partially hydrogenated triglycerides 683–684 Partial charge in chemical bonds 74, 548–551 in hydrogen bonds 553 in London forces 556–557 Partial electron transfer in oxidation-reduction reactions 211 Partial pressure The portion of the total pressure that one gas in a mixture contributes. Assuming ideal gas character, the partial pressure of any gas in a mixture is the pressure that the gas would yield if it were alone in the container. 509 effect on gas solubility 595 equilibrium vapor pressure as 539–540 Particle-particle attractions 547, 621 summary 558–559 Particles in atoms 47 attractive forces among 547–560 in collision theory 610 in condensation 534 in evaporation 535–536 in gases 37 in liquids 36 radiant energy as 260–261 in solids 34–35 space occupied 37 Particle nature of matter 34–38 gas 34, 37–38 liquid 34, 36 solids 34–35 Pascal (Pa), pressure unit 485 Pearl ash, empirical formula for 349 Pentane hexane solubility of 578 in solution 136 water solubility of 578 Pepper, spiciness of 583 Pepsin, in digestion 688 Peptide A substance that contains two or more amino acids linked together by peptide bonds. 680 how form 640–642 Peptide bond An amide functional group that forms when the carboxylic acid group on one amino acid reacts with the amine group of another amino acid. 680 Percentage 306–307 as conversion factor 306 by mass, definition 306 by volume 306 Percentage calculations 306–307, 311 in calculating empirical formulas 349 in calculating molecular formulas 353 Percent yield The actual yield divided by the theoretical yield times 100. 382–384 why less than 100% 382–383 Periodic table of the elements 42–46 electronegativity and 548 group number 43 group or family 43 hydrogen, position on periodic table 45 metals, nonmetals, and metalloids 44 modern model of the atom and 428–436 order of filling of atomic orbitals and 428–430 periods 45 representative (or main-group) elements, transition metals, and inner transition metals 44 Periods The horizontal rows on the periodic table. 45 Peroxides, oxidation numbers of 214 Petroleum 556–557 pH 178–179 acid rain and 178 Pharmaceuticals 673 Phenylalanine (Phe, F), molecular structure of 679 Phosgene gas, production and use 655 Phosphate, production 213 Phosphate ion, solubility of compounds with 141 Phosphate rock, in furnace method 330 Phosphide ion 98 Phosphoric acid 188 forming name of 169 furnace method of preparation 330 neutralizing 390 production of 368 reaction with sodium hydroxide 184 in toilet bowl cleaners 188 uses 160, 163 Phosphorus (P) bonding pattern 81 covalent bond formation 452 in furnace method 368 ion formation 96 London forces in 558 most common bonding pattern 455 in oxidation-reduction reactions 215 in photophor 347 production of 213, 408 Phosphorus pentachloride, production and use 246 Phosphorus tribromide 383 Phosphorus trichloride, production and use 630 Photochemical smog, formation of 266–267 Photons Tiny, massless packets or particles of radiant energy. 260
Photophor, empirical formula for 347
Physical states, in chemical equations 127
Physics
chemistry and 34
of electrons 414–423
origin of matter and 640–641
Phytoplankton, global warming and 384–385
Pico (p) prefix 13
Pig iron, formation of 509
Plastic fingerprints 541
Platinum (Pt) 56
as catalyst 640
in catalytic converters 221, 620
density of 302
Plutonium-239
half-life 727
in radioactive wastes 728
radioactive decay 727
Plutonium (Pu), in creation of new elements 52
Polarity
of amphetamine and epinephrine 582
of bonds 548–549
of capsaicin 583
molecular 552
predicting in molecules 552–553
solubility and 578
Polar covalent bond A covalent bond in which electrons are shared unequally, leading to a partial negative charge on the atom that attracts the electrons more and to a partial positive charge on the other atom. 74
dipole-dipole attractions and 547–548
predicting in molecules 548–552
Polar molecular substance, solubility and 578–579
Polonium-210, radioactive decay of 724
Polonium-218, in radioactive decay 729
Poly(ethylene terephthalate) 695
Poly(vinyl chloride), PVC 694–695
Polyatomic ion A charged collection of atoms held together by covalent bonds. 101–103
balancing equations and 129, 132
formulas and names 103
with hydrogen 103
Lewis structures 101
nonsystematic names 103
Polychlordrinated biphenyl (PCB) 353
Polyester 692–693
Polyethylene 693
Polymer A large molecule composed of repeating units. 676
addition 693–694
formulas for 691
polysaccharides as 676–677
proteins as 680
synthetic 690–695
Polypeptide 680. See also Protein
nylon as 691
silk as 690
Polypropylene 694–695
Polypropionic acid An acid that can donate more than one hydrogen ion per molecule in a reaction. 162
Polysaccharide Molecule with many saccharide units. 676
digestion products 688
Polystyrene 694–695
chlorofluorocarbons and 272
Positron A high-velocity anti-electron released from radioactive nuclides that have too few neutrons. 437, 721
discovery of 437
Positron emission In radioactive nuclides that have too few neutrons, the conversion of a proton to a neutron, which stays in the nucleus, and a positron, which is ejected from the nucleus. 721
nuclear equations for 723–725
Positron emission tomography (PET) 437, 732
Potential energy (PE) A retrievable, stored form of energy an object possesses by virtue of its position or state. 252
chemical reactions and 263–265
electron orbitals and 420
in formation of water 263
stability and 252–254
Precipitate A solid that comes out of solution. 137
Precipitation The process of forming a solid in a solution. 137
tooth decay and 186
Precipitation reaction A reaction in which one of the products is insoluble in water and comes out of solution as a solid. 137–143
doing calcium carbonate 137–140
Study Sheet 142
writing equations for 142–143
Precision The closeness in value of a series of measurements of the same entity. The closer the values of the measurements, the more precise they are. 20
in reporting measured values 293
Prefixes. See Metric prefixes
Preserving books 187
Presidential Green Chemistry Challenge Award 272, 621
Pressure Force per unit area. See Gas pressure
Pressure cooker 544
Primary battery A battery that is not rechargeable. 228
Primary protein structure The sequence of amino acids in a protein molecule. 680
Principal energy level A collection of orbitals that have the same potential energy for a hydrogen atom, except for the first (lowest) principal energy level, which contains only one orbital (1s). 420
Probabilities, electron behavior and 414, 418
Products The substances that form in a chemical reaction. Their formulas are on the right side of the arrow in a chemical equation. 127
Progestosterone, molecular structure of 686
Proline (Pro, P), molecular structure of 679
Propane 82
1, 2, 3-Propanetriol 663
2-Propanol hydrogen bonds in 554
Lewis structure 84
molecular structure of 554
2-Propanone 666
Propionic acid molecular structure of 580
water solubility 580
Proportionality
 direct 487
 inverse 487
Propylene
 hexane solubility of 581
 in polypropylene 694
Propylene glycol, molecular structure of 578

Protein Natural polypeptide. 678–679, 680
 alpha helix 680
 beta sheet 680
 digestion products 688
 disulfide bond 682
 hydrogen bond 682
 primary structure 680
 ribbon convention 681
 salt bridge 682
 secondary structure 680
 tertiary structure 681–682

Proton A positively charged particle
 found in the nucleus of an atom. 47
 in artificial elements 52
 in atoms 47–48
 in Bronsted-Lowry acids and bases 188
 in ions 48–49
 in isotopes 50–51
 mass number and 51
 MRI and 732
 nuclear stability and 718–719, 737
 in nuclides 716–717
 origin of the elements and 742

Publication, in scientific method 9

Pure substance A sample of matter that
 has constant composition. There are
 two types of pure substances: ele-
 ments and compounds. 71
Putrescine, molecular structure of 667

Q
Quantum mechanics 437
Quick lime, formation of 245

R
Race cars and air density 499

Radiant energy Energy that can be de-
 scribed in terms of oscillating electric
 and magnetic fields or in terms of
 photons. 260–262
 spectrum 262
 the wave view 261
 wavelength 261
Radiation
 effects on the body 730–731
 treatment for cancer 731
Radiator coolants 578

Radioactive decay One of several
 processes that transform a radioac-
 tive nuclide into a more stable product or
 products. 719
 effects on body 730–731
 rates and half-life 726–728
Radioactive decay series 728–729
Radioactive emissions
 alpha particle 720
 beta emission 720
 gamma rays 722
 positron emission 721

Radioactive nuclide An unstable nu-
 clide whose numbers of protons and
 neutrons place it outside the band of
 stability. 719
Radioactive substances
 smoke detectors, pipe joint check,
 food irradiation, radioactive trac-
 ers 735
 uses 731–736

Radioactive tracer A radioactive
 nuclide that is incorporated into
 substances that can then be tracked
 through detection of the nuclide's
 emissions. 735

Radiocarbon (or carbon-14) dating
 The process of determining the age of
 an artifact that contains material from
 formerly living plants or animals by
 analyzing the ratio of carbon-14 to
 carbon-12 in the object. 733–734

Radio waves 261, 262
Radium-226
 half-life 727
 radioactive decay 729
 use 736
Radon-222
 half-life 727
 lung cancer and 728
 in radioactive decay series 729
Rags, in paper 187
Rapture of the deep 596

Rate of chemical reaction The number
 of product molecules that form (per-
 haps described as moles of product
 formed) per liter of container per
 second. 616–620
 concentration effect 617–618
 temperature and 616–617

Rate of condensation The number of
 particles moving from gas to liquid
 per second. 537

Rate of evaporation The number of
 particles moving from liquid to gas
 per second. 535–537, 536–537

strengths of attractions and 536
 surface area and 536
 temperature and 537
 three factors that determine 536

Rate of solution. See Solution, Rate of
 Ratio
 empirical formulas and 346
 molar 345
 neutron-to-protons 718–719
 stoichiometric 376

Rational drug design 673

Reactants The substances that change
 in a chemical reaction. Their formulas
 are on the left side of the arrow in a
 chemical equation. 127
 equilibrium disruption and 634–
 636
 limiting 377–381
 Reaction. See Chemical reaction
 Reaction Rate. See Rate of chemical
 reaction
 Rechargeable batteries 228
 Recycling 694
 Redox reaction. See Oxidation-reduction
 reaction

Reducing agent A substance that loses
electrons, making it possible for an-
other substance to gain electrons and
be reduced. 210

Reduction Any chemical change in
 which at least one element gains elec-
trons, either completely or partially. 209, 211

Red giant stars 743
Red litmus paper, detecting bases with
 180
Reilly, William K. 270
Relative atomic mass 333
Relative solubilities 578

Representative elements The elements
 in groups 1, 2, and 13 through 18
 (the “A” groups) on the periodic table;
 also called main-group elements. 44
 Research, in scientific method 8
 Research chemist 609

Resonance The hypothetical switch-
ing from one resonance structure to
another. 465–467

Resonance hybrid A structure that
 represents the average of the reso-
nance structures for a molecule or
 polyatomic ion. 466

Resonance structures Two or more
 Lewis structures for a single molecule
 or polyatomic ion that differ in the
 positions of lone pairs and multiple
 bonds but not in the positions of the
atoms in the structure. 466

Reversible reaction A reaction in which the reactants are constantly forming products and, at the same time, the products are reforming the reactants. 163, 621–622

in chemical equilibrium 621–625
disruption of equilibrium for 634
equilibrium constants for 626
percent yield and 382

Review Skills sections 6

Rhodium, in catalytic converter 221

Ribbon convention for proteins 681

Ring forms, of monosaccharides 674–675

Roasting 384

Rohm and Haas Company 5

Roman numeral, in naming monatomic cations 99

Roots of nonmetal names 92

Roscoelite 365

Rounding off 293–301

for addition and subtraction 299–301

for multiplication and division 294–299

Roundup 621

RU-486 705

Ruby 359

S

Saccharide Sugar, starch, and cellulose. Also called carbohydrates. 674–677.

See also Carbohydrate

Saliva, tooth decay and 186

Salt. See Sodium chloride

Salt bridge (in proteins) A covalent bond between two sulfur atoms on cysteine amino acids in a protein structure. 682

Salt bridge (in voltaic cells) A device used to keep the charges in a voltaic cell balanced. 226

Salt taste 177

Salt water separation 40

San Simeon, California, protection from acid rain in 167

Saturated solution A solution that has enough solute dissolved to reach the solubility limit. 592, 592–593
dynamic equilibrium and 588–593
formation of 592–593

Saturated triglyceride A triglyceride with single bonds between all of the carbon atoms. 683

Scale, calcium carbonate in 144

Schrodinger, Erwin 416

Science

chemistry as 7–9

existence of matter and 437

mathematics in 413

Scientific Method 7–9

Scientific model A simplified approximation of reality. See also Model 34, 56, 448

Scientific notation 4–5

Scuba diving, gas solubility and 596

Sea-Nine antifoulant 5

Seaborg, Glenn 725

Seawater, pH and 179

Sea of electrons model for metals 57

Second (s), as unit of measurement 11

Secondary (or storage) battery A rechargeable battery. 228

Secondary protein structure The arrangement of atoms that are close to each other in a polypeptide chain. Examples of secondary structures are alpha helix and beta sheet. 680–681

Second period elements, electrons in 625–627

Selenide ion 98

Selenium

bonding pattern 81

covalent bond formation 453

ion formation 95–96

most common bonding pattern 455

Semia metals The elements that have some but not all of the characteristics of metals. 44

Serine (Ser, S) hydrogen bonds between 682

molecular structure of 679

Shape. See Molecular shape

Shell 420. See also Principal energy level

Shroud of Turin 734

Side-chain, in anion acid 678

Significant figures The number of meaningful digits in a value. The number of significant figures in a value reflects the value’s degree of uncertainty. A larger number of significant figures indicates a smaller degree of uncertainty. 293–301

counting the number of 295–296

zeros and 296

Silicon (Si) 126

electronics grade 379

metallurgical grade 379

purifying 379–380

from silicon dioxide 377

Silicon dioxide

citrine as 362

in furnace method 330

purifying silicon from 379–380

Silk

molecular structure of 690

nylon as substitute for 690

Silver (Ag)
density of 302

ion charges of 99

melting point of 314

Silver ion, solubility of compounds with 141

Silver nitrate, in precipitation reaction 142

Single-displacement reaction Chemical change in which atoms of one element displace (or replace) atoms of another element in a compound. 222–223

Sinkhole 204

Sixth principal energy level, electron orbitals of 423

SI System of Measurement. See International System of Measurement

Slaked lime 245

Smelling salts 653

Smog

formation of photochemical 266–267

nitrogen dioxide in 629

Smoke detectors 735

Soap 584, 586–587

Society for Heavy-Ion Research 52

Sodium (Na)
electrolysis and 227

formation from sodium chloride 219

ion 75–76

ion formation 96

Sodium aluminum sulfate, in baking powder 73

Sodium bromide, use 600

Sodium carbonate

reaction with acid 175

uses 175

Sodium chlorate, production and use 244

Sodium chloride

electrolysis and 227

formation 76

formula mass of 340

formula unit of 339

oxidation-reduction and 208–209

solubility in water 593

solution in water 133–135

structure of 100–101, 101

taste of 177
Sodium chromate 384
Sodium dichromate, production and use 400, 408
sodium dodecyl sulfate (SDS), as detergent 587
Sodium fluoride, in toothpaste 95
Sodium hydrogen carbonate production and use 175, 241
reaction with acids 175
Sodium hydrogen sulfate, production and use 407
Sodium hydroxide aqueous solution of 173
formation 101
in neutralizing phosphoric acid 390
reaction with nitric acid 181–185
uses of 101, 173
Sodium hypochlorite, production 509, 552, 560, 580, 581
Sodium ions 49
taste and 177
Sodium perbromate, production and use 243
Sodium sulfate, production and use 243, 517
Sodium tripolyphosphate, production and use 410
Soft drink, why bubbles form 596
“Solar system” model of the atom 414

Solid The state in which a substance has a definite shape and volume at a constant temperature. 34–35
densities of 301–302
expansion when heated 35
heterogeneous equilibrium and 630–631
Solid acid, in meals ready to eat 573
Solid elements 45, 56–57

Solubility The maximum amount of solute that can be dissolved in a given amount of solvent. 578–584
gas 594–595
guidelines 578
like dissolves like 578–579
soaps and detergents and 586–587
in water 140–141, 593
guidelines 141

Solute The gas in a solution of a gas in a liquid. The solid in a solution of a solid in a liquid. The minor component in other solutions. 136
gas as 594–595
in saturated solution 588

Solution A mixture whose particles are so evenly distributed that the relative concentrations of the components are the same throughout. Solutions can also be called homogeneous mixtures.
chemical reactions in 573
dynamic equilibrium and 588–593
formation of 576–577
of ionic compounds 133–135
molarity and 385–392
rate of 589–592
agitation 591
factors that effect 589
surface area 589–590
temperature effect 592
saturated 592–593
solute and solvent 136
unsaturated 592
why form 574–577

Solvent The liquid in a solution of a gas in a liquid. The liquid in a solution of a solid in a liquid. The major component in other solutions. 136
Sour taste 177

Space-filling model A way of representing a molecule to show a somewhat realistic image of the electron-charge clouds that surround the molecule’s atoms. 54, 86

Spandex, synthesis of 353
Special conditions, in chemical equations 127–128

Special topics
Acid Rain 167
Air Pollution and Catalytic Converters 221
A Greener Way to Spray Paint 514
A New Treatment for Brain Cancer 741
Be Careful with Bleach 188
Big Problems Require Bold Solutions - Global Warming and Limiting Reactants 384
Chemistry and Your Sense of Taste 177
Chemistry Gets the Bad Guys 541
Gas Solubility, Scuba Diving, and Soft Drinks 596
Global Warming, Oceans, and CO2 Torpedoes 597
Green Chemistry 5
Green Chemistry - Making Chemicals from Safer Reactants 351
Green Chemistry - Substitutes for Chlorofluorocarbons 272
Green Chemistry - The Development of New and Better Catalysts 621
Green Decaf Coffee 515
Hard Water and Your Hot Water Pipes 144

Harmless Dietary Supplements or Dangerous Drugs 687
Molecular Shapes, Intoxicating Liquids, and the Brain 89
Olestra and Low-Fat Potato Chips 684–685
Other Ozone-Depleting Chemicals 272
Oxidizing Agents and Aging 212
Precipitation, Acid-Base Reactions, and Tooth Decay 186
Recycling Synthetic Polymers 694
Rehabilitation of Old Drugs and Development of New Ones 673
Safe and Effective? 354
Saving Valuable Books 187
The Big Question - How Did We Get Here? 640
The Origin of the Elements 742
Wanted: A New Kilogram 11
Why Create New Elements? 52
Why Does Matter Exist, and Why Should We Care About This Question? 437
Zinc-Air Batteries 229

Spectator ions Ions that play a role in delivering other ions into solution to react but that do not actively participate in the reaction themselves. 139

Spectrum, of radiant energy 261–262
Spin. See Electron spin
Spins 359
Spodumene 365
Spray paint 514

Stability A relative term that describes the resistance to change. 54, 252–254

Standard kilogram 11
Standard pressure 503
Standard temperature 503
Standard temperature and pressure (STP) 503
gas stoichiometry and 503
gas stoichiometry for conditions other than 504–505

Standing waves 414–416
Starch 674, 676
Stars, element formation and 743
State, physical 127
Stationary wave 415
Steam re-forming 396, 622

Stearic acid
molecular structure of 664
solubility of 583
Step-growth (or condensation) polymer A polymer formed in a reaction that releases small molecules, such as water. This category includes nylon and polyester. 691
Sterno® 447
Steroid Compounds containing a four-ring structure. 685–686
Stirring, rate of solution and 589–591
Stockings 690
Stoichiometric ratio 376
Stomach. See Equation stoichiometry
Stomach hydrochloric acid in 506
role in digestion 689
Stomach acid 506
Storage battery 228
Stratosphere The second layer of the earth’s atmosphere. It extends from about 10 km to about 50 km above sea level. 268
destruction of ozone in 269–271
ozone hole in 271
removal of UV radiation in 269
Strong acid An acid that donates its H⁺ ions to water in a reaction that goes completely to products. Such a compound produces close to one H₂O⁺ ion in solution for each acid molecule dissolved in water. 163, 165
identifying 176
reactions of strong base with 181–185
Strong base A substance that generates at least one hydroxide ion in solution for every unit of substance added to water. 173
identifying 176
reactions of strong acids with 181–185
Strong force The force that draws nucleons (protons and neutrons) together. 718
Strontium-90 730
Studying chemistry 5
Study Sheets abbreviated electron configuration 433–436
assignment of oxidation numbers 214
balancing chemical equations 129
basic equation stoichiometry - converting mass of one substance in a reaction to mass of another 372–373
calculating empirical formulas 348
calculating molecular formulas 352
calculations using unit analysis 308
classification of matter 72
combustion reaction 220
converting between mass of element and mass of compound containing the element 345
drawing Lewis structures from formulas 456–457
electron negativity, types of chemical bonds, and bond polarity 550
electron configurations and orbital diagrams 431, 456
equation stoichiometry 372–373, 391, 507–508
equation stoichiometry problems 391
identification of strong and weak acids and bases 176
limiting reactant problems 380
predicting molecular geometry 472
predicting precipitation reactions and writing precipitation equations 142
rounding off numbers calculated using addition and subtraction 299
rounding off numbers calculated using multiplication and division 295
using Dalton's Law of Partial Pressures 512
using the combined gas law equation 500
writing complete electron configurations and orbital diagrams for uncharged atoms 431
writing equations for combustion reactions 220
Styrene, in polystyrene 694
Sublevel or subshell Orbitals that have the same potential energy, same size, and same shape. 421
Sublimation, of dry ice 255, 256
Subshell, of atomic orbitals 421
Substance, base unit of 10–11
Substances densities of common 302
equation stoichiometry and 368–375
hydrophilic and hydrophobic 582
solubilities of 578–579
uses for radioactive 731–734
Substrate A molecule that an enzyme causes to react. 690
Subtraction, rounding off and 299–301
Sucrase, in digestion 688
Sucrose, solubility in water 593
Sugar 674–676
rate of solution 590
taste of 177
Sulfate ion, solubility of compounds with 141
Sulfur 43–44
bonding pattern 81
combustion and 219
covalent bond formation 453
ion formation 95–96
most common bonding pattern 455
production 244
use and production 525
Sulfuric acid 166
acid rain and 167
air pollution and 523
in combustion reactions 219
as pollutant and removal 408
Sulfur hexafluoride, threshold limit value, or TLV 522
Sulfur trioxide, in acid rain 167
Sulphur dioxide, in combustion reactions 248–249
Sun, nuclear fusion and 742
Supercritical carbon dioxide, decaffeinating coffee and 515
spray paint and 514
Supercritical fluid 514
Supernovas 743
Super glue 473
Surface area, rate of solution and 589–590
Sweet taste 177
Symbols for elements 41
for nuclides 716
Synthesis gas 622
Synthesis reactions 218
Synthetic polymers 690–695
s block, on periodic table 428–429
Tanzanite 363
Taste 177
Technical University of Munich 641
Television waves 262
Tellurium (Te), bonding patterns of 457

Temperature A measure of the average internal kinetic energy of an object. 17–19, 259
 - absolute zero 18
 - base unit of 11
 - boiling-point 544
 - Celsius scale 18
 - coldest 19
 - common scales 19
 - in condensation 534
 - critical 514
 - density and 301
 - effect on rate of solution 592
 - equilibrium constants and 632–633
 - equilibrium vapor pressure and 540–541
 - in evaporation 536–537
 - Fahrenheit scale 18–19
 - gases and 485
 - Kelvin scale 18–19
 - measuring 18
 - normal boiling-point 545
 - pressure and 488
 - range of 19
 - rate of reaction and 616–618
 - rate of solution and 592
 - standard 503
 - volume and 489

Temperature conversions 312–314

Terephthalic acid, in polyester formation 692

Tertiary protein structure The overall arrangement of atoms in a protein molecule. 681

Testosterone 686

Tetraboron carbide, production and use 400, 401

Tetrachloroethylene 375

Tetrahaloethanes 86, 468–469

Tetrahedral The molecular shape that keeps the negative charge of four electron groups as far apart as possible. This shape has angles of 109.5° between the atoms. 86

Tetramethylene glycol 354

Tetrapetide 680

Tetraphosphorus deoxide, in furnace method 330

Tetraphosphorus trisulfide 131

Thalidomide 364, 673

Theoretical yield The calculated maximum amount of product that can form in a chemical reaction. 382

Thermal energy The energy associated with the random motion of particles. 259. *See also Heat*

Thermometers 18–19

Thiocyanate 398

Thionyl chloride, production and use 408

Thoburn, Steve 292

Thornepetite 364

Threonine (Thr, T), molecular structure of 679

Threshold limit value, or TLV 522

Time, base unit of 11

Tin(II) sulfide, melting point of 314

Tincture of iodine 556

Tin isotopes 51–52

Titanium(IV) oxide
 - production 528
 - production and use 411

Titanium (Ti) 56
 - production and use 247

Titanium carbide 381

Titanium dioxide 632
 - production and use 238

Titration, Web site for 392

Toothpaste, chemicals in 393

Umami taste See also 177

Uncertainty 21
 - in measurements 20–22
 - significant figures and 293–301

Unified mass unit. *See Atomic mass unit*

Unit A defined quantity based on a standard. 9–18, 1–3
 - abbreviations 1
 - conversions among 288–314
 - of energy 257
 - in international system of measurement 10–12
 - length 14
 - mass 16
 - the importance of putting into equations 497
 - volume 15

United States, ozone concentrations in 267

Equation stoichiometry and 370

Gas stoichiometry and 505

Study Sheet 308–309

Summary of 308–312

“something per something” 311

Common 308–312

Density and 303, 310, 501-506, 551

English-metric 291–292, 310

Metric-metric 289–291, 310

Percentage and 307, 311

Triprotic acid An acid that can donate three hydrogen ions per molecule in a reaction. 163

Tritetra 584

Tritium 50–51

Troposphere The lowest layer of the earth’s atmosphere. It extends from the surface of the earth to about 10 km above the earth. 268

Trypsin 688

Tryptophan (Trp, W), molecular structure of 679

Tungsten (W), in light bulb filaments 496

Tyrosine (Tyr, Y), molecular structure of 679

U

Ultraviolet radiation 262

Umami taste 177

Uncertainty 21
 - in measurements 20–22
 - significant figures and 293–301

Unified mass unit. *See Atomic mass unit*

Unit A defined quantity based on a standard. 9–18, 1–3
 - abbreviations 1
 - conversions among 288–314
 - of energy 257
 - in international system of measurement 10–12
 - length 14
 - mass 16
 - the importance of putting into equations 497
 - volume 15

United States, ozone concentrations in 267

Equation stoichiometry and 370

Gas stoichiometry and 505

Study Sheet 308–309

Summary of 308–312

“something per something” 311

Common 308–312

Density and 303, 310, 501-506, 551

English-metric 291–292, 310

Metric-metric 289–291, 310

Percentage and 307, 311
Universal gas constant, R The constant in the ideal gas equation. 494
in gas stoichiometry 505–509
in ideal gas equation 494–499

Universe
hottest temperatures in 19
origin of elements in 742–743
University of California, Berkeley 725
University of Regensburg 641
Unpaired electrons 79
in valence-bond model 449

Unsaturated solution A solution that has less solute dissolved than is predicted by the solubility limit. 592
Unsaturated triglyceride A triglyceride that has one or more carbon-carbon double bonds. 683

Uranium 381
alpha emission 720
production 402
uranium-238 decay series 729
Uranium(IV) oxide 381
Uranium-234 740
Uranium-235 740
enrichment 381
in fission reactors 740
half-life 727
Uranium-238
in fission reactors 740
half-life 727
nuclide symbol 717
radioactive decay series 729
Uranium-239
in nuclear reactors 740
in nuclear fission 738
Uranium hexafluoride 367, 381
Urea 411
use and production 526, 654

UV-A Ultraviolet radiation in the range of about 320 to 400 nm wavelengths. This is the part of the ultraviolet spectrum that reaches the earth and provides energy for the production of vitamin D. 268

UV-B Ultraviolet radiation in the range of about 290 to 320 nm wavelengths. Most of this radiation is filtered out by the earth’s atmosphere, but some reaches the surface of the earth. 268

UV-C Ultraviolet radiation in the range of about 40 to 290 nm wavelengths. Almost all UV-C is filtered out by our atmosphere. 268

V
Valence-bond model 449–454

Valence electrons The electrons that are most important in the formation of chemical bonds. The highest energy s and p electrons for an atom. 79, 449
electron dot symbol 79–80
Valine (Val, V), molecular structure of 678

Value A number and unit that together represent the result of a measurement or calculation. 10

Vanadium(V) oxide, in catalytic converter 221

Vapor A gas derived from a substance that is liquid at normal temperatures and pressures. It is also often used to describe gas that has recently come from a liquid. 534

Vaporization The conversion of a liquid to a gas. 37

Vapor pressure. See Equilibrium vapor pressure

Vegetable oil 585
Velocity
of gas particles 484
kinetic energy and 251
of particles in evaporation 535

Vinegar
acetic acid in 162
taste of 177

Vinyl chloride, in poly(vinyl chloride) 694
Visible fingerprints 541
Visible light 262

Vitamin C, aging and 212
Vitamin E, aging and 212

Volatile organic compounds (VOCs) 514

Voltage 227

Voltaic cell A system in which two half-reactions for a redox reaction are separated, allowing the electrons transferred in the reaction to be passed between them through a wire. 224–229
anode 225
cathode 225
common examples 229
electrode 225
electrolyte 226
primary battery 228
salt bridge 226
secondary battery 228
zinc-air batteries 229

Volume (V) 15–16
density and 301
English-metric conversion factors for 292

of gases 485
of ideal gas particles 485
measurement, graduated cylinder 21
number of gas particles and 491
pressure and 486–487
range of 16
temperature and 489

Volume unit, liter 12

W
Wächtershäuser, Günter 641

Water 70
acids and 160–161, 163–164
ammonia and 173–174
attractions 88
bases and 173
boiling point of 18–19, 545
as compound 71
condensation of 534–535
in condensation reactions 689
covalent bond formation 452
density of 302
dissolving sodium chloride in 134–135
evaporation of 535
hard 144
heavy 313
hydrogen bonds in 554
ionizing radiation and 730–731
Lewis structure 81
liquid 88–89
melting point of 18–19
mixing with ethanol 576–577
molecular shape 87–88, 469
in nylon formation 691
pH of 179
as polar molecule 88, 553
producing hydrogen gas from 621–623
in protein formation 680
rate of solution in 589–593
solubility in 578–583
structure of 87–88

Water dissociation constant (K_w) The equilibrium constant for the reaction:

\[
\text{H}_2\text{O} (l) \rightleftharpoons \text{H}^+ (aq) + \text{OH}^- (aq)
\]

632

Water purification 374
Water solubility 140–141
Water treatment 202

Wave
electrons as 416–423
for guitar strings 414
radiant energy as 260–262
standing 414–415
Waveform A representation of the shape of a wave.
 of electron 416
 of guitar strings 415
Wavelength The distance in space over which a wave completes one cycle of its repeated form. 261–262
Weak acid A substance that is incompletely ionized in water due to the reversibility of the reaction that forms hydronium ions, H$_3$O$^+$, in water. Weak acids yield significantly less than one H$_3$O$^+$ ion in solution for each acid molecule dissolved in water. 163, 164
Weak base A substance that produces fewer hydroxide ions in water solution than particles of the substance added. 174–175
 ammonia as 173–174
 identifying 176
Weather balloon 502
Web site for acid-base titration 392
 for acid nomenclature 169
 for animation of acid-base reaction 185
 for animation of a single-displacement reaction 222
 for animation of dissolving ethanol in water 577
 for animation of element structure 56
 for animation of precipitation reaction 140
 for animation of solution of sodium chloride 136
 for animation of strong and weak acids 166
 for animation of the particle nature of matter 38
 for animation of water structure 89
 for balancing redox equations 218, 222
 for calculating element percentages 346
 for changing volume and gas reactions 637
 for combustion analysis 353
 for conversion between element names and formulas 41
 for different electron configurations 436
 for enzyme mechanism 690
 for equilibrium calculations, including pH 633
 for isotope notation 52
 for gas stoichiometry shortcut 506
 for how addition polymers are made 693
 for London forces and polar molecules 558
 for mixtures and equation stoichiometry 375
 for polyatomic ions 103
 for predicting molecular polarity 553
 for predicting relative strengths of attractions 560
 for resonance 467
 for temperature effect on solid and gas solubility 597
 for writing complete ionic and net ionic equations 143
Weight A measure of the force of gravitational attraction between an object and a significantly large object, such as the earth or the moon. 16
Weighted average A mass calculated by multiplying the decimal fraction of each component in a sample by its mass and adding the results of each multiplication together. 331
Wine pH of 179
 sediment formation 579
Work What is done to move an object against some sort of resistance. 250
X
X-rays 262
X-ray crystallography 673
Xenon (Xe), reactions 242
Xenon difluoride 397
Y
Yield. See Actual yield; Theoretical yield; Percent yield
Z
Zeros and significant figures 296
Zinc-air batteries 229
Zinc (Zn) 56
 batteries and 224–227
 reaction with copper sulfate 222–223
 single-displacement reaction and 222–223
 voltaic cells and 224–226
Zinc oxide
 in book preservation 187
 oxidation-reduction and 208–209
 in zinc-air batteries 229