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The TRAPZ method for zero-point energy (ZPE) preservation (Lim and McCormack, J. Chem. Phys., 1995,
102, 1705) is generalised to molecular systems of non-zero angular momentum. The method is shown to
conserve linear momentum, angular momentum and total energy. It is also found to preserve the intrinsic
RiceÈRamspergerÈKasselÈMarcus (RRKM) behaviour of a dissociating cluster. The TRAPZ rateAl3
coefficients are lower than those calculated for classical ensembles, since regions of phase space with less than
ZPE can no longer react. As required, the RRKM rate coefficients are upper bounds to the TRAPZ rate
coefficients. The TRAPZ reaction threshold is higher than the classical (asymptotic-limit) product ZPE due to
Ñuctuations in instantaneous normal mode ZPEs. Rotationally hot is produced as ZPE bendingAl2 Al3
motion is converted to angular momentum. The TRAPZ method does not preserve the non-RRKMAl2
behaviour of HNC isomerisation.

I. Introduction
Whilst it is generally preferable, in the study of molecular
dynamics, to implement a quantum or semi-classical scheme,
it is often impractical, or impossible, due to the computational
e†ort required by these methods. Quasi-classical techniques,
whilst not as physically desirable, are a feasible option, and
there are many well documented cases where they have been
used e†ectively to determine qualitative, and quantitative,
trends of processes such as intramolecular vibrational relax-
ation (IVR),1h6 collisional energy transfer (CET),7h12 and
reaction.13h21

The “ZPE problemÏ, or “ZPE leakÏ, has been the subject of
much discussion of late, and has yet to be resolved adequately.
The problem itself, that classical mechanics fails to restrict
energy Ñow in order to preserve quantum ZPE in vibrational
modes, has been well documented by many authors.20h28 Par-
ticularly good reviews, of the problem and attempts to solve
it, can be found in ref. 26 and 28. Remedies have traditionally
fallen into two categories : “passive Ï and “active Ï.26,28 Passive
methods do not alter the classical trajectories themselves but,
instead, re-interpret the results of such trajectories to account
for ZPE leak.18,21,29h31 Active methods make some modiÐ-
cation to the equations of motion in order to assure preser-
vation of ZPE.20,22,25h27,32

This paper aims to develop and test the TRAPZ (trajectory
projection onto ZPE orbit) active method.27,33,34 This tech-
nique has previously only been fully applied to the He� nonÈ
Heiles Hamiltonian,35 and was found to exhibit some unusual
behaviour.27,34 The dynamics of the classical He� nonÈHeiles
system have been well documented, and consist basically of
quasi-periodic behaviour at energies below a critical value,
and predominantly chaotic behaviour at higher levels.36h42
The TRAPZ method was found to preserve the quasi-periodic
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behaviour at low energies, but also incite it above the critical
threshold.27 (Note that unpublished studies of other varia-
tions of TRAPZ show no signs of this e†ect.)43 Our purpose is
thus, in part, to determine whether this regularisation of
chaotic dynamics will carry over to other systems, and also to
establish whether intrinsically non-chaotic behaviour is pre-
served by the method.

Peslherbe et al. have shown that the classical rotationally
cold cluster, at energies up to 2.0 kcal mol~1 (8.4 kJAl3mol~1) above the classical dissociation threshold, exhibits
single-exponential decay

Al3 ] Al2 ] Al (1)

and is consistent with ergodic behaviour characteristic of
RRKM systems.44 More recently, they have performed a
detailed comparison of constrained trajectory calculations,45
utilising the active constraint referred to here as the
“BowmanÈMillerÈHaseÏ (BMH) method (elsewhere as the
“momentum-reversal Ï method),22,24,26,32,45h48 with various
variational RRKM and phase space theories for dissociation
rate calculations of The BMH trajectory rate coefficientsAl3 .
were in poor agreement with those determined by RRKM
theory.45 They surmised that this was partially due to some
trajectories being temporarily trapped in the “ forbidden
regionÏ of phase space by a Ñaw in the BMH method. Never-
theless, the BMH method maintains the ergodic nature of the
molecule,45 which is not surprising, since other studies have
shown the method increases the degree of chaos, and hence
the ergodicity of a system.27,28,46,48 In contrast, some variants
of the TRAPZ method have been seen to transform ergodic
systems into non-ergodic ones.27

Studies by Chan, Shen and Pritchard on the isomerisation
of HNC,48,49

HNC] HCN (2)

have indicated that reaction (2) does not show RRKM-type
decay. However, application of a BMH-like method induced
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ergodic behaviour in the system.48 It was argued that the
momentum-reversal BMH method is analogous to a col-
lisional process, e†ectively inducing randomisation in the
system.48 We had previously shown that each discontinuous
jump in the modal momenta results in a randomisation of the
vibrational phase,27 and Peslherbe et al. have observed that
the method e†ectively destroys the invariant tori which lead
to quasiperiodic motion, by mapping trajectories in violation
of ZPE constraints from these tori onto other invariant tori or
chaotic regions of phase space.24

The motivations behind this paper are thus : To generalise
the TRAPZ method to molecular systems of non-zero angular
momentum. To test the TRAPZ method on RRKM and non-
RRKM systems, in particular dissociation and HNCAl3isomerisation. The (RRKM vs. non-RRKM) e†ect of TRAPZ
on a system of greater-than-two dimensions is investigated
here.

In Section II, the TRAPZ method is generalised for use on
molecular systems with non-zero angular momentum. The
method is shown to involve the smallest perturbations to the
Hamiltonian forces in order to preserve ZPE, conserve linear
and angular momentum, and conserve total energy.

Details of calculations on dissociation and HNC isom-Al3erisation are presented in Section III. Results and discussion
are presented in Section IV. In Section IV we also show that
TRAPZ does not conserve phase-space volume, which
accounts in some way for chaotic] quasiperiodic behav-
iour.27

II. Theory

A. Notation

A derivation of the TRAPZ method has been published pre-
viously.27 Here we present a derivation which acts on the
instantaneous normal modes.24,50 Henceforth, a single bar
overscore is used to denote a vector of length 3N, a double
bar overscore a square matrix of linear dimension 3N, and a
tilde overscore a vector of length 3, where N is the number of
atoms in the system. Hence the mass-weighted co-ordinates of
atom i, are vectorially represented as(x3ih2 , x3ih1 , x3i),

x8
i
\ [x3i~2 x3i~1 x3i]T

We deÐne mass-weighted coordinates and momenta, in(x8 , p8 ),
terms of the cartesian coordinates and momenta, as(x8 c , p8 c),

x8 \ [x1x2 É É É x3N]T

x8 \ M2 1@2x8 c
and

p6 \ M2 ~1@2p6 c
where is the diagonal mass matrixM2

M2 \ diag[m1m1m1m2 m2 m2 É É É m
N

m
N

m
N
]

with the mass of atom i.m
i

B. The ZPE requirement

Firstly, consider the case of a non-rotating system, for which
the total angular momentum, is zero. We begin by takingJ3 ,
the harmonic approximation to the potential energy surface at
the instantaneous geometry, x8 t :

V (x8 )B V (x8 t)] f 6 (x8 t)T(x8 [ x8 t)] 12(x8 [ x8 t)TK2 (x8 t)(x8 [ x8 t)

where

f 6 (x8 ) \
CLV (x8 )

Lx1

LV (x8 )
Lx2

É É É
LV (x8 )
Lx3N

DT

and

L2V (x8 )
Lx8 12

L2V (x8 )
Lx1 Lx2

É É É
L2V (x8 )

Lx1 Lx3N

K2 (x8 ) \
L2V (x8 )
Lx2 Lx1

L2V (x8 )
Lx22

<

< } <

L2V (x8 )
Lx3N Lx1

É É É É É É
L2V (x8 )
Lx32 N

R S
t t

t t

t t

t t

t t

t t

t t

t t

t t

T U
is the force constant matrix. We Ðnd the projected forceK2 (x8 )

constant matrix, by removing the six inÐnitesimal rota-K2
A
(x8

t
),

tions and translations from the matrix K2 (x8
t
) :51

K2
A
(x8

t
) \ (I2 [ A2 (x8

t
)K2 (x8

t
)(I2 [ A2 (x8

t
)) (3)

where is the identity matrix, andI2

;
i/1

6
A

i, 1 A
i, 1 ;

i/1

6
A

i,1A
i, 2 É É É ;

i/1

6
A

i, 1Ai, 3N

A2 (x8
t
) \

;
i/1

6
A

i, 2 A
i, 1 ;

i/1

6
A

i, 2 A
i, 2 <

< } <

;
i/1

6
A

i, 3N A
i, 1 É É É É É É ;

i/1

6
A

i, 3N A
i, 3N

R S
t t

t t

t t

t t

t t

t t

t t

t t

t t

T U
with the j-th component of the i-th unit vector for theA

i, jinÐnitesimal rotations and translations of the molecule (six in
all). Diagonalizing we get the orthonormal eigenvectorsK2

A
(x8

t
)

É É É corresponding to eigenvaluesL1
k
\ [L

k, 1 L
k, 2 L

k, 3N]T )
k
2

for k \ 1, . . . , 3N. These are the instantaneous normal
modes.50 is the matrix formed from the column vectorsL2 L1

k
:

L2 \ [L1 1 L1 2 É É É L1 3N]

The instantaneous normal mode coordinates and momenta,
are related to the mass-weighted quantities by the(Q1 , P1 ),

equations

(x8 [ x8
t
) \ L2 Q1

and

p6 \ L2 P1 (4)

The Hamiltonian, expanded to second order in instan-
taneous normal mode coordinates, is

H(P1 , Q1 ) \ V (x8
t
) ] ;

k/1

3N~6
(12P

k
2 ] D

k
Q

k
] 12)k

2Q
k
2)

where the modes have been sorted : 1, . . . , 3N [ 6 are vibra-
tional, and 3N [ 5, . . . , 3N rotational and translational. The

are given byD
k
s

D
k
\ L1

k
É f 6 (x8

t
) (5)

The second order expression for preservation of the zero-
point energy in the vibrational normal modes is thence

12Pk
2 ] 12)k

2
A
Q

k
]

D
k

)
k
2
B2

P 12+)
k
; for k \ 1, . . . , 3N [ 6 (6)
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Note that is the instantaneous harmonic ZPE, given by12+X
kthe curvature of the potential surface in the neighbourhood of

the instantaneous geometry x8
t
.

C. Non-rotating case (J = 0)

1. Preserving ZPE. Constraints52,53 have been used to Ðx
bond lengths in molecular dynamics simulations (e.g. ref. 54
and 55). Here constraints are used to Ðx certain mode energies
at various times during a trajectory.

The TRAPZ method requires that whenever the system
begins to violate eqn. (6), in one or more modes, those modes
are constrained to the ZPE orbit, i.e.

12Pk
2 ] 12)k

2
A
Q

k
]

D
k

)
k
2
B2

\ 12+)
k

(7)

until there is energy redistribution back into these “violating Ï
modes,

d

dt
C
12Pk

2 ] 12)
k
2
A
Q

k
]

D
k

)
k
2
B2D

[0

when the trajectory is once again allowed to proceed
unhindered (Fig. 1). Let the number of violating modes at any
time be l, and assume the vibrational modes (i.e. 1, . . . ,
3N [ 6) are re-sorted such that modes 1, . . . , l are violating.
Neglecting the time dependences of and di†erentiationL1

k
)

k
2

of the constraint in eqn. (7), with respect to time, leads to

P
k

dP
k

dt
] X

k
2
A
Q

k
]

D
k

X
k
2
B
P

k
\ 0 ; for k \ 1, . . . , l (8)

(Instantaneous normal mode bases depend on the molecular
geometry which varies with time :50 the Ðnal outcome is the
same whether or not these variations of basis are included.)
Combining eqn. (4) and (8), we arrive at the expression

L1
k
Æ
dp6
dt

\ [)
k
2
A
Q

k
]

D
k

)
k
2
B

; for k \ 1, . . . , l

These l equations each represent a hyper-plane in dp8 /dt
(force) space, with normal vector If the point representingL1

k
.

the unconstrained force in space does not lie on all ofdp6 /dt
these hyper-planes, we map it to the nearest point which does,
in order to preserve ZPE. This corresponds to the intersection

Fig. 1 Time-reversible and irreversible versions of TRAPZ. The
diagram is for the phase space of a single vibrational mode, and rep-
resents a plot of momentum (P) vs. position (Q). A trajectory is seen
moving in this space with time : (a) colliding with the ZPE orbit
(ellipse), and eventually moving o† the orbit either (b) tangentially
(time-irreversible case),27 or (c) at an angle equal to that at which it
approached the orbit (time-reversible case).43

of another hyper-space (which passes through the uncon-
strained point and is spanned by the vectors), with the lL1

kconstraint hyper-planes. For example, if there is only one vio-
lating mode, the point is moved in the (normal) directionL1

kuntil it satisÐes eqn. (7). Obviously, following the normal
vector corresponds to the shortest distance between a point
and a plane. The equation of motion for is nowdp6 /dt

dp6
dt

\ [
LV (x8 )
Lx8

] ;
k/1

l
j
k
L1

k

The equation for is unchanged. [This is slightly di†erentdx8 /dt
from our original prescription which used a radial mapping in

space.]27 The coefficients(P
k
, Q

k
) j

k

j
k
\ j

k
(P

k
, Q

k
)

for each violating normal mode, are chosen so as to ensure
preservation of ZPE in mode k. A better representation is
obtained by transforming to normal mode coordinates, which
gives

dP
k

dt
\ [

LV (Q1 )
LQ

k

] j
k
; for k \ 1, . . . , l

dQ
k

dt
\ P

k
; for k \ 1, . . . , l (9)

Each can be determined by solving eqn. (8) and (9) simulta-j
kneously. Changes to the equations for the non-violating

modes are considered next.

2. Conservation of total energy. The conservation of total
energy gives an extra constraint,

dH(P1 , Q1 )
dt

\ ;
k/1

3N~6 A
P

k

dP
k

dt
]

LV (Q1 )
LQ

k

P
k

B
\ 0 (10)

Transformation of parts of eqn. (10) to mass-weighted coordi-
nates gives

C
;
k/1

3N~6
P

k
L1

k

D
Æ
dp6
dt

\ [ ;
k/1

3N~6 LV (Q1 )
LQ

k

P
k

(11)

This is another hyper-plane in space, with the normaldp6 /dt
vector

;
k/1

3N~6
P

k
L1

k
(12)

However, this normal is not guaranteed to be orthogonal to
the normal vectors which arose from preserving ZPE. WeL1

kwish to add this vector to the ZPE constraint normals found
previously, thus forming a new space, spanned by l] 1
vectors, which passes through the unconstrained point in

space. We can establish an orthogonal basis for thisdp6 /dt
space by simply excluding the 1, . . . , l terms from the summa-
tion on the left-hand side of eqn. (12). This new space will
intersect all of the ZPE constraint hyper-planes, and that
expressed by eqn. (11), at a single point. A physical interpreta-
tion of mapping to this point is that it represents the smallest
possible change to the force on the molecule which leads to
preservation of zero-point energy and conservation of total
energy. The equations of motion for the non-violating modes
thus become

dP
k

dt
\ [

LV (Q1 )
LQ

k

] bP
k
; for k \ l] 1, . . . , 3N [ 6

dQ
k

dt
\ P

k
; for k \ l] 1, . . . , 3

N~6 (13)

Phys. Chem. Chem. Phys., 1999, 1, 1È12 3



is chosen to ensure conservation of total energyb \b(P1 , Q1 )
and is determined by solving eqn. (8), (9), (10), and (13).

D. Implementation by numerical integrator

2. The complete mapping. The above equations of motion
are integrated by a numerical algorithm. Hence, the time rate
of change of non-violating normal mode momentum, in di†er-
ential form,

dP
k
\ [

LV (Q3 )
LQ

k

dt ] bP
k
dt ; k \ l] 1, . . . , 3N [ 6

is discretised as

*P
k
\ [

CLV (Q1 )
LQ

k

] O(*t)
D
*t ] [bP

k
] O(*t)]*t

+ [
CLV (Q3 )

LQ
k

] O(*t)
D
*t ] bP

k
*t (14)

for a small time step, *t, and change in momentum, The*P
k
.

right-hand side of eqn. (14) comprises two terms : the usual
Hamiltonian force expansion, with a TRAPZ correction using
the method of undetermined coefficients.52,53 The discrete
equations for the violating modes have the same form:

*P
k
^ [

CLV (Q1 )
LQ

k

] O(*t)
D
*t ] j

k
*t ; for k \ 1, . . . , l (15)

The equations for are the same as for the unconstrained*Q
k(classical) system:

*Q
k
^ [P

k
] O(*t)]*t (16)

In applying TRAPZ to a numerically integrated system
with discrete time steps, we simply modify the vibrational-
normal-mode momenta at the completion of each time step.
For the violating modes, this involves mapping the uncon-
strained momentum where is found by invertingP

k
] P

k
@ , P

k
@

eqn. (7) and is

P
k
@ \ sign(P

k
)
S

+)
k
[

D
k
2

X
k
2

; for k \ 1, . . . , l (17)

We map all the non-violating mode momenta by a constant
factor, b@ :

P
k
@ \ b@P

k
; for k \ l] 1, . . . , 3N [ 6 (18)

This is not the exact mapping prescribed by eqn. (14), since
the used in this expression is the unconstrained momentumP

kof mode k after a time step, not before the time step. The dif-
ference is generally negligible (and exact in the limit as
*t ] 0) : making this approximation leads to a simpler formu-
lation. We require that the TRAPZ correction in eqn. (17) and
(18) conserves total energy

12 ;
k/1

3N~6
P

k
2 ] V \ 12 ;

k/1

3N~6
P

k
@2] V

\ 12 ;
k/1

l
P

k
@2] 12(b@)2 ;

k/l`1

3N~6
P

k
2 ] V

Note the potential energy term, V , is not a†ected by the
TRAPZ mapping [eqn. (17) and (18)]. Solving for b@ gives

b@\
S

1 [
;

k/1l P
k
@2[P

k
2

;
k/l`13N~6 P

k
2

\
A;

k/13N~6 P
k
2 [ ;

k/1l P
k
@2

;
k/l`13N~6 P

k
2

B1@2
(19)

with the restriction that

;
k/1

l
P

k
@2O ;

k/1

3N~6
P

k
2 (20)

so that b@ is a real quantity.

2. The incomplete mapping. Eqn. (20) states that kinetic
energy from the non-violating modes is redistributed into the
violating modes in order to preserve ZPE. For systems with a
small number of oscillators, there is a small but signiÐcant
probability that all the non-violating modes have a small
amount of kinetic energy which might not satisfy eqn. (20). In
this event, ZPE preservation is sacriÐced to ensure conserva-
tion of energy. The rare occurrence of this requires a
(un)fortuitious matching of the vibrational phases of all the
non-violating modes and is less likely the larger the number of
modes. At the same time, as much energy is shifted from the
non-violating modes into the violating modes as possible. This
is achieved as follows :

P
k
@ \ 0 ; for k \ l] 1, . . . , 3N [ 6 (21)

P
k
@ \ cP

k
; for k \ 1, . . . , l (22)

c\
S;

k/13N~6 P
k
2

;
k/1l P

k
2

(23)

E. Non-zero angular momentum

1. Orthogonality of vibrational and rotational/translational
modes. The above formulation of TRAPZ makes no explicit
attempt to conserve linear or angular momentum. This is
unnecessary, because the instantaneous normal vibrational
modes are orthogonal to the rotational and translational
modes of the system. [The rotational and translational modes
have been projected out of the force constant matrix : eqn. (3).]
This assures that any change to vibrational mode momenta
will have no e†ect on the total linear or angular momentum
(apart from numerical error in the diagonalisation routine.)
These orthogonality conditions are often referred to as the
Eckart conditions or Sayvetz conditions.56,57 The Sayvetz
conditions for a rotating molecule can be written as

;
i/1

N
m

i
(r8

i
[ r8

i
t) \ 08

;
i/1

N
m

i
r8
i
t ]

dr8
i

dt
\ 08

where is the instantaneous non-mass-weighted positionr8
i
t

vector of atom i with respect to the molecule-Ðxed frame. By
simply aligning the molecule and space-Ðxed axes,

;
i/1

N
Jm

i
L3

i, k\ 08 (24)

;
i/1

N
x8
i
] L3

i, k\ 08 (25)

The change in linear and angular momentum, and*p8 tot *J3 ,
respectively, induced by a shift in the momenta of each of the
vibrational normal modes, for k \ 1, . . . , 3N [ 6, can be*P

kexpressed as24

*p8 tot\ ;
k/1

3N~6 ;
i/1

N *P
k
Jm

i
L3

i, k (26)

*J3 \ ;
k/1

3N~6 ;
i/1

N *P
k
(x8

i
] L3

i, k) (27)
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Eqn. (26) and (27) are equal to zero due to eqn. (24) and (25)
and, therefore, no change to the momenta of the instantane-
ous normal vibrational modes can have any e†ect on the total
linear and angular momentum of the system (apart from
numerical error).24

In practice, it is important to check the Sayvetz conditions
at each time step, to minimise numerical error. For this
reason, whenever the norm of the left-hand side of eqn. (24)
and (25) are greater than an arbitrary tolerance,

K
;
i/1

N
Jm

i
L3

i, k
K
[ T OL

mode k is treated as a translational mode, whilst if

K
;
i/1

N
x8
i
] L3

i, k
K
[ T OL

mode k is regarded as a rotation. This is the case even if other
measures, such as relative size of eigenvalues, suggest that the
mode is vibrational.

2. TRAPZ for systems of non-zero angular momentum. The
only aspect of the above TRAPZ algorithm (sub-Sections II
AÈII D) which needs to be reformulated for rotating systems
is the calculation of normal mode momenta, purely to reduce
numerical error. For rotating systems, we simply replace eqn.
(4) with

P
k
\ ;

i/1

N
L3
i, k Æ [p8

i
[ (u8 ] x8

i
)] (28)

where u8 is the angular velocity, in order to transform from
mass-weighted to normal mode momenta. The inverse trans-
formation,

p8
i
\ (u8 ] x8

i
)] ;

k/1

3N~6
P

k
L3

i
, (29)

is used to determine the mass-weighted momenta from the
normal mode values.

F. Computational algorithm

The TRAPZ process, for use with instantaneous normal
modes, can be summarised by the following algorithm:

1. Integrate HamiltonÏs equations one time step in cartesian
coordinates.

2. Evaluate and diagonalise the projected force constant
matrix [eqn. (3)] to get the instantaneous normal modes.50
Check the Sayvetz conditions [eqn. (24) and (25)] for each
mode to determine which can be treated as vibrational.

3. Determine [eqn. (4) or (28)] and [eqn. (5)] for theP
k

D
kvibrational modes and, hence, Ðnd the mode energies and

instantaneous harmonic ZPEs. Establish which modes are in
violation of harmonic ZPE constraints [eqn. (6)].

4. Test if a full mapping is possible using eqn. (20).
(a) If so : determine b@ and map all mode momenta accord-

ing to eqn. (14)È(18), (19), and (20).
(b) Otherwise : establish c and map the violating and non-

violating modes according to eqn. (21)È(23).
5. Transform the constrained normal mode momenta into

mass-weighted and hence cartesian forms [eqn. (4) or (29)].
6. Repeat from step 1.

III. Details of calculations
A. Potential-energy surfaces

dissociation. The potential-energy surface used in1. Al
3

Al3this study is the same as that utilised by Peslherbe et al.44,45 It
consists of two-body Lennard-Jones potential functions, and a
three-body AxilrodÈTeller function,58h61 both of which are
standard options in the dynamics program VENUS96.62
Standard numerical routines were utilised for the spatial
second derivatives of the potential-energy surface.

A contour plot of the surface is shown in Fig. 2, for J \ 0,
with one bond length Ðxed at the global minimum value of
0.2712 nm. The classical dissociation limit lies 36.97 and 30.82
kcal mol~1 (154.7 and 129.0 kJ mol~1) above the global
(triangular) and secondary (linear) minima respectively.44 It is
necessary to sample62,63 trajectory initial conditions around
both minima.

2. HNC isomerisation. The HNC potential-energy surface
was that used by Shen et al.,48,49 and originally due to
Murrell et al.64 A contour plot with the NwC bond length
Ðxed at the equilibrium HNC value of 0.116 nm is shown in
Fig. 3. It depicts two minima, both linear, for the HNC reac-
tant and for the HCN product, separated by a barrier of 23.6
kcal mol~1 (98.7 kJ mol~1) .

B. Selection of initial conditions

Initial conditions were selected using microcanonical normal
mode sampling, which is exact for harmonic oscillators.63
Only systems for which J \ 0 were tested, although the
method is equally applicable to rotating cases. Since the
TRAPZ microcanonical ensemble is a subset of the classical
microcanonical ensemble,31 the TRAPZ ensemble was
obtained from the classical ensemble by ““ rejecting ÏÏ non-
TRAPZ initial conditions (i.e. those that violated the ZPE
conditions [eqn. (6)]).

dissociation. Microcanonical ensembles with energies1. Al
3between 3 and 13 kJ mol~1 above the classical threshold were

used. The quantum reaction threshold (the vibrational ZPE of
an isolated dimer) is ca. 2.9 kJ mol~1above the classicalAl2threshold. Following the approach of Peslherbe and Hase,
approximately half of the trajectories were started from each
conÐguration (linear and triangular).44 At a total energy of 8.4
kJ mol~1, the TRAPZ ensemble subsets were 89% (triangular
conÐguration) and 97% (linear) of the equivalent classical
ensembles.

2. HNC isomerisation. All the HNC trajectories had a total
energy of 2.5 eV (241 kJ mol~1). At this energy, the TRAPZ
ensemble subset was 87% of the equivalent classical ensemble.

Fig. 2 Contour plot of the J \ 0 potential-energy surface of usedAl3in this study. Two atoms are symmetrically placed on the x-axis at
x \ ^1.356 The potential energy is then plotted against the posi-A� .
tion of the third atom in the (x, y) plane. Contour energies vary by 5
kcal mol~1 from one line to the next. The plot shows two minima,
one when the atoms form an equilibrium triangle, and another which
is for a linear conÐguration.
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Fig. 3 Contour plot of the J \ 0 potential energy surface of HNC
used in this study. The N and C atoms are symmetrically placed on
the x-axis about x \ 0 (N to the left and C to the right) with separa-
tion Ðxed at the HNC equilibrium CwN bond length of 1.16 TheA� .
potential energy is plotted against the position of the H atom in the
(x, y) plane. Contour energies vary by ca. 10 kcal mol~1 from one line
to the next. The plot shows two minima, one for HNC and the other
for HCN, as well as clearly deÐned barriers of isomerisation.

C. Analysis of data

In order to determine rate coefficients, the time at which reac-
tant becomes product needs to be deÐned. ThereAl3 Al2] Al
are at least two possible criteria for this lifetime (or time of
evaporation) of the cluster :

The time from the start of the trajectory until the kinetic
energy of the evaporating monomer stops Ñuctuating and
begins to decrease monotonically. This standard criterion was
utilised in unconstrained classical trajectory calculations of the
dissociation of by Peslherbe et al.44 but active constraintsAl3can lead to Ñuctuations in momenta which make this method
unsuitable.45

The time from the start of the trajectory until the last
turning point in the relative velocity of the evaporating
monomer to the centre of mass of the product dimer. This
criterion has been used by Peslherbe et al. for their work with
constrained and is the criterion employed in this study.Al3,45These two criteria can lead to quite di†erent results for any
one trajectory : the lifetime is generally shorter when calcu-
lated by the relative velocity technique, as opposed to the
oscillating kinetic energy method.

For HNC, the criterion for reaction was when the line
joining the CwN centre of mass to the H atom, made an
angle with the CwN line of centres, that was greater than or
equal to 113.1¡.49 Calculations for HNC exhibit a rapid initial
reaction 100 fs : two bending vibrational periods),(t [ ca.
which is attributed to “direct Ï trajectories.49 The selection of
initial conditions is such that some trajectories are initiated in
the transition state region. These trajectories pass directly to
form products in a few vibrational periods and are removed
from any rate analysis.

Rate coefficients and are determined from either ak1 k2single- or double-exponential decay of the number of unre-
acted trajectories

N(t)\ N(0)[ce~k1t] (1[ c)e~k2t]

D. Classical and TRAPZ calculations

Classical trajectory calculations were also performed for com-
parison. This was particularly critical since direct comparison
with the classical-trajectory results of other authors44,45 is not
possible due to the di†erences in criteria for trajectory lifetime
discussed in sub-Section III C. Generally, less trajectories were
run for the TRAPZ method, due to the extra computation
required. TRAPZ trajectories were found to require ten times
the computer time for (unconstrained) classical trajectories of
an equal number of timesteps. This is due to the instantaneous
normal-mode analyses which are performed at every timestep.
In addition, TRAPZ trajectories dissociated more slowly, par-
ticularly at energies close to quantum dissociation threshold.

E. Method of integration

TRAPZ simulations were performed with the dynamics
program VENUS96,62 modiÐed to implement the TRAPZ
method, using a fourth-order RungeÈKuttaÈGill routine. Clas-
sical simulations were performed with an unmodiÐed version
of VENUS96,62 using a sixth-order AdamsÈMoulton
predictor-corrector method after initiation by the fourth-order
RungeÈKuttaÈGill routine. The step size for all simula-Al3tions was chosen to be 0.1 fs, which was found to conserve
energy to better than 4] 10~4 kJ mol~1 over the length of a
trajectory. For HNC, a step size of 0.01 fs assured energy con-
servation to better than 4 ] 10~6 kJ mol~1.

IV. Results and discussion

A. RRKM vs. non-RRKM behaviour

TRAPZ trajectories were found to have single-exponentialAl3decay. This indicates that the TRAPZ method has preserved
the intrinsic RRKM nature of the system.

Classical HNC calculations by Chan et al.49 and in this
work show non-RRKM biexponential decay. In contrast, the
TRAPZ calculations (Table 1) show RRKM-like single-
exponential decay. As the constraint energy is varied

12Pk
2 ] 12Xk

2Q
k
2P 12i+X

k
(30)

from i \ 0 (classical) to i \ 1 (TRAPZ) there is a gradual
transition from biexponential to single-exponential decay. The
four sets of results in Table 1 di†er in the choice of the param-
eter i [eqn. (30)] : switching from classical trajectories [i \ 0 :
case (a)], through intermediate cases [i \ 0.1 and 0.5 : (b) and
(c), respectively], to the TRAPZ procedure [i \ 1 : case (d)].

i \ 0. Rate constants and di†er by one-and-a-halfk1 k2orders of magnitude (Table 1). The two exponential terms
each contribute about half (c\ 0.48) of the decay.

i \ 0.1 and i \ 0.5. These intermediate cases show that the
slow-decay term has become faster : and di†er byk1 k2approximately half an order of magnitude (Table 1) and that
the contribution from the Ðrst (faster-)decay term has
increased from approximately half to almost unity (c\ 0.92).

Table 1 Biexponential Ðts for the TRAPZ isomerisation of HNC
with various constraint factors (i)

i c k1/109 s~1 k2/109 s~1 k2/k1
0.0 0.48 4.39 0.086 0.02
0.1 0.54 2.09 0.667 0.3
0.5 0.92 2.82 0.489 0.2
1.0 1a 2.47 È È

a Single exponential Ðt.
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i \ 1. Single-exponential decay, indicates RRKM (or
ergodic) behaviour. Statistical analysis indicates that there is
no evidence for a double-exponential decay ([99.99% con-
Ðdence level).

Chaotic behaviour (which is one type of ergodic behaviour)
is possible for coupled non-linear di†erential equations of
three or more (otherwise) independent variables. The TRAPZ
algorithm represents an additional time- and vibrational-
basis-dependent (i.e. non-linear) coupling of the usual Ham-
iltonÏs equations of motion. Thus TRAPZ has the potential for
ergodicity, even in the otherwise49 non-RRKM (i.e. non-
ergodic) HNC system. Hence, the observed ergodicity is not
surprising. Another way of thinking about this behaviour is
that TRAPZ destroys most of the invariant tori which lead to
quasiperiodicity.

In some earlier studies, we found that a slightly di†erent
implementation of TRAPZ led to quasiperiodic limit-cycle
behaviour in the otherwise chaotic He� nonÈHeiles
system.27,33,34 In that particular implementation, the projec-
tion of the violating mode onto the ZPE orbit [eqn.(Q

k
, P

k
)

(6)] reduced the total phase-space volume available to the
system. This is discussed below.

dissociation rate coefficientsB. Al
3

1. Rate coefficients. Rate coefficients for TRAPZ and clas-
sical calculations are presented in Table 2 and Fig. 4. The
classical-trajectory rate coefficients vary somewhat from those
found by Peslherbe et al.,44 due to the statistical uncertainties
inherent in a small ensemble, and the di†erent criteria used to
determine trajectory lifetime. Our results do not support the
conclusions of Peslherbe et al. that the rates for an ensemble
initiated about the linear minimum tend to be greater than for
the corresponding triangular quantities at all energies.44

2. Comparison with quantum RRKM rates. RRKM rate
coefficients have been calculated using quantum anharmonic
Ñexible transition-state theory,65h68 following the implemen-
tation of Peslherbe et al.45 (see Table 2 and Fig. 4). The slope
discontinuity in the RRKM results at ca. 9.5 kJ mol~1 above
the classical dissociation limit corresponds to the threshold for
excited product in the Ðrst vibrational overtone state.Al2Quantum RRKM rates are an upper bound to the true
(quantum) rate61,69 and, hence, are used here as an absolute
standard against which trajectory results can be compared.
(Note that there can be no quantum tunnelling in a barrierless
reaction.)

As expected, the classical trajectory rate coefficients in an
ergodic (i.e. RRKM) system approximate or exceed the
RRKM rates at all energies. The classical trajectory rate coef-
Ðcients exceed the RRKM ones in two energy regimes : near
and below the thresholds for reaction and for formation of
excited product.Al2

dissociation rate coefficients (109 s~1) vs. energy aboveFig. 4 Al3 Eexclassical dissociation limit : classical trajectory method TRAPZ(=) ;
method method BMH method taken(…) ; TRAPZ-(iWR) (L) ; ())
from ref. ;45 and quantum-anharmonic Ñexible-transition-state RRKM
theory (|).

The TRAPZ and BMH rate coefficients are less than the
RRKM limit for energies up to ca. 11 kJ mol~1 above the
classical dissociation limit. Both these methods have pre-
vented the formation of product dimers with less than vibra-
tional ZPE.

There is good agreement between the di†erent methods at
energies above ca. 11 kJ mol~1 above the classical disso-
ciation limit. We suggest that this is a crude manifestation of
the quantum-classical correspondence principle which is
observed at high(er) energies. (The minor discrepancies
between the di†erent rate cofficients in this energy regime are
most probably due to the trajectory transition states being
slightly di†erent from the variational RRKM transition state
which occurs at larger separations than the trajectory ones.)

3. Reaction threshold. T he BMH and T RAPZ rate coeffi-
cients are zero at some energies higher than the asymptotic con-
straint threshold of 0.7 kcal mol~1 (2.9 kJ mol~1) above the
classical dissociation limit (indicated by the arrow in Fig. 4).
This e†ect is due to variations in instantaneous normal mode
bases, which raises the apparent ZPE, reducing the energy
available to the reaction coordinate and hence lowering the
rate coefficient. Fig. 5 depicts a typical example of this behav-
iour for a single dissociating TRAPZ trajectory.

Fig. 5(a) shows the energy of the conserved instantaneous-
normal mode, which asymptotically becomes the dimer vibra-
tion, versus dimer-monomer centre of mass separation. Fig.

Table 2 Trajectory rate coefficients for Al3] Al2] Ala

Eexb Classical TRAPZ
BMH RRKM

kcal/mol~1 kJ/mol~1 ktric,e klinc,f kaveg ktrid,e klind,f kaveg ktrajh kRRKMi

0.75 3.14 25 25 26
1.00 4.18 34 38 36 49
1.25 5.23 53 54 55 \1 \1 \1 5 64
1.50 6.28 63 61 61 46 29 37 16 76
1.75 7.32 73 74 77 69 72 64 21 84
2.00 8.37 92 100 99 78c 81c 78 34 91
2.50 10.46 131j 139j 134 118j 115j 117 130
3.00 12.55 180j 187j 183 167j 175j 170 162

a All rate coefficients are in 109 s~1. b Energy in excess of classical dissociation threshold. c Ensembles of 200 trajectories. d Rate coefficients are for
100 trajectories, unless speciÐed otherwise. e Sampled around the triangular geometry. f Sampled around the linear geometry. g Average of rates
for the triangular and linear geometries. h Trajectory calculated rate coefficients from reference for the BMH method. i Quantum anharmonic
Ñexible transition-state theory. j Ensembles of 500 trajectories.
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Fig. 5 Behaviour of the instantaneous normal mode whichAl3asymptotically represents the product dimer vibration. (a) Instan-
taneous mode energy (ÈÈÈ) and ZPE (. . . . . . .) vs. separation of
dimer centre of mass and evaporating atom, for a single trajectory 2.0
kcal mol~1 above classical threshold. The dashed horizontal line rep-
resents the actual product dimer ZPE. (b) Norm of the mode com-
ponent that pertains to the evaporating atom, also vs. centre of mass
separation.

5(b) is the norm of the component of this mode that pertains
to the evaporating monomer. From Fig. 5(b) it is clear that
the monomer component quickly drops to zero, meaning that
the instantaneous-normal mode e†ectively represents the
dimer vibration at separations greater than ca. 0.4 nm. In Fig.
5(a), it can be seen that the mode energy is forced higher by
the constraint at around 0.35 nm and then is relatively unaf-
fected by the constraint for the rest of the trajectory. After this
initial interaction, the energy is seen to oscillate quasi-
periodically, along with the instantaneous ZPE [eqn. (6)], for
the rest of the evaporation. This oscillation is due to time
variation of the instantaneous normal mode basis. The instan-
taneous mode energy is seen to oscillate about the product
dimer energy of 1.15 kcal mol~1 (4.8 kJ mol~1), and the
instantaneous ZPE oscillates about the isolated dimer ZPE of
0.7 kcal mol~1 (2.9 kJ mol~1 ). The net result is to increase
the “e†ective Ï constraint energy to greater than dimer ZPE.

4. Comparison between TRAPZ and BMH rate coefficients.
T he T RAPZ rate coefficients are signiÐcantly larger than those
predicted by the BMH method. Fig. 6 shows the time-averaged
distribution of reactant vibrational mode energies, as a frac-
tion of ZPE, for classical (a), TRAPZ (b) and BMH (c) trajec-
tories, all at the same energy below the classical dissociation
threshold. The horizontal axes have been truncated, since the
interesting behaviour occurs around the ZPE. The TRAPZ
method, as expected, forbids any values less thanEl/EZPEunity. However, more importantly, it does not redistribute
those excluded “probabilities Ï over the whole range of mode
energies, as is the case for the BMH method. Instead, the
density of mode energies is concentrated around the ZPE
value.

Hence, in a dissociating BMH trajectory, the vibrational
modes orthogonal to the reaction coordinate are more likely
to be at higher vibrational energy than in the TRAPZ case,

Fig. 6 Histogram plot of the probability that any vibrational instan-
taneous normal mode, will have a particular ratio of mode energy to
ZPE The plots are for a non-dissociating trajectory of(El/EZPE). Al3length 10 ps and energy 30 kcal mol~1 above the global minimum.
The horizontal axes have been truncated at since theEl/EZPE\ 20,
behaviour of interest occurs around the ZPE (a) clas-(El/EZPE \ 1).
sical system; (b) TRAPZ method ; and (c) BMH method.

and the reaction coordinate will correspondingly have less
energy available to it, decreasing the BMH rates relative to
the equivalent classical-trajectory, RRKM and TRAPZ rate
coefficients.

product distributionsC. Al
3

1. Vibrational energy distributions. Product vibrationalAl2energy distributions are shown in Fig. 7 for TRAPZ and clas-
sical ensembles, at kJ mol~1 above classical asymp-Eex \ 8.4
totic limit. The classical trajectories have a broad distribution,
with population below product ZPE, and a tail to higher
energy [Fig. 7(a)], consistent with a (classical-mechanics) sta-
tistical distribution.

The TRAPZ vibrational energy distribution [Fig. 7(c)] has
a threshold or lower bound signiÐcantly above the true ZPE
threshold. Interestingly, a large spike occurs at this lower
bound (which could be considered the “e†ective Ï constraint
energy). This entrainment of dimer vibrational energy, by the
TRAPZ method, is the e†ect alluded to earlier. The dimerAl2vibrational energy is forced to increase, as the corresponding
normal mode follows the instantaneous harmonic ZPE orbit
near the beginning of monomer evaporation and, thereafter, is
relatively constant. It seems that this process is very similar in
each case : TRAPZ forces most trajectories into a similar ener-
getic conÐguration at this critical point of the evaporation.
For a di†erent method, such as BMH, the mode energy does
not follow the ZPE for any length of time and this stan-
dardisation will not occur.
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Fig. 7 Product dimer probability distributions. (a) Angular momen-
tum (+ units) distribution for an unconstrained classical ensemble at
an energy of 2.0 kcal mol~1 above classical threshold. (b) Vibrational
energy distribution for the same ensemble ; (c) and (d) analogous
angular momentum and vibrational energy distributions for the
equivalent TRAPZ ensemble. Each ensemble is 400 trajectories in size,
with approximately half initiated around each equilibrium conÐgu-
ration.

2. Angular momentum distribution. Product angularAl2momentum distributions are also shown in Fig. 7. Note the
non-zero threshold in the TRAPZ simulations [Fig. 7(d)]. The
reactant bending mode must initially have at least ZPE, which
is then converted into product dimer rotation upon disso-
ciation. This e†ect could be the result of TRAPZ over-
constraining the reactant molecules, resulting in excessive
bending mode energy. This is supported by the higher than
expected TRAPZ reaction threshold, which suggests too much
energy is also being channelled into the dimer vibration early
in the evaporation process [Fig. 7(c)]. An improved method
could involve reducing the potency of the constraint on reac-
tant molecules, and increasing its e†ect for molecules in the
transition state region.

3. Lowering the constraint energy. The product distributions
imply that the instantaneous harmonic ZPE, may be a+X

k
/2,

too-severe constraint energy in many instances. Other authors
have come to similar conclusions.28,33,45,70 The scaling
parameter i [eqn. (30)] enables the forbidden region to be
scaled without altering the fundamental nature of the TRAPZ
method. For the system, some TRAPZ trajectories wereAl3performed where i was varied at each time step according to
the WhittenÈRabinovitch formulation :71,72

iWR\ bw
A 2E
+X

k

B

where b and w are the WhittenÈRabinovitch parameters,71,72
calculated by Ðnding the total instantaneous-normal-mode
vibrational energies and instantaneous harmonic ZPE. This
variant of TRAPZ is denoted ““TRAPZ-(iWR) ÏÏ.rate coefficients are shown in Fig. 4, forTRAPZ-(iWR)ensembles of trajectories initiated in the linear conÐguration.
At high energies, the rate coefficients are lower than the stan-
dard TRAPZ results, but are higher at low energies. The e†ec-
tive constraint threshold is less (i.e. approximately Eex \ 4.2

kJ mol~1). Importantly, the rate coefficients areTRAPZ-(iWR)less than the quantum RRKM estimates at all energies tested.
The lowering of the e†ective constraint energy, brought

about by introducing is a result of the lower bound oniWR ,
product dimer angular momenta having been eliminated (Fig.
8). Whereas, in Fig. 7, the TRAPZ angular momentum dis-
tribution has a clear lower limit in the range j \ 10+ [ 15+,
Fig. 8(a) displays values of j right down to zero. Some of the
energy which was previously trapped in the rotation, isAl2thus accessible to the reaction coordinate, which allows trajec-
tories to dissociate at lower total energies. Note too, that the

vibrational energy distribution [Fig. 8(b)]TRAPZ-(iWR) Al2includes a greater proportion of trajectories at higher energies
i.e. 1.5È2.0 kcal mol~1 (6.3È8.4 kJ mol~1). This also is the
result of extra energy being made available by the removal of
the lower bound on j.

The vibrational energy plot [Fig. 8(b)] is notTRAPZ-(iWR)as peaked as it was for the standard TRAPZ method. A peak
does exist at the lower bound, but it is broader and shorter.
Interestingly, the lower bound itself is unchanged. Clearly the

does not entrain trajectories to the same degreeTRAPZ-(iWR)as standard TRAPZ , but the increase in e†ective reaction
threshold caused by oscillations in instantaneous mode ZPE
still occurs.

E. Phase space volume and quasiperiodicity

Why is it that the current implementation of TRAPZ has
induced ergodic (RRKM) behaviour in the (otherwise non-
ergodic) HNC system, but a slightly di†erent implementation
induced quasiperiodic limit-cycle behaviour in the (otherwise
chaotic) He� nonÈHeiles system while yet a third implementa-
tion preserved the chaotic behaviour of the He� nonÈHeiles
system?27,33,34 The calculations here suggest that TRAPZ
induces ergodic behaviour in molecular systems. Why then
does the He� nonÈHeiles system exhibit both ergodic and quasi-
periodic behaviour for di†erent versions of TRAPZ?

Fig. 8 Product dimer probability distributions for a TRAPZ (iWR)ensemble of 200 trajectories, sampled around the linear equilibrium at
an energy of 2.0 kcal mol~1 above classical threshold. (a) Angular
momentum distribution of the product dimer (+ units) ; and (b) vibra-
tional energy distribution (kcal mol~1).
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1. Time reversibility. At Ðrst, it was thought that this e†ect
was due to the time-irreversible nature of TRAPZ, which
involves trajectories leaving the ZPE orbit tangentially [Fig.
1(b)] regardless of the incident angle [Fig. 1(a)]. Indeed,
studies with a time-reversible form of TRAPZ, whereby trajec-
tories leave at the same angle as they approach [Fig. 1(c)],
have shown none of the quasiperiodic behaviour exhibited by
the irreversible method. This was tested by two new versions
of TRAPZ. The Ðrst required that trajectories leave the ZPE
orbit at a fraction of the angle at which they were incident
upon it :

hout\ phin ; for p [ 0 (31)

where and are the angles at which the trajectoryhin houtapproaches and leaves the ZPE orbit respectively. This is a
generalisation of the time-reversible method described by Fig.
1(c), in the sense that earlier states of the system can be deter-
mined by inverting the equations of motion [including eqn.
(31)] and back-integrating. The second method required tra-
jectories leave the ZPE orbit at a constant angle, k :

hout\ k

This is a generalisation of the irreversible method [Fig. 1(b)],
since knowledge of the current state of the system cannot be
used to determine the state of the system at some previous
time.

Both methods were found to lead to limit cycle behaviour
when trajectories were made to leave the ZPE orbit at small
angles (p, k small), and no limit cycles were formed for greater
outgoing angles (p, k large). This suggests that it is not the
time-reversibility of the method, but the angle of exodus from
the ZPE orbit, which is foremost the reason for limit cycle
formation.

2. Phase space volume. We note that the current (Section
II), and other, formulations of TRAPZ, are not canonical
transformations and do not preserve phase-space volume.
This can be seen by considering the Jacobian, which (for the
full mapping) is

d(Q1 @, P1 @)
d(Q1 , P1 )

\ (b@)3N~6~l <
k/1

l
j
k
@
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j
k
@ \

P
k
@

P
k

; for k \ 1, . . . , l

This is generally not unity, and is either greater or smaller
depending on the particular values of mode momenta. Since
phase space volume is not conserved by the mapping, Liou-
villeÏs theorem is also inapplicable.39,52,53 This accounts for
the unusual behaviour encountered27 when the method was
Ðrst tested on the two-mode He� nonÈHeiles system,

H \ 12(P12] P22)] 12(X12 Q12 ] X22 Q22)] Q12 Q2 [ 13Q23 (32)

Fig. 9 shows the time dependence of three small TRAPZ
constrained elements of phase-space volume for this system.
The volume used is the canonical four-form, whichK1,2,3,4(4)
can be formulated as follows.39 We take a point in phase
space, and four small displacement vectors,(Q1 , Q2 , P1 , P2), for i\ 1, . . . , 4 :(d
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K1,2,3,4(4) \K1,2(2) K3,4(2) [ K1,3(2) K2,4(2) ]K1,4(2) K2,3(2) (33)

This is an integral invariant of any unconstrained (classical)
Hamiltonian system.39 Fig. 9 shows that this is not the case
for a TRAPZ system. The phase-space volume is dramatically

Fig. 9 Absolute value of the canonical 4-form [eqn. (33)], vs. time,
for two di†erent He� nonÈHeiles systems. A mode violates between the
dashed lines in each case, and no modes violate outside the lines. (a) A
time-irreversible TRAPZ trajectory. (b) Another time-irreversible
TRAPZ trajectory. (c) A time-reversible TRAPZ trajectory, but with
the same intial positions and momenta as (b).

altered in between the dashed vertical lines, where one of the
modes violates. Outside of these lines the system is una†ected
by TRAPZ, since no mode is violating, and the phase space
volume is constant.

Fig. 9(a) and (b) both show the volume dropping to zero
(within numerical error) when the (time-irreversible) TRAPZ
constraint is applied : TRAPZ has compressed the volume
onto the ZPE orbit. In Fig. 9(a) some of this lost volume is
reclaimed upon leaving the ZPE orbit, but in Fig. 9(b) it is
not, and a limit cycle is formed. This compression of phase
space in the He� nonÈHeiles system, by TRAPZ, is closely
linked to the formation of limit cycles and, particularly, in
those cases where elemental volumes are not restored to non-
zero values upon leaving the ZPE orbit. It is known that a
space of zero e†ective volume can never be aperiodic. For
example, any one-dimensional oscillator is totally periodic in
the absence of external perturbations. Yet the same oscillator
is also totally ergodic since its trajectory (Q, P) explores every
point on its one-dimensional closed orbit.

The reductions in phase-space volume in the He� nonÈHeiles
system are thus closely linked to the way in which trajectories
leave the ZPE orbits, and the formation of limit cycles is pri-
marily dependent upon whether or not the outgoing angle is
large enough to ensure sufficient reclamation of phase space
volume. This is supported by Fig. 9(c), which shows a time-
reversible system (p \ 1) corresponding to the same initial
conditions as Fig. 9(b). In this case, some of the lost phase-
space volume has been regained upon leaving the ZPE orbit.

No TRAPZ induced quasiperiodicity has yet to be observed
in systems other than the He� nonÈHeiles system.27,34 This
limit-cycle behaviour is unlikely to be exhibited when TRAPZ
is implemented using the instantaneous modes of a system,
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which are implicitly time dependent, but may well exist for
studies with “ÐxedÏ bases.

V. Conclusions
The TRAPZ method has been developed and generalised to
include molecular systems of non-zero angular momentum, in
such a way as to conserve total energy, linear and angular
momentum. In essence, it involves making a small pertur-
bation to the momentum of each vibrational instantaneous
normal mode at the conclusion of each discrete time step, and
corresponds to the minimum possible change in dynamics
(forces) required to ensure preservation of ZPE.

For a study of the cluster in the energy range 3È13Al3kJ mol~1 above the classical threshold and with J \ 0, TRAPZ
was found to preserve the RRKM behaviour of the classical
system. TRAPZ rate coefficients were smaller than those
found by classical-trajectory calculations, because TRAPZ
does not allow unphysical routes to dissociation, but higher
than those predicted by the BMH method.45 A large portion
of trajectories populate AlwAl stretching states with low
vibrational-energy, freeing up more energy for the reaction
coordinate and thus increasing the TRAPZ rate over the
BMH rate. Most signiÐcantly, the TRAPZ rate coefficients are
all less than the quantum RRKM coefficients, which are an
absolute upper bound to the true rate coefficients for any
ergodic system.

The TRAPZ product vibrational energy distribution is
peaked at an e†ective threshold energy, higher than the true
reaction threshold. This standardisation of Ðnal states seems
to occur at the beginning of evaporation, and is related to
increases in the probability of each vibrational mode being at
ZPE. Despite this concentration of product vibrational ener-
gies at the low end of the spectrum, the product-energy lower
bound itself is actually much higher than the true product
ZPE, due to Ñuctuations in the instantaneous normal mode
ZPEs at the beginning of monomer evaporation. The instan-
taneous normal mode ZPE can be as much as 35% higher
than that for the isolated dimer, thus resulting in initial exces-
sive pooling of mode energy, which is then retained through-
out the rest of the dissociation process.

The TRAPZ product angular momentum distribution is
also peaked at an e†ective threshold, resulting from the con-
version of reactant bending-mode ZPE into non-zero dimer
rotation. The potential is anisotropic only at shortAl] Al2range, so no further interconversion of translational/
vibrational/rotational energy or interconversion of orbital and
dimer angular momenta can occur on separation. This could
also be the result of over-constraining the reactant molecules,
and may be remedied by modifying the method to treat reac-
tant and transition molecules separately.

The e†ect of TRAPZ on a non-RRKM process
(isomerisation of HNC) was also investigated. TRAPZ was
found to lead to faster rates of decay and more ergodic
(RRKM-like) behaviour. We postulate that this is caused by
TRAPZ introducing additional non-linear coupling to the
usual equations of motion, and hence destroying the invariant
tori inherent in the classical system which are responsible for
the non-ergodic isomerisation of HNC.

At Ðrst sight, there seems an apparent contradiction
between this study and some of our earlier work on the
He� nonÈHeiles system in which non-ergodic (non-RRKM)
limit-cycle behaviour27 was observed. This paradox was
resolved by noting that the TRAPZ method is a non-
canonical transformation, since the Jacobian is generally not
unity, and therefore does not preserve phase-space volume.
Studies of the He� nonÈHeiles model suggest that the limit
cycles observed in earlier work27 occur when the volume lost
by an inÐnitesimal element colliding with the forbidden
region, is not recovered upon leaving the ZPE orbit. This is

due to the way in which trajectories leave the orbit, and not to
the time-irreversibility of the method, since other variations of
TRAPZ27,34 do not exhibit this behaviour. No TRAPZ-
induced quasiperiodicity has been observed in any system for
which instantaneous normal modes were used.
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