Water for the World

Designing Hand Dug Wells
Technical Note No. RWS. 2.D. 1

Proper design of hand dug wells is important to asure a year-round supply of water and to assure efficient use of personnel and materials. Designing involves determining the size and shape of the well; the method of lining the shaft; the type of intake; and the necessary personnel, materials, equipment, and tools. The products of the design process are drawings of the shaft and lining and a detailed materials list. These, along with a location map similar to Figure 1 ("Selecting a Wel] Site," RWS.2.P.3), should be given to the construction foreman before construction begins.

There are several good methods of designing and constructing hand dug wells; if you are familiar with a specific method, use it. This technical note describes one method of designing hand dug wells and arriving at the essential end-products. Read the entire technical note before beginning the design process.

Useful Definitions

AQUIFER - A water-saturated geologic zone that will yield water to springs and wells.

GROUND WATER - Water stored below the ground's surface.

KIBBLE - A large bucket for lifting materials when sinking a shaft; also called a hoppit or sinking bucket.

POROUS - Having tiny pores or spaces which can store water or a].low water to pass through.

WATER TABLE - The top, or upper limit, of an aquifer.

Size and Shape

When viewed from the top, wells can be any shape but most of them are round. This is because a round we]l produces the greatest amount of water for the least amount of excavation, and a round jining is stronger than any other shape.

The size of the well refers to its depth and diameter. Although it is impossible to know the depth of a well before it is dug, an attempt should be made to estimatc it. This will aljow you to roughly calculate the quantities of materials needed for construction. Use information from test holes or existing wells in the area to estimate the depth of the water table.

For practical and economic reasons, well diameters are between 1.0 m and 1.5 m . The smal. er diameter results in a savings in materials costs, and it requires less soil to be excavated. The larger diameter means a higher materials cost, but a more efficient work output, since two men rather than one can dig the shaft. A larger diameter provides a greater storage capacity and a]lows more water to enter the well. If pre-made forms or precast concrete rings are used, their size wi]] determine the diameter of the well.

When the depth and diameter of the well shaft have been determined, write the dimensions on a design drawing similar to Figure 2.

Lining the Shaft

Although various materials have been used to line we] shafts, concrete is the best and most common lining. It is strong, long-lasting, and widely known.

The two basic methods of]ining we] shafts are dig-and-line and sink lining or caissoning. In dig-and-line, a portion of the shaft is excavated, shutters are set in place in the shaft, and concrete is poured behind the shutters. When the concrete hardens, the shutters are removed and the next portion of the shaft is excavated.

In sink lining, concrete rings called caissons are cast and cured in special molds at the surface. The rings are stacked on top of each other and attached together with bolts. As soi] is excavated from beneath the rings, they sink into the earth and Jine the shaft.

Figure 2. Design of Well Lining and Caisson

Often, both methods are employed in a single wel]: dig-and-]ine is used unti] the water table is reached, then caissoning is used to sink the well into the aquifer. The Jining is usual]y 75 mm thick and the caisson rings are $125-150 \mathrm{~mm}$ thick. The outside diameter of the rings is $50-100 \mathrm{~mm}$]ess than the inside diameter of the Jining to ajlow the rings to freely move downward. l'able 1 shows common dimensions of shaft, lining, and rings.

Write the dimensions that you determine are best for your wel] on the design arawing similar to Figure 2.

Intake

The caisson rings are sunk into the aquifer as far as possible; that is, until the water becomes too deep to

Table 1. Dimensions of Shaft, Lining and Caisson Rings	
Shaft diameter	Dimension
Lining, outside dia- meter	1.45 m
Lining, inside diameter	1.45 m
Lining, thickness	1.30 m
Caisson, outside dia- meter	75 mm
Caisson, inside dia- mctcr	$0.90-0.95 \mathrm{~m}$
Caisson, thickness	$125-150 \mathrm{~mm}$
Caisson, height	0.50 m

continue the excavation. Ground water may then enter the we]] either (1) through the opening under the lowest caisson ring, or (2) through the rings themselves. In the first case, the rings are made of standard concrete which does not allow entry of water. In the second case, the rings are usually made of porous concrete which al]ows water to pass through. Another way to allow water to enter through the caisson rings is to build the rings from standard concrete and perforate them with seepage holes. For all types of intakes, the bottom of the shaft should be covered with a porous base plug made from porous concrete or layers of sand and gravel. The plug prevents aquifer material from rising into the wel].

The type of caisson ring used depends on the riature of the aquifer. Normal]y, rings are made of porous concrete. However, if the aquifer is composed of fine sand, which would clog
the pores or flow through the seepage holes, the rings should be made of standard concrete without perforations. It may not be possible to know which type of intake is needed unti] the aquifer is reached. But an attempt should be made to anticipate the necessary intake, based on test holes or other wel]s in the area.

When the type of intake has been determined, indicate it on the design drawing similar to Figure 2.

Personnel

The most important person involved with wel] construction is the foreman. He should have some experience. He must oversee al] phases of construction, including excavating and lining the shaft, mixing concrete for the Jining and caissons, and Jowering the caissons into place. It is his responsibility to see that construction proceeds in a safe manner.

At least four workers are needed. One should have some experience with wel] digging and one should have experience with concrete construction. The workers must be reliable besaluse the construction process may take? several weeks or more.

Materials

The materials needed to line a hand dug wel] are concrete mix and reinforcing stee].

One common mix of concrete is onte part cement to two parts sand to four parts grave] by volume and enough water to make a workable mix. The cement should be Port]and cement, and it should be dry and free from hard]umps. Sand should be clean, and siaed fine to 6 mm . If porous conerete is used for the caisson rings, omit the sand. Gravel should be clean and sized $6-36 \mathrm{~mm}$ ($10-20 \mathrm{~mm}$ for porous concretes). Water should be clean and clear.

Two sizes of reinforcing stee], called re-rods, are generaj]y used: 8 mm diameter for the 1 ining and 15 mm diameter for the caissons. The quantities of these materials needed edn be rough]y estimated.

For each meter of depth of the lining:

```
grave] = 0.5m3
sand = 0.25m3
cement = 0.125m3 (or about 190kg,
    assuming 0.00066m3 = 1.0kg)
8mm re-rod = 33m
For each meter of caisson rings:
grave] \(=1.0 \mathrm{~m}^{3}\left(1.4 \mathrm{~m}^{3}\right.\) for porous concrete)
sand \(=0.5 \mathrm{~m}^{3}\) (none for porous concrete)
cement \(=0.25 \mathrm{~m}^{3}\left(0.35 \mathrm{~m}^{3}\right.\) for porous concrete)
15 mm re-rod \(=4 \mathrm{~m}\)
```

For example, suppose the estimated depth of the shaft and lining is 15 m , the height of the caisson rings is 3 m , and the rings are to be made from porous concrete. The quantities would be estimated in the following way.

For the lining:

```
grave] \(=0.5 \mathrm{~m}^{3} \times 15=7.50 \mathrm{~m}^{3}\)
sand \(=0.25 \mathrm{~m}^{3} \times 15=3.75 \mathrm{~m}^{3}\)
cement \(=0.125 \mathrm{~m}^{3} \times 15=1.88 \mathrm{~m}^{3}=\)
        \(1.88 \mathrm{~m}^{3}=2850 \mathrm{~kg}\)
        \(0.0 \overline{0066 \mathrm{~m}^{3}} / \mathrm{kg}\)
8 mm re-rod \(=33 \mathrm{~m} \times 15=495 \mathrm{~m}\)
```

For the porous concrete caissons:
grave] $=1.4 \mathrm{~m}^{3} \times 3=4.20 \mathrm{~m}^{3}$
sand $=$ none
cement $=0.35 \mathrm{~m}^{3} \times 3=1.05 \mathrm{~m}^{3}=$
$1.05 \mathrm{~m}^{3}=1590 \mathrm{~kg}$
0.00066 m
$\mathrm{ce}-\mathrm{rod}=4 \mathrm{~kg}$
$\mathrm{~m} \times 3=12 \mathrm{~m}$

15 mm re-rod $=4 \mathrm{~m} \times 3=12 \mathrm{~m}$
The total quantity of cement needed for the lining and the caisson rings $=$ $2850 \mathrm{~kg}+1590 \mathrm{~kg}=4440 \mathrm{~kg}$. Cement is often packaged in 50kg sacks, so the number of sacks needed $=\frac{4440}{50}=88.8$ or
89 sacks. Worksheet A shows a further example of how to estimate quantities of matcrials necded for a hand dug wel].

Other materials needed are those used to build a storage shed. Use local]y available materials and traditional construction methods.

Equipment

The main piece of equipment reseded is a headframe capable of Jowerimer workers and caissons into the shaft amd hoisting up excavated soil. The headframe must be able to support. weights in excess of 350 kg , the approximate weight of a conerete caisson. It should have a winch, a main pul]ey, and an auxiliary pul]ey.

At least three ropess are netded: one for lowering caissons, tensile strempth of rope about $7 \mathrm{kE} / \mathrm{km}^{2}$, one for lowerine, and raising full kibbles and concrete. buckets, and one for suspendints trimming rods.

A heavy-duty stretcher with a [J-bo]t in the center is needed to Jower caissons.

Steel shutters are needed to form the Jiring. For caissons, you will need stee] molds and templates to position the re-rods.

Two kibb]es are needed to hoist up water and excavated soi]. The kibbles should be watertight and made of stee], with a safety lateh on the hand]e to prevent them from tipping. They should be wider around the middle than around either end to prevent them from catching on any projections within the shaft.

Other equipment meeded includes concrete bucketis, a bosun's ehair, top p]umbing rod, long and short trimmine rods, and hard hat:

Tools

The workers need tools for measuring, plumbine, excavatine, and trimming the shaft; mixing, pourime, and finishing comerete; and positionime and securing re-rods. When you have determined a] necessary persomer, materials, equipment, and tool; , prepare a materials]ist similar to 'lablo 2 and give it to the construction foreman. Give the construction foreman design drawings of the well, a detailed materials list, and a location map.

Worksheet A. Estimating Quantities of Materials for Hand Dug Wells

For the Lining:

1. Estimated depth of shaft $=15 \mathrm{~m}$
2. Gravel $=0.50 \mathrm{~m}^{3} \times$ Line $1=0.50 \mathrm{~m}^{3} \times 15=7.50 \mathrm{~m}^{3}$
3. Sand $=0.25 \mathrm{~m}^{3} \times$ Line $1=0.25 \mathrm{~m}^{3} \times 15=3.75 \mathrm{~m}^{3}$
4. Cement $\left(\mathrm{m}^{3}\right)=0.125 \mathrm{~m}^{3} \mathrm{x}$ Line $1=0.125 \mathrm{~m}^{3} \times 15=1.88 \mathrm{~m}^{3}$
5. Cement $\left.(\mathrm{kg})=\frac{\text { Line } 4}{0.00066 \mathrm{~m}} 3 / \mathrm{kg}=\frac{(1.88}{0.00066 \mathrm{~m}} \mathrm{~m}^{3} / \mathrm{kg}\right)=\underline{280} \mathrm{~kg}$
6. 8 mm re-rod $=33 \mathrm{~m} \times$ Line $1=33 \mathrm{~m} \times 15=495 \mathrm{~m}$

For the Caisson Rings:
Type of concrete (check one): \square standard $\square \mathbf{X}$ porous
Standard Concrete
7. Height of caisson rings $=3 \mathrm{~m}$
8. Gravel $=1.0 \mathrm{~m}^{3} \mathrm{x}$ Line $7=1.0 \mathrm{~m}^{3} \mathrm{x}$ \qquad $=$ \qquad m3
9. Sand $=0.50 \mathrm{~m}^{3} \mathrm{x}$ Line $7=0.50 \mathrm{~m}^{3} \mathrm{x}$ \qquad $=$ \qquad m 3
10. Cement $\left(\mathrm{m}^{3}\right)=0.25 \mathrm{~m}^{3} \mathrm{x}$ Line $7=0.25 \mathrm{~m}^{3} \mathrm{x}=$ \qquad m^{3}
11. Cement $(\mathrm{kg})=\frac{\text { Line } 10}{0.00066 \mathrm{~m}^{3} / \mathrm{kg}}=\frac{\left(\mathrm{m}^{3}\right)}{0.00066 \mathrm{~m}^{3} / \mathrm{kg}}=\ldots \mathrm{kg}$
12. 15 mm retrod $=4 \mathrm{~m} x$ Line $7=4 \mathrm{mx} 3=12 \mathrm{~m}$

Porous Concrete
13. Grave] $=1.40 \mathrm{~m}^{3} \mathrm{x}$ Line $7=1.40 \mathrm{~m}^{3} \mathrm{x} 3=4.20 \mathrm{~m} 3$
14. Sand $=$ none
15. Cement $\left(\mathrm{m}^{3}\right)=0.35 \mathrm{~m}^{3} \mathrm{x}$ Line $7=0.35 \mathrm{~m}^{3} \mathrm{x} 3=1.05 \mathrm{~m}^{3}$
16. Cement $(\mathrm{kg})=\frac{\text { Line } 15}{0.00066 \mathrm{~m} 3 / \mathrm{kg}}=\frac{(1.05 \mathrm{~m})}{0.00066 \mathrm{~m}} / \mathrm{kg}=1590 \mathrm{~kg}$

Total Amount of Cement for Lining and Caisson $=$
Line $5+$ Line $11+$ Line $16=2850 \mathrm{~kg}+\ldots \quad \mathrm{kg}+1590 \mathrm{~kg}=4440 \mathrm{~kg}$

Table 2. Sample Materials List

Item	Description	Quantity	Estimated Cost
Personnel	Foreman Worker, skilled in sinking well Worker, experienced with concrete Workers, unskilled	$\begin{gathered} 1 \\ 1 \\ 1 \\ 2-4 \end{gathered}$	
Supplies	```Cement (Portland) Sand (clean; fine to 6mm) Gravel (clean; 6-36mm) Water (clean and clear) Re-rod for Jining: 8mm diameter Re-rod for caissons: 15mm dia- meter Materials for storage shed```		
Equipment	Headframe Rope for caissons; $100 \mathrm{~m} x 12 \mathrm{~mm}$ diameter, steel wire with fiber core tensil strength $7 \mathrm{~kg} / \mathrm{cm}^{2}$ Rope for kibbles: 100 x 6 mm diameter Rope for trimming rods: $100 \mathrm{~m} x$ 3 mm diameter Steel shutters (1.30 m diameter x 0.5 m high) with wedges and bolts Steel shutters (1.30 m diameter x l.Om high) with wedges and bolts Steel molds for caisson rings (1.20 m outside diameter, 0.95 m inside diameter, 0.5 m high) Templates for molds Stretcher for caissons		

Total Fstimated Cost $=$ \qquad

