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”

Tenez, mon ami, si vous y pensez bien,
vous trouverez qu’en tout,

notre véritable sentiment n’est pas celui
dans lequel nous n’avons jamais vacillé;
mais celui auquel nous sommes le plus

habituellement revenus.”

Diderot,
(Entretien entre D’Alembert et Diderot)
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Preface

The objective of my previous book, Vibration Control of Active Struc-
tures, was to cross the bridge between Structural Dynamics and Auto-
matic Control. To insist on important control-structure interaction issues,
the book often relied on “ad-hoc” models and intuition (e.g. a thermal
analogy for piezoelectric loads), and was seriously lacking in accuracy
and depth on transduction and energy conversion mechanisms which are
essential in active structures. The present book project was initiated in
preparation for a new edition, with the intention of redressing the imbal-
ance, by including a more serious treatment of the subject. As the work
developed, it appeared that this topic was broad enough to justify a book
on its own.

This short book attempts to offer a systematic and unified way of ana-
lyzing electromechanical and piezoelectric systems, following a Hamilton-
Lagrange formulation. The transduction mechanisms and the Hamilton-
Lagrange analysis of classical electromechanical systems have been ad-
dressed in a few excellent textbooks (e.g. Dynamics of Mechanical and
Electromechanical Systems by Crandall et al. in 1968), but to the author’s
knowledge, there has been no similar systematic treatment of piezoelectric
systems.

The first three chapters are devoted to the analysis of mechanical sys-
tems, electrical networks and classical electromechanical systems, respec-
tively; Hamilton’s principle is extended to electromechanical systems fol-
lowing two dual formulations. Except for a few examples, this part of the
book closely follows the existing literature. The last three chapters are de-
voted to piezoelectric systems. Chapter 4 analyzes discrete piezoelectric
transducers and their introduction into a structure; the approach parallels
that of the previous chapter with the appropriate energy and coenergy
functions. Chapter 5 analyzes distributed systems, and focuses on piezo-
electric beams and laminates, with particular attention to the way the
piezoelectric layers interact with the supporting structure (piezoelectric
loads, modal filters, etc...). Chapter 6 examines energy conversion from
the perspective of active and passive damping; a unified approach is pro-
posed, leading to a meaningful comparison of various active and passive
techniques, and design guidelines for maximizing energy conversion.

This book is intended for mechanical engineers (researchers and grad-
uate students) who wish to get some training in electromechanical and
piezoelectric transducers, and improve their understanding of the sub-
tle interplay between mechanical response and electrical boundary condi-

xi ii



tions, and vice versa. In so doing, we follow the famous advice given by
Prof. Joseph Henry to Alexander Graham Bell, who had consulted him
in connection with his telephone experiments in 1875, and lamented over
his lack of the electrical knowledge needed to overcome his mechanical
difficulties. Henry simply replied: “Get it”. The beauty of the Hamilton-
Lagrange formulation is that, once the appropriate energy and coenergy
functions are used, all the electromagnetic forces (electrostatic, Lorentz,
reluctance forces,...) and the multi-physics constitutive equations are au-
tomatically accounted for.

Acknowledgements

I am indebted to my present and former graduate students and cowork-
ers who, by their enthusiasm and curiosity, raised many of the questions
which have led to this book. Particular thanks are due to Amit Kalyani,
Bruno de Marneffe, More Avraam and Arnaud Deraemaeker who helped
me in preparing the manuscript, and produced most of the figures. The
comments of the Series Editor, Prof. Graham Gladwell, and of my friend
Michel Geradin, have been very useful in improving this text. I am also in-
debted to ESA/ESTEC, EU, FNRS and the IUAP program of the SSTC
for their generous and continuous support of the Active Structures Labo-
ratory of ULB. This book was partly written while I was visiting professor
at Université de Technologie de Compiègne (Laboratoire Roberval).

Notation

Notation is always a source of problems when writing a book, and the
difficulty is further magnified as one attempts to address interdisciplinary
subjects, which blend disconnected fields with a long history, each with its
own, well established notation. This book is no exception to this rule, since
mechatronics mixes, analytical mechanics, structural mechanics, electrical
networks, electromagnetism, piezoelectricity and automatic control, etc.

The notation has been chosen according to the following rules: (i) We
shall follow the IEEE Standard on Piezoelectricity as much as we can.
(ii) When there is no ambiguity, we will not make explicit distinction
between scalars, vectors and matrices; the meaning will be clear from the
context. In some circumstances, when the distinction is felt necessary, col-
umn vectors will be made explicit by { } (e.g. {T} will denote the stress

xiv Preface



vector, while Tij denotes the stress tensor). (iii) The partial derivative
will be denoted either by ∂/∂xi or by the subscript ,i (the index after the
comma indicates the variable with respect to which the partial deriva-
tive is taken); the choice of one notation or the other will be guided by
clarity, compactness and conformity to the classical literature. Similarly,
summation on repeated indexes (Einstein’s summation convention) will
be assumed even when it is not explicitly mentioned.

André Preumont
Brussels, Decembre 2005.
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1

Lagrangian dynamics of mechanical systems

1.1 Introduction

This book considers the modelling of electromechanical systems in an
unified way based on Hamilton’s principle. This chapter starts with a
review of the Lagrangian dynamics of mechanical systems, the next chap-
ter proceeds with the Lagrangian dynamics of electrical networks and
the remaining chapters address a wide class of electromechanical systems,
including piezoelectric structures.

Lagrangian dynamics has been motivated by the substitution of scalar
quantities (energy and work) for vector quantities (force, momentum,
torque, angular momentum) in classical vector dynamics. Generalized co-
ordinates are substituted for physical coordinates, which allows a formula-
tion independent of the reference frame. Systems are considered globally,
rather than every component independently, with the advantage of elimi-
nating the interaction forces (resulting from constraints) between the var-
ious elementary parts of the system. The choice of generalized coordinates
is not unique.

The derivation of the variational form of the equations of dynamics
from its vector counterpart (Newton’s laws) is done through the principle
of virtual work, extended to dynamics thanks to d’Alembert’s principle,
leading eventually to Hamilton’s principle and the Lagrange equations for
discrete systems.

Hamilton’s principle is an alternative to Newton’s laws and it can be
argued that, as such, it is a fundamental law of physics which cannot
be derived. We believe, however, that its form may not be immediately
comprehensible to the unexperienced reader and that its derivation for
a system of particles will ease its acceptance as an alternative formula-
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2 1 Lagrangian dynamics of mechanical systems

tion of dynamic equilibrium. Hamilton’s principle is in fact more general
than Newton’s laws, because it can be generalized to distributed systems
(governed by partial differential equations) and, as we shall see later, to
electromechanical systems. It is also the starting point for the formula-
tion of many numerical methods in dynamics, including the finite element
method.

1.2 Kinetic state functions

Consider a particle travelling in the direction x with a linear momentum
p. According to Newton’s law, the force acting on the particle equals the
rate of change of the momentum:

f =
dp

dt
(1.1)

The increment of work on the particle is

fdx =
dp

dt
dx =

dp

dt
v dt = v dp (1.2)

where v = dx/dt is the velocity of the particle. The kinetic energy function
T (p) is defined as the total work done by f in increasing the momentum
from 0 to p

T (p) =

∫ p

0
v dp (1.3)

According to this definition, T is a function of the instantaneous momen-
tum p, with derivative equal to the instantaneous velocity

dT

dp
= v (1.4)

Up to now, no explicit relation between p and v has been assumed; the
constitutive equation of Newtonian mechanics is

p = mv (1.5)

Substituting in Equ.(1.3), one gets

T (p) =
p2

2m
(1.6)

A complementary kinetic state function can be defined as the kinetic
coenergy function (Fig.1.1)
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T ∗(v) =

∫ v

0
p dv (1.7)

which, as (1.3), is independent of the velocity-momentum relation. Note,
from Fig.1.1, that T (p) and T ∗(v) are related by

v

dv

dp

T(p)

T

(p; v)

p = mv

ã(v)

p

v

p

T

T

mvp =

c

ã 1à v2=c2
p

Fig. 1.1. Velocity-momentum relation for (a) Newtonian mechanics (b) special rela-
tivity.

T ∗(v) = pv − T (p) (1.8)

The total differential of the kinetic coenergy reads

dT ∗ = p dv + v dp − dT

dp
dp = p dv (1.9)

if (1.4) is used. It follows that

p =
dT ∗

dv
(1.10)

Thus, the kinetic coenergy is a function of the instantaneous velocity
v, with derivative equal to the instantaneous momentum. Equation(1.8)
defines a Legendre transformation which allows us to change from one
independent variable [p in T (p)] to the other [v in T ∗(v)] without loss
of information on the constitutive behavior. For a Newtonian particle,
combining (1.5) and (1.7), the kinetic coenergy reads
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T ∗(v) =
1

2
mv2 (1.11)

This form is usually known as the kinetic energy in most engineering
mechanics textbooks. Note, however that T (p) and T ∗(v) have different
variables, even though they have identical values for a Newtonian particle.
Since T and T ∗ are always identical in Newtonian mechanics, it has been a
tradition not to make a distinction between them. This point of view has
been reinforced by the fact that the variational methods in mechanics are
almost exclusively displacement based (based on virtual displacements).
However, in the following chapters, we will extend Hamilton’s principle
to electromechanical systems and the distinction between electrical and
magnetic, energy and coenergy functions will become necessary. This is
why we will use the kinetic coenergy T ∗(v) instead of the classical notation
of the kinetic energy T (v).

To illustrate that T and T ∗ may have different values, it is interesting to
mention that when going from Newtonian mechanics to special relativity,
the constitutive equation (1.5) must be replaced by

p =
mv

√

1 − v2/c2
(1.12)

where m is the rest mass and c is the speed of light. Equations (1.5) and
(1.12) are almost identical at low speed, but they diverge considerably at
high speeds (Fig.1.1.b), and T ∗ and T are no longer identical. 1

1.3 Generalized coordinates, kinematic constraints

A kinematically admissible motion denotes a spatial configuration that
is always compatible with the geometric boundary conditions. The gen-
eralized coordinates are a set of coordinates that allow a full geometric
description of the system with respect to a reference frame. This represen-
tation is not unique; Fig.1.2 shows two sets of generalized coordinates for
the double pendulum in a plane; in the first case, the relative angles are
adopted as generalized coordinates, while the absolute angles are taken
in the second case. Note that the generalized coordinates do not always
have a simple physical meaning such as a displacement or an angle; they
may also represent the amplitude of an assumed mode in a distributed
system, as is done extensively in the analysis of flexible structures.

1 unlike the kinetic coenergy T ∗, the potential coenergy V ∗ is often used in structural
engineering; however, it will not be used in this text, because our variational approach
will rely exclusively on a displacement formulation.
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ò1

ò2

l1

l2

O

(a)

ò1

ò2

l1

l2

O
(b)

Fig. 1.2. Double pendulum in a plane (a) relative angles (b) absolute angles.

The number of degrees of freedom (d.o.f.) of a system is the minimum
number of coordinates necessary to provide its full geometric descrip-
tion. If the number of generalized coordinates is equal to the number of
d.o.f., they form a minimum set of generalized coordinates. The use of
a minimum set of coordinates is not always possible, nor advisable; if
their number exceeds the number of d.o.f., they are not independent and
they are connected by kinematic constraints. If the constraint equations
between the generalized coordinates qi can be written in the form

f(q1, ....., qn, t) = 0 (1.13)

they are called holonomic. If the time does not appear explicitly in the
constraints, they are called scleronomic.

f(q1, ....., qn) = 0 (1.14)

The algebraic constraints (1.13) or (1.14) can always be used to eliminate
the redundant set of generalized coordinates and reduce the coordinates
to a minimum set. This is no longer possible if the kinematic constraints
are defined by a (non integrable) differential relation

∑

i

aidqi + a0dt = 0 (1.15)

or

∑

i

aidqi = 0 (1.16)
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if the time is excluded; non integrable constraints such as (1.15) and (1.16)
are called non-holonomic.

(x; y)

ò

r

v
x

y

þ

Fig. 1.3. Vertical disk rolling without slipping on an horizontal plane.

As an example of non-holonomic constraints, consider a vertical disk
rolling without slipping on an horizontal plane (Fig.1.3). The system is
fully characterized by four generalized coordinates, the location (x, y) of
the contact point in the plane, and the orientation of the disk, defined by
(θ, φ). The reader can check that, if the appropriate path is used, the four
generalized variables can be assigned arbitrary values (i.e. the disc can be
moved to all points of the plane with an arbitrary orientation). However,
the time derivatives of the coordinates are not independent, because they
must satisfy the rolling conditions:

v = rφ̇

ẋ = v cos θ

ẏ = v sin θ

combining these equations, we get the differential constraint equations:

dx − r cos θ dφ = 0

dy − r sin θ dφ = 0

which actually restrict the possible paths to go from one configuration to
the other.
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1.3.1 Virtual displacements

A virtual displacement, or more generally a virtual change of configura-
tion, is an infinitesimal change of coordinates occurring at constant time,
and consistent with the kinematic constraints of the system (but otherwise
arbitrary). The notation δ is used for the virtual changes of coordinates;
they follow the same rules as the derivatives, except that time is not in-
volved. It follows that, for a system with generalized coordinates qi related
by holonomic constraints (1.13) or (1.14), the admissible variations must
satisfy

δf =
∑

i

∂f

∂qi
δqi = 0 (1.17)

Note that the same form applies, whether t is explicitly involved in the
constraints or not, because the virtual displacements are taken at con-
stant time. For non-holonomic constraints (1.15) or (1.16), the virtual
displacements must satisfy

∑

i

aiδqi = 0 (1.18)

Comparing Equ.(1.15) and (1.18), we note that, if the time appears explic-
itly in the constraints, the virtual displacements are not possible displace-
ments. The differential displacements dqi are along a particular trajectory
as it unfolds with time, while the virtual displacements δqi measure the
separation between two different trajectories at a given instant.

Consider a single particle constrained to move on a smooth surface

f(x, y, z) = 0

The virtual displacements must satisfy the constraint equation

∂f

∂x
δx +

∂f

∂y
δy +

∂f

∂z
δz = 0

which is in fact the dot product of the gradient to the surface,

gradf = ∇f = (
∂f

∂x
,
∂f

∂y
,
∂f

∂z
)T

and the vector of virtual displacement δx = (δx, δy, δz)T :

gradf.δx = (∇f)T δx = 0
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Since ∇f is parallel to the normal n to the surface, this simply states
that the virtual displacements belong to the plane tangent to the surface.
Let us now consider the reaction force F which constraints the particle
to move along the surface. If we assume that the system is smooth and
frictionless, the reaction force is also normal to the surface; it follows that

F.δx = F T δx = 0 (1.19)

the virtual work of the constraint forces on any virtual displacements is
zero. We will accept this as a general statement for a reversible system
(without friction); note that it remains true if the surface equation de-
pends explicitly on t, because the virtual displacements are taken at con-
stant time.

1.4 The principle of virtual work

The principle of virtual work is a variational formulation of the static
equilibrium of a mechanical system without friction. Consider a system
of N particles with position vectors xi, i = 1, .., N . Since the static equi-
librium implies that the resultant Ri of the force applied to each particle
i is zero, each dot product Ri.δxi = 0, and

N
∑

i=1

Ri.δxi = 0

for all virtual displacements δxi compatible with the kinematic con-
straints. Ri can be decomposed into the contribution of external forces
applied Fi and the constraint (reaction) forces F ′

i

Ri = Fi + F ′

i

and the previous equation becomes

∑

Fi.δxi +
∑

F ′

i.δxi = 0

For a reversible system (without friction), Equ.(1.19) states that the vir-
tual work of the constraint forces is zero, so that the second term vanishes,
it follows that

∑

Fi.δxi = 0 (1.20)
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The virtual work of the external applied forces on the virtual displacements
compatible with the kinematics is zero. The strength of this result comes
from the fact that (i) the reaction forces have been removed from the
equilibrium equation, (ii) the static equilibrium problem is transformed
into kinematics, and (iii) it can be written in generalized coordinates:

∑

Qk.δqk = 0 (1.21)

where Qk is the generalized force associated with the generalized coordi-
nate qk.

f

ò

w

y

x

a

Fig. 1.4. Motion amplification mechanism.

As an example of application, consider the one d.o.f. motion amplification
mechanism of Fig.1.4. Its kinematics is governed by

x = 5a sin θ y = 2a cos θ

It follows that

δx = 5a cos θ δθ δy = −2a sin θ δθ

The principle of virtual work reads

f δx + w δy = (f.5a cos θ − w.2a sin θ) δθ = 0

for arbitrary δθ, which implies that the static equilibrium forces f and w
satisfy

f = w
2

5
tan θ
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1.5 D’Alembert’s principle

D’Alembert’s principle extends the principle of virtual work to dynamics.
It states that a problem of dynamic equilibrium can be transformed into
a problem of static equilibrium by adding the inertia forces - mẍi to the
externally applied forces Fi and constraints forces F ′

i.
Indeed, Newton’s law implies that, for every particle,

Ri = Fi + F ′

i − miẍi = 0

Following the same development as in the previous section, summing over
all the particles and taking into account that the virtual work of the
constraint forces is zero, one finds

N
∑

i=0

(Fi − miẍi).δxi = 0 (1.22)

The sum of the applied external forces and the inertia forces is sometimes
called the effective force. Thus, the virtual work of the effective forces
on the virtual displacements compatible with the constraints is zero. This
principle is most general; unfortunately, it is difficult to apply, because it
still refers to vector quantities expressed in an inertial frame and, unlike
the principle of virtual work, it cannot be translated directly into gener-
alized coordinates. This will be achieved with Hamilton’s principle in the
next section.

If the time does not appear explicitly in the constraints, the virtual
displacements are possible, and Equ.(1.22) is also applicable for the actual
displacements dxi = ẋidt

∑

i

Fi.dxi −
∑

i

miẍi.ẋidt = 0

If the external forces can be expressed as the gradient of a potential V
which does not depend explicitly on t,

∑

Fi.dxi = −dV (if V depends
explicitly on t, the total differential includes a partial derivative with
respect to t). Such a force field is called conservative. The second term in
the previous equation is the differential of the kinetic coenergy:

∑

i

miẍi.ẋidt =
d

dt

(

1

2

∑

i

mi ẋi.ẋi

)

dt = dT ∗

It follows that
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d(T ∗ + V ) = 0

and

T ∗ + V = Ct (1.23)

This is the law of conservation of total energy. Note that it is restricted
to systems where (i) the potential energy does not depend explicitly on t
and (ii) the kinematical constraints are independent of time.

1.6 Hamilton’s principle

D’Alembert’s principle is a complete formulation of the dynamic equilib-
rium; however, it uses the position coordinates of the various particles of
the system, which are in general not independent; it cannot be formu-
lated in generalized coordinates. On the contrary, Hamilton’s principle
expresses the dynamic equilibrium in the form of the stationarity of a
definite integral of a scalar energy function. Thus, Hamilton’s principle be-
comes independent of the coordinate system. Consider again Equ.(1.22);
the first contribution

δW =
∑

Fi.δxi

represents the virtual work of the applied external forces. The second
contribution to Equ.(1.22) can be transformed using the identity

ẍi.δxi =
d

dt
(ẋi.δxi) − ẋi.δẋi =

d

dt
(ẋi.δxi) − δ

1

2
(ẋi.ẋi)

where we have used the commutativity of δ and ( ˙ ). It follows that

N
∑

i=1

miẍi.δxi =
N

∑

i=1

mi
d

dt
(ẋi.δxi) − δT ∗

where T ∗ is the kinetic coenergy of the system. Using this equation, we
transform d’Alembert’s principle (1.22) into

δW + δT ∗ =
N

∑

i=0

mi
d

dt
(ẋi.δxi)

The left hand side consists of scalar work and energy functions. The right
hand side consists of a total time derivative which can be eliminated by
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integrating over some interval [t1, t2], assuming that the system configu-
ration is known at t1 and t2, so that

δxi(t1) = δxi(t2) = 0 (1.24)

Taking this into account, one gets

∫ t2

t1
(δW + δT ∗)dt =

N
∑

i=1

mi[ẋi.δxi]
t2
t1 = 0

If some of the external forces are conservative,

δW = −δV + δWnc (1.25)

where V is the potential and δWnc is the virtual work of the nonconser-
vative forces. Thus, Hamilton’s principle is expressed by the variational
indicator (V.I.):

V.I. =

∫ t2

t1
[δ(T ∗ − V ) + δWnc]dt = 0 (1.26)

or

V.I. =

∫ t2

t1
[δL + δWnc]dt = 0 (1.27)

where
L = T ∗ − V (1.28)

is the Lagrangian of the system. The statement of the dynamic equi-
librium goes as follows: The actual path is that which cancels the value
of the variational indicator (1.26) or (1.27) with respect to all arbitrary
variations of the path between two instants t1 and t2, compatible with the
kinematic constraints, and such that δxi(t1) = δxi(t2) = 0.

Again, we stress that δxi does not measure displacements on the true
path, but the separation between the true path and a perturbed one at a
given time (Fig.1.5).

Note that, unlike Equ.(1.23) which requires that the potential V does
not depend explicitly on time, the virtual expression (1.25) allows V to
depend on t, since the virtual variation is taken at constant time (δV =
∇V.δx, while dV = ∇V.dx + ∂V/∂t.dt).

Hamilton’s principle, that we derived here from d’Alembert’s principle
for a system of particles, is the most general statement of dynamic equi-
librium, and it is, in many respects, more general than Newton’s laws,
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t1

t2

îxi(t2) = 0

îxi(t1) = 0
îxi

xi(t)

True path

Perturbed path

Fig. 1.5. True and perturbed paths.

because it applies to continuous systems and more, as we will see shortly.
Some authors argue that, being a fundamental law of physics, it cannot be
derived, just accepted. Thus we could have proceeded the opposite way:
state Hamilton’s principle, and show that it implies Newton’s laws. It is a
matter of taste, but also of history: 150 years separate Newton’s Principia
(1687) from Hamilton’s principle (1835). From now on, we will consider
Hamilton’s principle as the fundamental law of dynamics. We stress that
when dealing with purely mechanical systems, the distinction between
the kinetic energy T and the kinetic coenergy T ∗ is not necessary; it is
motivated here by the subsequent extension to electromechanical systems.

òl

g

m

o

Fig. 1.6. Plane pendulum.

Consider the plane pendulum of Fig.1.6; taking the altitude of the
pivot O as reference, we find the Lagrangian

L = T ∗ − V =
1

2
m(lθ̇)2 + mgl cos θ

δL = ml2θ̇δθ̇ − mgl sin θδθ
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Hamilton’s principle states that the variational indicator (V.I).

V.I. =

∫ t2

t1
[ml2θ̇δθ̇ − mgl sin θδθ]dt = 0

for all virtual variations δθ such that δθ(t1) = δθ(t2) = 0. As always in
variational calculus, δθ̇ can be eliminated from the variational indicator

by integrating by part over t. Using θ̇δθ̇ =
d

dt
(θ̇δθ) − θ̈δθ one gets

V.I. = [ml2θ̇δθ]t2t1 −
∫ t2

t1
(ml2θ̈ + mgl sin θ)δθdt = 0

for all virtual variations δθ such that δθ(t1) = δθ(t2) = 0. Since the in-
tegral appearing in the second term must vanish for arbitrary δθ, we
conclude that

ml2θ̈ + mgl sin θ = 0

which is the differential equation for the oscillation of the pendulum.
The Lagrange’s equations give a much quicker way of solving this type
of problem, as we will see shortly; however, before this, we illustrate the
power of Hamilton’s principle by deriving the partial differential equation
of the lateral vibration of the Euler-Bernoulli beam.

îv(x; t) v(x; t)

L0

x

Fig. 1.7. Transverse vibration of a beam.

1.6.1 Lateral vibration of a beam

Consider the transverse vibration of the beam of Fig.1.7, subjected to a
transverse distributed load p(x, t). It is assumed that the principal axes
of the cross section are such that the vibration takes place in the plane;
v(x, t) denotes the transverse displacements; the virtual displacements
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δv(x, t) satisfy the geometric (kinematic) boundary conditions and are
such that

δv(x, t1) = δv(x, t2) = 0 (1.29)

(the configuration is fixed at the limit times t1 and t2).
The Euler-Bernoulli beam theory neglects the shear deformations and

assumes that the cross section remains orthogonal to the neutral axis;
this is equivalent to assuming that the uniaxial strain distribution S11 is
a linear function of the distance to the neutral axis, S11 = −zv

′′

, where
v
′′

is the curvature of the beam. Accordingly, the potential energy, which
in this case is the strain energy, reads

V (Sij) =
1

2

∫

V
E(S11)

2dV =
1

2

∫ L

0

∫

S
E(v

′′

)2z2dSdx

or

V =
1

2

∫ L

0
EI(v′′)2dx (1.30)

where v′′ is the curvature of the beam, E the Young’s modulus and I
the geometric moment of inertia of the cross section (EI is called the
bending stiffness). If one includes only the translational inertia, the kinetic
coenergy is

T ∗ =
1

2

∫ L

0
̺A(v̇)2dx (1.31)

where v̇ is the transverse velocity, ̺ is the density and A the cross section
area. The virtual work of the non-conservative forces is associated with
the distributed load:

δWnc =

∫ L

0
p δv dx (1.32)

From (1.30) and (1.31),

δV =

∫ L

0
EIv′′δv′′dx and δT ∗ =

∫ L

0
̺Av̇ δv̇ dx

As in the previous section, δv̇ can be eliminated by integrating by part
over t, and similarly, δv′′ can be eliminated by integrating twice by part
over x; one gets

δV =

∫ L

0
EIv′′δv′′dx = [EIv′′δv′]L0 −

∫ L

0
(EIv′′)′δv′dx

= [EIv′′δv′]L0 − [(EIv′′)′δv]L0 +

∫ L

0
(EIv′′)′′δv dx
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and similarly
∫ t2

t1
δT ∗dt =

∫ t2

t1
dt

∫ L

0
̺Av̇ δv̇ dx = [

∫ L

0
̺Av̇ δv dx]t2t1−

∫ t2

t1
dt

∫ L

0
̺Av̈ δv dx

The expression in the bracket vanishes because of (1.29). Substituting the
above expressions in Hamilton’s principle, one gets
∫ t2

t1
dt{−[EIv′′δv′]L0 + [(EIv′′)′δv]L0 +

∫ L

0
[−(EIv′′)′′− ̺Av̈ + p]δv dx} = 0

(1.33)
This variational indicator must vanish for all arbitrary variations δv com-
patible with the kinematic constraints and satisfying (1.29). This implies
that the dynamic equilibrium is governed by the following partial differ-
ential equation

(EIv′′)′′ + ̺Av̈ = p (1.34)

Besides, cancelling the terms within brackets, we find that the following
conditions must be fulfilled in x = 0 and x = L,

EIv′′.δv′ = 0 (1.35)

(EIv′′)′.δv = 0 (1.36)

The first equation expresses that, at both ends, one must have either
δv′ = 0, which is the case if the rotation is fixed, or EIv′′ = 0, which
means that the bending moment is equal to 0. Similarly, the second one
implies that at both ends, either δv = 0, which is the case if the displace-
ment is fixed, or (EIv′′)′ = 0, which means that the shear force is equal
to 0. δv = 0 and δv′ = 0 are kinematic (geometric) boundary conditions;
EIv′′ = 0 and (EIv′′)′ = 0 are sometimes called natural boundary condi-
tions, because they come naturally from the variational principle. A free
end allows arbitrary δv and δv′; this implies EIv′′ = 0 and (EIv′′)′ = 0.
A clamped end implies that δv = 0 and δv′ = 0. A pinned end implies that
δv = 0, but δv′ is arbitrary; it follows that EIv′′ = 0. Note that the kine-
matic and the natural boundary conditions are energetically conjugate:
displacement-shear force, rotation-bending moment.

The Euler-Bernoulli beam will be reexamined in chapter 5 when we
include a piezoelectric layer. More elaborate beam theories are available,
which account for shear deformations and the rotary inertia of the cross
section; they are based on different kinematic assumptions on the dis-
placement field, leading to new expressions for the strain energy V and
the kinetic coenergy T ∗; the subsequent application of Hamilton’s princi-
ple follows closely the discussion above.
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1.7 Lagrange’s equations

Hamilton’s principle relies on scalar work and energy quantities; it does
not refer to a particular coordinate system. The system configuration can
be expressed in generalized coordinates qi. If the generalized coordinates
are independent, the virtual change of configuration can be represented
by independent virtual variations of the generalized coordinates, δqi. This
allows us to transform the variational indicator (1.26) into a set of differ-
ential equations which are Lagrange’s equations.

First, consider the case where the system configuration is described by
a finite set of n independent generalized coordinates qi. All the material
points of the system follow

xi = xi(q1, ..., qn; t) (1.37)

We also allow an explicit dependency on time t, which is important for
analyzing gyroscopic systems such as rotating machinery. The velocity of
the material point i is given by

ẋi =
∑

j

∂xi

∂qj
q̇j +

∂xi

∂t
(1.38)

where the matrix of partial derivatives ∂xi/∂qj has the meaning of a
Jacobian. From Equ.(1.38), the kinetic coenergy can be written in the
form

T ∗ =
1

2

∑

i

miẋi.ẋi = T ∗

2 + T ∗

1 + T ∗

0 (1.39)

where T ∗

2 , T ∗

1 and T ∗

0 are respectively homogeneous functions of order
2,1 and 0 in the generalized velocities q̇i; the coefficients of T ∗

i depend
on the partial derivatives ∂xi/∂qj , which are themselves functions of the
generalized coordinates qi. Note that without explicit dependency on t,
the last term in (1.38) disappears and T ∗ = T ∗

2 (homogenous quadratic
function of q̇i). Being independent of q̇i, the term T ∗

0 appears as a poten-
tial; it is in general related to centrifugal forces, while the linear term T ∗

1

is responsible for the gyroscopic forces. The general form of the kinetic
coenergy is

T ∗ = T ∗(q1, ..., qn, q̇1, ..., q̇n; t) (1.40)

The potential energy V does not depend on the velocity; it can be assumed
to be of the general form
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V = V (q1, ..., qn; t) (1.41)

From these two equations, it can be assumed that the most general form
of the Lagrangian is

L = T ∗ − V = L(q1, ..., qn, q̇1, ..., q̇n; t) (1.42)

Let us now examine the virtual work of the non-conservative forces; ex-
pressing the virtual displacement δxi in terms of δqi, one finds

δWnc =
∑

i

Fi.δxi =
∑

i

∑

k

Fi
∂xi

∂qk
δqk =

∑

k

Qkδqk (1.43)

where

Qk =
∑

i

Fi
∂xi

∂qk
(1.44)

Qk is the generalized force associated with the generalized variable qk;
they are energetically conjugate (their product has the dimension of en-
ergy). Introducing Equ.(1.43) in Hamilton’s principle (1.26), one finds

V.I. = δI =

∫ t2

t1
[δL(q1, ..., qn, q̇1, ..., q̇n; t) +

∑

Qiδqi]dt

=

∫ t2

t1
[
∑

i

(
∂L

∂qi
δqi +

∂L

∂q̇i
δq̇i) +

∑

Qiδqi]dt

and, upon integrating by part to eliminate δq̇i, using

∂L

∂q̇i
δq̇i =

d

dt

(

∂L

∂q̇i
δqi

)

− d

dt

(

∂L

∂q̇i

)

δqi

one finds

δI =
∑

i

[
δL

δq̇i
δqi]

t2
t1 −

∫ t2

t1

∑

i

[
d

dt

(

∂L

∂q̇i

)

− ∂L

∂qi
− Qi]δqidt = 0 (1.45)

The first term vanishes because δqi(t1) = δqi(t2) = 0, and since the virtual
variations are arbitrary (qi are independent), one must have

d

dt
(
∂L

∂q̇i
) − ∂L

∂qi
= Qi i = 1, ...n (1.46)
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These are Lagrange’s equations, their number is equal to the number n
of independent coordinates. The generalized forces contain all the non-
conservative forces; they are obtained from the principle of virtual work
(1.43). Once the analytical expression of the Lagrangian in terms of the
generalized coordinates has been found, Equ.(1.46) allows us to write the
differential equations governing the motion in a straightforward way.

1.7.1 Vibration of a linear, non-gyroscopic, discrete system

The general form of the kinetic coenergy of a linear non-gyroscopic, dis-
crete mechanical system is

T ∗ =
1

2
ẋT Mẋ (1.47)

where x is a set of generalized coordinates, and M is the mass matrix. M
is symmetric and semi-positive definite, which translates the fact that any
velocity distribution must lead to a non-negative value of the kinetic co-
energy; M is strictly positive definite if all the coordinates have an inertia
associated to them, so that it is impossible to find a velocity distribution
such that T ∗ = 0. Similarly, the general form of the strain energy is

V =
1

2
xT Kx (1.48)

where K is the stiffness matrix, also symmetric and semi-positive definite.
A rigid body mode is a set of generalized coordinates with no strain energy
in the system. K is strictly positive definite if the system does not have
rigid body modes.

The Lagrangian of the system reads,

L = T ∗ − V =
1

2
ẋT Mẋ − 1

2
xT Kx (1.49)

If, in addition, one assumes that the virtual work of the non-conservative
external forces can be written δWnc = fT δx, applying the Lagrange equa-
tions (1.46), one gets the equation of motion

Mẍ + Kx = f (1.50)

1.7.2 Dissipation function

In the literature, it is customary to define the dissipation function D such
that the dissipative forces are given by
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Qi = −∂D

∂q̇i
(1.51)

If this definition is used, Equ.(1.46) becomes

d

dt

(

∂L

∂q̇i

)

+
∂D

∂q̇i
− ∂L

∂qi
= Qi (1.52)

where Qi includes all the non-conservative forces which are not already
included in the dissipation function. Viscous damping can be represented
by a quadratic dissipation function. If one assumes

D =
1

2
ẋT Cẋ (1.53)

in previous section, one gets the equation of motion

Mẍ + Cẋ + Kx = f (1.54)

where C is the viscous damping matrix, also symmetric and semi-positive
definite. We now examine a few examples of mechanical systems, to illus-
trate some of the features of the method.
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Fig. 1.8. Pendulum with a sliding mass attached with a spring. (a) and (b): Point
mass. (c) Disk.

1.7.3 Example 1: Pendulum with a sliding mass

Consider the pendulum of Fig.1.8(a) where a mass m slides without fric-
tion on a massless rod in a constant gravity field g; a linear spring of
stiffness k connects the mass to the pivot O of the pendulum. This sys-
tem has two d.o.f. and we select q1 (position of the mass along the bar) and
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q2 (angle of the pendulum) as the generalized coordinates. It is assumed
that, when q1 = 0, the spring force vanishes.

The kinetic coenergy is associated with the point mass m; its velocity
can be expressed in two orthogonal directions as in Fig.1.8(b); it follows
that

T ∗ =
1

2
m(q̇2

1 + q̇2
2q

2
1)

The potential energy reads

V = −mg q1 cos q2 +
1

2
k q2

1

The first contribution comes from gravity (the reference altitude has been
taken at the pivot O) and the second one is the strain energy in the spring
(assumed unstretched when q1 = 0). The Lagrange equations are

d

dt
(mq2

1 q̇2) + mg q1 sin q2 = 0

m q̈1 − mq1q̇
2
2 − mg cos q2 + kq1 = 0

If one assumes that the mass m is no longer a point mass, but a disk
of moment of inertia I sliding along the massless rod [Fig.1.8(c)], it con-
tributes an extra term to the kinetic coenergy, representing the kinetic
coenergy of rotation of the disk (the kinetic coenergy of a rigid body is
the sum of the kinetic coenergy of translation of the total mass lumped at
the center of mass and the kinetic coenergy of rotation around the center
of mass):

T ∗ =
1

2
m(q̇2

1 + q̇2
2q

2
1) +

1

2
Iq̇2

2

The disk has the same potential energy as the point mass. Furthermore,
if the rod is uniform with a total mass M and a length l, its moment of
inertia with respect to the pivot is

Io =

∫ l

0
̺x2dx = ̺l3/3 = Ml2/3

(M = ̺l); the additional contribution to the kinetic coenergy is Ioq̇
2
2/2.

Note that, this includes the translational energy as well as the rotational
energy of the rod, because the moment of inertia I0 refers to the fixed
point at the pivot. The bar has also an additional contribution to the
potential energy: −mg l cos q2/2 (the center of mass is at mid length).
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Fig. 1.9. Rotating pendulum.

1.7.4 Example 2: Rotating pendulum

Consider the rotating pendulum of Figure 1.9(a). The point mass m is
connected by a massless rod to a pivot which rotates about a vertical axis
at constant velocity Ω; the system is in a vertical gravity field g. Because
Ω is constant, the system has a single d.o.f., with coordinate θ. In order
to write the kinetic coenergy, it is convenient to project the velocity of
the point mass in the orthogonal frame shown in Fig.1.9(b). One axis is
tangent to the circular trajectory when the pendulum rotates about the
vertical axis with θ fixed, while the other one is tangent to the trajectory
of the mass in the plane of the pendulum when it does not rotate about
the vertical axis; the projected components are respectively lΩ sin θ and
lθ̇. Being orthogonal, it follows that

T ∗ =
m

2

[

(lθ̇)2 + (lΩ sin θ)2
]

Note that the first term is quadratic in θ̇ [T2
∗ in (1.39)], while the second

term is independent of θ̇ and appears as a potential of centrifugal forces
[T0

∗ in (1.39)]. Taking the reference altitude at the pivot, the gravity
potential is V = −gml cos θ and

L = T ∗ − V =
m

2

[

(lθ̇)2 + (lΩ sin θ)2
]

+ gml cos θ

The corresponding Lagrange equation reads
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ml2θ̈ − ml2Ω2 sin θ cos θ + mgl sin θ = 0

For small oscillations near θ = 0, the equation can be simplified using the
approximations sin θ ≃ θ and cos θ = 1; this leads to

θ̈ +
g

l
θ − Ω2θ = 0

Introducing ω2
0 =

g

l
, the pendulum frequency

θ̈ +
(

ω2
0 − Ω2

)

θ = 0

One sees that the centrifugal force introduces a negative stiffness. Figure
1.9(c) shows the evolution of the frequency of the small oscillations of the
pendulum with Ω; the system is unstable beyond Ω = ω0.

1.7.5 Example 3: Rotating spring mass system

A spring mass system is rotating in the horizontal plane at a constant
velocity Ω, Fig.1.10(a). The system has a single d.o.f., described by the
coordinate u measuring the extension of the spring. The absolute velocity
of the point mass m can be conveniently projected in the moving frame
(x, y); the components are (u̇, uΩ). It follows that

T ∗ =
1

2
m

[

u̇2 + (uΩ)2
]

Once again, there is a quadratic contribution, T2
∗, and a contribution in-

dependent of the generalized velocity, T0
∗ (potential of centrifugal force).

It is not necessary to include the kinetic coenergy of the rotating mecha-
nism, because it is constant, and will disappear when writing the Lagrange
equation. Since the system is not subjected to gravity, the potential en-
ergy is associated with the extension of the spring; assuming that the
spring force is equal to zero when u = 0,

V =
1

2
ku2

The Lagrangian reads

L = T ∗ − V =
1

2
mu̇2 − 1

2
(k − mΩ2)u2
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leading to the Lagrange equation

mü + (k − mΩ2)u = 0

or
ü + (ω2

n − Ω2)u = 0

after introducing ω2
n = k/m. This equation is identical to the linearized

form of the previous example; the system becomes unstable for Ω > ωn.

u

k
m

x
y

Ò Ò

y

x

c1
m

k1

k2

(a) (b)

Fig. 1.10. Rotating spring-mass systems (a) Single axis (b) Two-axis.

1.7.6 Example 4: Gyroscopic effects

Next, consider the system of Fig.1.10(b), where the constraint along y = 0
has been removed and replaced by another spring orthogonal to the pre-
vious one. This system has 2 d.o.f.; it is fully described by the generalized
coordinates x and y, the displacements along the moving axes rotating
at constant speed Ω. We assume small displacements and, in Fig.1.10(b),
the stiffness k1 and k2 represent the global stiffness along x and y, respec-
tively. We assume viscous damping along x, with damping coefficient c1.
The absolute velocity in the rotating frame is (ẋ − Ωy, ẏ + Ωx), leading
to the kinetic coenergy of the point mass

T ∗ =
1

2
m

[

(ẋ − Ωy)2 + (ẏ + Ωx)2
]

As in the previous example, we disregard the constant term associated
with the rotation at constant speed of the supporting mechanism. Upon
expanding T ∗, one gets
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T ∗ = T ∗

2 + T ∗

1 + T ∗

0

with

T ∗

2 =
1

2
m(ẋ2 + ẏ2)

T ∗

1 = mΩ(xẏ − ẋy)

T ∗

0 =
1

2
mΩ2(x2 + y2)

Note that a contribution T ∗

1 of the first order in the generalized velocities
appears for the first time; it will be responsible for gyroscopic forces [the
system of Fig.1.10(b) is actually the simplest, where gyroscopic forces
can be illustrated]. The potential V is associated with the extension of
the springs; with the assumption of small displacements,

V =
1

2
k1x

2 +
1

2
k2y

2

The damping force can be handled either by the virtual work,
δWnc = −c1ẋδx or with dissipation function (1.53). In this case,

D =
1

2
c1ẋ

2

The Lagrange equations read

mẍ − 2mΩẏ + c1ẋ + k1x − mΩ2x = 0

mÿ + 2mΩẋ + k2x − mΩ2y = 0

or, in matrix form, with q = (x, y)T ,

Mq̈ + (C + G)q̇ + (K − Ω2M)q = 0 (1.55)

where

M =

[

m 0
0 m

]

C =

[

c1 0
0 0

]

K =

[

k1 0
0 k2

]

are respectively the mass, damping and stiffness matrices, and

G =

[

0 −2mΩ
2mΩ 0

]

(1.56)

is the anti-symmetric matrix of gyroscopic forces, which couples the mo-
tion in the two directions; its magnitude is proportional to the inertia (m)
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and to the rotating speed Ω. The contribution −Ω2M is, once again, the
centrifugal force. Note that, with the previous definitions of the matrices
M, G, K and C, the various energy terms appearing in the Lagrangian
can be written

T ∗

2 =
1

2
q̇T Mq̇

T ∗

1 =
1

2
q̇T Gq

T ∗

0 =
Ω2

2
qT Mq (1.57)

V =
1

2
qT Kq

D =
1

2
q̇T Cq̇

Note that the modified potential

V + = V − T ∗

0 =
1

2
qT

(

K − Ω2M
)

q (1.58)

is no longer positive definite if Ω2 > k1/m or k2/m.
Let us examine this system a little further, in the particular case where

k1 = k2 = k and c1 = 0. If ω2
n = k/m, the equations of motion become

ẍ − 2Ωẏ +
(

ω2
n − Ω2

)

x = 0

ÿ + 2Ωẋ +
(

ω2
n − Ω2

)

y = 0

To analyze the stability of the system, let us assume a solution of the
form x = Xept, y = Y ept; the corresponding eigenvalue problem is

[

p2 + ω2
n − Ω2 −2Ωp

2Ωp p2 + ω2
n − Ω2

] {

X
Y

}

= 0

Nontrivial solutions of this homogenous system of equations require that
the determinant be zero, leading to the characteristic equation

p4 + 2p2(ω2
n + Ω2) + (ω2

n − Ω2)2 = 0

The roots of this equation are
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p2
1 = −(ωn − Ω)2, p2

2 = −(ωn + Ω)2

Thus, the eigenvalues are all imaginary, for all values of Ω. Figure 1.11
shows the evolution of the natural frequencies with Ω (this plot is often
called Campbell diagram). We note that, in contrast with the previous
example, the system does not become unstable beyond Ω = ωn; it is sta-
bilized by the gyroscopic forces.

!

Ò

!n

!n

Fig. 1.11. Campbell diagram of the system of Fig.1.10(b), in the particular case k1 =
k2 and c1 = 0.

1.8 Lagrange’s equations with constraints

Consider the case where the n generalized coordinates are not indepen-
dent. In this case, the virtual changes of configuration δqk must satisfy a
set of m constraint equations of the form of Equ.(1.18):

∑

k

alkδqk = 0 l = 1, ...m (1.59)

The number of degrees of freedom of the system is n − m. In Hamilton’s
principle (1.45), the variations δqi are no longer arbitrary, because of
Equ.(1.59), and the step leading from Equ.(1.45) to (1.46) is impossible.
This difficulty can be solved by using Lagrange multipliers. The technique
consists of adding to the variational indicator a linear combination of the
constraint equations

m
∑

l=1

λl

(

n
∑

k=1

alkδqk

)

=
n

∑

k=1

δqk

(

m
∑

l=1

λlalk

)

= 0 (1.60)
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where the Lagrange multipliers λl are unknown at this stage. Equation
(1.60) is true for any set of λl. Adding to Equ.(1.45), one gets

∫ t2

t1

n
∑

k=1

[
d

dt
(
∂L

∂q̇k
) − ∂L

∂qk
− Qk −

m
∑

l=1

λlalk]δqkdt = 0

In this equation, n − m variations δqk can be taken arbitrarily (the in-
dependent variables) and the corresponding expressions between brackets
must vanish; the m terms left in the sum do not have independent varia-
tions δqk, but we are free to select the m Lagrange multipliers λl to cancel
them too. Overall, one gets

d

dt
(
∂L

∂q̇k
) − ∂L

∂qk
= Qk +

m
∑

l=1

λlalk k = 1, ..., n

The second term in the right hand side represents the generalized con-
straint forces, which are linear functions of the Lagrange multipliers. This
set of n equations has n + m unknown (the generalized coordinates qk and
the Lagrange multipliers λl). Combining with the m constraints equations,
we obtain a set of n + m equations. For non-holonomic constraints of the
form (1.15), the equations read

∑

k

alkdqk + al0dt l = 1, ..., m (1.61)

d

dt
(
∂L

∂q̇k
) − ∂L

∂qk
= Qk +

m
∑

l=1

λlalk k = 1, ..., n (1.62)

with the unknown qk, k = 1, ..., n and λl, l = 1, ..., m. If the system is holo-
nomic, with constraints of the form (1.13), the equations become

gl(q1, q2, ...qn; t) = 0 l = 1, ..., m (1.63)

d

dt
(
∂L

∂q̇k
) − ∂L

∂qk
= Qk +

m
∑

l=1

λl
∂gl

∂qk
k = 1, ..., n (1.64)

This is a system of algebro-differential equations. This formulation is fre-
quently met in multi-body dynamics.
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1.9 Conservation laws

1.9.1 Jacobi integral

If the generalized coordinates are independent, the Lagrange equations
constitute a set of n differential equations of the second order; their so-
lution requires 2n initial conditions describing the configuration and the
velocity at t = 0. In special circumstances, the system admits first inte-
grals of the motion, which contain derivatives of the variables of one order
lower than the order of the differential equations. The most celebrated of
these first integrals is that of conservation of energy (1.23); it is a partic-
ular case of a more general relationship known as a Jacobi integral.

If the system is conservative (Qk = 0) and if the Lagrangian does not
depend explicitly on time,

∂L

∂t
= 0 (1.65)

The total derivative of L with respect to time reads

dL

dt
=

n
∑

k=1

∂L

∂qk
q̇k +

n
∑

k=1

∂L

∂q̇k
q̈k

On the other hand, from the Lagrange’s equations (taking into account
that Qk = 0)

∂L

∂qk
=

d

dt

(

∂L

∂q̇k

)

Substituting into the previous equation, one gets

dL

dt
=

n
∑

k=1

[
d

dt

(

∂L

∂q̇k

)

q̇k +
∂L

∂q̇k
q̈k] =

n
∑

k=1

d

dt
[

(

∂L

∂q̇k

)

q̇k]

It follows that

d

dt
[

n
∑

k=1

(

∂L

∂q̇k

)

q̇k − L] = 0 (1.66)

or

n
∑

k=1

(

∂L

∂q̇k

)

q̇k − L = h = Ct (1.67)
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Recall that the Lagrangian reads

L = T ∗ − V = T ∗

2 + T ∗

1 + T ∗

0 − V (1.68)

where T ∗

2 is a homogenous quadratic function of q̇k, T ∗

1 is homogenous
linear in q̇k, and T ∗

0 and V do not depend on q̇k.
According to Euler’s theorem on homogenous functions, if T ∗

n is an
homogeneous function of order n in some variables qi, it satisfies the
identity

∑

qi
∂T ∗

n

∂qi
= nT ∗

n (1.69)

It follows from this theorem that

∑

(

∂L

∂q̇k

)

q̇k = 2T ∗

2 + T ∗

1

and (1.67) can be rewritten

h = T ∗

2 − T ∗

0 + V = Ct (1.70)

This result is known as a Jacobi integral, or also a Painlevé integral. If
the kinetic coenergy is a homogeneous quadratic function of the velocity,
T ∗ = T ∗

2 and T ∗

0 = 0; Equ.(1.70) becomes

T ∗ + V = Ct (1.71)

which is the integral of conservation of energy. From the above discussion,
it follows that it applies to conservative systems whose Lagrangian does
not depend explicitly on time [Equ.(1.65)] and whose kinetic coenergy is a
homogeneous quadratic function of the generalized velocities (T ∗ = T ∗

2 ).
We have met this equation earlier [Equ.(1.23)], and it is interesting to
relate the above conditions to the earlier ones: Indeed, (1.65) implies that
the potential does not depend explicitly on t, and T ∗ = T ∗

2 implies that
the kinematical constraints do not depend explicitly on t [see (1.38) and
(1.39)].

1.9.2 Ignorable coordinate

Another first integral can be obtained if a generalized coordinate (say qs)
does not appear explicitly in the Lagrangian of a conservative system (the
Lagrangian contains q̇s but not qs, so that ∂L/∂qs = 0). Such a coordinate
is called ignorable. From Lagrange’s equation (1.46),
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d

dt

(

∂L

∂q̇s

)

=
∂L

∂qs
= 0

It follows that

ps =
∂L

∂q̇s
= Ct

and, since V does not depend explicitly on the velocities, this can be
rewritten

ps =
∂L

∂q̇s
=

∂T ∗

∂q̇s
= Ct (1.72)

ps is the generalized momentum conjugate to qs [by analogy with (1.10)].
Thus, the generalized momentum associated with an ignorable coordinate
is conserved.

Note that the existence of the first integral (1.72) depends very much
on the choice of coordinates, and that it may remain hidden if inappropri-
ate coordinates are used. The ignorable coordinates are also called cyclic,
because they often happen to be rotational coordinates.

O
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y
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þ
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mg

lò

lþ sin ò

Fig. 1.12. The spherical pendulum.
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1.9.3 Example: The spherical pendulum

To illustrate the previous paragraph, consider the spherical pendulum of
Fig.1.12. Its configuration is entirely characterized by the two generalized
coordinates θ and φ. the kinetic coenergy and the potential energy are
respectively

T ∗ =
1

2
m[(lθ̇)2 + (φ̇l sin θ)2]

V = −mgl cos θ

and the Lagrangian reads

L = T ∗ − V =
1

2
ml2[θ̇2 + (φ̇ sin θ)2] + mgl cos θ

The Lagrangian does not depend explicitly on t, nor on the coordinate
φ. The system is therefore eligible for the two first integrals discussed
above. Since the kinetic energy is homogeneous quadratic in θ̇ and φ̇, the
conservation of energy (1.71) applies.

As for the ignorable coordinate φ, the conjugate generalized momen-
tum is

pφ = ∂T ∗/∂φ̇ = ml2φ̇ sin2 θ = Ct

This equation simply states the conservation of the angular momentum
about the vertical axis Oz (indeed, the moments about Oz of the external
forces from the cable of the pendulum and the gravity vanish).

1.10 More on continuous systems

In this section, additional aspects of continuous systems are discussed.
The sections on the Green tensor and the geometric stiffness are more
specialized and may be skipped without jeopardizing the understanding
of subsequent chapters.

1.10.1 Rayleigh-Ritz method

The Rayleigh-Ritz method, also called Assumed Modes method, is an ap-
proximation which allows us to transform a partial differential equation
into a set of ordinary differential equations; in other words, it allows us
to represent a continuous system by a discrete approximation, which is
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expected to approximate the low frequency behavior of the continuous
system. To achieve this, it is assumed that the displacement field (as-
sumed one-dimensional here for simplicity, but the approximation applies
in three dimensions as well) can be written

v(x, t) =
n

∑

i=1

ψi(x) qi(t) (1.73)

where ψi(x) are a set of assumed modes, which are continuous and satisfy
the geometric boundary conditions (but not the natural boundary con-
ditions). The n functions of time qi(t) are the generalized coordinates of
the approximate discrete system. If the set of assumed modes is complete
(such as Fourier series, or power series), the approximation converges to-
wards the exact solution as their number n increases.

To illustrate this method, let us return to the lateral vibration of the
Euler-Bernoulli beam. If the transverse displacement is approximated by
(1.73), the strain energy (1.30) can be readily transformed into

V =
1

2

∫ L

0
EI[

∑

i

qiψ
′′

i (x)][
∑

j

qjψ
′′

j (x)]dx

or

V =
1

2
qT Kq (1.74)

where K is the stiffness matrix, defined by

Kij =
1

2

∫ L

0
EIψ

′′

i (x)ψ
′′

j (x)dx (1.75)

Similarly, the kinetic coenergy is approximated by

T ∗ =
1

2

∫ L

0
̺A[

∑

i

q̇iψi(x)][
∑

j

q̇jψj(x)]dx

or

T ∗ =
1

2
q̇T Mq̇ (1.76)

where the mass matrix is defined as

Mij =
1

2

∫ L

0
̺Aψi(x)ψj(x)dx (1.77)

The reader familiar with the finite element method will recognize the form
of the mass and stiffness matrices, except that the shape functions ψi(x)
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are defined over the entire structure and satisfy the geometric boundary
conditions. K and M are symmetric, so that V and T ∗ exactly fit the forms
discussed in section 1.7.1, leading to the differential equation (1.50). Note
also that, if the trial functions ψi(x) are the vibration modes φi(x) of
the system, K and M as defined by (1.75) and (1.77) are both diagonal,
because of the orthogonality of the mode shapes, and a set of decoupled
equations is obtained.

1.10.2 General continuous system

Anticipating the analysis of piezoelectric structures of chapter 4, we use
the notation Sij for the strain tensor and Tij for the stress tensor; these
are the standard notations for piezoelectric structures. With these nota

tions, the constitutive equations of a linear elastic material are

Tij = cijklSkl (1.78)

where cijkl is the tensor of elastic constants. The strain energy density
reads

U(Sij) =

∫ Sij

0
TijdSij (1.79)

from which the constitutive equation may be rewritten

Tij =
∂U

∂Sij
(1.80)

For a linear elastic material

U(Sij) =
1

2
cijklSijSkl (1.81)

1.10.3 Green strain tensor

For many problems in mechanical engineering (e.g. the beam theory of
section 1.6.1), it is sufficient to consider the infinitesimal definition of
strain of linear elasticity. However, problems involving large displacements
and prestresses cannot be handled in this way and require a strain mea-
sure invariant with respect to the global rotation of the system. In other
words, a rigid body motion should produce Sij = 0. Such a representa-
tion is supplied by the Green strain tensor, which is defined as follows:
Consider a continuous body and let AB be a segment connecting two

-
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points before deformation, and A′B′ be the same segment after deforma-
tion; the coordinates are respectively: A : xi, B : xi + dxi, A′ : xi + ui,
B′ : xi +ui +d(xi +ui). If dl0 is the initial length of AB and dl the length
of A′B′, it is readily established that

dl2 − dl20 = (
∂ui

∂xj
+

∂uj

∂xi
+

∂um

∂xi

∂um

∂xj
)dxidxj (1.82)

The Green strain tensor is defined as

Sij =
1

2
(
∂ui

∂xj
+

∂uj

∂xi
+

∂um

∂xi

∂um

∂xj
) (1.83)

It is symmetric, and its linear part is the classical strain measure in linear
elasticity; there is an additional quadratic part which accounts for large
rotations. Comparing the foregoing equations,

dl2 − dl20 = 2Sijdxidxj (1.84)

which shows that if Sij = 0, the length of the segment is indeed un-
changed, even for large ui. The Green strain tensor accounts for large
rotations; it can be partitioned according to

Sij = S
(1)
ij + S

(2)
ij (1.85)

where S
(1)
ij is linear in the displacements, and S

(2)
ij is quadratic.

1.10.4 Geometric strain energy due to prestress

The lateral stiffness of strings and cables is known to depend on their
axial tension force. Similarly, long rods subjected to large axial forces
have a modified lateral stiffness; compressive forces reduce the natural
frequency while traction forces increase it. When the axial compressive
load exceeds some threshold, the rod buckles, and the buckling load is
that which reduces the natural frequency to 0. The geometric stiffness is
important for structures subjected to large dead loads which contribute
significantly to the strain energy of the system.

Consider a continuous system in a prestressed state (T 0
ij , S

0
ij) indepen-

dent of time, and then subjected to a dynamic motion (T ∗

ij , S
∗

ij). The total
stress and strain state is (Fig.1.13)

Sij = S0
ij + S∗

ij
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Fig. 1.13. Continuous system in a prestressed state.

Tij = T 0
ij + T ∗

ij (1.86)

It is impossible to account for the strain energy associated with the pre-
stress if the linear strain tensor is used. If the Green tensor is used,

S∗

ij = S∗

ij
(1) + S∗

ij
(2) (1.87)

it can be shown (Geradin & Rixen, 1994) that the strain energy can be
written

V = V ∗ + Vg (1.88)

where

V ∗ =
1

2

∫

Ω∗

cijklS
∗

ij
(1)S∗

kl
(1)dΩ (1.89)

is the additional strain energy due to the linear part of the deformation
beyond the prestress (it is the unique term if there is no prestress), and

Vg =

∫

Ω∗

T 0
ijS

∗

ij
(2)dΩ (1.90)

is the geometric strain energy due to prestress involving the prestressed
state T 0

ij and the quadratic part of the strain tensor. Unlike V ∗ which is
always positive, Vg may be positive or negative, depending on the sign of
the prestress. If Vg is positive, it tends to rigidify the system; it softens it
if it is negative, as illustrated below. For a discrete system, Vg takes the
general form

Vg =
1

2
xT Kgx (1.91)

where Kg is the geometric stiffness matrix, no longer positive definite since
Vg may be negative. The geometric stiffness is a significant contributor
to the total stiffness of a rotating helicopter blade; the lowering of the
natural frequencies of civil engineering structures due to the dead loads
is often referred to as the

”

P-Delta” effect.
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1.10.5 Lateral vibration of a beam with axial loads

w

x
P PN0(x)

Fig. 1.14. Euler-Bernoulli beam with axial prestress.

Consider again the in-plane vibration of a beam, but subjected to an
axial load N0(x) (positive in traction). The displacement field is

u = u0(x) − z
∂w

∂x

v = 0

w = w(x)

The axial preload at x is

N0(x) = AES0(x) = AE
∂u0

∂x
(1.92)

The Green tensor is in this case

S11 = S0 − z
∂2w

∂x2
+

1

2
[(

∂u

∂x
)2 + (

∂w

∂x
)2] (1.93)

and, assuming large rotations but small deformations,

∂u

∂x
≪ ∂w

∂x

and (∂u/∂x)2 can be neglected. It follows that the linear part of the Green
tensor is

S∗

ij
(1) = −zw

′′

(1.94)

(as in section 1.6.1), and the quadratic part

S∗

ij
(2) =

1

2
(w

′

)2 (1.95)

Accordingly, the additional strain energy due to the linear part

V ∗ =
1

2

∫ L

0
EI(w′′)2dx (1.96)
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is identical to (1.30), and the geometric strain energy due to prestress is

Vg =

∫

V
T0

1

2
(w

′

)2dV =
1

2

∫ L

0
N0(x)(w′)2dx (1.97)

where the axial preload N0(x) is positive in traction.

1.10.6 Example: Simply supported beam in compression

Consider a simply supported beam subjected to a constant axial compres-
sion load P . One can estimate the first natural frequency of the system
with the Rayleigh-Ritz method, using a single mode approximation:

w = q sin
πx

L
(1.98)

With this assumption, the Lagrangian reads

L = T ∗ − (V ∗ + Vg) =
̺AL

4
q̇2 − [

π4EI

4L3
− π2P

4L
]q2 (1.99)

Note that Vg contributes negatively to the potential energy because the
load P is compressive. The potential energy can be rearranged

V ∗ + Vg = q2.
π4EI

4L3
[1 − PL2

π2EI
] = q2.

π4EI

4L3
[1 − P

Pcr
] (1.100)

where Pcr = π2EI/L2 is the well known Euler’s critical buckling load.
The Lagrangian (1.99) is that of a single d.o.f. oscillator; the correspond-
ing natural frequency is

ω2
1 =

π4EI

̺AL4
.[1 − P

Pcr
] (1.101)

The first term is the exact value for a simply supported beam without
prestress, and the second term is the correction due to the axial loading.
One sees that a compressive load reduces ω1 and, when P reaches Pcr,
ω1 = 0; conversely, a traction load tends to increase ω1. The fact that the
exact value of the natural frequency has been obtained with an approxi-
mation technique is due to the fact that the assumed mode (1.98) is the
exact mode shape of the problem. Any other assumption (satisfying the
geometric boundary conditions) would have led to a larger value of the
ω1, because the Rayleigh-Ritz method tends to overestimate the natural
frequencies.
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2

Dynamics of electrical networks

2.1 Introduction

Electrical networks are constituted of passive elements such as resistors,
capacitors and inductors, and active ones such as voltage and current
sources. The interconnection constraints on electrical networks are repre-
sented by Kirchhoff’s rules:

Kirchhoff’s current rule (KCR) stipulates that no electrical charge can
accumulate at a node in the network : the algebraic sum of the currents
entering any node must be zero.

Kirchhoff’s voltage rule (KVR) translates the fact that the voltage
between any two points in a network is independent of the path through
the network : the algebraic sum of the voltage drops around any closed
loop in a network must be zero.

This chapter presents the variational approach for analyzing electrical
networks; this indirect approach can be used as an alternative to the direct
approach based on Kirchhoff’s rules, but more importantly, it can be
combined with the variational approach to mechanical systems to analyze
the dynamics of electromechanical systems. The following discussion is
within the framework of quasi-static electromagnetic field theory, which
assumes that the time variation of the electromagnetic field is slow enough
to neglect the interaction between the electric field and the magnetic field.
This implies that the size of the device, l, is small in comparison to the
wavelength (l/λ ≪ 1).

41
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Fig. 2.1. Capacitor (a) network schematic (b) constitutive relation.

2.2 Constitutive equations for circuit elements

2.2.1 The Capacitor

A capacitor is formed by two conducting surfaces separated by a dielectric
material (Fig.2.1). When charged, a electric charge of q Coulomb is added
to one surface, and taken away from the other surface. The current flowing
through the capacitor is the rate of change of the charge in the capacitor:

i =
dq

dt
(2.1)

In the process of charging a capacitor, a potential (voltage) difference e
is established between the conducting surfaces; the relationship between
e and q can be measured statically; it is the constitutive relation of the
capacitor, e(q) (Fig.2.1.b).

The electrical energy We(q) stored in a capacitor is the work done in
charging the capacitor from no charge to q. Since the power input is P =
ei (Fig 2.1.a),

We(q) =

∫ t

0
ei dt =

∫ q

0
e dq (2.2)

This integral is the area below the curve in Fig.2.1.b. It follows that

e =
dWe

dq
(2.3)

Usual capacitors are nearly linear, and their constitutive equations can
be written
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q = Ce (2.4)

Introducing into (2.2), one gets

We(q) =
q2

2C
(2.5)

As for the kinetic energy in section 1.2, a complementary state function
can be defined by the Legendre transformation

W ∗

e (e) = eq − We(q) (2.6)

W ∗

e (e) is called electrical coenergy function of the capacitor; it represents
the area above the curve in Fig.2.1.b. The total differential of the electrical
coenergy is

dW ∗

e = q de + e dq − ∂We

∂q
dq = q de

where (2.3) has been used. It follows that

q =
dW ∗

e

de
(2.7)

and

W ∗

e (e) =

∫ e

0
q de (2.8)

For a linear capacitor with the constitutive equation (2.4),

W ∗

e (e) =
1

2
Ce2 (2.9)

2.2.2 The Inductor

When a current flows in a conductor, a magnetic field is produced around
the conductor, the strength of the field is proportional to the current. Con-
versely, when a conductor encloses a region containing a magnetic field,
a voltage is induced in the conductor when the magnetic field changes.
These induction effects are present in all conductors, but they become
very important if the conductor consists of closely packed coils with many
turns. In air, the magnetic behavior of a coil is linear (the flux linkage λ
is proportional to the current i), but a ferromagnetic core is often added
to the coil to enhance the magnetic flux density by several orders of mag-
nitude; the behavior of such coils is nonlinear and often hysteretic.

Faraday’s law states that the voltage developed across an inductor is
equal to the rate of change of flux linkage λ
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Fig. 2.2. Inductor (a) network schematic (b) constitutive relation.

e =
dλ

dt
(2.10)

The unit of flux linkage is the Weber or volt-second. In an ideal inductor,
the flux linkage λ depends only on the instantaneous current; a constant
current produces a constant λ, so that e = 0. Thus, for a constant current,
the ideal inductor behaves as a perfect conductor (short-circuit). If the
inductor is linear,

λ = Li (2.11)

where L is called inductance; its unit is the Henry or Weber per Ampere.
The magnetic energy Wm(λ) stored in an ideal inductor is the work done
on the inductor when its magnetic state is changed from no flux linkage to
a flux linkage λ. This work is evaluated by integrating the power delivered
to the circuit:

Wm(λ) =

∫ t

0
ei dt =

∫ λ

0
i dλ (2.12)

where (2.10) has been used; it represents the area below the curve of Fig
2.2.b. It follows that

i =
dWm

dλ
(2.13)

If the coil exhibits a linear behavior as in (2.11),

Wm(λ) =
λ2

2L
(2.14)

A magnetic coenergy function W ∗

m is defined by the Legendre transfor-
mation

.
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W ∗

m(i) = λi − Wm(λ) (2.15)

The total differential of the magnetic coenergy is

dW ∗ = λ di + i dλ − dWm

dλ
dλ = λ di

using (2.13). It follows that

λ =
dW ∗

m(i)

di
(2.16)

and

W ∗

m(i) =

∫ i

0
λ di (2.17)

It represents the area above the curve of Fig.2.2.b. For a linear inductor
(2.11),

W ∗

m(i) =
1

2
Li2 (2.18)

2.2.3 Voltage and current sources

is
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(a)
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RIo

(b) (c)

Fig. 2.3. (a) Real source and its voltage-current characteristic. (b) Ideal voltage source
model. (c) Ideal current source model.
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An ideal voltage source produces a time history of voltage independent
of the current flowing through it. An ideal current source produces a
prescribed time history of current independent of the voltage across its
terminals. A real source behaves as represented in Fig.2.3.a; it has a linear
characteristic, between the maximum voltage E0 when the terminals are
open, and the maximum current I0 when the terminals are short circuited.

es = E0 −
E0

I0
is

A real source can be modelled by ideal sources combined with resistors; in
Fig 2.3.b, an ideal voltage source is connected in series with a resistance
R, leading to the characteristic

es = E0 − Ris

Alternatively, combining a current source I0 in parallel with a resistance
R, one gets the characteristics

es = RI0 − Ris

Thanks to modern power electronics, it is possible to build voltage am-
plifiers which behave nearly as a perfect voltage source in a given fre-
quency range, and current amplifiers which behave nearly as perfect
current sources in a given frequency range.

2.3 Kirchhoff’s laws

Electrical networks are constructed by interconnecting passive elements
and sources. The interconnections between the elements produce con-
straints between the variables describing the individual elements; these
interconnection laws are known as Kirchhoff’s laws.

Kirchhoff’s current rule (KCR) state that the sum of the currents
flowing into any node must be zero. It is a statement of conservation of
electric charge and reflects the fact that electric charge cannot accumulate
at a node of the network.

Kirchhoff’s voltage rule (KVR) state that the sum of the voltage drops
across every element along a closed loop must be zero. This reflects the
fact that the electric potential at any point is independent of the path
followed to reach that point.

In the analysis of a passive network, the following requirements must
be satisfied;

.



2.4 Hamilton’s principle for electrical networks 47

1. Requirements on current variables ik (coming from KCR), which can
be expressed alternatively with charge variables qk satisfying

dqk

dt
= ik

2. Requirements on voltage variables, ek (coming from KVR), which can
be expressed alternatively with flux linkage variables λk satisfying

dλk

dt
= ek

3. The constitutive equations of individual elements.

The direct method for formulating the dynamic equations of a passive
network consists in stating all these requirements analytically. This can
be done in either of the following ways.

(a) With independent charge variables qi, the solution is achieved in
three steps:

• Express all current and charges in terms of the independent charge
variables qi (using the KCR).

• Use the constitutive equations to express the voltage or flux linkage
across all elements in terms of qi.

• Use the KVR to obtain a complete set of equations.

(b) A complementary procedure uses a set of independent flux linkages
λk as independent variables, the solution in three steps proceeds as follows:

• Express all the flux linkages and voltages in terms of the independent
λk (using the KVR).

• use the constitutive equations to express the currents and charges in
all circuit elements in terms of λk.

• use the KCR to obtain a complete set of equations.

We shall not pursue the direct approach any further, but rather focus on
indirect, variational methods, based on Hamilton’s principle.

2.4 Hamilton’s principle for electrical networks

In Hamilton’s principle, a variational indicator is constructed from the
constitutive equations of the network elements. Admissible variations are
defined, which satisfy one set of Kirchhoff’s rules, and the stationarity of
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the variational indicator amounts to satisfying the other set of Kirchhoff’s
rules. There are two dual forms of Hamilton’s principle, depending on the
choice of independent variables. In one form, the independent variables are
the charges qi satisfying the KCR, and in the other form, the independent
variables are the flux linkages λi satisfying the KVR.

In the previous chapter, it was argued that being a fundamental law of
physics, Hamilton’s principle does not have to be derived, just accepted.
We could therefore proceed by first stating the principle for electrical
networks and next showing that it implies Kirchhoff’s rules. We believe,
however, that some kind of derivation, even if it is not in its most general
form, will contribute to its understanding. The reader willing to accept
Hamilton’s principle without discussion may skip the developments of the
two following sections and focus on the final results (2.25) and (2.32).

2.4.1 Hamilton’s principle, charge formulation

In this formulation, the generalized variables are the charges and currents.
Admissible variations δqi must satisfy Kirchhoff’s current rules, and the
current and charges variables must satisfy ik = q̇k = dqk/dt.

By analogy with Equ.(1.22), we can write the virtual work expression

M
∑

i=1

(ei −
dλi

dt
)δqi = 0 (2.19)

where M is the number of circuit elements. The first contribution to this
sum can be separated into its conservative and non-conservative parts;

M
∑

i=1

eiδqi = −δWe +
ne
∑

k=1

Ekδqk (2.20)

We is the electrical energy function of the system, and Ek represents the
generalized voltage corresponding to the nonconservative elements and
conjugate to the independent generalized charge variable qk. ne is the
number of independent generalized charge coordinates. The negative sign
on δWe is due to the fact that when the voltage across a conservative cir-
cuit element does work on the circuit, the electrical energy in the element
decreases. The second contribution to the sum (2.19) can be rewritten

−
M
∑

i=1

dλi

dt
δqi = −

M
∑

i=1

d

dt
(λiδqi) +

M
∑

i=1

λi
d(δqi)

dt
(2.21)
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The first term in the right hand side is a total time derivative which, as
we did in section 1.6, can be eliminated by integrating over some interval
[t1, t2] assuming that the system configuration is known at t1 and t2, so
that

δqi(t1) = δqi(t2) = 0 (2.22)

The second term at the right hand side of (2.21) is rewritten

M
∑

i=1

λi
d

dt
δqi =

M
∑

i=1

λiδii = δW ∗

m (2.23)

after permuting d/dt and δ, and using (2.17). Finally, integrating (2.19)
between two fixed configurations at t1 and t2 and combining Equ.(2.20)-
(2.23), one gets

V.I. =

∫ t2

t1
[δW ∗

m − δWe +
ne
∑

i=1

Ekδqk] dt (2.24)

=

∫ t2

t1
[δ(W ∗

m − We) +
ne
∑

i=1

Ekδqk] dt (2.25)

The actual path is that which cancels the variational indicator (2.25) with
respect to all admissible charge variations δqi of the path between two
instants t1 and t2, and such that δqi(t1) = δqi(t2) = 0.

W ∗

m is the magnetic coenergy function of the network, that is the
sum of all magnetic coenergies of individual inductors in the network,
expressed in terms of the currents ij ; We is the electrical energy function
of the network, that is the sum of all electrical energies of individual
capacitors in the network, expressed in terms of qj . To be admissible,
the current and charges must satisfy Kirchhoff’s current law and must
satisfy ij = dqj/dt. W ∗

m - We is the Lagrangian of the network. There is a
complete analogy between (2.25) and (1.26);

∑

Ekδqk corresponds to the
virtual work of the nonconservative elements, denoted δWnc in (1.26).

2.4.2 Hamilton’s principle, flux linkage formulation

We now examine the dual formulation, where the generalized variables
are flux linkages λk and voltages ek. Admissible variations must satisfy
Kirchhoff’s voltage rule, and the flux linkage and voltage variables must
satisfy ek = dλk/dt.

By analogy with (2.19), the virtual work expression reads



50 2 Dynamics of electrical networks

N
∑

k=1

(ik − dqk

dt
)δλk = 0 (2.26)

where N is the number of circuit elements. The first contribution to this
sum can be separated into its conservative and non-conservative parts.
From (2.12), one notes that the conservative part corresponds to the mag-
netic energy Wm of all the conservative elements in the network.

N
∑

k=1

ikδλk = −δWm +
ne
∑

k=1

Ikδλk (2.27)

Ik are the generalized currents corresponding to the nonconservative ele-
ments in the network, and conjugate to the flux linkage coordinates λk,
ne is the number of independent flux linkage coordinates. Proceeding as
in the previous section, the second contribution to (2.26) can be rewritten

−
N

∑

k=1

dqk

dt
δλk = −

N
∑

k=1

d

dt
(qkδλk) +

N
∑

k=1

qk
d

dt
(δλk) (2.28)

As before, the first term in the right hand side, which is a total time
derivative, will vanish after integrating between given system configura-
tions at t1 and t2, so that

δλk(t1) = δλk(t2) = 0 (2.29)

The second term in the right hand side of (2.28) is rewritten

N
∑

k=1

qk
d

dt
(δλk) =

N
∑

k=1

qkδ(
dλk

dt
) =

N
∑

k=1

qkδek = δW ∗

e (2.30)

where we have used (2.8) and the commutability of δ and (˙). Finally, upon
integrating Equ.(2.26) between t1 and t2, assuming that the configuration
is fixed at t1 and t2, and combining with (2.27)-(2.30), one gets

V.I. =

∫ t2

t1
[δW ∗

e − δWm +
ne
∑

k=1

Ikδλk] dt (2.31)

V.I. =

∫ t2

t1
[δ(W ∗

e − Wm) +
ne
∑

k=1

Ikδλk] dt (2.32)
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The actual path is that which cancels the variational indicator (2.32) with
respect to all admissible flux linkage variations δλk of the path between
two instants t1 and t2, and such that δλk(t1) = δλk(t2) = 0.

W ∗

e is the electrical coenergy function of the network, that is the sum of
all electrical coenergies of individual capacitors in the network, expressed
in terms of the voltage ek; Wm is the magnetic energy function of the
network, that is the sum of all magnetic energies of individual inductors in
the network, expressed in terms of the independent flux linkage variables
λk. To be admissible, the voltage and flux linkages must satisfy Kirchhoff’s
voltage rule and must satisfy ek = dλk/dt. W ∗

e − Wm is the Lagrangian
of the network in this formulation.

2.4.3 Discussion

Hamilton’s principle for mechanical systems and for electrical networks
takes remarkably similar forms. The Lagrangian consists of the coenergy,
which depends on the time derivatives of the generalized coordinates,
minus the energy, which depends on the generalized coordinates, but not
on their time derivatives.

For mechanical systems,

L = T ∗(q̇i) − V (qi) qi ≡ generalized displacements

For electrical networks,
(a) charge formulation

L = W ∗

m(ik) − We(qk) qk = electric charge, ik = q̇k

(b) flux linkage formulation

L = W ∗

e (ek) − Wm(λk) λk = flux linkage, ek = λ̇k

The virtual work of the nonconservative elements reads, respectively

δWnc = Qiδqi Qi = generalized force

δWnc = Ekδqk Ek = generalized voltage

δWnc = Ikδλk Ik = generalized current
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These work expressions are positive if the element supplies energy to the
network under the variation, and negative if the element absorbs energy.
With the positive directions assumed in Fig.2.4, a resistor R is such that

e = −Ri

The virtual work expression in the charge formulation is

e δq = −Ri δq = −Rq̇ δq

and, in the flux linkage formulation,

i δλ = − e

R
δλ = − 1

R
λ̇ δλ

An ideal voltage source E(t) will contribute

e δq = E(t)δq

in the charge formulation, but there is no contribution in the flux linkage
formulation, because, the time history of the voltage being prescribed
at any time, it cannot be altered in any admissible variation of voltage
or flux linkage. Although they do not enter the virtual work expression,
the voltage sources do enter the flux linkage formulation of Hamilton’s
principle as part of the admissibility requirements on voltages and flux
linkages.

Nonconservative element

e = dõ=dt

i = dq=dt

Fig. 2.4. The virtual work increment delivered to the network by the element is e δq
or i δλ.

The same considerations apply to an ideal current source I(t) which
contributes for I(t)δλ to the virtual work expression in the flux linkage
formulation, but do not contribute in the charge formulation because no
variation of current is allowed where it is prescribed. In this latter case,
the current sources enter the charge formulation of Hamilton’s principle
as part of the admissibility requirements.
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2.5 Lagrange’s equations

Consider a discrete lumped parameter network. Because of the similar-
ity between the formulation of Hamilton’s principle for electrical net-
works and mechanical systems, one can skip the analytical derivation
of Lagrange’s equations from Hamilton’s principle, which follows almost
identically that of section 1.7. The most convenient way to satisfy the
admissibility conditions on the virtual variations is to select a complete
set of independent generalized coordinates. In this way, the admissibility
requirements are automatically satisfied.

2.5.1 Lagrange’s equations, charge formulation

In the charge formulation of Lagrange’s equations, n generalized charge
coordinates, qk, are selected such that their time derivatives, q̇k, constitute
independent loop currents in the network. The Lagrangian is

L(q̇k, qk) = W ∗

m(q̇k) − We(qk) (2.33)

where W ∗

m(q̇k) is the magnetic coenergy of the network, expressed in terms
of the independent loop currents; it is equal to the sum of magnetic co-
energies of individual inductors in the network. We(qk) is the electrical
energy of the network, expressed in terms of the independent charge vari-
ables; it is equal to the sum of electrical energies of individual capacitors
in the network. The virtual work of the nonconservative elements is ex-
pressed in terms of the independent generalized coordinates according to
the work equality

∑

k

Ekδqk =
∑

i

ǫiδqi

where the sum in the left hand side extends to the independent gen-
eralized coordinates and that in the right hand side extends to all the
nonconservative elements. The resulting Lagrange’s equations are

d

dt
(
∂L

∂q̇k
) − ∂L

∂qk
= Ek k = 1, ..., n (2.34)

where Ek is the generalized voltage associated with the generalized charge
coordinate qk.
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2.5.2 Lagrange’s equations, flux linkage formulation

The flux linkage formulation is dual of the charge formulation; n indepen-
dent flux linkage coordinates λk are selected, which automatically satisfy
Kirchhoff’s voltage rule. The Lagrangian is

L(λ̇k, λk) = W ∗

e (λ̇k) − Wm(λk) (2.35)

where W ∗

e (λ̇k) is the electrical coenergy of the network expressed in terms
of the independent voltages λ̇k; it is equal to the sum of the electrical
coenergies of all capacitors in the network, expressed in terms of voltage
variables. Wm(λk) is the magnetic energy of the network, expressed in
terms of the independent flux linkage variables; it is equal to the sum
of magnetic energies of all inductors in the network. The virtual work of
the nonconservative elements is expressed in terms of the generalized flux
linkage coordinates thanks to the work equality

∑

k

Ik δλk =
∑

i

Ii δλi

where the sum in the left side extends to the independent flux-linkage
generalized coordinates and that in the right hand side extends to all
nonconservative elements. The resulting Lagrange’s equations are

d

dt
(

∂L

∂λ̇k

) − ∂L

∂λk
= Ik k = 1, ...., n (2.36)

where Ik is the generalized current associated with the generalized flux
linkage λk.

2.5.3 Example 1

Consider the electrical network of Fig.2.5. We shall write the dynamic
equations of the network using successively the flux linkage formulation
and the charge formulation.

Flux linkage formulation

We select flux linkage coordinates λi at all ungrounded nodes; this leads
to 3 independent coordinates λ1, λ2, λ3. Since the voltage drops across the
capacitors C1 and C2 are respectively λ̇2 − λ̇1 and λ̇3 − λ̇2. The electrical
coenergy reads
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C1 C2

RL I(t)

õ1 õ2 õ3

Fig. 2.5. Electrical network, flux linkage formulation.

W ∗

e (λ̇k) =
1

2
C1(λ̇2 − λ̇1)

2 +
1

2
C2(λ̇3 − λ̇2)

2

The flux linkage across the inductor is λ1 (the grounded node is taken as
reference, λ = 0) and the magnetic energy is

Wm(λk) =
λ2

1

2L

The Lagrangian is

L = W ∗

e − Wm =
1

2
C1(λ̇2 − λ̇1)

2 +
1

2
C2(λ̇3 − λ̇2)

2 − λ2
1

2L

On the other hand, the virtual work of the nonconservative elements is

δWnc = I δλ2 −
λ̇3

R
δλ3

The first contribution is that of the ideal current generator, and the sec-
ond is that of the resistor R (the current in the resistor is λ̇3/R, and the
virtual work is negative because it is a dissipative element). The general-
ized currents in the Lagrange’s equations are respectively I1 = 0, I2 = I
and I3 = −λ̇3/R.

Lagrange’s equations (2.36) read

λ1 : C1(λ̈1 − λ̈2) +
λ1

L
= 0

λ2 : −C1λ̈1 + (C1 + C2)λ̈2 − C2λ̈3 = I(t)
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λ3 : C2(λ̈3 − λ̈2) = − λ̇3

R

This system of three ordinary differential equations, in the three variables
λ1, λ2, λ3, governs the dynamics of the network.

C1 C2

RL I(t) q2q1

Fig. 2.6. Electrical network, charge formulation.

Charge formulation

We reexamine the problem with a charge formulation. Accordingly, a set
of loops is defined (two in this case), and charge variables q1 and q2 are
associated with every loop, so that q̇1 and q̇2 are the loop currents (the
positive direction clockwise adopted in Fig.2.6 is arbitrary). In this case,
the two currents q̇1 and q̇2 are not independent, because of the current
generator; they must satisfy the admissibility condition

q̇2 = q̇1 + I(t) = q̇1 + q̇0

where I(t) = q̇0. Integrating, one gets

q2 = q1 + q0

We note that q0 is not a variable, but rather an input to the system
(q0 is the electric charge injected by the current source). It follows that
the virtual charge variations are subjected to δq2 = δq1, and that this
formulation has a single generalized coordinate q1. The Lagrangian reads
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L = W ∗

m(q̇1) − We(q1) =
1

2
Lq̇2

1 − 1

2C1
q2
1 − 1

2C2
(q1 + q0)

2

and the virtual work of the nonconservative elements is

δWnc = −Rq̇2 δq2 = −R(q̇1 + q̇0)δq1

There is no contribution from the current source in this formulation.
Lagrange’s equations relative to q1 is

Lq̈1 +
1

C1
q1 +

1

C2
(q1 + q0) = −R(q̇1 + q̇0)

or

Lq̈1 + Rq̇1 + (
C1 + C2

C1C2
)q1 = −Rq̇0 −

q0

C2

with q̇0 = I(t). Comparing with the flux linkage formulation, we note
that, in this case, the charge formulation is more compact and involves
only one generalized variable instead of three.

C1 C2

L1 IR

C3

L2

E

q1 q2 q3

Fig. 2.7. Electrical network, charge formulation.

2.5.4 Example 2

Write the dynamic equation of the electrical network of Fig.2.7 using
successively the charge formulation and the flux linkage formulation. This
example mixes ideal voltage and current sources, and it will be useful to
compare the way they contribute to virtual work of the nonconservative
elements. We will restrict ourselves to writing the Lagrangian and the
virtual work of the nonconservative elements, since Lagrange’s equations
can easily be derived from them.
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Charge formulation

The current loops are defined as indicated in Fig.2.7. Because of the pres-
ence of the current source, the current q̇2 and q̇3 are not independent;
they must satisfy the admissibility condition

q̇3 = q̇2 + I = q̇2 + q̇0

where I(t) = q̇0. It follows that

q3 = q2 + q0

and

δq3 = δq2

since q0 is not subject to virtual variations. The contributions of all the
conservative elements to the magnetic coenergy and electrical energy are
as follows

W ∗

m =
1

2
L1q̇

2
1 +

1

2
L2(q̇2 + q̇0)

2

We =
q2
1

2C1
+

q2
2

2C2
+

(q2 + q0)
2

2C3

and

L = W ∗

m − We

The virtual work of the nonconservative elements includes in this case the
resistor and voltage source

δWnc = −R(q̇1 − q̇2)(δq1 − δq2) + E δq1

Note that the current source does not contribute to δWnc, but it appears
in both W ∗

m and We, from q̇0 and q0 respectively.
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C1 C2

L1 IR

C3

L2

E

õ1 õ2 õ3 õ4

õ0

Fig. 2.8. Electrical network, flux linkage formulation.

Flux linkage formulation

A flux linkage coordinate λi is selected at each ungrounded node such
that ei = λ̇i. The contributions of all the conservative elements to the
electrical coenergy and the magnetic energy are respectively:

W ∗

e =
1

2
C1(λ̇2 − λ̇1)

2 +
1

2
C2(λ̇3 − λ̇2)

2 +
1

2
C3(λ̇4 − λ̇3)

2

Wm =
(λ1 − λ0)

2

2L1
+

λ2
4

2L2

and L = W ∗

e − Wm. The virtual work of the nonconservative elements
includes in this case the resistor and the current source.

δWnc = − λ̇2

R
δλ2 + I δλ3

There is no contribution from the voltage source, because the flux linkage
λ0 is not subject to virtual variations. Thus, the voltage source contributes
to the dynamics only through the magnetic energy Wm.
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3

Electromechanical ystems

3.1 Introduction

The two preceding chapters have addressed separately the dynamics of
mechanical systems and the dynamics of the electrical network. In this
chapter, we consider the dynamics of composite systems formed by in-
terconnecting mechanical and electrical variables. The central element in
this interconnection is the conversion of mechanical energy into electri-
cal energy, and vice versa, which takes place in electromechanical trans-
ducers. Electromechanical transducers are pervasive in modern life, they
include microphones, loudspeakers, electrical motors, magnetic suspen-
sions, capacitive accelerometers, and also microelectromechanical systems
(MEMS). Piezoelectric transducers will be treated in a separate chapter.

This chapter starts with a review of the constitutive equations of the
most frequent lossless lumped parameter electromechanical transducers.
It is followed by the statement of Hamilton’s principle for electromechan-
ical systems, the Lagrange equations, and a set of examples where the
dynamic equations governing a few classical electromechanical systems
are established.

3.2 Constitutive relations for transducers

A conservative transducer is a transducer which conserves energy, it is
also called lossless. There are two types of transducers, those which can
store energy and those which can only transfer energy from one form to
the other, without being able to store it. In a transducer which can store
energy, the energy can be stored in one form (either mechanically or elec-
trically) and recovered at a later time in another form. On the contrary,

16
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a transfer element transforms one form of energy into the other form,
but the instantaneous power at the input is always equal to the instanta-
neous power at the output. The theory of lumped parameter transducers
is based on the quasi-static theory of electromagnetism, which assumes
that the physical dimension of the device, l, is much smaller than the
electromagnetic wavelength (l/λ ≪ 1). Under this assumption, the field
that produces forces in the transducer is either electrical or magnetic,
but not both; this allows us to separate the analysis of electrical forces in
capacitive transducers, and magnetic forces in inductive transducers.

Note that the electrostatic and electromagnetic forces do not scale
down in the same way as the size of the transducer shrinks : the electro-
static forces tend to scale down as l−2 and the electrostatic energy as l−3,
while the electromagnetic forces scale down as l−4 and the electromag-
netic energy as l−5. This is why electrostatic transducers are much more
used in MEMS.

v = dx=dt

i = dq=dt

e f

Fig. 3.1. Movable-plate capacitor.

3.2.1 Movable-plate capacitor

A movable plate capacitor is a conservative energy storing transducer
which allows electrical energy to be transformed into mechanical energy
and vice versa (Fig.3.1). The charge on the capacitor is q and the voltage
across the plates is e; the displacement of the movable plate is x and the
external force required to hold the movable plate in equilibrium against
the electrostatic attraction force is f . The electromechanical transducer
is assumed to be perfect, meaning that the electrical side is a pure capac-

s
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itance, and the mechanical construction is massless and without stiffness
or damping.

If one takes the movable plate displacement x and the electrical charge
q as independent variables, the constitutive relations for a movable-plate
capacitor can be given in the form of equations for the voltage and force
in terms of x and q:

e = e(x, q)

f = f(x, q) (3.1)

The exact form of these equations can be determined either from the
electrostatic field theory, or they can be determined experimentally; they
must be such that when q = 0, there is no electric field and the force f
must be zero for all x:

f(x, 0) = 0 (3.2)

The total power delivered to the capacitor is the sum of the electric power,
ei, and the mechanical power, fv. The net work on the capacitor over dt
is therefore

dW = ei dt + fv dt = e dq + f dx (3.3)

For a conservative element, this work is converted into stored electrical
energy, dWe, and the total electrical energy We(x, q) (it is called electri-
cal, although it includes both electrical and mechanical work) is obtained
by integrating (3.3) from the reference state to (x, q). Once the electri-
cal energy function We(x, q) is known, the constitutive equations can be
recovered by differentiation :

∂We

∂x
= f

∂We

∂q
= e (3.4)

As in the previous chapter, the complementary state function called elec-
trical coenergy function is defined by the Legendre transformation

W ∗

e (x, e) = eq − We(x, q) (3.5)

The total differential of the coenergy is

dW ∗

e = q de + e dq − ∂We

∂x
dx − ∂We

∂q
dq

and it follows from (3.4) that
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q =
∂W ∗

e

∂e
f = −∂W ∗

e

∂x
(3.6)

Assuming that the capacitor is electrically linear, one can find the explicit
form of the state functions We(x, q) and W ∗

e (x, e). In this case,

e =
q

C(x)
(3.7)

where C(x) is the capacitance corresponding to the position x of the mov-

O

q

x

(x; q)

(x; 0)

Fig. 3.2. Movable-plate capacitor: integration path for the electrical energy.

able plate (in the simplest case of two flat plates with a constant distance
x, neglecting the edge effect, C(x) = εA/x, where ε is the dielectric con-
stant of the material between the plates and A is the area of the plate).
The electrical energy function We(q, x) can be obtained by integrating
(3.3) from the reference state to (q, x). For a conservative system, this in-
tegral is independent of the path followed. If one takes a path consisting
of two straight lines (0, 0)→ (x, 0) and (x, 0) → (x, q) as indicated in Fig
3.2, we can use the fact that f = 0 and e = 0 over the first segment, and
that dx = 0 over the second one, leading to

We(x, q) =

∫ q

0
e dq =

∫ q

0

q

C(x)
dq =

q2

2C(x)
(3.8)

and, from the Legendre transformation (3.5) and the constitutive equation
(3.7),

W ∗

e (x, e) =
1

2
C(x)e2 (3.9)

The constitutive equations of the linear movable plate capacitor follow
from (3.4) and (3.6),

Electromechanical systems3
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f =
∂We

∂x
= − q2

2C2
C ′(x) e =

∂We

∂q
=

q

C(x)
(3.10)

and

f = −∂W ∗

e

∂x
= −e2

2
C ′(x) q =

∂W ∗

e

∂e
= Ce (3.11)

where C ′(x) = dC(x)/dx. Note that the state functions (3.8) and (3.9)
have been established without knowing the form of f(x, q) in (3.1), using
the fact that the system is conservative. Once the explicit forms for We

and W ∗

e have been established, the mechanical force necessary to balance
the electrostatic force in the capacitor follows from (3.10) and (3.11).

i
v = dx=dt

f
e = dõ=dt

Fig. 3.3. Movable-core inductor.

3.2.2 Movable-core inductor

An ideal movable-core inductor is another conservative energy-storing
transducer; it is the magnetic counterpart of the movable-plate capaci-
tor. We use the notation of Fig.3.3, where λ is the flux linkage of the coil,
e the voltage at the input, i the input current, x the displacement of the
iron core and f the external force required to hold the core in equilibrium
against the magnetic attraction. Proceeding as with the movable-plate ca-
pacitor, we assume that the electrical side is a perfect inductor, without
hysteresis, and that the mechanical construction is massless and without
friction. Taking the flux linkage λ and the displacement x as independent
variables, we can write the constitutive equations in the form of equations
for i and f in terms of λ and x:
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i = i(x, λ)

f = f(x, λ) (3.12)

The exact form of the constitutive equations can be determined either
from electromagnetic field theory, or from experiments; without hystere-
sis, (3.12) are assumed to be single-valued functions. Their form must be
such that, when λ = 0, there is no magnetic field and no magnetic attrac-
tion. Therefore, the force f balancing the magnetic attraction must be 0
for all x:

f(x, 0) = 0 (3.13)

The total power delivered to the solenoid is the sum of all the electrical
power, ei, and the mechanical power, fv. The net work on the solenoid
over dt is therefore

dW = ei dt + fv dt = i dλ + f dx (3.14)

For a conservative transducer, this work is converted into stored magnetic
energy of the solenoid, dWm. If the stored magnetic energy is expressed
in terms of the independent variables, Wm(x, λ),

dWm =
∂Wm

∂λ
dλ +

∂Wm

∂x
dx (3.15)

and, by comparison with (3.14), one recovers the constitutive equations

i =
∂Wm

∂λ
f =

∂Wm

∂x
(3.16)

If the system is conservative, the total stored magnetic energy is obtained
by integrating (3.14) along any path from the reference state to (x, λ).

As for the movable plate capacitor, the magnetic coenergy function is
defined by the Legendre transformation

W ∗

m(x, i) = iλ − Wm(x, λ) (3.17)

Upon taking the total differential of the coenergy and taking into account
(3.16), one finds an alternative form of the constitutive equations

λ =
∂W ∗

m

∂i
f = −∂W ∗

m

∂x
(3.18)

When the constitutive relation between the flux linkage and the current
is linear,

Electromechanical systems3
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λ = L(x)i (3.19)

where L(x) is the inductance of the coil when the core is in the position x.
In this case, one can evaluate the magnetic stored energy Wm(x, λ) explic-
itly by integrating (3.14) from the reference state to (x, λ); for a conser-
vative system, this integral is independent of the path, and one can take
the path consisting of two straight lines (0, 0) → (x, 0) and (x, 0) → (x, λ)
(Fig 3.4). Using the fact that f = 0, if λ = 0, one gets

õ
(x; õ)

O x(x; 0)

Fig. 3.4. Movable-core inductor: integration path for the magnetic energy.

Wm(x, λ) =

∫ λ

0
i dλ =

∫ λ

0

λ

L(x)
dλ =

λ2

2L(x)
(3.20)

The magnetic coenergy is obtained from (3.17), using (3.19) and (3.20):

W ∗

m(x, i) =
1

2
L(x)i2 (3.21)

The constitutive relations can be recovered from (3.16) and (3.18):

f =
∂Wm

∂x
= − λ2

2L2
L′(x) i =

∂Wm

∂λ
=

λ

L(x)
(3.22)

f = −∂W ∗

m

∂x
= − i2

2
L′(x) λ =

∂W ∗

m

∂i
= L(x)i (3.23)

.
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e = dõ=dt
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Fig. 3.5. Moving-coil transducer.

3.2.3 Moving-coil transducer

A moving-coil transducer is an energy transformer which converts elec-
trical power into mechanical power and vice versa. The system consists
of a permanent magnet (Fig.3.5) which produces a uniform magnetic flux
density B normal to the gap, and a coil which is free to move axially
within the gap. Let v be the velocity of the coil, f the external force act-
ing to maintain the coil in equilibrium against the electromagnetic forces,
e the voltage difference across the coil and i the current into the coil.
In this ideal transducer, we neglect the electrical resistance and the self
inductance of the coil, as well as its mass and damping (if necessary, these
can be handled by adding R and L to the electrical circuit of the coil, or
a mass and damper to its mechanical model). The voice coil actuator is
one of the most popular actuators in mechatronics (e.g. it is used in elec-
tromagnetic loudspeakers), but we find it also as a sensor in, for example,
geophones.

The constitutive equations of the moving-coil transducer follow from
Faraday’s law and the Lorentz force law. Faraday’s law states that the
voltage increment de over some elementary length dl in the direction of
the current flow, induced by the motion of the coil is

de = ~v × ~B.~dl (3.24)

Electromechanical systems3
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On the other hand, a charge particle moving in an electromagnetic field
(electric field ~E and magnetic flux density ~B) is subjected to the Lorentz
force

~f = q( ~E + ~v × ~B) (3.25)

In the macroscopic world, this force is dominated by its magnetic contri-
bution, and the electrostatic contribution can be omitted. If we consider
a current formed by a very large number of charged particles (the elec-
trons) moving along the conductor, the total force of the field acting on
an elementary length dl of the conductor is

~df = i~dl × ~B (3.26)

Applying (3.24) to an elementary length dl = rdθ of one turn of the coil
[ ~B, ~v and ~dl are mutually orthogonal, Fig.3.5.(b)], one finds that the
voltage increment in the direction of the current flow is

de = ~v × ~B.~dl = −vBrdθ

Integrating over θ, assuming that B is uniform in the gap, the voltage
drop in the coil, in the direction of the current, is

e = 2πnrBv = Tv (3.27)

where
T = 2πnrB (3.28)

is the transducer constant, equal to the product of the length of the coil
exposed to the magnetic flux, 2πnr, and the magnetic flux density B.
On the other hand, the Lorentz force of the magnetic field acting on the
element dl = rdθ of one turn of the coil with a current i follows from
(3.26).

df = irdθB (3.29)

The force f defined in Fig.3.5(a) is the external force required to balance
the total force of the magnetic field on n turns of the conductor; integrat-
ing (3.29) over the length of the conductor exposed to the magnetic flux
density, one finds

f = −i 2πnrB = −Ti (3.30)

where T is again the transducer constant (3.28). Equ.(3.27) and (3.30)
are the constitutive equations of the movable-coil transducer (Fig.3.6).
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i

e = dõ=dt

v = dx=dt

f

e = Tv
à Ti = f

Fig. 3.6. Symbolic representation of a moving-coil transducer.

Notice that the transducer constant T appearing in Faraday’s law (3.27),
expressed in volt.sec/m, is the same as that appearing in the Lorentz
force (3.30), expressed in N/Amp.

The total power delivered to the moving-coil transducer is equal to the
sum of the electric power, ei, and the mechanical power, fv. Combining
with (3.27) and (3.30), one gets

ei + fv = Tvi − Tiv = 0 (3.31)

Thus, at any time, there is an equilibrium between the electrical power
absorbed by the device and the mechanical power delivered (and vice
versa). The moving-coil transducer cannot store energy, and behaves as a
perfect electromechanical converter. In practice, however, the transfer is
never perfect due to eddy currents, flux leakage and magnetic hysteresis,
leading to different values of T in (3.27) and (3.30).

Proceeding as for the movable core inductor, it follows from (3.31) that
the magnetic energy Wm remains constant, equal to its reference value
that can be taken as Wm = 0. The constitutive equation (3.27) can be
written equivalently in terms of flux linkage

λ = T (x − x0) (3.32)

where x0 is an arbitrary reference state. This allows us to write the coen-
ergy function (3.17)

W ∗

m(x, i) = λi − Wm(x, λ) = Ti(x − x0) (3.33)

Using (3.18), we recover the constitutive equations

f = −∂W ∗

m

∂x
= −Ti λ =

∂W ∗

m

∂i
= T (x − x0) (3.34)
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In this section, the constitutive equations for ideal transducers have been
discussed. The models of real transducers usually involve additional el-
ements on the electrical side as well as on the mechanical side of the
transducer, to represent the electrical resistance, capacitance and induc-
tance, and the mechanical inertia, stiffness and damping; we will see a few
examples shortly. Before that, we shall examine how the dynamic equa-
tions of electromechanical systems can be derived from a general form of
Hamilton’s principle and the Lagrange equations.

3.3 Hamilton’s rinciple

Hamilton’s principle has been examined for mechanical systems and elec-
trical networks in the previous chapters. A single formulation based on
virtual displacements compatible with the kinematical constraints has
been examined for mechanical systems, while two dual approaches have
been considered for electrical networks; the charge formulation is based on
admissible charge variations compatible with Kirchhoff’s current rule, and
the flux linkage formulation is based on admissible flux linkage variations
compatible with Kirchhoff’s voltage rule. In all cases, the Lagrangian was
defined as the difference between the coenergy function (which depends
on the time derivatives of the generalized coordinates) and the energy
function (which depends on the generalized coordinates but not on their
time derivatives), see section 2.4.3. The actual path is that which cancels
the variational indicator with respect to all admissible variations of the
generalized coordinates, between two instants at which the configuration
is fixed.

For electromechanical systems, a variational indicator is now con-
structed as the sum of the mechanical indicator (1.26) and an electrical
indicator, either (2.24) or (2.31), depending on the formulation. The ac-
tual path is that which cancels the variational indicator with respect to
all admissible variations of the generalized coordinates, both mechanical
and electrical, compatible with the kinematics and compatible with the
electrical requirements (depending on the formulation). As before, the
system configuration is fixed at t1 and t2.

3.3.1 Displacement and charge formulation

In this case, the admissibility requirements include the kinematical con-
straints on the virtual displacements δxi and velocities, and Kirchhoff’s

p

p
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current rule on the virtual variations of charges δqi and currents. The
variational indicator is

V.I. =

∫ t2

t1

[

δ(T ∗ + W ∗

m − V − We) +
∑

fiδxi +
∑

ejδqj

]

dt (3.35)

The actual path is that which cancels the variational indicator (3.35) with
respect to all admissible variations δxi and δqi of the path between two
instants t1 and t2 at which δxi(t1) = δxi(t2) = δqi(t1) = δqi(t2) = 0. In
(3.35) the kinetic coenergy T ∗ and the magnetic coenergy W ∗

m have been
grouped; they depend on the time derivative of the generalized coordi-
nates, respectively ẋi and ik = q̇k. On the contrary, the potential energy
V and the electrical energy We do not depend on the time derivative of
the generalized variables, but only on xi and qk. The Lagrangian is equal
to the total coenergy minus the total energy.

L = T ∗ + W ∗

m − V − We (3.36)

3.3.2 Displacement and flux linkage formulation

In this case, the admissibility requirements on the mechanical variables
are unchanged: the virtual displacements δxi must be compatible with the
kinematics. The admissible flux linkage variations δλi must be compatible
with Kirchhoff’s voltage rule. The variational indicator is

V.I. =

∫ t2

t1

[

δ(T ∗ + W ∗

e − V − Wm) +
∑

fiδxi +
∑

ijδλj

]

dt (3.37)

The actual path is that which cancels the variational indicator (3.37) with
respect to all admissible variations δxi and δλi of the path between t1 and
t2 at which δxi(t1) = δxi(t2) = δλi(t1) = δλi(t2) = 0. The Lagrangian is
now

L = T ∗ + W ∗

e − V − Wm (3.38)

with the kinetic coenergy T ∗ and the electrical coenergy W ∗

e depending on
the time derivative of the generalized coordinates, ẋi and λ̇k = ek, while
the potential energy and the magnetic energy do not depend explicitly on
ẋi and λ̇k, but only on xi and λk.

Electromechanical systems3
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3.4 Lagrange’s equations

If the system can be described by a complete set of independent coordi-
nates describing both the mechanical (zi) and the electrical part (qk or
λk) of the system, the admissibility conditions are automatically fulfilled
and the Lagrange equations can be derived from Hamilton’s principle as
we already did in section 2.5.

3.4.1 Displacement and charge formulation

Let zi be a complete set of m independent mechanical coordinates and qk

a complete set of n independent charge coordinates. The Lagrangian

L(żi, zi, q̇k, qk) = T ∗ + W ∗

m − V − We (3.39)

accounts for all the conservative elements in the system and

δWnc =
m

∑

i=1

Qiδzi +
n

∑

k=1

Ekδqk (3.40)

is the virtual work of all the nonconservative elements. It follows from
Hamilton’s principle that

d

dt

(

∂L

∂żi

)

− ∂L

∂zi
= Qi i = 1, ..., m (3.41)

d

dt

(

∂L

∂q̇k

)

− ∂L

∂qk
= Ek k = 1, ..., n (3.42)

The demonstration follows closely that of the previous chapters and is
omitted.

3.4.2 Displacement and flux linkage formulation

Similarly, let zi be a complete set of m independent mechanical gener-
alized coordinates and λk a complete set of n independent flux linkage
coordinates. The Lagrangian

L(żi, zi, λ̇k, λk) = T ∗ + W ∗

e − V − Wm (3.43)

accounts for all the conservative elements in the system and

δWnc =
m

∑

i=1

Qiδzi +
n

∑

k=1

Ikδλk (3.44)
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is the virtual work of all the nonconservative elements in the systems. It
follows from Hamilton’s principle that

d

dt

(

∂L

∂żi

)

− ∂L

∂zi
= Qi i = 1, ..., m (3.45)

d

dt

(

∂L

∂λ̇k

)

− ∂L

∂λk
= Ik k = 1, ..., n (3.46)

3.4.3 Dissipation function

As in (1.51), it is customary to define the electrical dissipation function
in such a way that the contribution to the right hand side of the Lagrange
equation from the dissipative elements (the resistors) can be written re-
spectively

Ek = −∂D

∂q̇k
(3.47)

in the charge formulation, or

Ik = − ∂D

∂λ̇k

(3.48)

in the flux linkage formulation. The dissipation functions of a single re-
sistor R are respectively,

D(q̇) =
1

2
Rq̇2 (charge formulation) (3.49)

D(λ̇) =
1

2

λ̇2

R
(flux linkage formulation) (3.50)

With these definitions Equ.(3.42) and (3.46) become respectively

d

dt

(

∂L

∂q̇k

)

+
∂D

∂q̇k
− ∂L

∂qk
= Ek (3.51)

d

dt

(

∂L

∂λ̇k

)

+
∂D

∂λ̇k

− ∂L

∂λk
= Ik (3.52)

The Lagrangian formulation for lumped electromechanical systems is sum-
marized in Table 3.1. We now illustrate with a few examples.
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Fig. 3.7. Electromagnetic plunger.

3.5 Examples

3.5.1 Electromagnetic plunger

The electromagnetic plunger is used for tripping current breakers and
various types of relays and valves. A movable plunger is driven by an
electromagnet (Fig.3.7). The nominal gap of the plunger is x0, when the
current is zero (this corresponds to the unstretched position of the spring);
when the switch is closed, the current in the coil produces a magnetic force
which attracts the plunger down towards the electromagnet, to close the
magnetic circuit at x = −x0. The plunger is modelled as a spring-mass
system of mass m, stiffness k and viscous damping c. We also assume that
the electromagnet has a variable inductance

L(x) =
L0

1 + (x0 + x)/h
(3.53)

(h is defined in Fig.3.7). In the charge formulation of the Lagrange equa-
tions, the generalized variables are respectively the displacement x of the
plunger measured from the nominal position, and the charge q correspond-
ing to the current loop shown in Fig 3.7. The Lagrangian reads

L = T ∗ + W ∗

m − V − We =
1

2
mẋ2 +

1

2
L(x)q̇2 − 1

2
kx2 (3.54)

and the dissipation function is the sum of the mechanical contribution of
the viscous damper and the electrical one of the resistor

Electromechanical systems3
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D =
1

2
cẋ2 +

1

2
Rq̇2 (3.55)

The only remaining contributor to the virtual work of the non-conservative
forces is the voltage source

δWnc = E(t)δq (3.56)

The partial derivatives of the Lagrangian and of the dissipation function
are respectively

∂L

∂ẋ
= mẋ

∂L

∂x
= L′(x)

q̇2

2
− kx

∂L

∂q̇
= L(x)q̇

∂L

∂q
= 0

∂D

∂ẋ
= cẋ

∂D

∂q̇
= Rq̇

and Lagrange’s equations read

mẍ + cẋ + kx − L′(x)
q̇2

2
= 0

d

dt
[L(x)q̇] + Rq̇ = E (3.57)

3.5.2 Electromagnetic loudspeaker

The loudspeaker converts electrical energy into acoustical energy; in an
electromagnetic loudspeaker, this is achieved with a voice coil actuating
a membrane which, in turn, displaces the surrounding air. The low fre-
quency behavior of the loudspeaker can be modelled as in Fig.3.8. The
mechanical part is represented by a spring-mass system (which, obviously
is appropriate only at low frequency); the mechanical constants m, k and
c are chosen to account for the fluid-coupling effect of the membrane. The
mechanical side is connected to the electrical side through a moving-coil
transducer which, as we have seen in section 3.2.3, is a perfect energy
transformer, with transducer constant T . The electrical side is modelled
by a voltage source in series with a RL circuit.

With the charge formulation of the Lagrange equations and the gener-
alized coordinates x and q (i = q̇), the various energy contributors to the
Lagrangian are:
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Fig. 3.8. Electromagnetic loudspeaker.

T ∗ =
1

2
mẋ2

V =
1

2
kx2

W ∗

m =
1

2
Lq̇2 + T q̇(x − x0) (3.58)

The first term is the magnetic coenergy in the inductor L and the sec-
ond corresponds to the moving coil transducer, (3.33). The dissipation
function is

D =
1

2
cẋ2 +

1

2
Rq̇2

and the virtual work of the voltage source is

δWnc = E(t)δq

The partial derivatives of the Lagrangian, L = T ∗ + W ∗

m − V , and of the
dissipation function are respectively

∂L

∂ẋ
= mẋ

∂L

∂x
= −kx + T q̇

∂D

∂ẋ
= cẋ

∂L

∂q̇
= Lq̇ + T (x − x0)

∂L

∂q
= 0

∂D

∂q̇
= Rq̇

It follows that Lagrange’s equations read
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mẍ + cẋ + kx − T q̇ = 0

T ẋ + Lq̈ + Rq̇ = E(t) (3.59)

Note that, since the moving coil transducer acts as a perfect energy trans-
former, the set-up of Fig.3.8 could be used as a microphone as well, to
convert the acoustic pressure into an output voltage (the membrane would
be the pressure sensitive element). However, capacitive microphones are
more popular.

3.5.3 Capacitive microphone

k

c

L

R

i = q L

C

m

f(t)

E

a b

x0à x

x1 + x

Fig. 3.9. Capacitive microphone.

A condenser microphone consists of a movable plate mounted on a
circular spring parallel to a fixed back plate. These two plates form a
variable capacitor charged by a constant voltage source through a RL
circuit. The voltage drop in the resistor R is supposed to give an electrical
image of the pressure (force) acting on the moving plate. The dynamics of
the moving plate is modelled by a spring-mass system of constants m, k, c,
Fig.3.9. At equilibrium, the electric charge q0 in the capacitor produces an
attractive force between the two plates, which is balanced by the extension
of the spring attached to the moving plate; let x0 be the distance between
the two plates and x1 be the spring extension at equilibrium. We analyze
the vibration about the equilibrium position, assuming that the moving
plate capacitance varies according to
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C(x) =
εA

x0 − x
(3.60)

The electrostatic force fe between the two plates of the capacitor is given
by (3.4)

fe = −
(

∂We

∂x

)

0
= − ∂

∂x

[

q2

2C(x)

]

0

=
q2
0

2εA
(3.61)

It is balanced by the spring extension kx1. Thus, at equilibrium,

kx1 =
q2
0

2εA
(3.62)

Using the charge formulation and the generalized coordinates x and q
(i = q̇), the various energy contributions to the Lagrangian are

T ∗ =
1

2
mẋ2

V =
1

2
k(x + x1)

2

W ∗

m =
1

2
Lq̇2 (3.63)

We =
1

2C
(q0 + q)2 =

x0 − x

2εA
(q0 + q)2

where x is measured with respect to the equilibrium position and q is the
excess of charge with respect to the equilibrium charge q0. The dissipation
function is

D =
1

2
cẋ2 +

1

2
Rq̇2

and

δWnc = E(t)δq + fδx

The Lagrangian is

L =
1

2
mẋ2 +

1

2
Lq̇2 − 1

2
k(x + x1)

2 − x0 − x

2εA
(q0 + q)2

The partial derivatives are respectively
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∂L

∂ẋ
= mẋ

∂L

∂x
= −k(x + x1) +

(q0 + q)2

2εA

∂D

∂ẋ
= cẋ

∂L

∂q̇
= Lq̇

∂L

∂q
= −x0 − x

εA
(q0 + q)

∂D

∂q̇
= Rq̇

and Lagrange’s equations read

mẍ + cẋ + k(x + x1) −
(q0 + q)2

2εA
= f (3.64)

Lq̈ + Rq̇ +
x0 − x

εA
(q0 + q) = E (3.65)

At equilibrium, x = ẋ = ẍ = 0 = q = q̇ = q̈ = f , and (3.64) reduces to
(3.62), and (3.65) to

E =
x0q0

εA
(3.66)

Assuming that q ≪ q0 and x ≪ x0 (we restrict ourselves to small distur-
bances with respect to the equilibrium),

(q0 + q)2 ≃ q0
2 + 2q0q

(x0 − x)(q0 + q) ≃ x0q0 − q0x + x0q

and (3.64) and (3.65) become respectively

mẍ + cẋ + kx − q0q

εA
= f (3.67)

Lq̈ + Rq̇ − q0x

εA
+

x0q

εA
= 0 (3.68)

where (3.62) and (3.66) have been used.

C0 =
εA

x0
and T =

q0

εA
(3.69)

are respectively the nominal capacitance at equilibrium and the electrome-
chanical coupling factor between the mechanical part and the electrical
part of the system (T is expressed in Newton/Coulomb, or in Volt/meter).
With this notation, the equations governing the small vibrations about
the equilibrium are
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mẍ + cẋ + kx − Tq = f (3.70)

Lq̈ + Rq̇ + q/C0 − Tx = 0 (3.71)

from which one can easily compute the transfer function between the
output (voltage drop in the resistor, Rq̇), and the acoustic force f acting
on the moving plate. This is left as an exercise. We now examine three
systems which are particularly important in vibration control technology:
the proof-mass actuator, the electrodynamic isolator and the geophone.

S

N

Permanent
magnet

Coil

Membranes

Magnetic
circuit

(b)

k c f = à Ti

i = q

x

F
Support

(a)

m

Moving
mass

Fig. 3.10. Proof-mass actuator (a) model (b) conceptual design of an electrodynamic
actuator.

3.5.4 Proof-mass actuator

A proof-mass actuator (Fig.3.10) is an inertial actuator which is used in
various applications of vibration control. A reaction mass m is connected
to the support structure by a spring k, a damper c and a force actuator f
which can be either magnetic or hydraulic. In the electromagnetic actuator
discussed here, the force actuator consists of a moving-coil transducer of
constant T excited by a current generator i; the spring is achieved with
membranes which also guide the linear motion of the moving mass. The
system is readily modelled as in Fig.3.10(a); in a charge formulation,
the system has a single generalized coordinate, x; q is not a generalized
variable because a current source is used, which enforces q̇ = i. The various
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contributions to the Lagrangian are the same as for the electromagnetic
loudspeaker:

L = T ∗ + W ∗

m − V =
1

2
mẋ2 +

1

2
Lq̇2 + T q̇(x − x0) −

1

2
kx2

and the dissipation function is also identical

D =
1

2
cẋ2 +

1

2
Rq̇2

Note, however, that although the inductance L of the coil has been in-
cluded in W ∗

m and its resistance has been included in D, they will not
appear in the final results, because q is no longer a generalized variable
[this is why they have been omitted in Fig.3.10(a)]. Since we use a current
source, we have also δWnc = 0. The Lagrange equation relative to the x
coordinate is readily obtained:

mẍ + cẋ + kx = Ti

or, in the Laplace domain,

x =
Ti

ms2 + cs + k
(3.72)

(s is the Laplace variable). The total force applied to the support is equal
and opposite to that applied to the mass:

F = −ms2x =
−ms2Ti

ms2 + cs + k

It follows that the transfer function between the total force F and the
current i applied to the coil is

F

i
=

s2T

s2 + 2ξpωps + ω2
p

(3.73)

where T is the transducer constant (in Newton/Ampere), ωp = (k/m)1/2

is the natural frequency of the spring-mass system and ξp is the damping
ratio, which in practice is fairly high (the negative sign has been removed
because it is irrelevant). The Bode plots of (3.73) are shown in Fig.3.11;
one sees that the system behaves like a high-pass filter with a high fre-
quency asymptote equal to the transducer constant T ; above some critical
frequency ωc ≃ 2ωp, the proof-mass actuator can be regarded as an ideal
force generator. It has no authority over the rigid body modes and the
operation at low frequency requires a large stroke, which is technically
difficult. Medium to high frequency actuators (40 Hz and more) are rela-
tively easy to obtain with low cost components (loudspeaker technology).
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Fig. 3.11. Bode plot F/i of the proof-mass actuator.

3.5.5 Electrodynamic isolator

Consider the system of Fig.3.12(a): two masses m1 and m2 are connected
by a spring k in parallel with a moving coil transducer of transduction
constant T (T = 2πnrB). This system constitutes a single axis electro-
dynamic isolator. The mass m1 is subjected to the disturbance force d,
and the mass m2 is that of the payload that must be isolated from the
disturbance. Note that no mechanical damper is involved in the isolator
(the damping turns out to be detrimental to the high frequency behavior
of the isolator).

k
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x1

d

x2
m2

m1

LR C

q

i

e

e = T(x2à x1)
f = à Ti

(a)
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k
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d

x2
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m1

(b)

Fig. 3.12. Single axis electrodynamic isolator (a)voltage source (b)current source.
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Using once again the charge formulation of Lagrange’s equations and
the generalized coordinates x1, x2 and q, we can write the Lagrangian

L = T ∗ + W ∗

m − V − We

=
1

2
m1ẋ

2
1+

1

2
m2ẋ

2
2+

1

2
Lq̇2+T q̇(x2−x1−x0)−

1

2
k(x2−x1)

2− q2

2C
(3.74)

where x0 is an arbitrary reference state, see (3.33). The dissipation func-
tion is

D =
1

2
Rq̇2 (3.75)

and
δWnc = d δx1 + E δq (3.76)

Lagrange’s equations read

m1ẍ1 + k(x1 − x2) + T q̇ = d (3.77)

m2ẍ2 + k(x2 − x1) − T q̇ = 0 (3.78)

Lq̈ + T (ẋ2 − ẋ1) + Rq̇ +
q

C
= E (3.79)

The simplest situation is that where the moving coil transducer is shunted
on a resistor R; in this case, the electrical circuit consists of a single resistor
R and no voltage source is used. Equation (3.79) can be simplified to

T (ẋ2 − ẋ1) + Rq̇ = 0 (3.80)

which produces

T q̇ = −T 2(ẋ2 − ẋ1)

R
(3.81)

substituting in (3.77) and (3.78), one finds

m1ẍ1 +
T 2

R
(ẋ1 − ẋ2) + k(x1 − x2) = d (3.82)

m2ẍ2 +
T 2

R
(ẋ2 − ẋ1) + k(x2 − x1) = 0 (3.83)

In this case, the electrical system behaves like a viscous damper of con-
stant T 2/R.

If the moving coil transducer is connected to a current source [Fig.
3.12(b)], q is no longer a generalized variable, since q̇ = i; the Lagrangian

of the system is
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L =
1

2
m1ẋ

2
1 +

1

2
m2ẋ

2
2 + Ti(x2 − x1 − x0) −

1

2
k(x2 − x1)

2 (3.84)

and δWnc = d δx1. The Lagrange equations are in this case:

m1ẍ1 + k(x1 − x2) + Ti = d (3.85)

m2ẍ2 + k(x2 − x1) − Ti = 0 (3.86)

These equations are the starting point for the analysis of an active sus-
pension.

3.5.6 The Sky-hook damper

Equation (3.83) defines a passive isolator where the damping is achieved
by dissipating the electrical energy produced by the moving coil trans-
ducer into a resistor R. The transmissibility of the isolator is defined as
the transfer function between the displacement of the disturbance source,
x1, and that of the payload, x2. From (3.83), one finds easily

X2(s)

X1(s)
=

T 2s/R + k

m2s2 + T 2s/R + k
=

2ξωns + ω2
n

s2 + 2ξωns + ω2
n

(3.87)

where ω2
n = k/m2 and T 2/Rm2 = 2ξωn. The transducer constant T and

the resistor R can be selected to smooth the resonance peak, but the
damping also spoils the high frequency behavior of the isolator, because
the asymptotic decay rate of the transmissibility (3.87) is ∼ s−1, leading
to a high frequency attenuation of 20 dB/decade.

The sky-hook damper is a feedback strategy which allows one to elimi-
nate the resonance peak while preserving the asymptotic decay rate ∼ s−2.
It is based on the system of Fig.3.12(b); an absolute acceleration sensor
is attached to m2 and is used to generate a feedback control force pro-
portional to the absolute velocity (an absolute velocity sensor can also be
used)

I = −gẋ2

Combining with (3.86), one easily gets (in Laplace form)

m2s
2x2 + k(x2 − x1) + Tgsx2 = 0 (3.88)

or
X2(s)

X1(s)
=

k

m2s2 + Tgs + k
=

ω2
n

s2 + 2ξωns + ω2
n

(3.89)

where 2ξωn = Tg/m2 in this case. Compared with (3.87), this result indi-
cates that the feedback gain g can be adjusted to eliminate the resonance,
while the asymptotic decay rate is ∼ s−2 (independent of g), correspond-
ing to a high frequency attenuation of 40 dB/decade.

Electromechanical systems3
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3.5.7 Geophone

x
R

q2

i2

e1 = T1(xà x0)

f1 = à T1i1

Vout
k

c

me1 e2I

i1

x0

f1 f2

e2 = à T2(x à x0)

f2 = à T2i2

àH(s)

L

Fig. 3.13. Servo geophone involving two moving-coil transducers.

A geophone is a transducer which behaves as an absolute velocity sen-
sor above some cut-off frequency depending on the mechanical structure
of the transducer. A servo geophone has the additional feature that an
internal feedback loop allows one to program the cut-off frequency of
the transducer for the targeted application. The system is represented in
Fig.3.13; it consists of a spring-mass system (m, k, c) connected to the sen-
sor frame and to two independent moving-coil transducers. One of them
(with transducer constant T1, on the left side in Fig.3.13) is connected
to a current source I(t) and is used in the internal feedback loop of the
system. The other one, of transduction constant T2 is used as sensor. The
inductance L represents that of the coil; the voltage drop in the resistor
is the output Vout of the geophone. Let x0 be the absolute displacement
of the frame (it is the input of the system) and x be that of the mass m.
Note that the loop current q̇1 = i1 is subjected to the constraint q̇1 = I of
the current source. Thus, in a charge formulation of Lagrange’s equations,
there are only two generalized variables, x and q2. The Lagrangian of the
system is



88

L =
1

2
mẋ2 + T1I(x − x0) − T2q̇2(x − x0) +

1

2
Lq̇2

2 − 1

2
k(x − x0)

2 (3.90)

and the dissipation function is

D =
1

2
c(ẋ − ẋ0)

2 +
1

2
Rq̇2

2 (3.91)

The contributions of the two moving coil transducers to the Lagrangian
have opposite signs because of the positive sign adopted for x (the ar-
bitrary reference position appearing in (3.33) has been set to zero).
Lagrange’s equations read

mẍ + c(ẋ − ẋ0) + k(x − x0) − T1I + T2q̇2 = 0 (3.92)

Lq̈2 − T2(ẋ − ẋ0) + Rq̇2 = 0 (3.93)

Upon introducing the relative displacement y = x − x0, we can write these
equations

mÿ + cẏ + ky − T1I + T2q̇2 = −mẍ0 (3.94)

Lq̈2 + Rq̇2 − T2ẏ = 0 (3.95)

Taking the Laplace transform of (3.95), one gets

Vout = Rs q2 =
RT2s

Ls + R
y (3.96)

and, if the resistance R is large (R→∞)

Vout ≃ T2s y (3.97)

From (3.94),

(ms2 + cs + k)y + T2sq2 = T1I − ms2x0 (3.98)

Combining with (3.96)

[

ms2 +

(

c +
T2

2

Ls + R

)

s + k

]

y = T1I − ms2x0 (3.99)

If R is large, the contribution of the moving coil transducer to the viscous
damping, T 2

2 /(Ls+R), can be neglected (or combined with c), leading to
the approximation

Electromechanical systems3
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(ms2 + cs + k)y = T1I − ms2x0 (3.100)

Combining with (3.97),

(ms2 + cs + k)Vout = T2T1sI − T2ms3x0 (3.101)

Next, if we include a proportional plus integral (PI) feedback controller
between Vout and the input current I:

I = −H(s)Vout = −(g1 +
g2

s
)Vout (3.102)

where g1 and g2 are respectively the proportional and integral control
gains. From (3.102),

T2T1sI = −(T2T1g1s + T2T1g2)Vout (3.103)

and, substituting into (3.101), one gets

[

ms2 + (c + T2T1g1)s + (k + T2T1g2)
]

Vout = −T2ms3x0 (3.104)

or
Vout

s x0
=

−T2ms2

ms2 + (c + T2T1g1)s + k + T2T1g2
(3.105)

Thus, the transfer function between the output voltage Vout and the ab-
solute frame velocity sx0 is a second order high-pass filter of asymptotic
gain T2, the transducer gain of the moving coil transducer on the right
hand side of Fig.3.13. Beyond some corner frequency, the system behaves
as an absolute velocity sensor. Without feedback control (g1 = g2 = 0),
the corner frequency of the sensor is fixed by the mechanical resonance of
the sensor, (k/m)1/2, but if a PI controller is used, the corner frequency
and the damping ratio of the transfer function can be set arbitrarily by
selecting g1 and g2 in the appropriate manner. In particular, the mechan-
ical spring k can be softened with a negative value of g2. The transducer
gain T1 is also a design parameter.

3.5.8 One-axis agnetic suspension

A reluctance force always appears between two media of different mag-
netic permittivity (like iron and air); it is orthogonal to the interface and
its magnitude

m
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f = −∂W ∗

m

∂x

increases with the difference in permittivity between the two media.
The reluctance force has already been examined in the electromagnetic
plunger, in section 3.5.1; it is also central in magnetic suspensions where
it is used to levitate a body by balancing the gravity force and thus elimi-
nating friction. Consider the elementary one-axis model of Fig.3.14, where
the ideal current source reflects the fact that the magnetic suspensions
are usually controlled with current amplifiers.

mg

I(t)

i

x

Fig. 3.14. One-axis magnetic suspension.

If one uses a charge formulation of Lagrange’s equations, x is the single
generalized variables; the Lagrangian of the system is

L = T ∗ − V + W ∗

m =
1

2
mẋ2 + mgx +

1

2
L(x)i2 (3.106)

and Lagrange’s equation reads

mẍ − mg − i2

2
L′(x) = 0 (3.107)

This expresses the equilibrium between the inertia force, the gravity and
the reluctance attraction force (reluctance forces are always attractive).
The set point (x0, i0) is the static equilibrium point where the reluctance
force balances the gravity force

Electromechanical systems3
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mg = − i0
2

2
L′(x0) (3.108)

Let us consider the variation of the magnetic attraction force about the
set point.

f(i, x) = −∂W ∗

m

∂x
= f(i0, x0)+

(∂f

∂i

)

i0,x0

(i−i0)+
(∂f

∂x

)

i0,x0

(x−x0)+h.o.t

= − i20
2

L′(x0) − L′(x0)i0∆i − i20
2

L′′(x0)∆x (3.109)

where ∆i is the current increment and ∆x is the displacement with respect
to the set point (i0, x0). The first term is balanced by gravity and the
reluctance force increment reads

∆f = −L′(x0) i0∆i − i20
2

L′′(x0)∆x = ki∆i + kx∆x (3.110)

where ki is the force to current factor and kx is the bearing stiffness about
the set point; they are illustrated in Fig.3.15. A negative stiffness kx means
that any disturbance load acting on the system will produce a deviation
from the set point which, in turn, will increase the imbalance and the
deviation from the set point. Such a system is mechanically unstable and
requires a feedback loop between the displacement increment ∆x and the
current increment ∆i to achieve stability.

i

f

Éf

Éi

i0

kx=à i
2
0
L00(x0)=2

Éf

ki = à L
0(x0)i0

f

x0 x

4x

(a) (b)

Fig. 3.15. Variation of the magnetic force about the set point (a)with the input current
(x0 fixed) (b)with the distance to the set point (i0 fixed).
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3.6 General electromechanical transducer

3.6.1 Constitutive equations

The constitutive behavior of a wide class of electromechanical transduc-
ers can be modelled as in Fig.3.16, where the black box represents the
conversion mechanism between electrical energy and mechanical energy,
and vice versa. In Laplace form, the constitutive equations read

Tme

Tem
e

Zei Zm v = xç

f

Fig. 3.16. Electrical analog schematic representation of an electromechanical trans-
ducer.

e = Zei + Temv (3.111)

f = Tmei + Zmv (3.112)

where e is the Laplace transform of the input voltage across the electri-
cal terminals, i the input current, f the force applied to the mechanical
terminals, and v the velocity of the mechanical part. Ze is the blocked
electrical impedance, measured for v = 0; Tem is the transduction co-
efficient representing the electromotive force (voltage) appearing in the
electrical circuit per unit velocity in the mechanical part (in volt.sec/m).
Tme is the transduction coefficient representing the force acting on the me-
chanical terminals to balance the electromagnetic force induced per unit
current input on the electrical side (in N/Amp), and Zm is the mechanical
impedance, measured when the electrical side is open (i = 0). As an ex-
ample, it is easy to check that the electromagnetic loudspeaker equations
(3.59) can be written in this form with Ze = Ls + R, Zm = ms + c + k/s,
Tem = T and Tme = −T . The same representation applies also to the
piezoelectric transducer analyzed in the next chapter.

In absence of external force (f = 0), v can be eliminated between the
two foregoing equations, leading to

e = (Ze −
TemTme

Zm
)i

Electromechanical systems3
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−TemTme/Zm is called the motional impedance. The total driving point
electrical impedance is the sum of the blocked and the motional impedances.

3.6.2 Self-sensing

Equation (3.111) shows that the voltage drop across the electrical ter-
minals of any electromechanical transducer is the sum of a contribution
proportional to the current applied and a contribution proportional to
the velocity of the mechanical terminals. Thus, if Zei can be measured
and subtracted from e, a signal proportional to the velocity is obtained.
This suggests the bridge structure of Fig.3.17. The bridge equations are
as follows: for the branch containing the transducer,

kZe

e

1

3

24

Transducer
I i

Zb kZb

Fig. 3.17. Bridge circuit for self-sensing actuation.

e = ZeI + Temv + ZbI

I =
1

Ze + Zb
(e − Temv)

V4 = ZbI =
Zb

Ze + Zb
(e − Temv)

For the other branch,
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e = kZei + kZbi

V2 = kZbi =
Zb

Ze + Zb
e

and the bridge output

V4 − V2 = (
−Zb Tem

Ze + Zb
) v (3.113)

is indeed a linear function of the velocity v of the mechanical termi-
nals. Note, however, that −Zb Tem/(Ze + Zb) acts as a filter; the bridge
impedance Zb must be adapted to the transducer impedance Ze to avoid
amplitude distortion and phase shift between the output voltage V4 − V2

and the transducer velocity in the frequency band of interest. The self-
sensing piezoelectric actuator will be examined in more detail in chapter
6.
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Piezoelectric ystems

4.1 Introduction

Piezoelectric materials belong to the so-called smart materials, or multi-
functional materials, which have the ability to respond significantly to
stimuli of different physical natures. Figure 4.1 lists various effects that
are observed in materials in response to various inputs: mechanical, elec-
trical, magnetic, thermal, light. The coupling between the physical fields
of different types is expressed by the non-diagonal cells in the figure; if
its magnitude is sufficient, the coupling can be used to build discrete or
distributed transducers of various types, which can be used as sensors, ac-
tuators, or even integrated in structures with various degrees of tailoring
and complexity (e.g. as fibers), to make them controllable or responsive
to their environment (e.g. for shape morphing, precision shape control,
damage detection, dynamic response alleviation,...).

Figure 4.2 summarizes the mechanical properties of a few smart mate-
rials which are considered for actuation in structural control applications.
Figure 4.2(a) shows the maximum (blocked) stress versus the maximum
(free) strain; the diagonal lines in the diagram indicate a constant energy
density. Figure 4.2(b) shows the specific energy density (i.e. energy density
by unit mass) versus the maximum frequency; the diagonal lines indicate a
constant specific power density. Note that all the material characteristics
vary by several orders of magnitude. Among them all, the piezoelectric
materials are undoubtedly the most mature and those with the most ap-
plications.

This chapter begins with the analysis of a one-dimensional discrete
piezoelectric transducer and the energy conversion process between me-
chanical energy and electrical energy. The constitutive equations are

95
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Fig. 4.1. Stimulus-Response relations indicating various effects in materials. The smart
materials correspond to the non-diagonal cells.

amined, and the analytical forms of the electromechanical energy and co-

energy functions are established. Next, the integration of a piezoelectric
transducer into a mechanical system is considered, and the Lagrangian
formulation of the dynamic equations is addressed; it is then extended to
the case of a structure with a finite number of piezoelectric transducers.
The remainder of this chapter is devoted to the constitutive equations of a
general piezoelectric material and Hamilton’s principle for a piezoelectric
structure. Finally, the Lagrangian formulation is illustrated with Rosen’s
piezoelectric transformer.

4.2 Piezoelectric transducer

The piezoelectric effect was discovered by Pierre and Jacques Curie in
1880. The direct piezoelectric effect consists in the ability of certain crys-
talline materials to generate an electrical charge in proportion to an exter-
nally applied force; the direct effect is used in force transducers. According
to the inverse piezoelectric effect, an electric field parallel to the direction
of polarization induces an expansion of the material. The piezoelectric
effect is anisotropic; it can be exhibited only by materials whose crystal
structure has no center of symmetry; this is the case for some ceramics

s

ex
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below a certain temperature called the Curie temperature; in this phase,
the crystal has built-in electric dipoles, but the dipoles are randomly ori-
entated and the net electric dipole on a macroscopic scale is zero. During
the poling process, when the crystal is cooled in the presence of a high
electric field, the dipoles tend to align, leading to an electric dipole on
a macroscopic scale. After cooling and removing of the poling field, the
dipoles cannot return to their original position; they remain aligned along
the poling direction and the material body becomes permanently piezo-
electric, with the ability to convert mechanical energy to electrical energy
and vice versa; this property will be lost if the temperature exceeds the
Curie temperature or if the transducer is subjected to an excessive electric
field in the direction opposed to the poling field.

The most popular piezoelectric materials are Lead-Zirconate-Titanate
(PZT) which is a ceramic, and Polyvinylidene fluoride (PVDF) which is
a polymer. In addition to the piezoelectric effect, piezoelectric materials
exhibit a pyroelectric effect, according to which electric charges are gen-
erated when the material is subjected to temperature; this effect is used
to produce heat detectors; it will not be discussed here.

In this section, we consider a transducer made of a one-dimensional
piezoelectric material of constitutive equations (we use the notations of
the IEEE Standard on Piezoelectricity)

D = εT E + d33T (4.1)

S = d33E + sET (4.2)

where D is the electric displacement (charge per unit area, expressed
in Coulomb/m2), E the electric field (V/m), T the stress (N/m2) and
S the strain. εT is the dielectric constant (permittivity) under constant
stress, sE is the compliance when the electric field is constant (inverse of
the Young’s modulus) and d33 is the piezoelectric constant, expressed in
m/V or Coulomb/Newton; the reason for the subscript 33 is that, by con-
vention, index 3 is always aligned to the poling direction of the material,
and we assume that the electric field is parallel to the poling direction.
More complicated situations will be considered later. Note that the same
constant d33 appears in (4.1) and (4.2).

In the absence of external force, a transducer subjected to a voltage
with the same polarity as that during poling produces an elongation, and

ystemss



4.3 Constitutive relations of a discrete transducer 99

a voltage opposed to that during poling makes it shrink (inverse piezo-
electric effect). In (4.2), this amounts to a positive d33. Conversely (di-
rect piezoelectric effect), if we consider a transducer with open electrodes
(D = 0), according to (4.1), E = −(d33/εT )T , which means that a trac-
tion stress will produce a voltage with polarity opposed to that during
poling, and a compressive stress will produce a voltage with the same
polarity as that during poling.

4.3 Constitutive relations of a discrete transducer

Equations (4.1) and (4.2) can be written in a matrix form

{

D
S

}

=

[

εT d33

d33 sE

] {

E
T

}

(4.3)

where (E, T ) are the independent variables and (D, S) are the dependent
variables. If (E, S) are taken as the independent variables, Equ.(4.1) and
(4.2) can be rewritten

D =
d33

sE
S + εT

(

1 − d33
2

sEεT

)

E

T =
1

sE
S − d33

sE
E

or

{

D
T

}

=

[

εT (1 − k2) e33

−e33 cE

] {

E
S

}

(4.4)

where cE = 1/sE is the Young’s modulus under E = 0 (short circuited
electrodes), in N/m2 (Pa); e33 = d33/sE , product of d33 by the Young
modulus, is the constant relating the electric displacement to the strain
for short-circuited electrodes (in Coulomb/m2), and also that relating
the compressive stress to the electric field when the transducer is blocked
(S = 0).

k2 =
d33

2

sEεT
=

e33
2

cEεT
(4.5)

k is called the electromechanical coupling factor of the material; it mea-
sures the efficiency of the conversion of mechanical energy into electri-
cal energy, and vice versa, as discussed below. From (4.4), we note that
εT (1 − k2) is the dielectric constant under zero strain.
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Fig. 4.3. Piezoelectric linear transducer.

If one assumes that all the electrical and mechanical quantities are
uniformly distributed in a linear transducer formed by a stack of n disks of
thickness t and cross section A (Fig.4.3), the global constitutive equations
of the transducer are obtained by integrating Equ.(4.3) and (4.4) over the
volume of the transducer; one easily finds

{

Q
∆

}

=

[

C nd33

nd33 1/Ka

] {

V
f

}

(4.6)

or

{

Q
f

}

=

[

C(1 − k2) nd33Ka

−nd33Ka Ka

] {

V
∆

}

(4.7)

where Q = nAD is the total electric charge on the electrodes of the trans-
ducer, ∆ = Sl is the total extension (l = nt is the length of the trans-
ducer), f = AT is the total force and V the voltage applied between the
electrodes of the transducer, resulting in an electric field E = V/t = nV/l.
C = εT An2/l is the capacitance of the transducer with no external
load (f = 0), Ka = A/sEl is the stiffness with short-circuited electrodes
(V = 0). Note that the electromechanical coupling factor can be written
alternatively

k2 =
d33

2

sEεT
=

n2d33
2Ka

C
(4.8)

Equation (4.6) can be inverted

4 Piezoelectric ystemss
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{

V
f

}

=
Ka

C(1 − k2)

[

1/Ka −nd33

−nd33 C

] {

Q
∆

}

(4.9)

from which we can see that the stiffness with open electrodes (Q = 0) is
Ka/(1−k2) and the capacitance for a fixed geometry (∆ = 0) is C(1 − k2).
Note that typical values of k are in the range 0.3−0.7; for large k, the
stiffness changes significantly with the electrical boundary conditions, and
similarly the capacitance depends on the mechanical boundary conditions.

Next, let us write the total stored electromechanical energy and coen-
ergy functions in the same way as we did for the movable plate capacitor
in chapter 3.

i = dQ=dt
É

V

f

f

Fig. 4.4. Discrete Piezoelectric transducer.

Consider the discrete piezoelectric transducer of Fig.4.4; the total
power delivered to the transducer is the sum of the electric power, V i
and the mechanical power, f∆̇. The net work on the transducer is

dW = V idt + f∆̇dt = V dQ + fd∆ (4.10)

For a conservative element, this work is converted into stored energy, dWe,
and the total stored energy, We(∆, Q) can be obtained by integrating
(4.10) from the reference state to the state (∆, Q). Since the system is
conservative, the integration can be done along any path leading from
(0, 0) to (∆, Q). Upon differentiating We(∆, Q),

dWe(∆, Q) =
∂We

∂∆
d∆ +

∂We

∂Q
dQ (4.11)
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and, comparing with (4.10), we recover the constitutive equations

f =
∂We

∂∆
V =

∂We

∂Q
(4.12)

Substituting f and V from (4.9) into (4.10), one gets

dWe = V dQ + fd∆

=
QdQ

C(1 − k2)
− nd33Ka

C(1 − k2)
(∆ dQ + Qd∆) +

Ka

1 − k2
∆ d∆

which is the total differential of

We(∆, Q) =
Q2

2C(1 − k2)
− nd33Ka

C(1 − k2)
Q∆ +

Ka

1 − k2

∆2

2
(4.13)

This is the analytical expression of the stored electromechanical energy
for the discrete piezoelectric transducer. Equations (4.12) recover the con-
stitutive equations (4.9). The first term on the right hand side of (4.13) is
the electrical energy stored in the capacitance C(1 − k2) (corresponding
to a fixed geometry, △ = 0); the third term is the elastic strain energy
stored in a spring of stiffness Ka/(1 − k2) (corresponding to open elec-
trodes, Q = 0); the second term is the piezoelectric energy. Referring to
Fig.4.5, the last term in (4.13) corresponds to integrating (4.10) over the
horizontal segment from (0, 0) to (∆, 0), while the other two result from
integrating on the vertical segment, from (∆, 0) to (∆, Q).

As with the movable plate capacitor, the coenergy function is defined
by the Legendre transformation

W ∗

e (∆, V ) = V Q − We(∆, Q) (4.14)

Q

É
0

(É;Q)

(É; 0)

Fig. 4.5. Integration path from (0, 0) to (∆, Q).
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The total differential of the coenergy is

dW ∗

e = QdV + V dQ − ∂We

∂∆
d∆ − ∂We

∂Q
dQ

dW ∗

e = QdV − f d∆ (4.15)

where Equ.(4.12) have been used. It follows that

Q =
∂W ∗

e

∂V
and f = −∂W ∗

e

∂∆
(4.16)

Introducing the constitutive equations (4.7) into (4.15),

dW ∗

e =
[

C(1 − k2)V + nd33Ka∆
]

dV + (nd33KaV − Ka∆) d∆

= C(1 − k2)V dV + nd33Ka (∆dV + V d∆) − Ka∆ d∆

which is the total differential of

W ∗

e (∆, V ) = C(1 − k2)
V 2

2
+ nd33KaV ∆ − Ka

∆2

2
(4.17)

This is the analytical form of the coenergy function for the discrete piezo-
electric transducer. The first term on the right hand side of (4.17) is
recognized as the electrical coenergy in the capacitance C(1 − k2) (cor-
responding to a fixed geometry, ∆ = 0); the third is the strain energy
stored in a spring of stiffness Ka (corresponding to short-circuited elec-
trodes, V = 0). The second term of (4.17) is the piezoelectric coenergy;
using the fact that the uniform electric field is E = nV/l and the uniform
strain is S = ∆/l, it can be rewritten

∫

Ω
Se33E dΩ (4.18)

where the integral extends to the volume Ω of the transducer. Recall that,
in the flux linkage formulation of the Lagrange equations, V = λ̇.

4.3.1 Interpretation of k
2

Consider a piezoelectric transducer subjected to the following mechanical
cycle: first, it is loaded with a force F with short-circuited electrodes; the
resulting extension is

∆1 =
F

Ka
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where Ka = A/(sEl) is the stiffness with short-circuited electrodes. The
energy stored in the system is

W1 =

∫ ∆1

0
f dx =

F∆1

2
=

F 2

2Ka

At this point, the electrodes are open and the transducer is unloaded ac-
cording to a path of slope Ka/(1−k2), corresponding to the new electrical
boundary conditions,

∆2 =
F (1 − k2)

Ka

The energy recovered in this way is

W2 =

∫ ∆2

0
f dx =

F∆2

2
=

F 2(1 − k2)

2Ka

leaving W1−W2 stored in the transducer. The ratio between the remaining
stored energy and the initial stored energy is

W1 − W2

W1
= k2

Similarly, consider the following electrical cycle: first, a voltage V is
applied to the transducer which is mechanically unconstrained (f = 0).
The electric charges appearing on the electrodes are

Q1 = CV

where C = εT An2/l is the unconstrained capacitance, and the energy
stored in the transducer is

W1 =

∫ Q1

0
v dq =

V Q1

2
=

CV 2

2

At this point, the transducer is blocked mechanically and electrically un-
loaded from V to 0. The electrical charges are removed according to

Q2 = C(1 − k2)V

where the capacitance for fixed geometry has been used. The energy re-
covered in this way is

W2 =

∫ Q2

0
v dq =

C(1 − k2)V 2

2
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leaving W1 − W2 stored in the transducer. Here again, the ratio between
the remaining stored energy and the initial stored energy is

W1 − W2

W1
= k2

Although the foregoing relationships provide a clear physical interpreta-
tion of the electromechanical coupling factor, they do not bring a practical
way of measuring k2; the experimental determination of k2 is often based
on impedance (or admittance) measurements, as discussed in the next
section.

4.4 Structure with a discrete piezoelectric transducer

Piezoelectric

Transducer

Structure

Current source

& Resistive shunt

V = õç

I(t) R

É = bTx

f

f

Tã = 2
1 xç TMxç

V = 2
1 xTKx

Fig. 4.6. Linear structure equipped with a piezoelectric transducer, a current source
and a shunted resistor.

Consider the linear structure of Fig.4.6, assumed undamped for sim-
plicity, and equipped with a discrete piezoelectric transducer as discussed
in the previous section. It is also assumed that the transducer is con-
nected to a current source I(t) and is shunted with a resistor R. Using
a flux linkage formulation for the electrical quantities, the Lagrangian of
the system reads (Table 3.1):

L = T ∗ + W ∗

e − V (4.19)

where
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T ∗ =
1

2
ẋT Mẋ (4.20)

is the kinetic coenergy of the structure,

V =
1

2
xT Kx (4.21)

is the strain energy in the structure, excluding the piezoelectric trans-
ducer, and

W ∗

e (λ̇) =
1

2
C(1 − k2)λ̇2 + nd33Kaλ̇∆ − 1

2
Ka∆

2 (4.22)

is the coenergy function of the piezoelectric transducer, given by (4.17),
where λ̇ = V is the voltage at the electrodes of the transducer. Combining
these equations and taking into account that ∆ = bT x, where b is the
projection vector relating the end displacements of the transducer to the
global coordinate system, we can write the Lagrangian

L =
1

2
ẋT Mẋ − 1

2
xT (K + Kabb

T )x + C(1 − k2)
λ̇2

2
+ nd33Kaλ̇bT x (4.23)

The virtual work of the non-conservative forces is

δWnc = Iδλ − λ̇

R
δλ + Fδx (4.24)

where I is the current source intensity and F is the vector of external
forces applied to the structure. Note that the resistor can be handled
alternatively by the dissipation function

D =
λ̇2

2R

In this case, it disappears from the virtual work equation. Similarly, if the
viscous damping of the structure is included in the analysis, an additional
contribution (1.53) appears in the dissipation function. These equations
are the starting point of the Lagrangian formulation of the system dy-
namics. The Lagrange equations relative to the generalized coordinates x
and λ give respectively

Mẍ + (K + Kabb
T )x = bKand33V + F (4.25)

d

dt
[C(1 − k2)V + nd33Kab

T x] +
V

R
= I (4.26)

where V = λ̇. These two equations govern the system dynamics when a
current source is used. We assume F = 0 in what follows.
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4.4.1 Voltage source

If a voltage source is used instead of a current source, λ ceases to be
a generalized variable (see Table 3.1) and the shunted resistor becomes
irrelevant (and useless). In this case, Equ.(4.25) applies alone. In absence
of external forces, if one defines the unconstrained expansion δ = nd33V
under the voltage V [see Equ.(4.6)], it is rewritten

Mẍ + (K + Kabb
T )x = bKaδ (4.27)

Thus, the effect of the piezoelectric transducer on the structure can be
represented by a pair of self-equilibrating forces applied axially to the ends
of the transducer; as for thermal loads, their magnitude is equal to the
product of the stiffness of the transducer (under short-circuited boundary
conditions in this case, Ka) and the unconstrained piezoelectric expansion,
δ1. From (4.27), note that if the electrodes of the transducer are short-
circuited, δ = 0, and the eigenvalue problem is

Mẍ + (K + Kabb
T )x = 0 (4.28)

or alternatively in Laplace form

Ms2x + (K + Kabb
T )x = 0 (4.29)

Thus, K + Kabb
T is the global stiffness matrix when the transducer is

short-circuited.

4.4.2 Current source

If one considers the case of a pure current source, R → ∞ in (4.26). Upon
transforming in the Laplace domain and eliminating V between (4.26) and
(4.25), one finds easily after some algebra that the governing equation is.

[

Ms2 + (K + Kabb
T ) +

(nd33Ka)
2

C(1 − k2)
bbT

]

x = bnd33
Ka

1 − k2

I

sC

and, taking into account(4.8),

[

Ms2 +

(

K +
Ka

1 − k2
bbT

)]

x = b
Ka

1 − k2
nd33

I

sC
(4.30)

1 this is the thermal analogy
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Note that I/s is the electric charge Q, and, by setting f = 0 in Equ.(4.9),
one sees that δ = nd33Q/C is the free expansion of the transducer under
Q. Thus, as for a voltage source, the effect of the piezoelectric transducer
on the structure can be represented by a pair of self-equilibrating piezo-
electric forces; the magnitude is equal to the product of the free expansion
δ and the stiffness of the transducer. Note, however, that the stiffness of
the transducer involved here is that with open electrodes, Ka/(1 − k2)
[see Equ.(4.9) with (Q = 0)] .

If the electrodes of the transducer are open, setting I = 0 in (4.30),
one obtains the eigenvalue problem

[

Ms2 +

(

K +
Ka

1 − k2
bbT

)]

x = 0 (4.31)

Thus, the global stiffness matrix when the transducer has open electrodes

is K +
Ka

1 − k2
bbT .

I

õç = V

x

(a)

Transducer

dB

þ

(b)

!

M

ù

p z

V
I

z2
z2àp2

k2 =

Fig. 4.7. (a) Elementary dynamical model of the piezoelectric transducer. (b) Typical
admittance FRF of the transducer, in the vicinity of its natural frequency.

4.4.3 Admittance of the piezoelectric transducer

We have just seen that the effect of the piezoelectric transducer on the
natural frequencies of the structure depends on its electrical boundary
conditions; the stiffness is larger with open electrodes than with short-
circuited electrodes, and the difference depends on the electromechanical
coupling factor. Consider the system of Fig.4.7(a), which is the simplest
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possible dynamical model of the piezoelectric transducer; from (4.25) and
(4.26) (with b = 1), the governing equations are (in the Laplace domain):

(Ms2 + Ka)x = Kand33V

s[C(1 − k2)V + nd33Kax] = I

Upon substituting x from the first to the second equation and using the
definition (4.8) of the electromechanical coupling factor, we obtain the
admittance (inverse of the impedance):

I

V
= sC(1 − k2)

[

Ms2 + Ka/(1 − k2)

Ms2 + Ka

]

(4.32)

The numerator vanishes at the transmission zeros (±jz) such that

z2 =
Ka/(1 − k2)

M
(4.33)

z is the natural frequency with open electrodes. Similarly, the denomina-
tor vanishes at the poles (±jp) such that

p2 =
Ka

M
(4.34)

p is the natural frequency with short-circuited electrodes. This was ex-
pected since I = 0 with open electrodes and V = 0 with short-circuited
electrodes. This is a general statement; we will see later that when the
transducer is placed in a multiple d.o.f. structure, the poles and zeros in
the admittance FRF are solutions of the eigenvalue problems (4.29) and
(4.31), respectively. Combining (4.33) and (4.34), one finds that

z2 − p2

z2
= k2 (4.35)

which constitutes a practical way to determine the electromechanical
coupling factor from admittance (or impedance) FRF measurements
(Fig.4.7(b)).

4.4.4 Prestressed transducer

In most practical applications, the piezoelectric transducer is encapsulated
inside a mechanical structure which protects it from the environment and
introduces compression prestresses (the normal operating mode of the
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I

õç = V

Transducer

K1
Prestressing

spring

Equivalent properties:

K?
a =Ka+K1

d?33 = ÷d33

C? = C(1àk2 +k2÷)

f

f

1àk2+k2÷
÷k?2 = k2

Ka+K1

Ka÷ =

Fig. 4.8. Prestressed piezoelectric transducer.

stacked design is in compression); this can be represented a linear spring
K1 operating in parallel with the transducer (Fig.4.8). The equivalent
properties of this transducer can be obtained from those of the original one
by noting that the short-circuited stiffness now becomes K∗

a = Ka + K1

while the constant volume capacitance remains unchanged, C(1 − k2).
On the other hand, the joint coenergy function of the transducer and the
spring reads

W ∗

e (∆, V ) = C(1 − k2)
V 2

2
+ nd33KaV ∆ − (Ka + K1)

∆2

2
(4.36)

(equal to the coenergy of the piezoelectric transducer minus the strain
energy of the spring) and, from (4.16), the constitutive equations are

{

Q
f

}

=

[

C(1 − k2) nd33Ka

−nd33Ka Ka + K1

] {

V
∆

}

(4.37)

Examining the behavior under f = 0, one finds

∆ = nd33
Ka

Ka + K1
V = nd33 ν V

Q = C(1 − k2)V +
n2d2

33K
2
a

Ka + K1
V = C(1 − k2 + k2ν)V

where ν = Ka/(Ka+K1) is the fraction of strain energy in the transducer.
Thus, the effective piezoelectric coefficient and the capacitance under f =
0 are respectively

d∗33 = ν d33 (4.38)
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C∗ = C(1 − k2 + k2ν) (4.39)

Using the definition (4.8) of the electromechanical coupling factor, one
finds that it is reduced according to

k∗2 =
n2d∗33

2K∗

a

C∗
= k2 ν

1 − k2 + k2ν
(4.40)

It can be verified that, since the constant volume capacitance is not af-
fected by the spring K1,

C∗(1 − k∗2) = C(1 − k2)

and that the stiffness with open electrodes is

K∗

a

1 − k∗2 =
Ka

1 − k2
+ K1

The value of k∗2 can be determined experimentally as explained in the
previous section.

4.4.5 Active enhancement of the electromechanical coupling

The electromechanical coupling factor is a very important material prop-
erty, because it controls the conversion between the mechanical energy and
the electrical energy. The role of k2 in piezoelectric transformers and in
passive damping of vibration by shunted piezoelectric transducers on pas-
sive electrical networks will be stressed later in this book. In this section,
a way of increasing the electromechanical coupling factor by shunting a
(synthetic) negative capacitance on the transducer (Fig.4.9) is examined,
and the equivalent properties of the system are established.

Consider the system of Fig.4.9 where a piezoelectric transducer is in
parallel with a negative capacitance. The joint coenergy is the sum of that
of the piezoelectric transducer and that of the negative capacitance:

W ∗

e (λ̇) =
1

2
C(1 − k2)λ̇2 + nd33Kaλ̇∆ − 1

2
Ka∆

2 − 1

2
C1λ̇

2

The equivalent piezoelectric transducer is defined as having the same n,
d33 and Ka (stiffness with short-circuited electrodes), and a capacitance
C∗ and electromechanical coupling factor k∗ such that the coenergy func-
tion can be written as in Equ.(4.17):
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õç

Equivalent piezo
õç

Negative

capacitance

shunt

àC1

Piezo
(C?; k?2)(C; k2)

C? = Cà C1

k?2 = k2
CàC1

C

Fig. 4.9. Piezoelectric transducer shunted on a negative capacitance −C1 and equiv-
alent properties.

W ∗

e (λ̇) =
1

2
C∗(1 − k∗2)λ̇2 + nd33Kaλ̇∆ − 1

2
Ka∆

2

This implies that

C∗(1 − k∗2) = C(1 − k2) − C1 (4.41)

Besides, from the definition (4.8) of the electromechanical coupling factor,
one must have

k2 =
n2d2

33Ka

C
k∗2 =

n2d2
33Ka

C∗

which implies
Ck2 = C∗k∗2 (4.42)

From (4.41) and (4.42), one finds the properties of the equivalent trans-
ducer:

C∗ = C − C1 (4.43)

k∗2 = k2 C

C − C1
(4.44)

Note that since k∗2 < 1, one must have C1 < C(1− k2). Thus if a perfect
negative capacitance can be synthesized, the composite system formed by
a piezoelectric transducer in parallel with a negative capacitance behaves
like a equivalent piezoelectric transducer (Fig.4.9) with the reduced ca-
pacitance C∗ given by (4.43) and the increased electromechanical coupling
factor k∗2 given by (4.44). In these circumstances, the negative capacitive
shunting can be seen as a way of improving the conversion properties of
the piezoelectric transducer. A negative capacitance can be synthesized
as indicated in Fig.4.10; it is an active circuit involving an operational
amplifier.
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R1
R2

Op Amp

C1

V

I

Z = à
R2

R1

C1s
1

Fig. 4.10. Synthesis of a negative capacitance (from Philbrick Researches, Inc.)

4.5 Multiple transducer systems

Consider the case (Fig.4.11) where nT identical piezoelectric transducers
shunted with identical admittances YSH are imbedded into a structure
(to be subsequently controlled in a decentralized manner, with identical
control for all loops). Let λ = (λ1 . . . , λi, . . .)

T be the vector of flux linkage
electrical coordinates and ∆ = (∆1 . . . , ∆i, . . .)

T the vector of transducer
extensions; ∆ can be expressed in global coordinates as

∆ = BT x (4.45)

where B is the appropriate projection matrix. The Lagrangian of the
system is

L = T ∗ − V +
nT
∑

i=1

W ∗

e (i) (4.46)

where T ∗ and V refer to the structure and the other term is the sum of
the coenergies of all the transducers.

L =
1

2
ẋT Mẋ − 1

2
xT Kx +

nT
∑

i=1

[

C(1 − k2)
λ̇2

i

2
+ nd33Kaλ̇i∆i −

Ka

2
∆2

i

]

=
1

2
ẋT Mẋ − 1

2
xT Kx +

1

2
C(1 − k2)λ̇T λ̇ + nd33Kaλ̇

T ∆ − 1

2
Ka∆

T ∆

Combining with (4.45), we can write the Lagrangian

L =
1

2
ẋT Mẋ − 1

2
xT (K + KaBBT )x +

1

2
C(1 − k2)λ̇T λ̇ + nd33Kaλ̇

T BT x

(4.47)
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The virtual work of non conservative forces is

δWnc = δλT I − YSHδλT λ̇ (4.48)

In these equations,λ and I are vectors of dimension nT while C, Ka, YSH,. . .
are scalar quantities, common to all loops. From (4.47) and (4.48), the
Lagrange’s equations read (with V = λ̇)

Mẍ + (K + KaBBT )x = nKad33BV (4.49)

d

dt
[C(1 − k2)V + nd33KaB

T x] + YSHV = I (4.50)

õiç = Vi

Ii YSH
õkç = Vk

IkYSH

Fig. 4.11. Structure equipped with multiple transducers.

4.6 General piezoelectric structure

The Lagrangian of a structure involving a finite number of discrete piezo-
electric transducers can be written in the general form

L =
1

2
ẋT Mẋ − 1

2
xT Kxxx +

1

2
λ̇T Cφφλ̇ + λ̇T Kφxx (4.51)

[compare with (4.47)]. In this equation, M is the mass matrix, Kxx is
the stiffness matrix (including the mechanical part of the transducers
with short circuited electrical boundary conditions), Cφφ is the matrix of
capacitance of the transducers (for fixed displacements) and Kφx is the
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coupling matrix of piezoelectric properties, relating the mechanical and
electrical variables.

If the transducers are connected to voltage sources φ = λ̇, the flux link
are not generalized coordinates, δWnc = f Tδx, and the Lagrange equa

tion reads

Mẍ + Kxxx − KT
φxφ = f (4.52)

KT
φxφ are the self-equilibrating piezoelectric loads associated with the volt-

age distribution φ. The eigenvalue problem,

(

Ms2 + Kxx

)

x = 0 (4.53)

corresponds to short-circuited electrical boundary conditions. On the
other hand, if the transducers are connected to current sources I and
a passive network of admittance matrix Y ,

δWnc = fT δx + IT δλ − λ̇T Y δλ (4.54)

or alternatively, for a resistive network, the dissipation function may be
used:

D =
1

2
λ̇T Y λ̇ (4.55)

In this case, the Lagrange equations are

x : Mẍ + Kxxx − KT
φxλ̇ = f (4.56)

λ : Cφφλ̈ + Kφxẋ + Y λ̇ = I (4.57)

In the Laplace domain, with the notation φ = λ̇,

Ms2x + Kxxx − KT
φxφ = f (4.58)

Cφφφ + Kφxx + Y φ/s = I/s (4.59)

If Y = 0 (no shunted resistor network), φ can be substituted from (4.59)
into (4.58), leading to

[

Ms2 + (Kxx + KT
φxC−1

φφ Kφx)
]

x = f + KT
φxC−1

φφ I/s (4.60)

Once again, KT
φxC−1

φφ I/s are the self-equilibrating piezoelectric loads asso-

ciated with the electric charge I/s. The stiffness matrix Kxx +KT
φxC−1

φφ Kφx

corresponds to open electrodes electrical boundary conditions, with eigen-
value problem

ages

-
-
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[

Ms2 + (Kxx + KT
φxC−1

φφ Kφx)
]

x = 0 (4.61)

4.7 Piezoelectric material

4.7.1 Constitutive relations

The constitutive equations of a general piezoelectric material are

Tij = cE
ijklSkl − ekijEk (4.62)

Di = eiklSkl + εS
ikEk (4.63)

where Tij and Skl are the components of the stress and strain tensors,
respectively, cE

ijkl are the elastic constants under constant electric field

(Hooke’s tensor), eikl the piezoelectric constants (in Coulomb/m2) and
εS
ij the dielectric constant under constant strain. These formulae use clas-

sical tensor notations, where all indices i, j, k, l = 1, 2, 3, and there is a
summation on all repeated indices. The above equations are a general-
ization of (4.4), with Skl and Ej as independent variables; they can be
written alternatively with Tkl and Ej as independent variables:

Sij = sE
ijklTkl + dkijEk (4.64)

Di = diklTkl + εT
ikEk (4.65)

where sE
ijkl is the tensor of compliance under constant electric field, dikl

the piezoelectric constants (in Coulomb/Newton) and εT
ik the dielectric

constant under constant stress. The difference between the properties un-
der constant stress and under constant strain has been stressed in section
4.3. As an alternative to the above tensor notations, it is customary to
use the engineering vector notations

T =



































T11

T22

T33

T23

T31

T12



































S =



































S11

S22

S33

2S23

2S31

2S12



































(4.66)

With these notations, Equ.(4.62) (4.63) can be written in matrix form

{T} = [c]{S} − [e]{E}
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{D} = [e]T {S} + [ε]{E} (4.67)

and (4.64), (4.65),

{S} = [s]{T} + [d]{E}
{D} = [d]T {T} + [ε]{E} (4.68)

where the superscript T stands for the transposed; the other superscripts
have been omitted, but can be guessed from the equation itself. Assum-
ing that the coordinate system coincides with the orthotropy axes of the
material and that the direction of polarization coincides with direction 3,
the explicit form of (4.68) is:

Actuation:



































S11

S22

S33

2S23

2S31

2S12



































=



















s11 s12 s13 0 0 0
s12 s22 s23 0 0 0
s13 s23 s33 0 0 0
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(4.69)

Sensing:
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(4.70)
Typical values of the piezoelectric constants for piezoceramics (PZT) and
piezopolymers (PVDF) are given Table 4.1. Examining the actuator equa-
tion (4.69), we note that when an electric field E3 is applied parallel to
the direction of polarization, an extension is observed along the same
direction; its amplitude is governed by the piezoelectric coefficient d33.
Similarly, a shrinkage is observed along the directions 1 and 2 perpendic-
ular to the electric field, the amplitude of which is controlled by d31 and
d32, respectively (shrinkage, because d31 and d32 are negative). Piezoce-
ramics have an isotropic behaviour in the plane, d31 = d32; on the con-
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trary, when PVDF is polarized under stress, its piezoelectric properties
are highly anisotropic, with d31 ∼ 5d32. Equation (4.69) also indicates that
an electric field E1 normal to the direction of polarization 3 produces a
shear deformation S13, controlled by the piezoelectric constant d15 (simi-
larly, a shear deformation S23 occurs if an electric field E2 is applied; it is
controlled by d24). An interesting feature of this type of actuation is that
d15 is the largest of all piezoelectric coefficients (500 10−12C/N for PZT ).
The various modes of operation associated with the piezoelectric coeffi-
cients d33, d31 and d15 are illustrated in Fig.4.12.

+

_

ÉL = nd33V

ÉL

ÉL = Ed31L

E = V=t

ÉL

í
L0E1

1

3

í = d15E1

ÉL = íL0

V

P

P

V

L

PE t

Supporting structure

P V

d33

d31

d15

Fig. 4.12. Actuation modes of piezoelectric actuators. P indicates the direction of
polarization.

4.7.2 Coenergy density function

With an approach parallel to that of the discrete transducer in section
4.3, the total stored energy density in a unit volume of material is the
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sum of the mechanical work and the electrical work,

dWe(S, D) = {dS}T {T} + {dD}T {E} (4.71)

[compare with (4.10)]. For a conservative system, We(S, D) can be ob-
tained by integrating (4.71) from the reference state to the state (S, D);
since the system is conservative, the integration can be done along any
path from (0, 0) to (S, D). Upon differentiating We(S, D) and comparing
with (4.71) we recover the constitutive equations

{T} =

{

∂We

∂S

}

and {E} =

{

∂We

∂D

}

(4.72)

which are the distributed counterparts of (4.12). The coenergy density
function is defined by the Legendre transformation

W ∗

e (S, E) = {E}T {D} − We(S, D) (4.73)

[compare with (4.14)]. The total differential is

dW ∗

e = {dE}T {D} + {E}T {dD} − {dS}T
{

∂We

∂S

}

− {dD}T
{

∂We

∂D

}

= {dE}T {D} − {dS}T {T} (4.74)

where (4.72) have been used. It follows that

{D} =

{

∂W ∗

e

∂E

}

and {T} = −
{

∂W ∗

e

∂S

}

(4.75)

Substituting (4.67) into (4.74),

dW ∗

e = {dE}T [e]T {S} + {dE}T [ε]{E} − {dS}T [c]{S} + {dS}T [e]{E}
(4.76)

which is the total differential of

W ∗

e (S, E) =
1

2
{E}T [ε]{E} + {S}T [e]{E} − 1

2
{S}T [c]{S} (4.77)

[compare with (4.17)]. The first term in the right hand side is the electrical
coenergy stored in the dielectric material (ε is the matrix of permittivity
under constant strain); the third term is the strain energy stored in the
elastic material (c is the matrix of elastic constants under constant electric
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Material properties PZT PVDF

Piezoelectric constants
d33(10−12C/N or m/V ) 300 25
d31(10−12C/N or m/V ) 150 uni-axial:

d31 = 15
d32 = 3
bi-axial:

d31 = d32 = 3
d15(10−12C/N or m/V ) 500 0

e31 = d31/sE(C/m2) 7.5 0.025
Electromechanical coupling factor

k33 0.7
k31 0.3 ∼0.1
k15 0.7

Dielectric constant εT /ε0 1800 10
(ε0 = 8.85 10−12F/m)

Max. Electric field (V/mm) 2000 5 105

Max. operating (Curie) T ◦ (◦C) 80◦
−150◦ 90◦

Density (Kg/m3) 7600 1800
Young’s modulus 1/sE (GPa) 50 2.5

Maximum stress (MPa)
Traction 80 200

Compression 600 200
Maximum strain Brittle 50%

Table 4.1. Typical properties of piezoelectric materials.

field); the second term is the piezoelectrical coenergy, which generalizes
(4.18) in three dimensions. Taking the partial derivatives (4.75), one re-
covers the constitutive equations (4.67). In that sense, the analytical form
of the coenergy density function, (4.77) together with (4.75), can be seen
as an alternative definition of the linear piezoelectricity. In the literature,

H(S, E) = −W ∗

e (S, E) (4.78)

is known as the electric enthalpy density.

4 Piezoelectric ystemss

−
−

−



4.8 Hamilton’s principle 121

4.8 Hamilton’s principle

We follow a displacement/flux linkage formulation as in section 3.3.2. The
admissibility requirements are, as before, that the virtual displacements
δui must be compatible with the kinematics of the system, and the ad-
missible flux linkage variations δλk must be compatible with Kirchhoff’s
voltage rule. The variational indicator is

V.I. =

∫ t2

t1
[δ(T ∗ + W ∗

e ) + δWnc]dt = 0 (4.79)

T ∗ + W ∗

e is the Lagrangian. The actual path is that which cancels the vari-
ational indicator (4.79) with respect to all admissible variations δui and
δλk of the path between t1 and t2, where δui(t1) = δui(t2) = δλk(t1) =

δλk(t2) = 0.

T ∗ =
1

2

∫

Ω
̺{u̇}T {u̇}dΩ (4.80)

and

W ∗

e =
1

2

∫

Ω

(

{E}T [ε]{E} + 2{S}T [e]{E} − {S}T [c]{S}
)

dΩ (4.81)

The virtual work of nonconservative forces has contributions from external
forces and applied currents; for discrete systems,

δWnc =
∑

i

fiδxi +
∑

k

Ikδλk (4.82)

For continuous systems, the virtual work of external forces has contribu-
tions from volume forces and surface forces.

∫

Ω
fiδuidΩ +

∫

S2

tiδuidS (4.83)

(S2 is the part of surface where external forces are applied). The virtual
work of external applied currents can be integrated by part with respect
to time:

∫ t2

t1

∑

k

Ikδλk dt = Qkδλk

]t2

t1

−
∫ t2

t1
Qkδλ̇k dt (4.84)

where, Qk is the electric charge associated with Ik, Q̇k = Ik. Taking into
account that δλk(t1) = δλk(t2) = 0 and using the notation φk = λ̇k for the
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potential associated with the flux linkage λk, we can write the electrical
part of δWnc

δWnc = −Qk δφk (4.85)

For continuous systems, if surface charges are prescribed over S3, this can
be rewritten

−
∫

S3

σ̄ δφ dS (4.86)

where σ̄ is the surface charge density. Putting together (4.83)-(4.86), we
find

δWnc =

∫

Ω
fiδuidΩ +

∫

S2

tiδuidS − Qkδφk −
∫

S3

σ̄ δφ dS (4.87)

The contribution of the kinetic coenergy to the variational indicator can
be rewritten

∫ t2

t1
δT ∗dt =

∫ t2

t1
dt

∫

Ω
̺ δu̇iu̇i dΩ

=

∫

Ω
̺δuiu̇i

]t2

t1

dΩ −
∫ t2

t1
dt

∫

Ω
̺ δuiüi dΩ (4.88)

The first term vanishes because δu(t1) = δu(t2) = 0. The coenergy term
δW ∗

e reads

δW ∗

e =

∫

Ω
({δE}T [ε]{E}+{δE}T [e]T {S}+{δS}T [e]{E}−{δS}T [c]{S})dΩ

=

∫

Ω

[

{δE}T
(

[ε]{E} + [e]T {S}
)

+ {δS}T
(

[e]{E} − [c]{S}
)]

dΩ

and, taking into account the constitutive equations (4.67)

δW ∗

e =

∫

Ω

(

{δE}T {D} − {δS}T {T}
)

dΩ

=

∫

Ω
(δEiDi − δSijTij) dΩ (4.89)

Taking into account the relationship between the electric field and the
electric potential, on one hand, and that between the strain and the dis-
placement on the other hand;
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Ei = −φ,i

and

Sij =
1

2
(ui,j + uj,i)

where the subscript notation, i is used for the partial derivative
∂

∂xi
.

δW ∗

e =

∫

Ω
(−δφ,iDi − δui,jTij) dΩ

=

∫

Ω
[−(δφDi),i + δφDi,i − (δuiTij),j + δuiTij,j ] dΩ

Upon using the divergence theorem,
∫

Ω

∂Ai

∂xi
dΩ =

∫

Ω
Ai,i dΩ =

∫

S
Aini dS (4.90)

where ni is the outward normal to the surface, one finds

δW ∗

e =

∫

Ω
(δφDi,i + δuiTij,j) dΩ −

∫

S
(δφDini + δuiTijnj)dS (4.91)

Combining (4.87),(4.88) and (4.91), the variational indicator reads

0 =

∫

Ω
[δφ Di,i + δui(−̺üi + Tij,j + fi)] dΩ

−
∫

S
[δφ(Dini + σ̄) + δui(Tijnj − ti)] dS (4.92)

Thus, since the virtual variations δφ and the virtual displacements δxi

are arbitrary within the volume Ω, one must have

Di,i = div{D} = 0 (4.93)

which is Gauss’s law (we have assumed that there is no volume charge
within the dielectric medium), and

Tij,j + fi = ̺üi (4.94)

which is mechanical equilibrium equation with volume forces fi.
On the external surface,

Tijnj = ti on S2 (4.95)

Dini = −σ̄ on S3 (4.96)



124

The above discussion is somewhat tedious, but it shows that cancelling
the variational indicator (4.79) is equivalent to enforcing Gauss’s equation
(4.93) and the dynamic equilibrium (4.94) within the volume of the mate-
rial, and the natural boundary conditions on the part of the surface where
external loads and electric charges are applied, (4.95) and (4.96). Hamil-
ton’s principle is the starting point for the finite element formulation of
piezoelectric structures.

4.9 Rosen’s piezoelectric transformer

Piezoelectric transformers were first introduced by Rosen in 1956; they
have been very successful for low power applications such as power sup-
ply of laptop computers. Due to the high energy density of piezoelectric
materials, the high electromechanical coupling factors and the high qual-
ity factor of the mechanical resonance (low damping), they tend to be
lighter and more efficient than wire wound transformers whose efficiency
tends to decrease rapidly as the size is reduced. Besides, they are free
from electromagnetic interference and the solid-state nature of piezoelec-
tric transformers is the key to mass production.

The principle of Rosen’s piezoelectric transformer is shown in Fig.4.13;
the left side is the driving section; the input a.c. voltage generates an axial
vibration thanks to the d31 coefficient. The axial vibration is transmitted
to the power generating section which is polarized in the axial direction
and generates the output voltage thanks to the d33 coefficient. The sys-
tem is supposed to work at an axial resonance of the free-free mechanical
system. We analyze this system as an application of Lagrange’s equation,
using the Rayleigh-Ritz method discussed in section 1.10. We assume that

1

2

3

l

V
R Vout = õç

Vibration direction

P P

Driving section Power generating section

Fig. 4.13. Principle of Rosen’s piezoelectric transformer. P indicates the direction of
polarization.
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the system works at the resonance of the second axial mode and that the
axial displacements are close to those of a uniform bar (Fig.4.14)

u = l z(t)φ(x) = l z(t) cos
πx

l
(4.97)

The system has one generalized mechanical coordinate, the amplitude
z(t) of the assumed mode, and one generalized electrical coordinate, the
flux linkage λ associated with the output voltage, λ̇ = Vout. Following the
general approach of Hamilton’s principle, we write the Lagrangian as the
sum of the kinetic coenergy T ∗ and the coenergy function W ∗

e defined
respectively by (4.80) and (4.81)

L = T ∗ + W ∗

e = T ∗ + W ∗

e,left
+ W ∗

e,right
(4.98)

where the contributions of the driving section and the power generating
section to the coenergy function have been separated. T ∗ can be calculated
for the entire system starting from the assumed displacement field (4.97)

u̇ = lż φ(x) = lż cos
πx

l

T ∗ =
1

2

∫ 2l

0
̺Au̇2dx =

̺A

2
l2ż2

∫ 2l

0
φ2(x)dx =

̺A

2
l3ż2 (4.99)

R

Vout = õç

l l

1

3

x

u

u = lz cos l
ùx

2ll

x

u0 = à ùz sin
l
ùx

2ll

u0

P P tV

Fig. 4.14. Assumed axial displacements in the transformer.
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where A is the cross-section and ̺ the mass density of the bar. Since the
electrical states of the driving section and the power generating section;
are different, the coenergy function is partitioned:
(a) Driving section
The input voltage V is applied between electrodes which extend over the
entire length of the driving section; we therefore assume that the electric
field E3 is uniform over the entire volume, E3 = V/t. From (4.81),

W ∗

e,left
=

∫ l

0
A(

1

2
εS
33E

2
3 + S1e31E3 −

1

2
cE
11S

2
1)dx (4.100)

with

E3 =
V

t
S1 = u′ = l φ′(x)z (4.101)

Note that E3 is the electric field in direction 3 while S1 is the strain along
the axis of the bar. Substituting (4.101) into (4.100) and integrating over
[0, l], one gets

W ∗

e,left
=

Al

2
εS
33

(

V

t

)2

− 2Al e31

(

V

t

)

z − Al
π2

4
cE
11z

2 (4.102)

(b) Power generating section
We assume that all quantities are constant over the cross-section of the
bar. According to the constitutive equation (4.63)

D1 = εS
33E1 + e33S1

or

E1 =
1

εS
33

D1 −
e33

εS
33

S1 (4.103)

where the use of the subscript 3 in the properties reflects the fact that,
in the power generating section, the polarization is along the axis 1. On
the other hand, since there is no volume charge in the dielectric material,
Gauss’s law states that div{D} = 0, that is

∂D1

∂x
= 0

Thus D1 is constant along the power generating section. Integrating
(4.103), one gets

Vout = λ̇ =

∫ 2l

l
−E1dx = −D1l

εS
33

+
e33

εS
33

∫ 2l

l
S1dx
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and, upon using (4.101),

Vout = λ̇ = −D1l

εS
33

+
e33

εS
33

2 l z

Substituting D1 from this expression into (4.103), one gets the electric
field in terms of the generalized variables z and λ̇:

E1 = − λ̇

l
+

e33

εS
33

(2 − lφ′)z (4.104)

The coenergy density is in this case

W ∗

e,right
=

1

2
εS
33E

2
1 + S1e33E1 −

1

2
cE
11S

2
1 (4.105)

where, once again, the subscripts reflects the fact that the polarization is
along axis 1; upon substituting S1 from (4.101) and E1 from (4.104), and
integrating from l to 2l, one finds

W ∗

e,right
=

Al

2
εS
33

(

λ̇

l

)2

− 2Ale33

(

λ̇

l

)

z +Alz2 e2
33

εS
33

(

2 − π2

4

)

−Al
π2

4
cE
11z

2

(4.106)
Upon adding the various contributions (4.99),(4.102) and (4.106), the
Lagrangian reads

L = T ∗ + W ∗

e,left
+ W ∗

e,right

= ̺
Al3

2
ż2 +

Al

2
εS
33

(

V

t

)2

− 2A l e31

(

V

t

)

z − Alπ2

4
cE
11z

2 +
Al

2
εs
33

(

λ̇

l

)2

−2A l e33

(

λ̇

l

)

z + A l
e2
33

εs
33

(

2 − π2

4

)

z2 − Alπ2

4
cE
11z

2 (4.107)

The dissipation function is

D =
λ̇2

2R
(4.108)

The partial derivatives of the Lagrangian with respect to z are:

∂L

∂ż
= ̺Al3ż
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∂L

∂z
= −2A l e31

(

V

t

)

− 2A l e33

(

λ̇

l

)

+ A l
e2
33

εs
33

(

4 − π2

2

)

z − A lπ2cE
11z

The Lagrange equation relative to z is

̺l2z̈ + π2cE
11z − e2

33

εS
33

(

4 − π2

2

)

z + 2 e33

(

λ̇

l

)

= −2 e31

(

V

t

)

(4.109)

The partial derivatives of L with respect to the generalized coordinate λ
are

∂L

∂λ̇
= Aεs

33

λ̇

l
− 2Ae33z

∂L

∂λ
= 0

∂D

∂λ̇
=

λ̇

R

and the Lagrange equation relative to the coordinate λ is

A

l
εS
33λ̈ − 2Ae33ż +

λ̇

R
= 0 (4.110)

With open output electrodes, R → ∞. Substituting Vout = λ̇ and trans-
forming into the Laplace domain,

εs
33 s

Vout

l
= 2e33 s z

or
Vout

l
=

2e33

εS
33

z (4.111)

Substituting into (4.109),

̺l2s2z +

(

π2cE
11 +

π2

2

e2
33

εS
33

)

z = −2e31

(

V

t

)

(4.112)

or

̺l2s2z + a cE
11z = −2e31

(

V

t

)

(4.113)

where the factor

a = π2 +
π2

2

e2
33

cE
11ε

S
33

= π2

[

1 +
k2

33

2(1 − k2
33)

]

= π2 1 − k2
33/2

1 − k2
33

(4.114)
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accounts for the increase in stiffness due to the piezoelectric transforma-
tion. In writing (4.114), we have used the fact that

εS
33 = εT

33(1 − k2
33) and k2

33 =
e2
33

cE
11ε

T
33

(4.115)

(cE
11 is in fact cE

33 in the power generating section). The natural frequency
of the system is

ω2
n =

cE
11a

̺l2
(4.116)

and (4.113) can be rewritten

z =
−2e31 (V/t)

a cE
11 (1 + s2/ω2

n)
(4.117)

This is the transfer function between the input voltage V and the modal
amplitude z; it has been obtained by neglecting the structural damping
in the system. In fact, the transformer is supposed to operate at the
mechanical resonance ωn, where the damping cannot be ignored. Near
the resonance, (4.117) must be replaced by

z =
−2e31 (V/t)

a cE
11 (1 + 2ξs/ωn + s2/ω2

n)
(4.118)

The amplitude at resonance is

z =
2 e31

a cE
11

Qm
V

t
(4.119)

where Qm = 1/2ξ is known as the Quality factor of the oscillation (it
represents the amplification of the harmonic response at resonance with
respect to the static ones). Introducing in (4.111), one gets

Vout

l
=

4e33e31

acE
11ε

S
33

Qm
V

t

Finally, using (4.114-115), the step-up voltage ratio of the transformer
becomes

r =
Vout

V
=

4

π2

k33k31
(

1 − k2
33/2

) Qm
l

t
(4.120)

Thus, the voltage amplification ratio r is proportional to the length to
thickness ratio, l/t, the electromechanical coupling factors k33 and k31

and the mechanical quality factor Qm.
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5

Piezoelectric laminates

5.1 Piezoelectric beam actuator

Consider the piezoelectric beam of Fig.5.1; it is covered with a single
piezoelectric layer of uniform thickness hp, polarized along the z axis; the
supporting structure is acting as electrode on one side and there is an
electrode of variable width bp(x) on the other side. The voltage difference
between the electrodes is controlled, so that the part of the piezoelectric
material located between the electrodes is subjected to an electric field
E3 parallel to the polarization (note that the piezoelectric material which
is not covered by the electrode on both sides is useless as active material).
We denote by w(x, t) the transverse displacements of the beam; according
to the Euler-Bernoulli assumption, the stress and strain fields are uniaxial,
along Ox; the axial strain S1 is related to the curvature w

′′

by

S1 = −zw
′′

(5.1)

where z is the distance to the neutral axis. We also assume that the piezo-
electric layer is thin enough, so that E3 is constant across the thickness.

5.1.1 Hamilton’s principle

The kinetic coenergy reads

T ∗ =
1

2

∫ l

0
̺Aẇ2dx (5.2)

where A is the cross-section of the beam. Both the electric field and the
strain vectors have a single non-zero component, respectively E3 and S1;
the coenergy function (4.77) is therefore
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w(x; t)

x

z

Neutral

Axis

Piezoelectric

material

Electrode

hp

h1
h2

zm

V

p(x; t)

bp(x)

Fig. 5.1. Piezoelectric beam covered by a single piezoelectric layer with an electrode
profile of width b(x).

W ∗

e =
1

2

∫ l

0
dx

∫

A

(

ε33E
2
3 + 2S1e31E3 − c11S

2
1

)

dA (5.3)

and, combining with (5.1),

W ∗

e =
1

2

∫ l

0
dx

∫

A

(

ε33E
2
3 − 2w

′′

ze31E3 − c11w
′′2

z2
)

dA (5.4)

The first contribution to W ∗

e is restricted to the piezoelectric part of the
beam under the electrode area; the integral over the cross section can
be written ε33E

2
3bphp. The second contribution is also restricted to the

piezoelectric layer; taking into account that

∫

A
zdA =

∫ h2

h1

bp z dz = bphpzm

where zm is the distance between the mid-plane of the piezoelectric layer
and the neutral axis (Fig.5.1), it can be written −2w

′′

e31E3bphpzm. The
third term in W ∗

e can be rewritten by introducing the bending stiffness
(we give up the classical notation EI of chapter 1 to avoid confusion)

D =

∫

A
c11z

2dA (5.5)

Thus, W ∗

e reads

W ∗

e =
1

2

∫ l

0

(

ε33E
2
3bphp − 2w

′′

e31E3bphpzm −Dw
′′2)

dx
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Next, we can apply Hamilton’s principle, recalling that only the vertical
displacement is subject to virtual changes, δw, since the electric potential
is fixed (voltage control). Integrating by part the kinetic energy with
respect to time and taking into account that δw(x, t1) = δw(x, t2) = 0,

∫ t2

t1
δT ∗dt =

∫ t2

t1
dt

∫ l

0
̺Aẇ δẇ dx = −

∫ t2

t1
dt

∫ l

0
̺Aẅ δw dx

Similarly,

δW ∗

e =

∫ l

0
[−δw

′′

(e31E3bphpzm) −Dw
′′

δw
′′

]dx

and, integrating by part twice with respect to x,

δW ∗

e =−(e31E3bphpzm)δw′

]l

0
+(e31E3bphpzm)

′

δw

]l

0
−
∫ l

0
(e31E3bphpzm)

′′

δwdx

−Dw
′′

δw
′

]l

0
+ (Dw

′′

)
′

δw

]l

0
−

∫ l

0
(Dw

′′

)
′′

δw dx

The virtual work of nonconservative forces is

δWnc =

∫ l

0
p(x, t)δw dx

where p(x, t) is the distributed transverse load applied to the beam. In-
troducing in Hamilton’s principle (4.79), one gets that

V.I. =

∫ t2

t1
dt

∫ l

0

[

−̺Aẅ − (e31E3bphpzm)
′′ −

(

Dw
′′
)′′

+ p

]

δw dx

−
[(

e31E3bphpzm + Dw
′′
)

δw
′
]l

0
+

[

{(e31E3bphpzm)
′

+
(

Dw
′′
)′

}δw
]l

0
= 0

for all admissible variations δw compatible with the kinematics of the
system.

5.1.2 Piezoelectric loads

It follows from the previous equation that the differential equation gov-
erning the problem is
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̺Aẅ +
(

Dw
′′
)′′

= p − (e31E3bphpzm)
′′

(5.6)

If one takes into account that only bp depends on the spatial variable
x and that E3hp = V , the voltage applied between the electrodes of the
piezoelectric layer, it becomes

̺Aẅ +
(

Dw
′′
)′′

= p − e31V zmbp
′′

(x) (5.7)

This equation indicates that the effect of the piezoelectric layer is equiva-
lent to a distributed load proportional to the second derivative of the width
of the electrode.

Examining the remaining terms, one must also have

(

e31E3bphpzm + Dw
′′
)

δw
′

= 0
[

(e31E3bphpzm)
′

+
(

Dw
′′
)′

]

δw = 0 at x = 0 and x = l (5.8)

The first condition states that at an end where the rotation is free, one
must have

e31V bpzm + Dw
′′

= 0 (5.9)

This means that the effect of the piezoelectric layer is that of a bending
moment proportional to the width of the electrode. Similarly, the second
condition states that at an end where the displacement is free, one must
have

e31V b
′

pzm +
(

Dw
′′
)′

= 0 (5.10)

Since
(

Dw
′′

)′

represents the transverse shear force along the beam, this

means that the effect of the piezoelectric layer is that of a point force
proportional to the first derivative of the electrode width. One should al-
ways keep in mind that the piezoelectric loading consists of internal forces
which are always self-equilibrated.

Figure 5.2 shows a few examples of electrode shapes and the cor-
responding piezoelectric loading. A rectangular electrode [Fig.5.2(a)] is
equivalent to a pair of bending moments Mp applied at the ends of the
electrode. A triangular electrode [Fig.5.2(b)] is equivalent to a pair of
point forces P and a bending moment Mp; note that if the beam is
clamped on the left side, the corresponding loads will be taken by the
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Fig. 5.2. Examples of electrode shapes and corresponding piezoelectric loading: (a)
rectangular electrode, (b) triangular electrode, (c) parabolic electrode. The piezoelectric
loading is always self-equilibrated.

support, and the only remaining force is the point load at the right end.
A parabolic electrode [Fig.5.2(c)] is equivalent to a uniform distributed
load p and a pair of point forces P at the ends.

As another example, consider the electrode shape of Fig.5.3. It consists
of a rectangular part of length l1, followed by a part with constant slope,
of length l2. According to the foregoing discussion, this is equivalent to
bending moments M1 and M2 at the extremities of the electrodes, and
point forces P at the location where there is a sudden change in the first
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derivative b
′

(x). Once again, the piezoelectric loading is self-equilibrated.

l1

l2

b1

b2

P

P

M1

M2

M1 = à e31V b1 zm

M2 = à e31V b2 zm
P = à e31V ( l2

b2àb1)zm

Fig. 5.3. Self-equilibrated equivalent piezoelectric loading for an electrode with a sud-
den change in b′p(x).

5.2 Laminar sensor

5.2.1 Current and charge amplifiers

When used in sensing mode, a piezoelectric transducer is coupled to
an operational amplifier [Fig.5.4(a)] to form either a current amplifier
[Fig.5.4(b)], or a charge amplifier [Fig.5.4(c)]. An operational amplifier is
an active electrical circuit working as a high gain linear voltage amplifier
with infinite input resistance (so that the input currents i− and i+ are
essentially zero), and zero output resistance, so that the output voltage e0

is essentially proportional to the voltage difference e+ − e−; the open loop
gain A is usually very high, which means that the allowable input voltage
is very small (millivolt). As a result, when the electrodes of a piezoelec-
tric transducer are connected to an operational amplifier, they can be
regarded as short-circuited and the electric field through the piezo can
be considered as E3 = 0. Then, it follows from the constitutive equation
(4.63) that the electric displacement is proportional to the strain

D3 = e31S1 (5.11)

5.2.2 Distributed sensor output

If one assumes that the piezoelectric sensor is thin with respect to
beam, the strain can be regarded as uniform over its thickness,the
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Fig. 5.4. (a) Operational amplifier, (b) Current amplifier, (c) Charge amplifier.

−zmw
′′

, and E3 = 0 is enforced by the charge amplifier; integrating
over the electrode area (Fig.5.1), one gets

Q =

∫

D3dA = −
∫ b

a
bp(x)zme31w

′′

dx = −zme31

∫ b

a
bp(x)w

′′

dx (5.12)

with a constant polarization profile e31. It is assumed that the sensor
extends from x = a to x = b over the beam. Thus, the amount of elec-
tric charge is proportional to the weighted average of the curvature, the
weighing function being the width of the electrode. For an electrode with
constant width,

Q = −zme31bp[w
′

(b) − w
′

(a)] (5.13)

The sensor output is proportional to the difference of slopes (i.e. rotations)
at the extremities of the sensor strip. We note that this result is dual of
that of Fig.5.2(a), where the piezoelectric transducer is used in actuation
mode.

Equation (5.12) can be integrated by parts, twice, leading to

S1 =
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∫ b

a
w

′′

bp(x)dx = w
′

bp

]b

a
− wb

′

p

]b

a
+

∫ b

a
w b

′′

dx (5.14)

If, as an example, one considers the case of a cantilever beam clamped at
x = 0 and covered with a piezoelectric strip and an electrode of triangular
shape extending over the whole length as in Fig.5.2.b (a = 0 and b = l),
w(0) = w

′

(0) = 0 (cantilever beam) and b
′′

p = 0, bp(l) = 0, b
′

p = −bp(0)/l
(triangular electrode). Substituting into (5.14) and (5.12), one gets

Q = −zme31
bp(0)

l
w(l) ∼ w(l) (5.15)

Thus, the output signal is proportional to the tip displacement of the can-
tilever beam. Once again, this result is dual of that obtained in actuation
mode (the piezoelectric loading is a point force at the tip). Similarly, if
one considers a parabolic electrode as in Fig.5.2(c) and if the beam is
such that w(0) = w(l) = 0 (this includes pinned-pinned, pinned-clamped,
etc), we have bp(0) = bp(l) = 0 and b

′′

p(x) = −8b/l2 and, substituting into
(5.14),

Q = zme31
8b

l2

∫ l

0
w(x)dx ∼

∫ l

0
w(x)dx (5.16)

Thus, the output signal is proportional to the volume displacement, which
is, once again, dual of the uniform distributed load in actuation mode.
All the above results are based on the beam theory which is essentially
one-dimensional; their accuracy in practical applications will depend very
much on the relevance of these assumptions for the applications con-
cerned. This issue is important in applications, especially in collocated
control systems.

5.2.3 Charge amplifier dynamics

According to Fig.5.4.c, the output voltage is proportional to the amount
of electric charge generated on the electrode; the amplifier gain is fixed
by the capacitance C. This relation is correct at frequencies beyond some
corner frequency depending on the amplifier construction, but does not
apply statically (near ω = 0). If a refined model of the charge amplifier
is required, this behavior can be represented by adding a second order
high-pass filter

F (s) =
s2

s2 + 2ξcωcs + ω2
c

(5.17)

with appropriate parameters ωc and ξc. For frequencies well above the
corner frequency ωc, F (s) behaves like a unit gain.
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5.3 Spatial modal filters

5.3.1 Modal actuator

According to (5.7), a piezoelectric layer with an electrode of width bp(x)
is equivalent to a distributed transverse load proportional to b

′′

p(x). Let

w(x, t) =
∑

i

zi(t)φi(x) (5.18)

be the modal expansion of the transverse displacements, where zi(t) are
the modal amplitudes, and φi(x) the mode shapes, solutions of the eigen-
value problem

[

Dφ
′′

i (x)
]′′

− ω2
i ̺Aφi = 0 (5.19)

They satisfy the orthogonality conditions

∫ l

0
̺Aφi(x)φj(x)dx = µiδij (5.20)

∫ l

0
D φ

′′

i (x)φ
′′

j (x)dx = µiω
2
i δij (5.21)

where µi is the modal mass, ωi the natural frequency of mode i, and δij is
the Kronecker delta index (δij = 1 if i = j, δij = 0 if i 6= j). Substituting
(5.18) into (5.7) (assuming p = 0), one gets

̺A
∑

i

z̈iφi +
∑

i

zi(Dφ
′′

i )
′′

= −e31V b
′′

pzm

or using (5.19),

̺A
∑

i

z̈iφi + ̺A
∑

i

ziω
2
i φi = −e31V b

′′

pzm

where the sums extend over all modes. Upon multiplying by φk(x), inte-
grating over the length of the beam, and using the orthogonality condition
(5.20), one finds easily the equation governing the modal amplitude zk:

µk(z̈k + ω2
kzk) = −e31V zm

∫ l

0
b
′′

p(x)φk(x)dx (5.22)

The right hand side is the modal force pk applied by the piezoelectric strip
to mode k. From the first orthogonality condition (5.20), it is readily seen
that if the electrode profile is chosen in such a way that
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b
′′

p ∼ ̺Aφl(x) (5.23)

all the modal forces pk vanish, except pl:

pk ∼ −e31V zm

∫ l

0
̺Aφlφkdx ∼ −e31V zmµlδkl (5.24)

such an electrode profile will excite only mode l; it constitutes a modal
actuator (for mode l).

5.3.2 Modal sensor

Similarly, if the piezoelectric layer is used as a sensor, the electric charge
appearing on the sensor is given by (5.12). Introducing the modal expan-
sion (5.18),

Q = −zme31

∑

i

zi(t)

∫ l

0
bp(x)φ

′′

i (x)dx (5.25)

Comparing this equation with the second orthogonality conditions (5.21),
one sees that any specific mode can be made unobservable by choosing the
electrode profile in such a way that the integral vanishes. If the electrode
profile is chosen according to

bp(x) ∼ Dφ
′′

l (x) (5.26)

(proportional to the distribution of the bending moment of mode l), the
output charge becomes

Q ∼ −zme31µlω
2
l zl(t) (5.27)

It contains only a contribution from mode l. This electrode profile consti-
tutes a modal sensor. Note that, for a uniform beam, (5.19) implies that
the mode shapes satisfy φIV

i (x) ∼ φi(x). It follows that the electrode
profile of a modal sensor also satisfies that of a modal actuator: from
(5.26),

b
′′

p(x) ∼ φIV
l (x) ∼ φl(x) (5.28)

which satisfies (5.23). Figure 5.5 illustrates the electrode profile of modal
filters used for a uniform beam with various boundary conditions; the
change of sign indicates a change in polarity of the piezoelectric strip,
which is equivalent to negative values of bp(x). As an alternative, the



5.4 Active beam with collocated actuator-sensor 141

Mode 1 Mode 1

Mode 2Mode 2

+ +--

Fig. 5.5. Electrode profile of modal filters for the first two modes of a uniform beam
for various boundary conditions: (a) cantilever, (b) simply supported.

part of the sensor with negative polarity can be bonded on the opposite
side of the beam, with the same polarity. The reader will notice that the
electrode shape of the simply supported beam is the same as the mode
shape itself, while for the cantilever beam, the electrode shape is that of
the mode shape of a beam clamped at the opposite end.

Modal filters constitute an attractive option for spillover alleviation,
because they allow one to minimize the controllability and observability of
a known set of modes. The limits of the beam approximation in practical
applications will be discussed at the end of this chapter.

5.4 Active beam with collocated actuator-sensor

Consider a beam provided with a pair of rectangular piezoelectric actu-
ator and sensor (Fig.5.6). They are collocated in the sense of the Euler-
Bernoulli beam theory, which means that they extend over the same
length along the beam. The system can, for example, be modelled by
finite elements; the mesh is such that there is a node at both ends of the
piezos (each node has two degrees of freedom, one translation yi and one
rotation θi). We seek the open-loop FRF between the voltage V (t) applied
to the actuator, and the output voltage v0(t) of the sensor (assumed to
be connected to a charge amplifier).
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Fig. 5.6. Active cantilever beam with collocated piezoelectric actuator and sensor.

5.4.1 Frequency response function

According to the foregoing sections, the rectangular piezoelectric actuator
is equivalent to a pair of torques M with opposite signs and proportional
to V :

M = gaV (5.29)

where ga is the actuator gain which can be computed from the actuator
size and the material properties (Fig 5.2). In the general form of the
equation of motion (1.50), the external force is

f = bM = bgaV (5.30)

where the influence vector b has the form bT = (.., 0,−1, 0, 1, ...); the only
non-zero components correspond to the rotational degrees of freedom of
the nodes located at x = a and x = b in the model. In modal coordinates,
the system dynamics is governed by a set of independent second order
equations

z̈k + 2ξkωkżk + ω2
kzk =

φT
k f

µk
=

pk

µk
(5.31)

where ωk is the natural frequency of mode k, ξk the modal damping ratio
and µk the modal mass. Using the Laplace variable s, we can write it
alternatively as

zk =
pk

µk(s2 + 2ξkωks + ω2
k)

(5.32)

The modal forces pk represent the work of the external loading on the
various mode shapes:
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pk = φT
k f = φT

k bgaV = gaV ∆θa
k (5.33)

where ∆θa
k = φT

k b is the relative rotation (difference of slope) between the
extremities of the actuator, for mode k. Similarly, according to (5.13),
the sensor output is also proportional to the difference of slope, that
is the relative rotation of the extremities of the sensor, △θs. In modal
coordinates,

v0 = gs∆θs = gs

∑

i

zi∆θs
i (5.34)

where gs is the sensor gain, depending on the sensor size, material proper-
ties and on the charge amplifier gain, and ∆θs

i are the modal components
of the relative rotation between the extremities of the sensor. Note that
if the sensor and the actuator extend over the same length of the beam,
they can be considered as collocated in the sense of the Euler-Bernoulli
beam theory, and

∆θs
i = ∆θa

i = ∆θi (5.35)

Combining the actuator equation (5.33), the sensor equation (5.34) with
the equation of structural dynamics in modal coordinates (5.32), one eas-
ily gets the FRF between the actuator voltage V and the sensor output
v0 by substituting s = jω.

v0

V
= G(ω) = gags

n
∑

i=1

∆θ2
i

µi
(

ω2
i − ω2 + 2jξiωiω

) (5.36)

5.4.2 Pole-zero pattern

For an undamped system, the FRF is purely real:

v0

V
= G(ω) = gags

n
∑

i=1

∆θ2
i

µi
(

ω2
i − ω2

) (5.37)

All the residues of the modal expansion of the open loop FRF are positive
and one can check that dG(ω)/dω ≥ 0 (ω ≥ 0), so that G(ω) is an increas-
ing function of ω between resonances. Near the resonance ωi, G(ω) jumps
from +∞ at ω−

i to −∞ at ω+
i and its behavior must be similar to that of

Fig.5.7, with alternating poles (resonances) and zeros (anti-resonances)
on the imaginary axis, Fig.5.8(a). Actually, for a lightly damped system,
the poles and zeros are slightly in the left half plane [Fig.5.8(b)].
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Fig. 5.7. Typical FRF of an undamped collocated system (truncated after 3 modes).
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Fig. 5.8. Pole/zero pattern of a structure with collocated actuator/sensor: (a) un-
damped, (b) lightly damped (only the upper half of the complex plane is shown; the
diagram is symmetrical with respect to the real axis).

A collocated control system always exhibits Bode and Nyquist plots
similar to those of Fig.5.9: every flexible mode introduces a circle in the
Nyquist diagram, which is more or less centered on the imaginary axis
which is intersected at ωi and zi; the radius is proportional to ξ−1

i . In the
Bode plot, a 180 phase lag occurs at every natural frequency (pole), and
is compensated by a 180 phase lead at every imaginary zero, and the
phase always oscillates between 0 and −180 . This interlacing property
of the poles and zeros is of fundamental importance in control system
design for lightly damped vibrating systems, because it is possible to

°
°

°
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Fig. 5.9. Nyquist diagram and Bode plots of a lightly damped structure with collocated
actuator and sensor pair.

find a fixed controller with guaranteed stability, irrespective to changes
in the mass and stiffness distribution of the system. Figure 5.10 shows
typical experimental results obtained with a system similar to that of
Fig.5.6. Observe that G(ω) does not exhibit any roll-off (decay) at high
frequency; this indicates a feedthrough component in the system, which
is not apparent from the modal expansion (5.36) (according to which the
high frequency behavior is as ω−2). We will come back to this shortly. 1

5.4.3 Modal truncation

Let us now examine the modal truncation of (5.36) which normally in-
cludes all the modes of the system (a finite number n with a discrete
model, or infinite if one looks at the system as a distributed one). Obvi-
ously, if one wants an accurate model in some frequency band [0, ωc], all
the modes which belong to this frequency band must be included in the
truncated expansion, but the high frequency modes cannot be completely
ignored. Indeed, if one rewrites (5.36)

G(ω) = gags

n
∑

i=1

∆θ2
i

µiω2
i

.Hi(ω) (5.38)

where
1 Another observation is that a small linear shift appears in the phase diagram, due to

the fact that these results have been obtained digitally (the sampling is responsible
for a small delay in the system).

–

–
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Fig. 5.10. Experimental open-loop FRF G(ω) of a piezoelectric beam similar to that
of Fig.5.6.

Hi(ω) =
n

∑

i=1

1

1 − ω2/ω2
i + 2jξiω/ωi

(5.39)

is the dynamic amplification of mode i. For any mode with a natural
frequency ωi substantially larger than ωc, Hi(ω) ≃ 1 within [0, ωc] and
the sum (5.38) may be replaced by

G(ω) = gags

m
∑

i=1

∆θ2
i

µiω2
i

.Hi(ω) + gags

n
∑

i=m+1

∆θ2
i

µiω2
i

(5.40)

where m has been selected in such a way that ωm ≫ ωc. This equation
recognizes the fact that, at low frequency, the high frequency modes re-
spond in a quasi-static manner. The sum over the high frequency modes
can be eliminated by noting that the static gain satisfies

G(0) = gags

n
∑

i=1

∆θ2
i

µiω2
i

(5.41)

leading to

G(ω) = gags

m
∑

i=1

∆θ2
i

µiω2
i

.Hi(ω) + [G(0) − gags

m
∑

i=1

∆θ2
i

µiω2
i

] (5.42)
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The term between brackets, independent of ω, which corresponds to the
high frequency modes is often called the residual mode. This equation can
be written alternatively

G(ω) = G(0) + gags

m
∑

i=1

∆θ2
i

µiω2
i

.[Hi(ω) − 1]

or

G(ω) = G(0) + gags

m
∑

i=1

∆θ2
i

µiω2
i

(ω2 − 2jξiωiω)

(ω2
i − ω2 + 2jξiωiω)

(5.43)

The feedthrough component observed in Fig.5.10 is clearly apparent in
(5.42) and (5.43). Note that the above equations require the static gain
G(0), but do not require the knowledge of the high frequency modes.

It is important to emphasize the fact that the quasi-static correction
has a significant impact on the open-loop zeros of G(ω), and consequently
on the performance of the control system. Referring to Fig.5.7, it is clear
that neglecting the residual mode (quasi-static correction) amounts to
shifting the diagram G(ω) along the vertical axis; this operation alters
the location of the zeros which are at the crossing of G(ω) with the hori-
zontal axis. Including the quasi-static correction tends to bring the zeros
closer to the poles which, in general, tends to reduce the performance
of the control system. Thus, it is a fairly general statement to say that
neglecting the residual mode (high frequency dynamics) tends to overesti-
mate the performance of the control system. Finally, note that since the
piezoelectric loads are self-equilibrated, they would not affect the rigid
body modes if there were any.

5.5 Piezoelectric laminate

In the first part of this chapter, the partial differential equation governing
the dynamics of a piezoelectric beam, and the equivalent piezoelectric
loads were established from Hamilton’s principle. A similar approach can
be used for piezoelectric laminates, but it is lengthy and cumbersome.
The analytical expression for the equivalent piezoelectric loads and the
sensor output can be obtained alternatively, as in the classical analysis
of laminate composites, by using the appropriate constitutive equations;
this is essentially the approach followed by (C.K. Lee, 1990).
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5.5.1 Two dimensional constitutive equations

Consider a two dimensional piezoelectric laminate in a plane (x, y): the
poling direction z is normal to the laminate and the electric field is also
applied along z. In the piezoelectric orthotropy axes, the constitutive
equations (4.62) (4.63) read

{T} = [c]{S} −
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E3 (5.44)

D3 = {e31 e32 0}{S} + εE3 (5.45)
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(5.46)
are the stress and strain vector, respectively, [c] is the matrix of elastic
constants under constant electric field, E3 is the component of the electric
field along z, D3 is the z component of the electric displacement and ε
the dielectric constant under constant strain (εS).

5.5.2 Kirchhoff theory

Following the Kirchhoff theory (e.g. Agarwal and Broutman, 1990), we as-
sume that a line originally straight and normal to the midplane remains so
in the deformed state. This is equivalent to neglecting the shear deforma-
tions S23 and S31. If the midplane undergoes a displacement u0 , v0 , w0 ,
a point located on the same normal at a distance z from the midplane
undergoes the displacements (Fig.5.11)

u = u0 − z
∂w0

∂x

v = v0 − z
∂w0

∂y
(5.47)

w = w0

The corresponding strains are
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Fig. 5.11. Kinematics of a Kirchhoff shell.

{S} = {S0} + z{κ} (5.48)

where
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(5.49)

are the midplane strains and
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(5.50)

are the curvatures (the third component represents twisting). The stresses
in the laminate vary from layer to layer (because of varying stiffness prop-
erties) and it is convenient to integrate over the thickness to obtain an
equivalent system of forces and moments acting on the cross sections:

{N} =

∫ h/2

−h/2
{T}dz {M} =

∫ h/2

−h/2
{T}z dz (5.51)

The positive direction of the resultant forces and moments is given in
Fig.5.12. {N} and {M} are respectively a force per unit length, and a
moment per unit length.

5.5.3 Stiffness matrix of a multi-layer elastic laminate

Before analyzing a piezoelectric laminate, let us recall the stiffness matrix
of a multi-layer elastic laminate (Fig.5.13). If [c]k represents the stiffness
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Fig. 5.12. Resultant forces and moments.

matrix of the material of layer k, expressed in global coordinates, the
constitutive equation within layer k is

{T} = [c]k{S} = [c]k{S0} + z[c]k{κ} (5.52)

Upon integrating over the thickness of the laminate, one gets

{

N
M

}

=

[

A B
B D

] {

S0

κ

}

(5.53)

with

Mid plane x

Layer k
hk hkà1

hn

h0

z

Fig. 5.13. Geometry of a multilayered laminate.
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A =
n

∑

k=1

[c]k(hk − hk−1)

B =
1

2

n
∑

k=1

[c]k(h
2
k − h2

k−1) (5.54)

D =
1

3

n
∑

k=1

[c]k(h
3
k − h3

k−1)

where the sum extends over all the layers of the laminate; this is a clas-
sical result in laminate composites. A is the extensional stiffness matrix
relating the in-plane resultant forces to the midplane strains; D is the
bending stiffness matrix relating the moments to the curvatures, and B is
the coupling stiffness matrix, which introduces coupling between bending
and extension in a laminated plate; from (5.54), it is readily seen that
B vanishes if the laminate is symmetric, because two symmetric layers
contribute equally, but with opposite signs to the sum.

5.5.4 Multi-layer laminate with a piezoelectric layer

Next, consider a multi-layer laminate with a single piezoelectric layer
(Fig.5.14); the constitutive equations of the piezoelectric layer are (5.44)
and (5.45). Upon integrating over the thickness of the laminate as in the
previous section, assuming that the global axes coincide with orthotropy
axes of the piezoelectric layer, one gets

Mid planeh

z

zm

Piezo

hp

Fig. 5.14. Piezoelectric layer.
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D3 = {e31 e32 0}[I3 zmI3]

{

S0

κ

}

− ε V/hp (5.56)

where V is the difference of potential between the electrodes of the piezo-
electric layer (E3 = −V/hp), hp the thickness of the piezoelectric layer,
zm the distance between the midplane of the piezoelectric layer and the
midplane of the laminated; I3 is the unity matrix of rank 3 and A,B,D
are given by (5.54), including the piezoelectric layer.2 In writing (5.56),
it has been assumed that the thickness of the piezoelectric layer is small
with respect to that of the laminate, so that the strain can be regarded
as uniform across its thickness.

5.5.5 Equivalent piezoelectric loads

If there is no external load, {N} and {M} vanish and (5.55) can be
rewritten

[

A B
B D

] {

S0

κ

}

= −
[

I3

zmI3

]











e31

e32

0











V (5.57)

The right hand side are the equivalent piezoelectric loads. If the material is
isotropic, e31 = e32, and the equivalent piezoelectric loads are hydrostatic
(i.e. they are independent of the orientation of the facet within the part
covered by the electrode). Overall, they consist of an in-plane force normal
to the contour of the electrode, and a constant moment acting on the
contour of the electrode (Fig.5.15); the force per unit length and moment
per unit length are respectively

Np = −e31V Mp = −e31zmV (5.58)

2 the piezoelectric layer contributes to A, B and D with the stiffness properties under
constant electric field.
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Fig. 5.15. Equivalent piezoelectric loads Np = −e31V , Mp = −e31zmV for an isotropic
piezoelectric actuator.

5.5.6 Sensor output

On the other hand, if the piezoelectric layer is used as a sensor and if
its electrodes are connected to a charge amplifier which enforces V ∼0
(Fig.5.4), the sensor equation (5.56) becomes

D3 = {e31 e32 0}[I3 zmI3]

{

S0

κ

}

(5.59)

Upon substituting the midplane strains and curvature from (5.49) (5.50),
and integrating over the electrode area, one gets

Q =

∫

Ω
D3dΩ =

∫

Ω

[

e31
∂u0

∂x
+ e32

∂v0

∂y
− zm

(

e31
∂2w

∂x2
+ e32

∂2w

∂y2

)]

dΩ

(5.60)
The integral extends over the electrode area (the part of the piezo not
covered by the electrode does not contribute to the signal). The first part
of the integral is the contribution of the membrane strains, while the
second is due to bending.

If the piezoelectric properties are isotropic (e31 = e32), the surface
integral can be further transformed into a contour integral using the di-
vergence theorem; the previous equation is rewritten

Q = e31

∫

Ω
div ~u0 dΩ − e31zm

∫

Ω
div. ~gradw dΩ

= e31

∫

C
~n.~u0 dl − e31zm

∫

C
~n. ~gradw dl
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Fig. 5.16. Contributions to the sensor output for an isotropic piezoelectric layer. Ω is
the electrode area.

where ~n is the outward normal to the contour of the electrode in its plane.
Alternatively,

Q = e31

∫

C
(~u0.~n − zm

∂w

∂~n
)dl (5.61)

This integral extends over the contour of the electrode (Fig.5.16); the
first contribution is the component of the mid-plane, in-plane displace-
ment normal to the contour and the second one is associated with the
slope along the contour.

Once again, the duality between the equivalent piezoelectric loads gen-
erated by the transducer used as actuator, and the sensor output when
the transducer is connected to a charge amplifier must be pointed out.

5.5.7 Remarks

1. In this chapter, we have analyzed successively the piezoelectric beam
according to the assumption of Euler-Bernoulli, and piezoelectric lami-
nate according to Kirchhoff’s assumption. The corresponding piezoelectric
loads have been illustrated in Fig.5.2 and 5.15, respectively; the sensor
output, when the transducer is used in sensing mode, can be deduced
by duality : a bending moment normal to the contour in actuation mode
corresponds to the slope along the contour in sensing mode, and the in-
plane force normal to the contour in actuation mode corresponds to the
in-plane displacement normal to the contour in sensing mode. Figure 5.17
illustrates the equivalent piezoelectric loads according to both theories for
a rectangular isotropic piezoceramic patch acting on a structure extend-
ing along one dimension: according to the beam theory, the equivalent
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Fig. 5.17. Equivalent piezoelectric loads of a rectangular piezoelectric patch bonded
on a beam: (a) beam theory, (b) laminate theory.

piezoelectric loads consist of a pair of torques applied to the end of the
electrode (Fig.5.17.a), while according to the laminate theory, the torque
is applied along the whole contour of the electrode and it is supplemented
by an in-plane force Np normal to the contour (Fig.5.17.b). If the struc-
ture extends dominantly along one axis, and if one is interested in the
structural response far away from the actuator (e.g. tip displacement),
it is reasonable to think that the piezoelectric loads of the beam theory
are indeed the dominant ones. However, in active vibration control, one
is often interested in configurations where the dual actuator and sensor
are close to being collocated, to warrant alternating poles and zeros in the
open-loop FRF, for a wide frequency range (the perfectly dual and collo-
cated case was considered in section 5.4); in this case, it turns out that the
contributions to the piezoelectric loading and to the sensor output which
are ignored in the beam theory are significant, and neglecting them usu-
ally leads to significant errors in the open-loop zeros of the control system.
This issue is discussed extensively in (Preumont, 2002).

2. Similarly, experiments conducted on a cantilever beam excited by
a PZT patch on one side and covered with an isotropic PVDF film on
the other side, with an electrode shaped as a modal filter for the first
mode according to the theory of modal sensor developed in section 5.3,
have revealed significant discrepancies between the measured FRF and
that predicted by the beam theory; however, the FRF could be predicted
quite accurately by the laminated plate theory (Preumont et al., 2003).
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3. The Kirchhoff theory presented here mostly aimed at introducing
the equivalent piezoelectric loads (5.58) and the sensor output equations
(5.60) and (5.61). Mindlin shell finite elements have been considered in
(Piefort, 2001) and implemented in an industrial computer code (SAM-
CEF). A deeper discussion of the finite element formulation of multi-layer
piezoelectric shells can be found in (Benjeddou, 2000, Garcia Lage et al.,
2004, Heyliger et al , 1996) and the literature quoted in these papers. The
newly available PZT fibers (with interdigitated electrodes or not), which
are usually supplied in a soft polymer cladding, seem to be particularly
difficult to model accurately, due to the stiffness discrepancy between the
supporting structure, the PZT fibers and the soft polymer interface; this
is the subject of on-going research.

4. For beams, modal filtering has been achieved by shaping the width
of the electrode. This concept cannot be directly transposed to plates.
Spatial filtering of two-dimensional structures requires the tailoring of the
piezoelectric constant, which is impossible in practice (the material can be
polarized or not, but the polarization cannot be controlled). This problem
has been solved by using a porous electrode; the fraction of electrode
area is adjusted to achieve homogenized piezoelectric constants which
produce the desired spatial filtering; the theory and the design procedure
is described in (Preumont et al., 2003, 2005).
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6.1 Introduction

Damping is essential in limiting the detrimental effects of mechanical res-
onances. This is illustrated in Fig.6.1 which shows, for a single d.o.f. oscil-
lator, the influence of the fraction of critical damping ξ on (i) the dynamic
amplification at resonance (expressed in dB) and (ii) the number of cycles
N necessary to reduce the amplitude of the impulse response by 50%.
Typical damping values encountered in various fields of structural engi-
neering are also indicated in Fig.6.1.

In this chapter, we consider a structure with one or several piezoelectric
transducers, and investigate how they can be used to introduce damping,
actively or passively. Active damping requires the introduction of a sensor
and a feedback control loop, which brings in all the classical control issues
such as stability, robustness, etc... In this analysis, we focus on collocated
actuator/sensor pairs, to benefit from the alternating pole/zero pattern
of the open-loop transfer function. Indeed, thanks to this property, it
is possible to find control laws with guaranteed stability, irrespective of
variations in the parameters of the structure. Passive damping can also be
achieved with a piezoelectric transducer, by first transforming the energy
of the mechanical vibration into electrical energy, and then dissipating this
electrical energy in a passive electrical network. Good performance can be
achieved if one locates the transducer in order to maximize the mechanical
energy stored in it, and if one can maximize the energy conversion from
mechanical energy to electrical energy. The former depends essentially
on the structural design; the ability of a vibration mode to concentrate
the vibrational energy into the transducer is measured by the fraction of
modal strain energy, νi; the ability to transform the strain energy into
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Fig. 6.1. Dynamic amplification at resonance (in dB) and number of cycles N to
reduce the amplitude of the impulse response by 50% as a function of the damping
ratio ξ (the damping scale is logarithmic).

electrical energy is measured by the electromechanical coupling factor, k;
it is a material parameter; recent improvements in piezoelectric materials
have led to electromechanical coupling factors k33 of 0.7 and more, making
them a very attractive option for passive damping. νi and k are often
combined in the generalized electromechanical coupling factor, Ki.

In the first part of this chapter, we consider the active damping of a
structure equipped with a discrete piezoelectric transducer and a collo-
cated force sensor; the feedback control law known as the Integral Force
Feedback (IFF) is shown to have guaranteed stability. The implementa-
tions based on voltage control and current control are compared, and the
modal damping ratio is estimated via a root locus technique; it is noted
that the performances of the voltage control implementation depend only
on the fraction of modal strain energy, while the current control imple-
mentation depends also on the electromechanical coupling factor. Next,
the passive control via resistive shunting is considered and it is shown that
the problem can be formulated with the same root-locus approach as the
IFF. Passive control via inductive shunting is also considered, where a

6 Active and passive damping with piezoelectric transducers
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RL shunt is added to the capacitive piezoelectric transducer, to form a
resonant circuit acting as a vibration absorber; damping performances
are significantly enhanced when the electrical circuit is properly tuned,
but they drop rapidly below the resistive shunting when the system is
de-tuned. The chapter ends with a brief discussion of the self-sensing
actuator, how it can be used for shaping transfer functions, and a few
alternative control strategies (Lead and PPF).

Piezoelectric
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Structure

Current source

& Resistive shunt

V = õç

I(t) R

É = bTx

f
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1 xç TMxç

V = 2
1 xTKx

Fig. 6.2. Piezoelectric linear transducer.

6.2 Active strut, open-loop FRF

Consider the system of Fig.6.2, formed by a linear structure equipped with
an active strut consisting of a piezoelectric transducer used as actuator
and a force sensor measuring the total force f in the strut. The actuator
is connected to a voltage source or a current source, while the force sensor
can be visualized as another piezoelectric transducer connected to a charge
amplifier (Fig.6.3). According to the the constitutive equation (4.6), if
V = 0 is enforced at the electrodes of the sensor, Q = [nd33]

sf . Following
Fig.5.4.c, the output voltage of the charge amplifier is proportional to the
force f applied on the sensor:

y = − Q

C1
= − [nd33]

sf

C1
= gsf (6.1)

where [nd33]
s refers to the sensor and C1 is the capacitance of the charge

amplifier; gs is the sensor gain.
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Fig. 6.3. Active strut consisting of a piezoelectric transducer and a piezoelectric force
sensor.

The system of Fig.6.2 has already been analyzed in Chapter 4; if the
transducer is controlled with a voltage source, the dynamics of the system
is governed by Equ.(4.27):

Mẍ + (K + Kabb
T )x = bKaδ (6.2)

where δ = nd33V is the unconstrained expansion of the actuator under
voltage V . K is the stiffness matrix of the structure excluding the axial
stiffness of the actuator (but including the sensor), and b is the projection
vector of the actuator in the global coordinate system. The right hand
side of this equation are the piezoelectric loads. In Laplace variable, it
can be rewritten

x = (Ms2 + K + Kabb
T )−1bKaδ (6.3)

(Ms2 +K +Kabb
T )−1 is the dynamic flexibility matrix of the system. Let

φi be the normal modes, solutions of the eigenvalue problem

(K + Kabb
T − ω2

i M)φi = 0 (6.4)

They satisfy the usual orthogonality conditions

φT
i Mφj = µiδij (6.5)

φT
i (K + Kabb

T )φj = µiω
2
i δij (6.6)

If the global displacements are expanded into modal coordinates,

x =
∑

j

αjφj (6.7)

6 Active and passive damping with piezoelectric transducers
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where αi are the modal amplitudes, (6.2) becomes
∑

j

s2αjMφj +
∑

j

αj(K + Kabb
T )φj = bKaδ (6.8)

Left multiplying by φT
i and taking into account the orthogonality condi-

tions, one finds

αi =
φT

i

µi(ω2
i + s2)

bKaδ (6.9)

and

x =
n

∑

i=1

φiφ
T
i

µi(ω2
i + s2)

bKaδ (6.10)

By comparison with (6.3), the modal expansion of the dynamic flexibility
matrix is obtained:

(Ms2 + K + Kabb
T )−1 =

n
∑

i=1

φiφ
T
i

µi(ω2
i + s2)

(6.11)

On the other hand, according to the second constitutive equation (4.6) of
the actuator,

∆ = bT x = nd33V + f/Ka = δ + f/Ka (6.12)

(this equation states that the total displacement at the end nodes of
the actuator is the sum of the piezoelectric expansion and the elastic
displacement). Combining with the collocated sensor equation (6.1),

y = gsf = gsKa(b
T x − δ) (6.13)

Substituting (6.10), one finds the modal expansion of the open-loop trans-
fer function of the system

y

δ
= gsKa[

n
∑

i=1

(bT φi)
2Ka

µiω2
i

1

(s2/ω2
i + 1)

− 1] (6.14)

Note that bT φi is the actuator extension when the system vibrates ac-
cording to mode i; the ratio

νi =
(bT φi)

2Ka

µiω2
i

=
φT

i (Kabb
T )φi

φT
i (K + KabbT )φi

(6.15)

is readily interpreted as the ratio between (twice) the strain energy in the
actuator and (twice) the total strain energy when the structure vibrates
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according to mode i; νi is the fraction of modal strain energy. With this
definition, the open-loop transfer function is rewritten

y

δ
= gsKa[

n
∑

i=1

νi

(s2/ω2
i + 1)

− 1] (6.16)

and, substituting s = jω, we obtain the open-loop FRF

y

δ
= G(ω) = gsKa[

n
∑

i=1

νi

(1 − ω2/ω2
i )

− 1] (6.17)

where the sum extends to all structural modes of the structure. νi is
the residue of mode i in the modal expansion of the open-loop FRF; it
can be regarded as a compound index of controllability and observability
of mode i. νi is readily available from commercial finite element codes.
This result has been obtained by neglecting the structural damping; for
a lightly damped structure with modal damping ξi, it becomes

y

δ
= gsKa[

n
∑

i=1

νi

(1 + 2jξiω/ωi − ω2/ω2
i )

− 1] (6.18)

Combining (6.17) with (6.12), one gets the FRF between the piezoelectric
free expansion δ and the total displacement of the actuator

∆

δ
=

n
∑

i=1

νi

1 − ω2/ω2
i

(6.19)

Considering the static response of the system, it is readily seen from (6.2)
that, at ω = 0,

∆ = bT (K + Kabb
T )−1bKaδ (6.20)

Thus, writing (6.19) for ω = 0, one gets

(
∆

δ
)ω=0 =

n
∑

i=1

νi = bT (K + Kabb
T )−1bKa =

Ka

K∗
(6.21)

where K∗ is the stiffness of the system (structure + short-circuited actu-
ator) seen from the end points of the transducer (Ka < K∗). This result
is helpful if one wants to truncate the modal expansion after m modes.
Using the same reasoning as in section 5.4.3, for ω ≪ ωm, one can use the
approximation

6 Active and passive damping with piezoelectric transducers
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y

δ
= G(ω) ≃ gsKa[

m
∑

i=1

νi

(1 − ω2/ω2
i )

+
n

∑

i=m+1

νi − 1] (6.22)

and, from (6.21), the residual mode can be expressed in terms of the static
stiffness and the fraction of modal strain energy of the low frequency
modes

n
∑

i=m+1

νi =
Ka

K∗
−

m
∑

i=1

νi (6.23)

leading to

G(ω) ≃ gsKa[
m

∑

i=1

νi ω
2

(ω2
i − ω2)

+
Ka

K∗
− 1] (6.24)

With damping, this results becomes

G(ω) ≃ gsKa[
m

∑

i=1

νi (ω
2 − 2ξiωiω)

(ω2
i − ω2 + 2jξiωiω)

+
Ka

K∗
− 1] (6.25)

Note that the modal truncation must be considered with care if one wants
to predict accurately the performance of the control system, and the dis-
cussion of section 5.4.3 applies fully here.

6.3 Active damping via IFF

6.3.1 Voltage control

Equation (6.2) governing the dynamics of the system is rewritten in
Laplace form

Ms2x + (K + Kabb
T )x = bKaδ (6.26)

The output equation of the force sensor is given by (6.13):

y = f = gsKa(∆ − δ) = gsKa(b
T x − δ) (6.27)

The Integral Force Feedback (IFF) consists of

δ =
g

gsKas
y (6.28)

(note that it is a positive feedback); 1/s is the integral effect; the constant
gsKa at the denominator is for normalization purpose. Combining these
three equations, one easily gets the closed-loop characteristic equation
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[Ms2 + (K + Kabb
T ) −

s + g
(Kabb

T )]x = 0 (6.29)

The asymptotic roots for g → 0 (open-loop poles) satisfy

[Ms2 + (K + Kabb
T )]x = 0 (6.30)

The solutions of this eigenvalue problem are the natural frequencies ωi

of the global structure when the electrodes of the transducer are short-
circuited. On the other hand, the asymptotic roots for g → ∞ (open-loop
zeros, zi) are solutions of the eigenvalue problem

[Ms2 + K]x = 0 (6.31)

which corresponds to the situation where the axial contribution of the
transducer to the stiffness has been removed. Note that, depending on
the design of its connections with the structure, the transducer may con-
tribute to the stiffness matrix by more than its axial component Kabb

T ;
all but the axial component must be included in K to achieve an accu-
rate prediction of the zeros zi. In particular, the rotary stiffness of flexible
joints approximating spherical joints in precision structures may some-
times have a significant impact on the zeros.

Fig. 6.4. (a) Open-loop FRF of the active strut mounted in the structure (undamped).
(b) Admittance of the transducer mounted in the structure.

6 Active and passive damping with piezoelectric transducers
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6.3.2 Modal coordinates

The closed-loop equation is transformed to modal coordinates by the
change of variables x = Φα, where Φ = (. . . φi . . .) is the matrix of the
mode shapes; we assume that they have been normalized in such a way
that ΦT MΦ = I; the mode shapes are solutions of the eigenvalue problem
(6.30); the second orthogonality condition reads

ΦT (K + Kabb
T )Φ = ω2 = diag(ω2

i ) (6.32)

where ωi are the natural frequencies of the structure with short-circuited
electrodes. The modal expansion of the open-loop transfer function has
been obtained earlier in (6.17); the fact that all the residues νi in the open-
loop FRF are positive guarantees alternating poles and zeros, beginning
with a zero (Fig.6.4(a)). The root locus plot corresponding to the IFF is
shown in Fig.6.5.

Re(s)

Im(s)

Integrator

Structure

-

y

G s0 ( )

d

unconstrained
piezo expansion force

Ka s
àg Ka

n

P

i=1

n

à 1
o

g D s( )

1+s2=!2
i

÷i

!i
zi

Fig. 6.5. (a) Block diagram of the IFF. (b) Typical root locus (for two modes).

Transforming (6.29) in modal coordinates, x = Φα, one gets

[Is2 + ω2 − g

s + g
ΦT (Kabb

T )Φ]α = 0 (6.33)

(after using the orthogonality conditions). The matrix ΦT (Kabb
T )Φ is in

general fully populated; assuming that it is diagonally dominant, and
neglecting the off-diagonal terms, it can be rewritten

ΦT (Kabb
T )Φ ≃ diag(νiω

2
i ) (6.34)

after using the definition (6.15) of the fraction of modal strain energy, and
(6.33) is reduced to a set of uncoupled equations:
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s2 + ω2
i −

s + g
νiω

2
i = 0 (6.35)

Denoting
z2
i = ω2

i (1 − νi) (6.36)

we can transform Equ.(6.35) into

1 + g
s2 + z2

i

s(s2 + ω2
i )

= 0 (6.37)

which shows that every mode follows a root locus with poles at ±jωi

and at s = 0, and zeros at ±jzi (Fig.6.6). From Equ.(6.31), we know
that the zeros are the natural frequencies of the structure when the axial
contribution of the transducer to the stiffness matrix has been removed.
The maximum modal damping is given by

ξmax
i =

ωi − zi

2zi
(6.38)

and it is achieved for g = ωi

√

ωi/zi. Comparing Fig.6.6 with Fig.6.5(b),
one sees that the approximation consisting of neglecting the off-diagonal
terms in (6.34) is essentially equivalent to assuming that the zeros are
given by (6.36), and that every single loop from ωi to zi in Fig.6.5(b)
can be drawn independently of the other neighboring loops. Note that,
since equation (6.36) relating the zeros zi, the poles ωi and the fraction

IFF

ømaxi =
2zi

!iàzi

ø maxi
!i

zi

Fig. 6.6. Root locus of the IFF, voltage control (only half of the locus is shown).
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of modal strain energy νi is approximate, one can use the roots of (6.31)
as zi when drawing the root locus (6.37).1

6.3.3 Current control

The case of a pure current source has been considered in section 4.4.2.
The system dynamics is governed by Equ.(4.30)

[

Ms2 +

(

K +
Ka

1 − k2
bbT

)]

x = b
Ka

1 − k2
nd33

I

sC
(6.39)

In this equation, δ = nd33I/sC = nd33Q/C is the free extension of the
actuator under the electric charge Q. From the constitutive equation (4.9),
the sensor equation reads:

y = gsf = gs
Ka

1 − k2
(bT x − δ) (6.40)

which is very much the same as (6.13), except that the stiffness is now
that for open electrodes. We use an IFF control on the charge Q, which
is equivalent to a proportional controller on I:

δ =
g

gs[Ka/(1 − k2)]s
y (6.41)

(again, the constant at the denominator is for normalization). Combining
these three equations as we already did in the previous section, one finds
easily that the closed-loop poles are solutions of the eigenvalue problem

[Ms2 + (K +
Ka

1 − k2
bbT ) − g

s + g

Ka

1 − k2
bbT ]x = 0 (6.42)

The asymptotic roots for g = 0 (open-loop poles) satisfy

[Ms2 + (K +
Ka

1 − k2
bbT )]x = 0 (6.43)

The solutions are the natural frequencies of the global structure, Ωi, when
the transducer electrodes are open. On the other hand, the asymptotic

1 The root locus of Fig.6.6 is almost unchanged if the pole at the origin is moved
slightly to the left along the real axis; this may help to prevent saturation due to
integral control; it is not critical if a piezoelectric force sensor is used, because the
charge amplifier behaves like a high-pass filter.
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roots when g → ∞ (open-loop zeros, zi) are again solutions of the eigen-
value problem (6.31). Following the same procedure as in the previous
section, we can transform Equ.(6.42) into modal coordinates; it is readily
found that the closed-loop poles are solutions of

1 + g
s2 + z2

i

s(s2 + Ω2
i )

= 0 (6.44)

which is the same as (6.37), except that the natural frequencies Ωi with
open electrodes are used instead of ωi (with short-circuited electrodes).
The root locus is again that of Fig.6.6, and the maximum damping ratio
is given by (6.38) with Ωi instead of ωi:

ξmax
i =

Ωi − zi

2zi
(6.45)

Note that, assuming that the displacement mode shapes φi are indepen-
dent of the electric boundary conditions,

Ω2
i = φT

i (K +
Ka

1 − k2
bbT )φi = φT

i (K + Kabb
T )φi +

k2

1 − k2
φT

i Kabb
T φi

(6.46)
or, using (6.15),

Ω2
i ≃ ω2

i (1 +
k2

1 − k2
νi) (6.47)

6.4 Admittance of the piezoelectric transducer

The admittance of the transducer alone has already been investigated in
section 4.4.3, to establish the relationship between the electromechanical
coupling factor and the natural frequencies with open and short-circuited
boundary conditions. Here, we consider a more complex situation where
the transducer is mounted in a structure (that we assume undamped, as
usual, to simplify the equations as much as we can). The dynamics of this
system was already examined in section 4.4; with R → ∞ and F = 0 in
(4.25) and (4.26),

(Ms2 + K + Kabb
T )x = bKand33V (6.48)

I = sC(1 − k2)V + snd33Kab
T x (6.49)

The first equation governs the dynamics of the structure, and the second
is the constitutive equation of the piezoelectric transducer. From (6.48)

6 Active and passive damping with piezoelectric transducers
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x = (Ms2 + K + Kabb
T )−1bKand33V (6.50)

and, using the modal expansion of the dynamic flexibility matrix, (6.11),
one gets

∆ = bT x =
n

∑

i=1

bT φiφ
T
i b

µi(ω2
i + s2)

nd33KaV (6.51)

I = sC(1 − k2)V + snd33Ka{
n

∑

i=1

bT φiφ
T
i b

µi(ω2
i + s2)

}nd33KaV (6.52)

or

I = sC(1 − k2)V + sCk2{
n

∑

i=1

νi

1 + s2/ω2
i

}V (6.53)

after using (4.8) and (6.15). Finally, the reduced admittance FRF is ob-
tained

I

sCV
= 1 + k2(

n
∑

i=1

νi

1 − ω2/ω2
i

− 1) (6.54)

It is represented in Fig.6.4(b). This figure can in fact be obtained by
translating the diagram of Fig.6.4(a) along the vertical axis. Again, the
diagram exhibits alternating poles and zeros (all the residues are positive),
but in reverse order (it begins with a pole at ω1). The poles are the same
as those of the open-loop FRF, that is the natural frequencies of the
structure with short-circuited electrodes. Let us consider the zeros: they
are solution of (6.49) with I = 0

0 = sC(1 − k2)V + snd33Kab
T x (6.55)

Substituting V from this equation into (6.48) and using the definition
(4.8) of the electromechanical coupling factor, one finds that the zeros are
solutions of

(Ms2 + K +
Ka

1 − k2
bbT )x = 0 (6.56)

This equation is identical to (6.43), meaning that the zeros of the ad-
mittance are the poles of the system when the transducer electrodes are
open, Ωi. Thus, in a single admittance (or impedance) measurement, the
natural frequencies ωi with short-circuited electrodes and Ωi with open
electrodes can be determined.
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6.5 Damping via resistive shunting

Return to Equ.(4.25)(4.26) and set F = 0 and I = 0 (the current source
is removed); the governing equations are, in the Laplace domain

(Ms2 + K + Kabb
T )x = bKand33V (6.57)

[sRC(1 − k2) + 1]V = −sRnd33Kab
T x (6.58)

Eliminating V and using the definition of k2, one gets the characteristic
equation

[Ms2 + (K + Kabb
T ) +

k2Kabb
T

(1 − k2) + 1/sRC
]x = 0 (6.59)

When R = 0, it is identical to (6.30), leading to the frequencies ωi (short-
circuited). For R → ∞, it becomes identical to (6.43), leading to Ωi (open
electrodes). Upon transforming into modal coordinates, exactly as we did
in the previous sections, and denoting ̺ = RC, one finds that every mode
follows the characteristic equation

s2 + ω2
i +

k2νiω
2
i

1 − k2 + 1/̺s
= 0 (6.60)

which, after using (6.47), can be rewritten

1 +
1

̺(1 − k2)

s2 + ω2
i

s(s2 + Ω2
i )

= 0 (6.61)

Thus, although resistive shunting is by no means a feedback control, the
solution of the characteristic equation has been written in the form of a
classical root locus, with 1/̺(1 − k2) acting as the feedback gain. This
root locus has once again the shape of Fig.6.6, with open-loop poles at
±jΩi (open electrodes) and open-loop zeros at ±jωi (short-circuited elec-
trodes). As in Fig.6.6, the maximum achievable damping is given by

ξmax
i =

Ωi − ωi

2 ωi
≃ Ω2

i − ω2
i

4 ω2
i

(6.62)

and, using again Equ.(6.47),

ξmax
i ≃ k2νi

4(1 − k2)
(6.63)
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Fig. 6.7. Root locus plots corresponding to various control configurations.

This equation points out the influence of the fraction of modal strain
energy νi and the electromechanical coupling factor k on passive damp-
ing with resistive shunting. Note that all the modes cannot be optimally
damped simultaneously, because there is a single tuning parameter ̺.

Figure 6.7 and Table 6.1 summarize the results of the three control
configurations. Column 4 of Table 6.1 gives an approximation of the max-
imum achievable modal damping based on (6.62); these expressions show
clearly the influence of the fraction of modal strain energy νi and that of
the electromechanical coupling factor k. Figure 6.8 shows a chart of the
maximum achievable modal damping for the three control strategies, as a
function of νi and k; the contour lines correspond to constant modal damp-
ing. Note that: (i) For the IFF with voltage control, the maximum damp-
ing is independent of the electromechanical coupling factor. (ii) The IFF
with charge control gives always better performances than with voltage
control; the advantage increases with k. (iii) Significant modal damping
with resistive shunting can be achieved only when the electromechanical
coupling factor is large; piezoelectric materials with k ≥ 0.7 are available.
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Fig. 6.8. Maximum achievable modal damping as a function of νi and k. (a) IFF
voltage control, (b) IFF charge control, (c) Resistive shunting.
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Table 6.1. Open-loop poles and zeros and maximum achievable modal
damping in the root locus of Fig.6.7. The inductive shunting is added for
comparison.

Control Open-loop poles Open-loop zeros Max. Damping ξi

IFF ±jzi

(Voltage control) ±jωi ≃

νi

4(1−νi)
(short-circuit) ±jωi

√
1 − νi

IFF ±jΩi

(Charge control) ≃ ±jzi
νi

4(1−νi)(1−k2)

±jωi

√

1 + k2νi

1−k2 (transducer removed)

Resistive ±jΩi ±jωi
k2νi

4(1−k2)
shunting (open electrodes)

Inductive p1, p2 0, ±jΩi
1
2

√

k2νi

1−k2

shunting

6.5.1 Damping enhancement via negative capacitance shunting

Equation (6.63) indicates that the damping performance of the resistive
shunting depends critically of the electromechanical coupling factor and
Fig.6.8(c) shows that when k is larger than 0.7, significant damping (say
> 0.05) can be achieved for reasonable values of νi. On the other hand,
the active enhancement of the electromechanical coupling factor via a
synthetic negative capacitance has been addressed in section 4.4.5; If the
piezoelectric transducer is shunted on a negative capacitance −C1 [such
that C1 < C(1− k2)], it behaves like an equivalent transducer with prop-
erties given by (4.43) and (4.44):

C∗ = C − C1 k∗2 = k2 C

C − C1

Thus, the damping effectiveness of the resistive shunting can be improved
by placing a negative capacitance in parallel with the transducer. The
performances can again be predicted by the root locus (6.61) where k∗

is used in (6.47) to evaluate Ω2
i . The maximum damping is still given by
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(6.63) with k∗ instead of k. The idea of using a negative synthetic capac-
itance to enhance the damping seems to have been originally proposed
by (Forward, 1979); some stability problems remain and this topic is still
under investigation.

6.5.2 Generalized electromechanical coupling factor

The admittance function of a piezoelectric transducer mounted in a struc-
ture exhibits alternating poles at ωi and zeros at Ωi [Fig.6.4(b)]. By
analogy with (4.35), the generalized electromechanical coupling factor (of
mode i) is defined as

K2
i =

Ω2
i − ω2

i

Ω2
i

(6.64)

Using (6.47), one finds

K2
i =

k2νi

1 − k2 + k2νi
(6.65)

K2
i combines material data with information about the structure; K2

i = k2

if νi = 1. Note that, in the literature, the definition

K2
i =

Ω2
i − ω2

i

ω2
i

=
k2νi

1 − k2
(6.66)

is often used instead of (6.64). The difference between the two definitions
is insignificant in most practical applications, but (6.66) does not supply
Ki = k if νi = 1. Note also that the maximum performance of resistive
shunting, (6.63), is directly related to the generalized electromechanical
coupling factor.

6.6 Inductive shunting

Inductive shunting constitutes an alternative way of enhancing the modal
damping; the shunt consists of an inductor and a resistor in series which
are combined with the capacitance of the piezoelectric transducer to create
a damped electrical resonance; if the electrical resonance is tuned on the
mechanical resonance, the resonant shunt acts as a vibration absorber as
in Den Hartog’s tuned mass damper. The theory of inductive shunting
was first developed by (Hagood & von Flotow, 1991).
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Fig. 6.9. Inductive shunting.

Consider the system of Fig.6.9, where the piezoelectric transducer is
shunted on a RL circuit. The electrical variables are λ and λ1. The
Lagrangian reads in this case

L =
1

2
ẋT Mẋ− 1

2
xT (K +Kabb

T )x+C(1− k2)
λ̇2

2
+nd33Kaλ̇bT x− 1

2
λ2

1/L

(6.67)
The virtual work of the non-conservative forces is

δWnc = − λ̇ − λ̇1

R
δ(λ̇ − λ̇1) (6.68)

or one can use alternatively the dissipation function

D =
1

2

(λ̇ − λ̇1)
2

R
(6.69)

Upon writing Lagrange’s equations, one finds (in Laplace form):

Ms2x + (K + Kabb
T )x = bKand33sλ (6.70)

s[C(1 − k2)sλ + nd33Kab
T x] +

s(λ − λ1)

R
= 0 (6.71)

λ1

L
+

s(λ1 − λ)

R
= 0 (6.72)

λ1 can be eliminated between the last two equations, leading to
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[sC(1 − k2) + YSH ]λ = −nd33Kab
T x (6.73)

where
YSH = (R + Ls)−1 (6.74)

is the admittance of the shunt. Substituting λ into the first equation, one
finds the eigenvalue problem

[Ms2 + (K + Kabb
T ) +

k2

(1 − k2)
.

Kabb
T

[1 + YSH/sC(1 − k2)]
]x = 0 (6.75)

with

YSH

sC(1 − k2)
=

1

(R + Ls)sC(1 − k2)
=

1/LC(1 − k2)

s2 + (R/L)s
=

ω2
e

s2 + 2ξeωes
(6.76)

after defining the electrical frequency

ω2
e =

1

LC(1 − k2)
(6.77)

and the electrical damping

2ξeωe =
R

L
(6.78)

Upon transforming into modal coordinates, using the same notation as
in the previous sections, one finds that every mode is governed by the
characteristic equation

s2 + ω2
i +

k2νiω
2
i

1 − k2
[

s2 + 2ξeωes

s2 + 2ξeωes + ω2
e

] = 0 (6.79)

or

s2 + Ω2
i +

k2νiω
2
i

1 − k2
[

−ω2
e

s2 + 2ξeωes + ω2
e

] = 0 (6.80)

where, as usual, ωi is the natural frequency with short-circuited electrodes
and Ωi that with open electrodes. Thus, the characteristic equation can
be rearranged into

(s2 + Ω2
i )(s2 + 2ξeωes + ω2

e) −
k2νi

1 − k2
ω2

i ω
2
e = 0 (6.81)

or
s4 + 2ξeωes

3 + (Ω2
i + ω2

e)s
2 + 2Ω2

i ξeωes + ω2
i ω

2
e = 0 (6.82)
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This can be rewritten in a root locus form

1 + 2ξeωe
s(s2 + Ω2

i )

s4 + (Ω2
i + ω2

e)s
2 + ω2

i ω
2
e

= 0 (6.83)

In this formulation, 2ξeωe plays the role of the gain in a classical root
locus. Note that, for large R, the poles tend to ±jΩi, as expected. For
R = 0 (i.e. ξe = 0), they are the solutions p1 and p2 of the characteristic
equation s4 + (Ω2

i + ω2
e)s

2 + ω2
i ω

2
e = 0 which accounts for the classical

double peak of resonant dampers, with p1 above jΩi and p2 below jΩi.
Figure 6.10 shows the root locus for a fixed value of ωi/Ωi and various
values of the electrical tuning, expressed by the ratio

αe =
ωeωi

Ω2
i

(6.84)

The locus consists of two loops, starting respectively from p1 and p2; one
of them goes to jΩi and the other goes to the real axis, near −Ωi. If
αe > 1 [Fig.6.10(a)], the upper loop starting from p1 goes to the real axis,
and that starting from p2 goes to jΩi, and the upper pole is always more
heavily damped than the lower one (note that, if ωe → ∞, p1 → ∞ and
p2 → jωi; the lower branch of the root locus becomes that of the resistive
shunting). The opposite situation occurs if αe < 1 [Fig.6.10(b)]: the upper
loop goes from p1 to jΩi and the lower one goes from p2 to the real axis;
the lower pole is always more heavily damped. If αe = 1 [Fig.6.10(c)], the
two poles are always equally damped until the two branches touch each
other in Q. This double root is achieved for

αe =
ωeωi

Ω2
i

= 1, ξ2
e = 1 − ω2

i

Ω2
i

(6.85)

This can be regarded as the optimum tuning of the inductive shunting
(note that, comparing with (6.64), ξ2

e = K2
i ; thus, the optimum electrical

damping ratio exactly matches the generalized electromechanical coupling
factor). The corresponding eigenvalues satisfy

s2 + Ω2
i + Ωi(

Ω2
i

ω2
i

− 1)1/2s = 0 (6.86)

For various values of ωi/Ωi (or Ki), the optimum poles at Q move along
a circle of radius Ωi [Fig.6.10(d)]. The corresponding damping ratio can
be obtained easily by identifying the previous equation with the classical
form of the damped oscillator, s2 + 2ξiΩis + Ω2

i = 0, leading to
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Fig. 6.10. Root locus plot for inductive shunting (only the upper half is shown). The
optimum damping at Q is achieved for αe = 1 and ξe = K2

i ; the maximum modal
damping is ξi ≃ Ki/2.

ξi =
1

2
(
Ω2

i

ω2
i

− 1)1/2 =
1

2
(

K2
i

1 − K2
i

)1/2 ≃ Ki

2
(6.87)

Using (6.47), we can express the optimum damping ratio in terms of the
electromechanical coupling factor and the fraction of modal strain energy:

ξi =
1

2
(

k2νi

1 − k2
)1/2 (6.88)

This value is significantly higher than that achieved with purely resistive
shunting [it is exactly the square-root of (6.63)]; it has been added to
Table 6.1 for comparison. Note, however, that it is much more sensitive
to the tuning of the electrical parameters on the targeted modes. This is
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Fig. 6.11. Evolution of the damping ratio of the inductive and resistive shunting with
the de-tuning of the structural mode. ωi is the natural frequency for which the shunt
has been optimized, ω′

i is the actual value (k = 0.5, νi = 0.3).

illustrated in Fig.6.11, which displays the evolution of the damping ratio
ξi when the actual natural frequency ω′

i moves away from the nominal
frequency ωi for which the shunt has been optimized (the damping ratio
associated with p1 and p2 is plotted in dotted lines; the ratio ω′

i/Ω′

i is
kept constant in all cases). One sees that the performance of the induc-
tive shunting drops rapidly below that of the resistive shunting when the
de-tuning increases. Note that, for low frequency modes, the optimum in-
ductance value can be very large; such large inductors can be synthesized
electronically. The multimodal passive damping via resonant shunt has
been investigated by (Hollkamp, 1994).

All the dissipation mechanisms considered in this chapter are based
on linear time-invariant filters. Recently, promising alternative nonlinear
methods based on state switching have been proposed. The transducer is
connected to a solid-state switch device which discharges periodically the
piezoelectric element on a small inductor, producing a voltage inversion
(Guyomar & Richard, 2005).

6.6.1 Alternative formulation

Throughout our analysis of piezoelectric structures, we have adopted a
flux linkage formulation for the electrical variables. However, we could
also have used a charge formulation. In most cases, this would have led to
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more electrical variables, but in the particular case of inductive shunting,
the charge formulation is in fact more compact, because there is a single
electrical variable instead of two in the flux linkage formulation. Let q̇ be
the current in the single current loop of Fig.6.9; the Lagrangian of the
system is in this case 2

L = T ∗ + W ∗

m − V − We (6.89)

where T ∗ and V refer, as usual, to the mechanical part of the system, W ∗

m

is the magnetic coenergy of the inductor, W ∗

m = (1/2)Lq̇2, and We is the
electromechanical energy of the piezoelectric transducer, given by (4.13).

L=
1

2
ẋTMẋ+

1

2
Lq̇2−1

2
xT Kx− q2

2C(1 − k2)
+

nd33Ka

C(1 − k2)
qbT x− Ka

1 − k2

(bT x)2

2
(6.90)

The dissipation function is in this case D = (1/2)Rq̇2. The Lagrange
equations relative to the coordinates x and q are respectively

Mẍ + (K +
Ka

1 − k2
bbT )x − bnd33Ka

C(1 − k2)
q = 0 (6.91)

Lq̈ + Rq̇ +
q

C(1 − k2)
− nd33Ka

C(1 − k2)
bT x = 0 (6.92)

Using (6.77) and (6.78), (6.92) is rewritten

q̈ + 2ξeωeq̇ + ω2
eq − ω2

end33Kab
T x = 0

or, in Laplace form,

q =
ω2

e

s2 + 2ξeωes + ω2
e

nd33Kab
T x (6.93)

Introducing in (6.91), one finds

(Ms2 +K +
Ka

1 − k2
bbT )x+

k2

1 − k2
Kabb

T x[
−ω2

e

s2 + 2ξeωes + ω2
e

] = 0 (6.94)

and, after transformation into modal coordinates, one recovers Equ.(6.80);
the rest of the discussion of the previous section applies.

2 see (3.39)
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6.7 Decentralized control

One way to increase the damping is to use multiple transducer systems
controlled in a decentralized manner (Fig.4.11); this allows one to preserve
the robustness properties of individual loops with respect to the paramet-
ric uncertainty, and minimizes the sensitivity with respect to sensor and
actuator failure by leaving the remaining loops unaffected if one of them
breaks. The dynamics of a structure with nT identical piezoelectric trans-
ducers has been analyzed in section 4.5; the governing equations are (4.49)
and (4.50).

We first consider the case where the transducers, assumed to be identi-
cal, are connected to voltage sources, and the IFF controller relies on inde-
pendent force feedback loops with identical gains. With voltage sources, λ
are no longer generalized variables, and the system dynamics is governed
by

Ms2x + (K + KaBBT )x = BKaδ = KaBnd33V (6.95)

where V is the vector of voltages applied and B is the (n×nT ) projection
matrix relating the end displacements of the transducers to the global
coordinate system, ∆ = BT x, and δ is the vector of unconstrained piezo-
electric displacements. As in the single-input single-output (SISO) case
discussed earlier, the output equation of the force sensor is

y = f = gsKa(∆ − δ) = gsKa(B
T x − δ) (6.96)

and the IFF control law is

δ =
g

gsKas
y (6.97)

These equations are formally identical to those of the SISO case, except
that δ and y are vector quantities; it is assumed that the control gain g is
the same for all control loops. Combining the above equations, we obtain
the closed-loop characteristic equation

[Ms2 + (K + KaBBT ) − g

s + g
(KaBBT )]x = 0 (6.98)

As in the SISO case, the asymptotic roots for g → 0 (open-loop poles),
solution of

[Ms2 + (K + KaBBT )]x = 0 (6.99)

are the natural frequencies ωi of the global structure with short-circuited
electrodes. On the other hand, the asymptotic roots for g → ∞ (open-loop
zeros, zi) are solutions of
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[Ms2 + K]x = 0 (6.100)

which, again, corresponds to the situation where the axial contribution of
the transducer to the global stiffness matrix has been removed. A notable
difference with respect to the SISO case, however, is the fact that the poles
and zeros are no longer guaranteed to be alternating along the imaginary
axis, and it is not always simple to determine the asymptotic value of
a specific mode without following the entire locus. The formulation into
modal coordinates follows exactly section 6.3.2, except that the fraction
of modal strain energy is defined by

ΦT (KaBBT )Φ ≃ diag(νiω
2
i ) (6.101)

and contains contributions from all transducers. The results of Table 6.1
still apply in this case, with νi being the fraction of modal strain energy
for all the transducers.3

The case of the current sources and the resistive shunting can be
treated similarly; again, if one assumes that all shunting loops use the
same resistor, all the results of Table 6.1 apply. The actuator placement
aims at maximizing the fraction of modal strain energy in the set of modes
that are targeted for control. An interesting option consists of integrat-
ing piezoelectric transducers into a Stewart-Gough platform, which can be
used as an interface between independent substructures; this application
is discussed in (Preumont, 2002, Abu Hanieh, 2003). Another applica-
tion is the control of large trusses with cables attached to active tendons;
it has been explored in (Preumont, Achkire, Bossens, 1997-2001); once
again, the cable network is designed to maximize the fraction of modal
strain energy in the active tendons.

6.8 General piezoelectric structure

The dynamics of a general piezoelectric structure has been analyzed in
section 4.6. The governing equations are

Ms2x + Kxxx − KT
φxV = 0 (6.102)

sCφφV + sKφxx + YSHV = I (6.103)

For passive shunting, I = 0 and V can be eliminated from the previous
equations, leading to the eigenvalue problem

3 within the limits of the approximation (6.101).
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[Ms2 + Kxx + sKT
φx(sCφφ + YSH)−1Kφx]x = 0 (6.104)

There are numerous practical situations where Cφφ and YSH are diago-
nal matrices [e.g. a structure with a set of PZT or MFC (Macro Fiber
Composite) patches shunted independently] and the foregoing equation
can be reduced to a form essentially similar to (6.59). The two asymp-
totes for YSH → ∞ and YSH = 0 are again the eigenvalue problems with
short-circuited electrodes and open electrodes, respectively.

6.9 Self-sensing

The active strut of Fig.6.3 consists of two transducers, one used as ac-
tuator, and one as force sensor. It is possible to combine the sensor and
the actuator into a single element called a self-sensing actuator (Dosch,
Inman & Garcia, 1992). The general principle of self-sensing has already
been discussed at the end of Chapter 3; here the special case of a piezo-
electric transducer is considered. Since the impedance of a piezoelectric
transducer is essentially that of a capacitor, the bridge structure is that
of Fig.6.12, with all elements being capacitors (C2 and C3). The control
voltage is Vc and the sensor output is V1 − V2. By an appropriate choice
of the capacitance C3, one can make the sensor output proportional to
the force f applied to the transducer, or to the strain, that is the relative
displacement ∆ of its end points. Moreover, we will see that the trans-
mission zeros depend on the capacitance C3 which can therefore be used
for shaping the open-loop transfer function.

C2 C2

C3

Vc
V1V2

I

Piezoelectric

Transducer

Fig. 6.12. Self-sensing actuator.
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6.9.1 Force sensing

The self-sensing actuator consists of a bridge (Fig.6.12); one element of the
right branch of the bridge is the transducer itself, while the other branch
is made of known capacitors. According to the constitutive equation of
the transducer, (4.6),

I/s = Q = CV + nd33f (6.105)

where C is the unconstrained capacitance (f = 0) and V = Vc −V1 is the
voltage difference at the transducer electrodes. It follows that

V =
I

Cs
− nd33

C
f (6.106)

On the other hand, V1 = I/C2s and

Vc = V + V1 = (
1

C
+

1

C2
)
I

s
− nd33

C
f

or

I =
CC2s

C + C2
Vc +

C2s

C + C2
nd33f

and

V1 =
I

C2s
=

C

C + C2
Vc +

nd33

C + C2
f (6.107)

In the left branch of the bridge

V2 =
C3

C3 + C2
Vc (6.108)

and

V1 − V2 = [
C

C + C2
− C3

C3 + C2
]Vc +

nd33

C + C2
f (6.109)

It follows that, if C3 is selected in such a way that C3 = C, the output

V1 − V2 =
nd33

C + C2
f (6.110)

is proportional to the force applied to the transducer.
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6.9.2 Displacement sensing

Alternatively, let us start from the constitutive equation (4.7)

I/s = Q = CSV + nd33Ka∆ (6.111)

where CS = C(1 − k2) is the blocked capacitance (∆ = 0). Following the
same procedure as above,

V =
I

CSs
− nd33Ka

CS
∆

Vc = V1 + V =
I

C2s
+

I

CSs
− nd33Ka

CS
∆

or

I =
CSC2s

CS + C2
Vc +

C2s

CS + C2
nd33Ka∆

and

V1 =
I

C2s
=

CS

CS + C2
Vc +

nd33Ka

CS + C2
∆ (6.112)

Equation (6.108) still applies to the other branch of the bridge and the
output is

V1 − V2 = [
CS

CS + C2
− C3

C3 + C2
]Vc +

nd33Ka

CS + C2
∆ (6.113)

It follows that, if C3 is selected in such a way that C3 = CS = C(1− k2),
the output voltage

V1 − V2 =
nd33Ka

CS + C2
∆ (6.114)

is proportional to the relative displacement ∆ at the end nodes of the
transducer.

6.9.3 Transfer function

We have just seen that the output of the self-sensing actuator depends of
the value of the capacitance C3 in the measurement bridge; C3 = C, the
unconstrained capacitance of the transducer, leads to an output signal
proportional to the force acting on the transducer, and C3 = CS = C(1−
k2), the blocked capacitance, leads to an output signal proportional to the
relative displacement of the end nodes of the transducer. This suggests
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Piezoelectric

Transducer

Structure

C2 C2

C3

Vc

V1 = õç 1

V2 = õç 2

Fig. 6.13. Self-sensing actuator mounted in a structure.

that the transmission zeros depend on the value of the capacitance C3.
This point is investigated in this section.

Consider the self-sensing actuator inserted in a structure as in Fig.6.13;
the capacitance C3 can be varied and its influence on the open-loop zeros
of the transfer function (V1 − V2)/Vc is investigated. The Lagrangian of
the system reads in this case

L=
1

2
ẋT Mẋ−1

2
xT (K+Kabb

T )x+C(1−k2)
(Vc − λ̇1)

2

2
+nd33Ka(Vc−λ̇1)b

Tx

+
1

2
C3(Vc − λ̇2)

2 +
1

2
C2(λ̇

2
2 + λ̇2

1) (6.115)

There are two electrical variables, λ1 and λ2; proceeding as in section 4.4,
the Lagrange’s equations read (in Laplace form)

Ms2x + (K + Kabb
T )x = bKand33(Vc − V1) (6.116)

s[−C(1 − k2)(Vc − V1) − nd33Kab
T x + C2V1] = 0 (6.117)

s[−C3(Vc − V2) + C2V2] = 0 (6.118)

after substituting V1 = λ̇1 and V2 = λ̇2. The first equation governs the
dynamics of the structure, while the other two express the KCR in the
two branches of the bridge. The third equation immediately provides

V2

Vc
=

1

1 + C2/C3
(6.119)
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The transfer function between Vc and V1 can be obtained as follows; from
(6.117)

V1 =
nd33Kab

T x + C(1 − k2)Vc

C(1 − k2) + C2
(6.120)

Introducing in (6.116), one gets easily

{Ms2 + K + Kabb
T [1 +

k2

1 − k2 + r
]}x = bnd33Ka[

r

1 − k2 + r
]Vc (6.121)

where we have used (4.8) and defined r = C2/C. This equation is very
similar to (4.30). Upon transforming into modal coordinates as in section
6.3.2, x = Φα, one finds easily the modal equation

[s2 + ω2
i + νiω

2
i

k2

1 − k2 + r
]αi = φT

i bnd33Ka[
r

1 − k2 + r
]Vc (6.122)

This equation shows that the open-loop poles lie somewhere between those
of the system with short circuited electrodes, ωi (corresponding to r → ∞)
and those of the system with open electrodes, Ωi (corresponding to r = 0).
To make this equation more compact, let us define

ω∗

i
2 = ω2

i + νiω
2
i

k2

1 − k2 + r
(6.123)

ω∗

i are the natural frequencies of the system when the driving voltage
source is short-circuited, Vc = 0. With this notation, the structural dis-
placements can be expressed

x =
∑ φiφ

T
i b

(s2 + ω∗

i
2)

nd33Ka[
r

1 − k2 + r
]Vc

and, combining with (6.120), one gets

V1

Vc
=

∑

i

νiω
2
i

(s2 + ω∗

i
2)

k2r

(1 − k2 + r)2
+

1 − k2

1 − k2 + r
(6.124)

where the definition (6.15) of νi has been used. Combining with (6.119),
one gets the open-loop transfer function

G(s) =
V1 − V2

Vc
=

∑

i

νiω
2
i

(s2 + ω∗

i
2)

k2r

(1 − k2 + r)2
+[

1 − k2

1 − k2 + r
− 1

1 + rC/C3
]

(6.125)
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One sees that all the residues of the modal expansion are positive; this
guarantees alternating poles and zeros in the transfer function. On the
other hand, the feedthrough component (between brackets) has a mag-
nitude which is controlled by the ratio C/C3; by making C3 a variable
element, it is possible to change the magnitude of the feedtrough and
consequently the location of the zeros. This brings a degree of tailoring
on the open-loop transfer function. To illustrate this, consider the asymp-
totic situation where r ≫ 1; in this case, the previous equation can be
simplified into

G(s) =
V1 − V2

Vc
=

1

r
[
∑

i

νiω
2
i k

2

(s2 + ω∗

i
2)

+ (1 − k2 − C3/C)] (6.126)

At s = 0,

G(0) =
1

r
[
∑

i

νiω
2
i k

2

ω∗

i
2 + (1 − k2 − C3/C)] (6.127)

Because ωi < ω∗

i [from (6.123)] and
∑

i νi < 1 [from (6.21)], the first
term is positive and smaller than k2. It follows that C3 = C leads to
G(0) < 0, while C3 = C(1 − k2) cancels the feedthrough term, leading

!

!
þ(!)

!?1 !?2 !?3

log jG(!)j

0

à ù

C3 = C

C3 = C(1àk2)

C(1àk2) <C3 <C

Fig. 6.14. Self-sensing actuator: effect of the capacitance C3 on the open-loop FRF.
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to G(0) > 0. Thus, if C3 = C, G(s) exhibits alternating poles and zeros
on the imaginary axis, starting with a zero, while if C3 = C(1 − k2), it
starts with a pole. This is illustrated in Fig.6.14 which shows the effect
of C3 on a typical open-loop FRF (this figure has been generated with
the following data: ω1 = 1, ω2 = 2, ω3 = 3, ν1 = ν2 = ν3 = 0.2, k = 0.5,
r = 1, and a uniform damping ξi = 0.01).

6.10 Other active damping strategies

In Fig.6.14, all the FRF exhibit alternating poles and zeros; however,
they differ in the way the pole-zero pattern starts at low frequency. The
FRF corresponding to C3 = C starts with a low frequency zero and is
identical to that of Fig.6.4(a) or Fig.6.5(b); the IFF is a very effective
control strategy for this situation. On the other hand, for C3 = C(1−k2),
the FRF starts with a low frequency pole, and the IFF strategy would be
unstable for this pole-zero configuration; alternative strategies applicable
in this case are discussed below.

6.10.1 Lead control

The first case to consider is that where the open-loop FRF exhibits some
roll-off at high frequency, usually 40 dB/decade, corresponding to the
open-loop transfer function having two poles in excess of zeros (decays as
ω−2 at high frequency). The modal expansion of the open-loop transfer
function is

G(s) =
n

∑

i=1

bT φiφ
T
i b

µi(s2 + ωi
2)

(6.128)

This corresponds typically to the case of a point force actuator collocated
with a displacement sensor. The pole-zero pattern is that of Fig.6.15; this
system can be damped with a lead compensator :

H(s) = g
s + z

s + p
(p ≫ z) (6.129)

The block diagram of the control system is shown in Fig.6.16. This con-
troller takes its name from the fact that it produces a phase lead in the
frequency band between z and p, bringing active damping to all the modes
belonging to z < ωi < p. All the branches of the root locus belong to the
left-half plane, which means that the closed-loop system has guaranteed
stability, at least if perfect actuator and sensor dynamics are assumed.

−
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Im(s)
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Fig. 6.15. Root locus of the lead compensator applied to a structure with collocated
actuator and sensor (open-loop transfer function with two poles in excess of zeros).

The controller does not have any roll-off, but the roll-off of the structure
is enough to guarantee gain stability at high frequency.

g
s+p
s+z+

à

u yP

i
öi(s2+!

2
i
)

(bTþi)
2

G(s) =

Fig. 6.16. Block diagram of the lead compensator applied to a structure with collocated
actuator and sensor (open-loop transfer function with two poles in excess of zeros).

6.10.2 Positive Position Feedback (PPF)

The situation where the open-loop FRF has a roll-off of -40 dB/decade is
not the most frequent one when piezoelectric actuators are used. Figure
5.10 shows a typical experimental open-loop FRF corresponding to an
active cantilever beam with collocated PZT actuator and sensor patches,
similar to that of Fig.5.6. As observed earlier, this open-loop FRF does
not roll-off at high frequency, and this was attributed to a feedthrough
term in the system equation; a similar situation occurs in (6.125). When
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the open-loop transfer function has a feedtrough component, the system
stability requires that the compensator includes some roll-off.4 The Pos-
itive Position Feedback was proposed (Goh & Caughey, 1985, Fanson &
Caughey, 1990) to achieve just that, for systems similar to that of Fig.5.6.
The controller consists of a second order filter

H(s) =
−g

s2 + 2ξfωfs + ω2
f

(6.130)

where the damping ξf is usually high (0.5 to 0.7), and the filter frequency
ωf is adapted to target a specific mode. The block diagram of the control
system is shown in Fig.6.17; the negative sign in H(s), which produces a
positive feedback, is the origin of the name of this controller.

s2+2øf!f+!
2
f

àg+

à

u yP

i
öi(s2+!

2
i
)

(bTþi)
2

G(s) =

Fig. 6.17. Block diagram of the PPF controller applied to a structure with collocated
actuator and sensor (the open-loop transfer function has the same number of poles and
zeros).

Figure 6.18 shows typical root loci when the PPF poles are targeted to
mode 1 and mode 2, respectively (i.e. ωf close to ω1 or ω2, respectively).
One sees that the whole locus is contained in the left half plane, except
one part on the positive real axis, but that part of the locus is reached
only for large values of g, which are not used in practice. The stability
condition can be established as follows: the characteristic equation of the
closed loop system reads

ψ(s) = 1 + gH(s)G(s) = 1 − g

s2 + 2ξfωfs + ω2
f

{
n

∑

i=1

bT φiφ
T
i b

µi(s2 + ωi
2)
} = 0

or

ψ(s) = s2 + 2ξfωfs + ω2
f − g{

n
∑

i=1

bT φiφ
T
i b

µi(s2 + ωi
2)
} = 0

According to the Routh-Hurwitz criterion for stability, if one of the

4 in the IFF control discussed earlier, there is a feedthrough in G(s), but the controller
1/s has a -20 dB/decade roll-off.
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efficients of the power expansion of the characteristic equation becomes
negative, the system is unstable. It is not possible to write the power ex-
pansion ψ(s) explicitly for an arbitrary value of n, however, one can see
easily that the constant term (in s0) is

an = ψ(0) = ω2
f − g

n
∑

i=1

bT φiφ
T
i b

µiωi
2

In this case, an becomes negative when the static loop gain becomes larger
than 1. The stability condition is therefore

gG(0)H(0) =
g

ω2
f

{
n

∑

i=1

bT φiφ
T
i b

µiωi
2

} < 1 (6.131)

Note that it is independent of the structural damping in the system. Since
the instability occurs for large gains which are not used in practice, the
PPF can be regarded as unconditionally stable. Unlike the lead controller
of the previous section which controls all the modes which belong to
z < ωi < p, the PPF filter must be tuned on the targeted mode (it is
therefore essential to know the natural frequency accurately), and the
authority on the modes with very different frequencies is substantially
reduced. Several PPF filters can be used in parallel, to target several
modes simultaneously, but they must be tuned with care, because of the
cross coupling between the various loops.

Fig. 6.18. Root locus of the PPF controller applied to a structure with collocated
actuator and sensor (the open-loop transfer function has the same number of poles and
zeros). (a) Targeted at mode 1. (b) Targeted at mode 2. (For clarity, different scales
are used for the real and the imaginary axes.)
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6.11 Remark

Throughout this chapter, structural damping has been ignored; this as-
sumption has led to fairly simple analytical results for the closed-loop
modal active damping. In the presence of light structural damping, the
passive and active damping can simply be added.

In the absence of structural damping, the closed-loop stability has been
achieved as a result of the collocation, leading to a fixed, alternating pole-
zero pattern, and because perfect actuator and sensor dynamics have been
assumed. For non-collocated control systems, this approach is not suf-
ficient, because it is not possible to stabilize (by feedback) a distributed
flexible structure if the structural damping is ignored, due to spillover
(some destabilization always occurs outside the bandwidth of the con-
troller, as expressed by the Bode Integrals). Similarly, the actuator and
sensor dynamics alters the pole-zero pattern of the control system and,
here again, structural damping is necessary to achieve closed-loop stability
with imperfect actuator-sensor dynamics.
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piezoelectric material, 116
piezoelectric transducer, 99

Curie temperature, 98
current amplifier, 136
current control (IFF), 169
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divergence theorem, 123, 153
duality, 154
dynamic amplification, 146, 160
dynamic flexibility matrix, 162

effective force, 10
electric dipoles, 98
electrical

coenergy, 43, 51, 63
energy, 42, 49, 63
enthalpy density, 120

electrode shape, 134
electrodynamic isolator, 84
electromagnetic plunger, 76
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Kirchhoff

current rule (KCR), 41, 46
voltage rule (KVR), 41, 46

Kirchhoff plate theory, 148
Kronecker delta index, 139
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Lagrangian, 12, 18, 51, 53, 72, 75
piezoelectric structure, 106, 113, 114,

182
laminar sensor, 136
lead compensator, 191
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magnetic
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filter, 139
sensor, 140
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natural boundary conditions, 16, 124
negative capacitance, 111, 112, 175
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Painlevé integral, 30
parabolic electrode, 135, 138
passive damping, 159
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energy, 102
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materials, 95
transformer (Rosen’s), 124
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Positive Position Feedback (PPF), 193
prestressed piezoelectric transducer, 109
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proof-mass actuator, 82
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fibers, 156

quality factor, 129
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reluctance force, 89
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self-sensing, 93, 185
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smart materials, 95
spatial filter, 139, 156
special relativity, 4
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Stewart-Gough platform, 184
stored electromechanical energy, 101
strain energy density, 34

thermal analogy, 107
transducer, 61, 159

constant (transduction coefficient), 69,
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transmissibility, 86
triangular electrode, 135, 138

unconstrained expansion, 107

virtual displacement, 7
virtual work, 8, 52–54
voice coil, 68
voltage control (IFF), 165
voltage source, 45
volume displacement, 138
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