Garden Tractor

RUILT from a few pieces of pipe, pipe fittings and, old auto parts, Including the engine, this powerful garden tractor handles all the larger garden-tractor implements such as a 10 or 12-in. turning plow, 5 or 6ft. disk harrow, any of the larger cultivators, mowing machines, etc., with plenty of power left over for the hard pulls. Because of its extra weight and compact-unit construction it's easy to handle even on the heaviest jobs. Stability and balance plus a close throttle control make it easy to steer and prevent whipping the handles so common the lighter garden tractors. Controls are located on the handle bars within easy reach of the operator. A heavy perforated steel grille protects the radiator core from damage in case you bump into something, Handles and frame are one unit, built up from pipe and fittings. Power is taken off the front end of the engine crankshaft by roller chain to Harley-Davidson motorcycle transmission which contains an "over-center" clutch controlled by a lever on the handle bars. From this transmission, power is taken by roller chain to a second transmission, the latter from a Ford Model-A or 1931 Dodge automobile. This second transmission is bolted directly to a cut-down Ford Model-T rear axle as you see in Fig. 1. The "worm's eye" view in Fig. 1 gives a clear idea of the compact, efficient drive. Sounds like a cranky job to assemble, but it happens that these parts fit together with the minimum of alteration. In the process the drive pinion of the rear axle is "transplanted" to the transmission and then the two parts are "tele-scoped" together. A study of the exploded view in Fig. 2 will give you an idea of how these various parts are assembled. No dimensions are given on any of the parts except the size of pipe used for the frame.

The "worm's eye" view below shows the drive. Transmission it bolted directly to The differential hauling of a Ford Model-T rear axle. Brakes and hubs are from a Ford Modal-A axle.

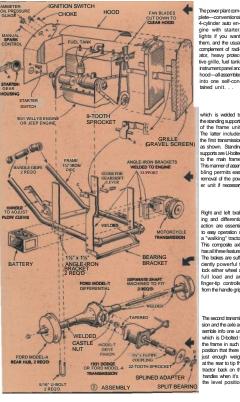
This whole job is of such a nature that size of the parts must be determined as you go along. Much, depends on what you will use the tractor for, what engine you use, whether J931 Willys auto engine, as was used on the original, or the popular Willys leep engine, now so readily available. Due to variations in the mounting brackets on the Jeep engine alterations must be made from the original plan of assembly. This is not at all difficult, but will make material differences in the dimensions of certain parts.

The first thing to determine is the distance, measured both lengthwise and across the width, of the engine mounting brackets. Distance across the width of the Willys auto engine used in the original tractor was cut down to approximately 16 in This done, you remove the clutch assembly and the clutch housing. Then make a sling from light chain and fit the chains with hooks attached to the engine in such a way that when it is raised with a tackle block the engine will hang level. Now you're ready for the rest of the job.

It's a good idea to get all the necessary material at hand before you begin work. For the handle bars you need two pieces of 1½-in. pipe of the grade known to the trade as "extra heavy," also one piece approximately 15 in. long for

the front member. Over-all width of the frame when assembled is 17 in. In addition, two 90-degree elbows, two 61-degree elbows, two 61-in nipples and two caps are required. Then for the engine supports you require three pieces of flat steel 38by 4 by 20 in. and one piece 378by 4 by 22 in. long. These dimensions make considerable allowance. In addition several pieces of an-additional several pieces of an additional several pieces of an additional several pieces of an additional several pieces.

Next, you work on the axle assembly, shown in the lower detail, Fig. 2. Tread of the original tractor with the furrow wheel reversed was 34 in. However, the tread width depends on the work to be done with the tractor. If, for example, you plan to cultivate multiple rows of such garden truck croops as carrots or onions, then the tread

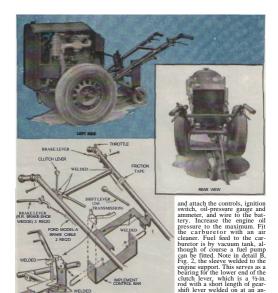

width with the wheels 'in' must be planned accordingly. Either way, cut up two axie assemblies to make one. You'll require one Ford Model-1 rear axle complete and one Ford Model-1 rear axle complete and one Ford Model-A axle. Then, with the tread width required in mind, cut up the axle housings and reassemble the parts as shown in the lower view, Fig. 2. Machine separate axle shafts. This is a job for the hard the state of the shafts. This is a job for the hard the shafts are removed from the differential assembly and the pinion is mounted on the transmission as in the lower detail, Fig. 2. To do this it will be necessary to disas-

semble the transmission, machine a taper on the transmission shaft, also cut a thread and drill the shaft transversely for a castle nut and cotter pin. Then, to reassemble, first måke a paper template of the form of the Model-T propellershaft mounting boss and from this scribe four evenly spaced holes on the driven end of the transmission case, keeping in mind that the transmission is turned 90 degrees as in the lower detail, Fig. 2, and also in Fig. 1. Discard the retainer ring for the end ball bearing and also the 1/8-in. spacer where the main shaft telescopes into the driveshaft. This allows the end bearing to seat flush with the end of the case. Make a washer of thin sheet metal to hold the bearing in place. Drill .328" clearance holes in the transmission case. Reassemble the main shaft and bolt the transmission case directly to the differential housing, using 5/16-in. studs, tightening nuts from inside the case. Check clearance of the pinion. It may be necessary to shim between the two parts. Then cut off the end-plate flange and

weld on a 1½ by 1½-in, pipe coupling, shown separately in Fig. 2. Cut off the transmission lever to about 8 in. long and weld on a ball-joint fitting taken from a Model-T tie rod. Later a suitable ball end is welded to the lower end of the gearshift

lever which extends to the handle bars. Assemble the frame and handle-bar unit, making a 30-degree bend in the long lengths of pipe, the bond 24 in. from the end on both pieces. Bolt the engine supports in place with 5/16-in. U-bolts. Block up the axle and frame assemblies in their relative positions under the suspended engine. Lower the engine into position and clamp or otherwise hold the parts in place. With the setup at this stage you can easily determine the location of the first transmission which bolts to one of the engine supports as in the center detail, Fig. 2. Also the location of the bearing support A, the amount of the bend in the engine support B and the location of the bracket pieces C to which the bearing support A is welded. This bearing takes the power takeoff shaft and is optional equipment. Also the position of the axle brackets shown in the center detail. and the bearing bracket which supports the bearing D. Mark the locations of all these

parts. Support pieces are welded to the engine brackets and the other parts are either welded or bolted in place as shown. Use 16-gauge sheet metal for the hood and instrument panel and also the fuel



plete-conventional 4-cylinder auto engine with starter, lights if you want them, and the usual complement of radiator, heavy protective grille, fuel tank, instrument panel and hood-all assembled into one self-contained unit. . .

which is welded to the standing supports of the frame unit. The latter includes the first transmission as shown. Standing supports are U-bolted to the main frame. This manner of assembling permits easy removal of the power unit if necessary.

Right and left braking and differential action are essential to easy operation of a "walking" tractor. This composite axle has all three features The brakes are sufficiently powerful to lock either wheel at full load and are finger-tip controlled from the handle grips

The second transmission and the axle assemble info one unit which is D-holted to the frame in such a position that there is just enough weight at the rear to tip fhe tractor back on the handles when it's in the level position.

(3) TRACTOR CONTROLS

tank, which is welded to the panel as indicated. The starter-gear housing is a domed cover from a discarded gasoline pump, and is welded over the hole cut in the panel. In most cases the fan blades must be cut down to clear the hood. Radiator used on the original tractor was taken from a 1931 Willys automobile and cut down in width. Have this done by a service shop. It's also necessary in most cases to straighten the top hose connection. Do this by cutting diagonally and then soldering together to make a straight connection.

WELDED

IMPLEMENT

Finish the assembly by fitting sprockets as indicated and hooking up the drive chains. Bolt the grille and hood in place

arm welded to the clutch lever at the lower end connects to the clutch throw-out arm on the motorcycle transmission-clutch assembly by means of a short link bent from a piece of 1/4-in. steel rod. Weld in a cross member about 8 in below the handle grips to serve as a stiffener, Fig. 3. Balance of the detail in Fig. 3 is more or less optional and must be arranged to suit the implements you will use. A rubber-tired caster wheel is fitted at the center of the implement-control bar to carry the weight of certain other implements and serve as a rest when the tractor is standing idle. Use Ford wheels on the Model-A hubs. Other wheels can be used but likely it will be necessary to lengthen the studs.

gle as you see in Fig. 3. A short