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Chapter 1

Introduction

The development of the nuclear bomb during World War II changed the
way people thought about power and the way nations conducted themselves
in peace and in war. The strategies and methods which were employed in
the scientific effort to develop the bomb in each of the countries involved—
the U.S., the U.K., the (then) U.S.S.R., and Germany—would themselves
make a most fascinating study. That such a bomb went much beyond what
was envisioned may be gauged from the way R.J. Oppenheimer, the man
at the helm of the Manhattan Project in the U.S., exclaimed when he first
saw the blazing light of the bomb. He was so stunned and dazzled that
he could only murmur and quote from The Bhagwad Gita, “Brighter than
a Thousand Suns”—one of the attributes of the Virat Roopa of God as
delineated in this much venerated book.

The mathematical formulation of the problem of the nuclear explosion
and the estimation of its mechanical effects on the surroundings was itself a
challenging task. There was hardly any literature on this subject. So, some
of the best minds in applied mathematics and physics were made to put their
heads together to unravel this topic. This gave a great fillip to nonlinear
science, which has since made great strides and which now permeates and
influences all sciences—pure and applied. The people who initiated the
nonlinear studies in this context include G.I. Taylor, John Von Neumann,
L.I. Sedov, L.D. Landau, H. Bethe and many others. There were several
centers in each advanced country, which devoted their entire effort to the
study of blast waves from nuclear explosions, both intense and not so intense.
The war time work continued until the 1970s and engaged some other bright
minds—M.J. Lighthill, G.B. Whitham, M. Holt, R.F. Probestein and A.K.
Oppenheim. There has been some lull in this activity in the last two decades;
other concepts such as solitons and chaos have overtaken to carry the study
of nonlinearity to a more sophisticated and complex level.

1
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2 Shock Waves and Explosions

We shall first discuss the original contributions of Taylor (1946, 1950)
and Von Neumann (1941); the original work of Sedov (1946) is not readily
available in English. Sir Geoffrey Taylor published in the Proceedings of the
Royal Society (1950) the work on the formation of a blast wave by a very
intense explosion in two parts. This work was circulated in early 1941 for
the Civil Defense Research Committee in the U.K.; it had been undertaken
at their request and was intended to investigate what effect a bomb, with a
very large amount of energy released by nuclear fission, would have on the
surroundings. It was still not called an atom bomb. How would it differ from
a conventional explosive bomb, which is produced by the sudden generation
of a large amount of gas at a high temperature in a confined space? It is
remarkable that the only reference made by G.I. Taylor is to the work of
Rankine (1870) on the so-called Rankine-Hugoniot conditions which hold at
a shock, a surface of discontinuity across which the flow variables—pressure,
particle velocity, density and entropy—suffer a jump. Taylor (1950) idealised
the problem as follows. He envisioned that a finite amount of nuclear energy
is suddenly released in an infinitely concentrated form. A high pressure gas,
headed by an (infinitely) strong shock, propagates outwards and engulfs
the undisturbed gas, suddenly raising its velocity (from zero), temperature,
pressure and density. It may be observed that only the front surface of
discontinuity is called a shock, while the entire disturbed flow of the gas
behind the shock is called blast wave.

As the volume of this high-pressure gas increases, its density decreases
and so does pressure, hence the changes it brings about in the surrounding
air weaken, that is, it begins to decay. This high pressure gas, however, is
always headed by a shock wave; the flow parameters behind it decrease as
the center of the blast is approached.

Mathematically, the continuous flow behind the shock is governed by the
nonisentropic equations of gas dynamics which must be solved subject to
the so-called Rankine-Hugoniot conditions at the shock and the symmetry
condition at the center requiring that the particle velocity there is zero.
Along the shock trajectory, the theory of shocks imposes more boundary
conditions than are appropriate to the given system. This over-determined
data, however, leads to the finding of the shock trajectory, which itself is
unknown apriori. This, in this sense, constitutes a free boundary value
problem. In this simplest model the role of heat conduction is ignored.

Taylor (1950) made some highly intuitive physical statements about this
phenomenon. For example, he observed that the explosion forces most of
the air within the shock front into a thin shell just inside the front. This, as
we shall discuss later, forms the basis of an analytic theory of blast waves
in an exponential atmosphere by Laumbach and Probestein (1969). Taylor
(1950) also observed that, as the front expands, the maximum pressure
decreases till at about 10 atmospheres the analysis under the assumption of
an infinitely strong shock ceases to hold.

© 2004 by Chapman & Hall/CRC



Introduction 3

Taylor (1950) also noted that, at 20 atmospheres, 45% of the energy had
degraded into heat which was then unavailable for doing work and was used
up in expanding against atmospheric pressure, indicating the rather ineffi-
cient nature of a nuclear bomb as a blast producer in comparison with the
high explosive bomb. This argument regarding the degradation of mechan-
ical energy into heat was later used by Brinkley and Kirkwood (1947) and
Sachdev (1971, 1972) to formulate a (local) analytic shock theory, which
determined the trajectory of the leading shock from its inception to final
decay at infinity.

Taylor’s formulation of the similarity solution was derived entirely from
physical arguments. By using dimensional arguments, he wrote the similar-
ity form of the solution in Eulerian co-ordinates in terms of the similarity
variables r/R, where R, the radius of the shock, was found to be proportional
to t2/5; he did not use any sophisticated transformation theory of nonlinear
PDEs. Taylor reduced the system of nonlinear PDEs to nonlinear ODEs and
numerically solved the latter, subject to the strong shock conditions (appro-
priately transformed) and the requirement of spherical symmetry, namely,
that the particle velocity at the center of the explosion must be zero. He
also used the conservation of total energy, E, behind the shock to derive the
shock trajectory. The constant B = E/ρ0A

2, which appears in the shock
law R = Bt2/5, involves the nondimensional form of energy and was found
from the numerical solution; it varies with γ, the ratio of specific heats.

In a typically applied mathematical approach, Taylor (1950) carefully
analysed the numerical solution and noticed that the particle velocity dis-
tribution behind the shock as a function of the similarity variable was quite
close to linear, particularly near the center of the blast. He assumed for
particle velocity a form of the solution which is the sum of a linear term and
a nonlinear correction term in the similarity variable; he was able to explic-
itly determine this term by making use of the governing equations and the
Rankine-Hugoniot conditions. This enabled him to find an (approximate)
closed form solution of the entire problem which was in error in comparison
with the numerical solution by less than five percent!

In the second part of his paper, Taylor (1950a) checked the R∼t2/5 law
by comparing it with the shock trajectory obtained experimentally from the
New Mexico explosion. The agreement of the two for various values of γ, the
ratio of specific heats, was uncannily good. In this comparison, photographs
were used to measure the velocity of the rise of the slowing center of the
heated volume. This velocity was found to be 35 m/sec. The (hemispherical)
explosive ball behaves like a large bubble in water until the hot air suffers
turbulent mixing with the surrounding cold air. The vertical velocity of this
‘equivalent’ bubble was computed from this analysis and was found to be
35 m/sec.

While Taylor (1950) was quite aware of the advantages of a Lagrangian
approach to the problem, he was rather sceptical of its practicality since,

© 2004 by Chapman & Hall/CRC



4 Shock Waves and Explosions

as he remarked, that would “introduce great complexity, and, in general,
solutions can only be derived by using step by step numerical integration” of
the full system of nonlinear PDEs. Actually, as a particle crosses the shock,
it has an adiabatic relationship between pressure and density corresponding
with the entropy which is endowed upon it by the shock wave during its
passage past it. This naturally suggests a Lagrangian approach wherein
the Lagrangian co-ordinate is defined as one which retains its value along
the particle path. Indeed, this matter was raised much later again by Hayes
(1968) who tried to contradict the suggestion by Zeldovich and Raizer (1967)
that the Lagrangian formulation is as convenient as the Eulerian, even more
so for the problems of blast wave type. He argued that the basic differential
equation to be solved numerically is in a nonanalytic form in the Lagrangian
formulation and would therefore pose difficulties, a view in agreement with
Taylor’s apprehension.

However, Von Neumann (1941), independently and contemporaneously,
tackled the point explosion problem in Lagrangian co-ordinates and obtained
an analytic solution in a form more explicit than that of Taylor (1950) or
Sedov (1946). The solution was expressed in terms of a parameter, which was
later physically interpreted. Von Neumann (1941) also found approximate
form of his exact solution when (γ − 1) is small, which holds for air or
heated gas, and confirmed his results by comparison with those of Bethe
(1942) under the same approximation.

Much later, Laumbach and Probestein (1969) considered a point ex-
plosion in a cold exponential atmosphere. They found an explicit analytic
solution by assuming that the flow field was ‘locally radial,’ implying that
the flow gradients in the θ direction were negligible; here θ is the polar angle
measured from the vertical direction. The basic assumption in their analysis
is that the shock is sufficiently strong so that the counter pressure may be
neglected. They also made use of Lagrangian co-ordinates and exploited the
physical observation proffered first by Taylor (1950) that most of the mass
in the strong shock regime of the blast wave is concentrated in a thin shell
immediately behind the front. They used a perturbation analysis, exploit-
ing the above observation, and employed an integral method with an energy
constraint. Their results, in the limit of uniform density, agree remarkably
with those of Taylor (1950). Laumbach and Probestein (1969) also checked
their results for ascending and descending parts of the flow with the known
numerical results and found excellent agreement. The far field behaviour
of the shock wave in the upward and downward direction, respectively, was
found to be of the same form as the self-similar asymptotic solutions for the
plane shock found earlier by Raizer (1964). The important point here is
that the physically motivated perturbation analysis gave excellent analytic
answers for this non-symmetrically stratified problem in both upward and
downward directions.

© 2004 by Chapman & Hall/CRC



Introduction 5

To look at the problem of explosion from a different perspective, Taylor
(1946) considered the disturbance of the air wave surrounding an expand-
ing sphere. In a remarkable lead for nonlinear problems, he considered first
the (spherical) sound waves produced by the vibration of a spherical pis-
ton. From his analysis of such waves, Taylor was led to the form of the
solution for the nonlinear waves. He postulated that the solution must de-
pend on the combination r/a0t of the independent variables (a0 being the
speed of sound in the undisturbed medium), the so-called progressive wave
form. Since the (strong) shock, under this assumption, moves with a con-
stant speed, the flow behind it is of an isentropic character. Thus, with the
assumption that the physical variables p, ρ, and u are constant along the line
dr/dt = r/t, it was possible to reduce the problem to one of solving two cou-
pled nonlinear ODEs with appropriate boundary conditions at the shock; the
piston boundary was located such that the particle velocity there is equal
to the piston velocity. This system was solved numerically and the results
were depicted graphically. It must be stated, however, that this problem
is rather artificial since the shock must ultimately decay. Taylor (1946)
also confirmed that the sound wave solution here fails even when the piston
motion is relatively small.

In an attempt to generalize the work of Taylor (1946, 1950), Rogers
(1958) derived similarity solutions which describe flow of a perfect gas be-
hind strong shocks for spherical, cylindrical and plane symmetries. The
expanding piston, causing the motion, is now allowed to increase the total
energy of the flow behind the shock, E = E0t

s, where E0 and s > 0 are con-
stant. Interestingly, this class of flows, again called similarity solutions or
progressive waves, includes both the problems considered by Taylor (1946,
1950) as special cases, namely, the strong blast wave with s = 0 and the uni-
formly expanding sphere with s = 3. We may observe that, in practice, the
total energy of the flow—the sum of kinetic energy and internal heat energy
of the gas—will suffer losses due to dissipative effects while there will also
be gain in the internal energy as the shock advances and encompasses more
of the quiescent gas. The latter increase is ignored on the assumption that
the shock is of infinite strength so that the pressure (and hence the internal
energy of the gas ahead of the shock) are negligible. Rogers (1958), there-
fore, considered flows for which the total energy behind the shock increases
with time, E = E0t

s. Since, in the present case, it is assumed that the flow
behind the shock is adiabatic (no generation of heat) and the shock itself
is of infinite strength, the increase in the energy is brought about by the
pressure exerted by the piston on the surrounding gas. The mathematical
problem is solved numerically in the manner of Taylor (1946), starting from
the shock inward and locating the position of the piston as described earlier.
Rogers (1958) concluded that, in the case of blast wave (s = 0), 80% of the
energy of the blast is in the form of internal heat energy, as predicted by
Taylor (1950). This ratio decreases as s increases until for the case of the
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6 Shock Waves and Explosions

piston moving with uniform speed with s = 3 (Taylor (1946)), there is an
equi-partition of energy.

The Russian scientists were particularly active in the theory of explo-
sions during the fifties of the last century and did some excellent analysis
in the context of self-similar flows. For example, Kochina and Melnikova
(1958) considered the general piston motion with the piston moving like
r ∝ tm+1, where m is real. The self-similar form of the solution was con-
sidered in the (reduced) sound speed square–particle velocity plane. All
the singularities of the DE in these variables were carefully identified, their
nature denominated, and local solutions in their neighbourhoods found. Dif-
ferent ranges of the parameter m for a given γ were identified for which the
piston motion headed by a shock, peripheral explosion with the neglect of the
motion of the products of explosion, and converging shocks were described.
Some typical numerical results for specific piston motions were presented.

In a slightly different context, Grigorian (1958a, 1958b) showed how
self-similar motions arose from a class of initial conditions at t = 0. Again,
self-similar form of the solution was assumed and the governing set of one-
dimensional gasdynamic equations were reduced to ODEs. Local analysis of
the solutions of the ODEs in the neighbourhood of singular points helped to
identify the initial conditions, and hence Cauchy problems for various piston
motions were posed. It was explained how a flow relating to given initial
conditions (in the present context) could be caused by a piston motion. As
an example, the piston motion r∝ et/τ (where τ is a dimensional parameter)
was discussed in detail and the solution with a shock boundary analysed.

A curious work relating to strong explosion into a nonuniform medium
is due to Waxman and Shvarts (1993). They considered the nonuniform
medium with the density distribution, ρ0(r) = Kr−ω, where ω is a positive
number and K is a dimensional parameter. This provides an additional
freedom in the discussion of self-similar solutions. In these motions, strong
shocks arise from the release of a large amount of energy, E0, at r = 0.
It was shown by Waxman and Shvarts (1993) that if 0 < ω < 3, blast
wave solutions with strong shocks exist. These simply extend the well-
known Taylor-Sedov solution to an inhomogenous medium with ρ0(r) =
Kr−ω. These are solutions of the first kind which are fully determined by
the dimensional parameters appearing in the problem, namely, K and E0.
These are asymptotic solutions which hold for short distance and time. It
may also be observed that the front shock decelerates in the present case.
When ω ≥ 3, it is shown that the short time asymptotic similarity breaks
down. A qualitative analysis in the reduced particle velocity–sound speed
plane shows that the solutions in the range ω ≥ 3 belong to the class called
self-similar solutions of the second kind. Here, the explosion energy is not
a relevant parameter. The solution must be found by solving the reduced
ordinary differential equation from the shock to a ‘new’ singular point in
the phase plane. This constitutes an eigenvalue problem for each γ. These
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Introduction 7

solutions describe asymptotic (large distance and time) flows both when
3 < ω < 5 and when ω ≥ 5. The shock waves that head these solutions,
in contrast to those for 0 < ω < 3, are accelarating. For a given γ, these
solutions exist only for ωg < ω < ωc, where ωg and ωc are functions of γ.
They describe actual flows in some region D(t) ≤ r ≤ R(t), where R(t) is the
shock radius, D(t) diverges linearly with time andD(t)/R(t) tends to zero as
R diverges. The mass and energy contained in the self-similar flow region are
finite. The distinguishing feature of this work is that self-similar solutions
of both kinds exist for the same set of equations, and are demarcated by the
parameter ω appearing in the undisturbed density distribution. The nature
of each class of solutions, detailed above, is quite different. For decelerating
shocks with ω < 3, the explosion energy is divided in some time–dependent
manner into internal and kinetic energies. For accelerating shocks with
ω > 3, the explosion energy is fully transformed into kinetic energy as the
shock radius diverges.

Lighthill (1948) considered the solution of spherical and cylindrical pis-
ton motions in a more analytic manner. He introduced velocity potential
into the analysis and sought for it a similarity form of the solution. The
second order ordinary differential equation resulting from this assumption
turns out to be quite complicated. Lighthill ‘simulated’ it by changing the
nonlinear terms in an approximate way such that the simplified ‘simulating’
equation could be analytically integrated, satisfying the boundary conditions
at the shock and at the piston, namely, the velocity potential is continuous
across the shock front and the particle velocity is equal to the piston veloc-
ity at the piston. The Rankine-Hugoniot condition for the velocity at the
shock was also satisfied. This posed a boundary value problem for the ODE,
referred to above, which was approximately solved. The solution required
a certain relation between the shock Mach number and the piston velocity.
Lighthill (1948) determined an approximate form of this relation, which he
confirmed later by a more rigorous, yet order of magnitude, argument. This
problem however still remains to be solved in its generality (see section 2.5).

As we remarked earlier, while Taylor’s solution is neat and gives an ex-
cellent description of the early stages of nuclear explosion, it begins to fail
as the shock decays and the conditions of constancy of energy behind the
shock do not apply. Sakurai (1953) devised a perturbation scheme in which
Taylor’s solution appears as the zeroth order term. He introduced the vari-
able x = r/R (where r is the spatial co-ordinate and R(t) is the radius of
the shock) and time t as the new independent variables and sought solu-
tions in the form of power series in t, with coefficients depending on x. The
zeroth order solution is just the Taylor’s solution for spherical symmetry.
This work was also generalized to cylindrical and plane symmetries. Saku-
rai (1954) first obtained local (analytic) solution for the first order terms.
However, to obtain the unknown parameter in the expansion for the shock
radius, he suitably separated the first order equations in two parts—one
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8 Shock Waves and Explosions

without the parameter and the other with the parameter—and hence solved
the shock boundary value problem. Sakurai (1954) obtained shock velocity
versus shock radius curves, the distance-time curves for the shock, and the
distributions of velocity, pressure and density behind the shock front. The
solution departed considerably from that given by the first term alone in the
expansion.

Before we consider a more realistic model of the blast wave where the
‘finite’ initial gas sphere is allowed to expand in a natural way, we analyse the
other asymptotic limit when the shock has decayed and has become weak, or
alternatively, when the explosion itself is weak and the shock it produces is of
small magnitude. This naturally suggests exploiting the sound wave solution
by appropriately nonlinearising it. In fact this is what was accomplished by
Whitham (1950). He investigated the attenuation of a spherical blast at
large distances from the origin. He assumed the flow to be isentropic since
this is a good approximation to the correct (nonisentropic) one when the
shocks considered are weak and the entropy changes across them are of third
order in shock strength. The main idea is to correct the linear theory so
that exact equations of motion are solved for large distances by using certain
expansions for the particle velocity and pressure. For the case for which the
disturbances are small from the outset, the general theory is used to modify
the linearised approximation to yield results which are uniformly valid at all
distances from the origin. The shock loci are found both when there is only
a leading shock and when a secondary shock is also produced in the flow
behind, as is the case for a moderate explosion. The basic idea in Whitham’s
approach is to replace the linear characteristics by the exact nonlinear ones.
The expansions involve powers of the reciprocal of distance, requiring also
the introduction of some logarithmic terms. Whitham (1952) later used this
theory for a variety of other gasdynamic problems (see Whitham (1974) for
a detailed discussion). Reference may also be made to the book of Sedov
(1959) who rederived the same results in a different manner.

While the point explosion is a very useful model for initial description of
a strong nuclear explosion and Sakurai’s (1953, 1954) perturbation scheme
extends the validity of this model to greater distances, there is a need of an
analytic approach where more realistic initial conditions are assumed. Ei-
ther of the simplifying assumptions must be discarded: it is a strong point
explosion or it starts as a weak explosion. This would require going beyond
the Taylor-Sakurai approach as well as the weak shock theory of Whitham
(1950). Such an attempt was first made by McFadden (1952). He envisioned
that a (nondimensional) unit sphere containing a perfect gas at a uniform
high pressure is allowed to expand suddenly at t = 0 into a homogenous
atmosphere at lower pressure—an equivalent of a spherical shock tube prob-
lem. The inner medium may be referred to as gas while the outer one is
air. It is required to find the behaviour of the ensuing flow. This flow in the
(x, t) plane may be divided into five regions (see section 7.2). The region
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Introduction 9

A refers to the undisturbed gas at a high pressure; that ahead of the main
shock (which is instantaneously formed) is also undisturbed and is called
region E. Region B is a rarefaction wave which is bounded on the left by its
head, a straight negative characteristic, and on the right by its tail, another
characteristic. (In the present model the explosion is not so strong that a
secondary shock is formed; in that case, the characteristic at the tail of the
rarefaction wave is replaced by a secondary shock). The region C is rarefied
gas which moves outward. The region D consists of the air overtaken by the
main shock and is bounded by the shock on the right and a contact surface
on the left; the latter separates the compressed air from the rarefied gas.
In one of the first attempts of its kind, McFadden (1952) proposed a series
solution in a variable q, which is proportional to the distance moved by the
head of the rarefaction wave in time t, with coefficients which depend on a
slope co-ordinate. More explicitly, q = (1/2N)[(2N − 1) + (1− x)/y], where
x is the radial co-ordinate, y is nondimensional time, N = (γ + 1)/2(γ − 1),
and γ is the ratio of specific heats. The zeroth order terms come simply from
the plane shock tube solution; higher order terms represent the effect of the
spherical geometry. McFadden (1952) found first order correction in time
describing the effect of geometry in various regions. He also derived bound-
ary conditions on the curves separating various regions to higher orders but
limited his solution to the first order only. His purpose was merely to obtain
correct starting conditions for a full numerical treatment, since discontinu-
ous initial data introduced serious numerical errors in the solution. Now,
more sophisticated numerical methods are available and this difficulty can
be easily circumvented.

The approach proposed by McFadden (1952) is highly promising. It is
possible to generate an arbitrary number of terms for the series solution in
each region, but matching them across the boundaries poses some difficul-
ties. The solution however can be found iteratively. One may then sum the
series directly or by using Padé approximation (see Nageswara Yogi (1995))
and study their numerical convergence. Once such a series solution is con-
structed, it constitutes a genuine analytic solution for the more realistic
model describing a moderately strong explosion which, however, does not
involve a secondary shock. This approach may be adapted for explosions
in other media such as water. McFadden (1952) fully derived first order
solution for a spherical blast wave problem and showed graphically how it
differed from the corresponding plane problem; the pressure distribution
behind the shock showed some significant changes, resulting in a different
location of the tail of the rarefaction wave and the contact surface.

Chisnell (1957) considered a shock wave moving into a channel with
varying cross-sectional area and derived an analytic expression which gives
a relation between the channel area and the shock strength. In his highly in-
tuitive approach, Whitham (1958) simplified Chisnell’s approach by propos-
ing his so-called shock-area rule, which may be stated as follows. Write the
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10 Shock Waves and Explosions

differential relation which is to be satisfied by the flow quantities along a
characteristic coming into a shock and apply to it the flow quantities just
behind the shock as given by the Rankine-Hugoniot conditions. If these
quantities are expressed in terms of the shock strength, a differential equa-
tion is obtained which relates the shock strength and the radius of the shock.
This equation is solved analytically or otherwise, using the initial strength
of the shock at some initial radius. This rule may be applied both when
the flow ahead of the shock is uniform and when it is nonuniform. It agrees
with the results of Chisnell (1957) for the former case.

This intuitive rule has been much used and criticized in literature. The
consensus however is that it is a useful simple approach which has been found
helpful in the so-called shock-dynamics problems (see Whitham (1974))
where the geometry of the shock surface is also analysed, and it provides
some check on numerical results and experiments. However, this approach is
clearly not rigorous. It seems reasonable when the shock is weak; paradox-
ically, it works even for strong shocks. It does not give accurate results for
shocks of intermediate strength. Hayes (1968) analysed this approach in the
context of explosion and implosion problems. While it has shown phenome-
nal accuracy with respect to the implosion problems, it is inappropriate for
shocks descending in an exponential atmosphere. For rising shocks it was
found useful, giving an inaccuracy of about 15%. Hayes (1968a) first consid-
ered exact self-similar motions for a strong explosion in an atmosphere at a
moderately low altitude. This explosion generally reaches a stage when the
shock becomes weak and the propagation is close to acoustic. This is largely
due to the geometric divergence of the propagating rays with the attendant
increase in the area of the ray tube. On the other hand, the parts of the
shock waves that propagate upward travel into regions of ever-decreasing
density; this results in strengthening of the shock. As the shock propagates
upwards a couple of scale heights, the strengthening effect over-rides the ge-
ometrical spreading. It can therefore become strong asymptotically. In this
limit the analytic results of Raizer (1964) for the plane shock begin to apply.
Assuming the shock to be self-propagating (when the effects from the region
on the back of the shock do not catch up with it), Hayes (1968) used the
results of self-similar motions to modify the coefficients in the approximate
equation found by Chisnell (1957) and Whitham (1958) and rendered it more
accurate. He employed this improvised Chisnell-Whitham approach to the
study of an axisymmetric shock of self-propagating type moving upwards
into the atmosphere.

The high pressure gas model, studied first by McFadden (1952), was
taken up again by Friedman (1961); the latter was apparently not aware
of this work. The major change in Friedman’s model is that the initial
compressed gas in the sphere (or cylinder) is at a much higher pressure and,
therefore, leads to the phenomenon of secondary shock. The analysis of the
problem is rather approximate and makes an extensive use of Whitham’s
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shock area rule. At t = 0, a gas sphere of (dimensional) radius x0 under high
pressure is suddenly allowed to expand (or equalize) into the surrounding air
at atmospheric pressure. For x ≥ 0, t > 0, five domains in the (x, t) plane
may be distinguished (see section 7.3): (0) undisturbed air, (1) air which
has been overtaken by the main shock and compressed, (2) a nearly uniform
region outside the main expansion, (3) gas in the main expansion region,
and (4) the gas which has not been disturbed by the rarefaction wave. The
separating boundaries are: the shock between the regions (0) and (1), the
contact surface between the compressed air in (1) and the gas in (2), and
the secondary shock which separates regions (3) and (2). The head of the
rarefaction separates regions (3) and (4).

If the initial compressed gas is at a high pressure, a secondary shock de-
velops for both cylindrical and spherical geometries; it does not occur in the
planar case. For the latter, the main shock and the expansion region come
into instantaneous equilibrium, being separated by a region of uniform pres-
sure and velocity. For the former cases, the high pressure gas upon passing
through a spherical rarefaction wave expands to lower pressures than those
reached through an equivalent one-dimensional expansion, clearly due to in-
crease in volume. This leads to pressure at the tail of the rarefaction wave
lower than the pressure transmitted back by the main shock. To match these
phases a compressive secondary shock must be inserted. It can also be shown
mathematically that the negative characteristics in the centered expansion,
after first pointing to decreasing x-direction, fan out in the increasing x-
direction. These are met by the reflected negative characteristics from the
main shock as the latter decays. These characteristics of the same family,
arising from different sources, tend to intersect and form what is called a sec-
ondary shock. Friedman (1961) found a solution in the expansion wave by a
perturbation of the known exact solution for the planar geometry; he made
rather drastic approximations in his analysis leading to some gross errors.
For the description of the main shock and secondary shock (with disturbed
condition ahead of it), he made an extensive use of Whitham’s (1958) shock
area rule. The latter, as we have observed, is rather approximate unless it
is appropriately improvised, as was done by Hayes (1968). We have care-
fully investigated these points in section 7.3. This approach, after suitable
changes, gives a good qualitative picture of the flow analytically. However,
the series approach, initiated by McFadden (1952) and considerably modi-
fied by us, is much more rigorous. It has the potential of accommodating
the secondary shock effects. It may also be extended to explosions in water
and other media.

Converging spherical and cylindrical shock waves have wide applications
in controlled thermonuclear fusion and cavitation. In contrast to the usual
explosion problem, here the shocks converge to the center or axis of implosion
and strengthen to become infinitely large. There has been considerable
activity on this topic since Guderley first initiated it in 1942. He showed
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12 Shock Waves and Explosions

that the similarity solutions that describe these flows are of a different type,
now referred to as belonging to the second kind. In contrast to self-similar
solutions of the first kind, characterised by Taylor-Sedov solution for strong
explosions, the exponent in converging shock propagation law cannot be
found from dimensional considerations alone. Instead, one must solve a
boundary value problem in the phase plane (now called Guderley map)
of the reduced system of ODEs, starting from the shock and hitting an
appropriate singular point which often turns out to be a saddle point. For
each γ, there is one value of the exponent in the similarity variable (or shock
law) which solves this boundary value problem. The importance of the self-
similar solutions of the second kind derives also from the fact that they
represent what are called intermediate asymptotes, to which a large class of
solutions of initial/boundary value problems converge in the limit t → 0 or
t→ ∞. For a complete description of the motion of imploding shock waves,
Payne (1957) and Brode (1955) carried out detailed numerical investigations
and verified the values of the similarity exponent obtained from the analysis
in the phase plane. As was pointed out earlier, the approximate intuitive
approach of Chester (1954), Chisnell (1957) and Whitham (1958)(CCW)
seems to give uncannily accurate values for the similarity exponent for the
converging shock problem. This is because in the close proximity of the
center or axis of implosion the shock flow essentially ‘forgets’ details of its
initial conditions and converges to the similarity solution of the second kind,
a circumstance highly conducive to the applicability of CCW approach. The
proportionality constant A in the shock law r = Atα must, however, be
found from the numerical solution of the problem (Payne (1957)). In a
more recent study, Chisnell (1998) gave an analytic description of the flow
behind the converging shock which he claimed gave extremely good, though
approximate, values of the similarity exponent, as well as a simple analytic
description of the entire flow behind the converging shock. The basic idea
is to study the singular points in the reduced sound speed square—particle
velocity plane, and choose an appropriate trial function in this plane so as to
remove the singular behaviour at one of these points. An iterative process is
still needed for the accurate evaluation of the exponent but just a couple of
iterations give a good value of the similarity exponent as well as the entire
flow behind the shock wave.

It is known from the numerical solution of the converging shock problem
that, in the reduced variables, the pressure behind the shock first increases
and then decreases monotonically (see Zeldovich and Raizer (1967)). Mak-
ing use of this observation, Fujimoto and Mishkin (1978) gave an analytic
approach for the spherically imploding shock problem and obtained good
values of the self-similarity exponent. This work was severely criticized by
Lazarus (1980), but was appropriately responded to by Mishkin (1980). The
matter remains to be resolved satisfactorily.
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We conclude the discussion of converging shocks by referring to the work
of Van Dyke and Guttman (1982) who considered the global problem of
spherical and cylindrical shock waves. They envisioned that the flow was
generated by a spherical or cylindrical piston which collapsed inward with
a constant speed so that the basic approximation for small time is just the
flow produced by the impulsive motion of a plane piston. The piston mo-
tion is assumed to be so large that the shock thus produced has an infinite
Mach number, that is, the pressure ahead of the shock may be taken to be
zero. The flow field is found by expanding the solution in powers of time
with coefficients functions of a similarity variable which appears in the plane
solution. As a consequence, the zeroth order terms constitute the solution
of the plane problem while higher order terms give the effect of geometry,
spherical or cylindrical. A coupled system of ODEs of infinite order results,
which is solved subject to conditions at the shock and the piston. The
shock locus, expressed as a power series in time, is compared to that given
by the phase plane analysis of Guderley (1942) and subsequent workers.
The tedious computation of the series solution is delegated to the computer
and is carried out to 40 terms. This solution describes the whole flow field
accurately almost to the time of collapse; it does not hold in the immedi-
ate vicinity of the collapse. Thus the global problem was solved and the
shock pursued to its limiting self-similar form at the focus. The series solu-
tion gives excellent values of the similarity exponent and compares very well
with the more recently computed accurate values. It also confirms Gelfand’s
conjecture, quoted by Fujimoto and Mishkin (1978), that, in the range of
the adiabatic exponent γ where Guderley’s solution has been shown to be
not unique, the smallest admissible similarity exponent is realized. We may
refer to an exhaustive review on converging shocks and cavities by Lazarus
(1981). It deals, in particular, with the rich variety of previously neglected
nonanalytic solutions and a full exploration of the relevant parameter space.
New solutions are described which contain additional shocks, arriving at the
origin concurrently with the initial shock. Some of these solutions are en-
tirely analytic except at the shocks themselves and some are not. Previously
rejected partial solutions are also discussed. Lazarus (1981) suggested that
more extensive numerical integration of the original PDEs must be carried
out to confirm the evidence for the approach of a class of solutions to a
unique self-similar solution.

Chapter 2 treats the piston problem in its several manifestations. The
similarity solutions are discussed in the physical plane with strong or weak
shocks both when the medium ahead is uniform and when it is nonuniform;
the blast wave solution comes out as a special case in this formulation. Other
artifices such as new sets of dependent and independent variables help the
discovery of new solutions with strong or weak shocks. Chapter 3 consid-
ers the blast wave problem directly when the medium ahead is stratified
or when it is uniform; both Eulerian and Lagrangian co-ordinates are used.
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Attempts at extending the Taylor-Sedov-Von Neumann solution to the time
regime when the shock becomes weak are discussed. More realistic exponen-
tially stratified atmosphere is also analysed in this context. The effect of heat
conduction in the propagation of the blast wave is then considered. Here,
some interesting new results emerge. This chapter ends with the aymptotic
analysis of the blast wave, far away from the point of explosion. Chapter
4 discusses some important war-time shock wave theories due to Bethe and
Kirkwood (see Cole (1948)) and Brinkley and Kirkwood (1947) and their ex-
tensions for both uniform and nonuniform media. Chapter 5 contains exact
solutions of one-dimensional gasdynamic equations with shock boundaries
and vacuum fronts. The work of McVittie (1953) and Keller (1956) is dis-
cussed and generalised. Both Eulerian and Lagrangian forms of equations
of motion are treated. Chapter 6 briefly investigates the important phe-
nomenon of converging spherical and cylindrical shocks—their genesis and
asymptotic focusing to the center or axis of symmetry. The effects of heat
transfer in this context are also considered. Chapter 7 deals with the more
realistic explosion model where the point explosion hypothesis is dispensed
with; it is now simulated as release of a high pressure gas sphere or cylin-
der into the ambient medium at atmospheric pressure, resulting in weak or
moderately strong shocks. The concluding chapter details computational
methods for the study of strong or moderately strong explosions; these are
related to analytic results discussed in earlier chapters.

It is clear that most of the book deals with the mathematical analysis of
explosions but the computational results are also included where ever they
are available. The concluding chapter deals with this matter in some detail.

The mathematics of explosions has spawned many original ideas in the
theory of nonlinear PDEs; in that respect too, it serves as a very fruitful
topic of study and research.
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Chapter 2

The Piston Problem

2.1 Introduction

A simple way to simulate an explosion is to view it as a spherical piston
motion, pushing out undisturbed air/gas ahead of it. To motivate stronger
disturbances it is convenient to view small changes that a ‘small’ motion of
the piston will bring about (see Taylor (1946)). In the spherically symmetric
case, small motions are governed by the linear wave equation

φtt = a2
0

(
φrr +

2φr

r

)
, (2.1.1)

where φ is the velocity potential. The forward moving wave as solution of
(2.1.1) is

φ = r−1f(r − a0t), (2.1.2)

where a0 is the (constant) speed of sound. The velocity and pressure dis-
turbances from (2.1.2), therefore, are found to be

u =
∂φ

∂r
= r−2f(r − a0t) − r−1f ′(r − a0t), (2.1.3)

p− p0 = −ρ0
∂φ

∂t
= ρ0a0r

−1f ′(r − a0t). (2.1.4)

If the piston motion is given by R = R(t), then using the kinematic condition
at the piston u(R(t), t) = dR/dt, we find from (2.1.3) that

Ṙ = R−2f(R− a0t) −R−1f ′(R − a0t). (2.1.5)

If we know the piston motion R = R(t), we may find the form of the function
f by solving the first order ODE (2.1.5). This can be done easily for the
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16 Shock Waves and Explosions

special case for which the spherical piston moves with a constant speed,
starting from the position R = 0 at t = 0. Thus,

R = αa0t, (2.1.6)

where α is a nondimensional constant. Since we consider small motions,
α << 1. Writing w = R− a0t = (α− 1)a0t < 0 in (2.1.5), we get an ODE
for f(w):

α− 1

αw
f ′(w) −

(
α− 1

αw

)2

f(w) + a0α = 0. (2.1.7)

The solution of (2.1.7) for negative values of w is

f(w) =
a0α

3

1 − α2
w2 + c(−w)(α−1)/α, (2.1.8)

where c is the constant of integration. Since 0 < α << 1, f(w) in (2.1.8) is
finite only if we choose c equal to zero. Thus, the solution φ = r−1f(r− at)
and hence other physical variables become

φ =
a0α

3

1 − α2

(r − a0t)
2

r
=

a0α
3

1 − α2
r

(
1 − a0t

r

)2

, (2.1.9)

u =
a0α

3

1 − α2

(
a2

0t
2

r2
− 1

)
, (2.1.10)

p− p0 = 2ρ0
a2

0α
3

1 − α2

(
a0t

r
− 1

)
. (2.1.11)

The undisturbed medium (u = 0, p = p0), outside the moving sphere
r = at, remains undisturbed for subsequent time while the motion inside
this sphere is governed by (2.1.9)–(2.1.11). The form (2.1.9)–(2.1.11) of
the linear solution, namely, the spherically symmetric sound wave, suggests
that all physical variables are functions of the nondimensional combination
r/a0t of the independent variables. The air wave produced by a uniformly
expanding sphere expands at a uniform rate and the velocity and pressure
disturbances are constant along the lines r/a0t = constant. We may observe
that, although we started with a damped travelling wave (2.1.2), the actual
solution dictated by the boundary condition is a ‘progressive’ wave or a sim-
ilarity solution (2.1.9)–(2.1.11). We shall see that the same form holds even
when we analyse the full nonlinear problem.

Taylor (1946) assumed that all the variables u, p, and ρ are functions of
x = r/a0t alone, or equivalently, that they are constant along the direction
dr/dt = r/a0t, and reduced the nonlinear PDEs governing one-dimensional
gasdynamic equations to ODEs. He proved that these equations do not
have a solution bounded by the sound front r = a0t. Instead they have
solutions bounded by a shock of finite or infinite strength. The problem
was solved numerically by integrating the reduced system of ODEs from the
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2.2 The Piston Problem: Its Connection with the Blast Wave 17

shock and determining the position of the piston with respect to the shock
for each α such that the kinematic condition at the piston was satisfied. It
was concluded that the thickness of the layer of the disturbed air decreases
as the velocity of the expanding sphere increases until at an infinite rate of
expansion it is only 6% of the radius of this sphere.

An approximate analysis based on the theory of sound for small radial
velocity yields results which are inaccurate both near the piston and the
shock.

We discuss a more general piston motion in the next section. It includes
Taylor’s (1946) solution for a uniformly moving piston as a special case.

2.2 The Piston Problem: Its Connection with the

Blast Wave

That the piston problem does simulate the point explosion as a special case
will now be brought out by introducing energy considerations. The present
approach is due to Rogers (1958). It assumes that, as a result of the piston
motion, the total energy—the sum of the kinetic and the internal energies
of the gas—varies with time according to the law

E = E0t
s, (2.2.1)

where E0 and s are constants. The case s = 0 corresponds to the blast wave
where the energy behind the shock is constant, as we shall detail in the next
chapter. Here, s ≥ 0 so that the total energy of the flow increases with
time (or at most remains constant). The flow is assumed to be produced
by a large piston motion and is headed by an infinitely strong shock. As
in the problem of Taylor (1946) discussed in section 2.1, the position of the
inner surface of the piston will be found by the numerical integration of the
system of ODEs resulting from the assumption of self-similarity of the flow,
starting the integration at the shock front and locating the piston where the
kinematic condition is satisfied. Here, the dissipation effects are ignored.

We consider one dimensional unsteady flow of a perfect gas described by
the system

ut + uur +
1

ρ
pr = 0, (2.2.2)

ρt + uρr + ρur +
kuρ

r
= 0, (2.2.3)

(pρ−γ)t + u(pρ−γ)r = 0, (2.2.4)

where u, p, and ρ are particle velocity, pressure and density, respectively, of
the gas at the radial distance r and time t; k = 0, 1, 2 for plane, cylindrical
and spherical symmetry, respectively.
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It is convenient to replace (2.2.4) by the equivalent form

(
1

2
ρu2 +

p

γ − 1

)

t

+
1

rk

{
rku

(
1

2
ρu2 +

γp

γ − 1

)}

r

= 0. (2.2.5)

The system of nonlinear PDEs (2.2.2), (2.2.3), and (2.2.5) together with
(2.2.1) must be solved subject to the boundary conditions at the piston and
the shock produced by it. It is pertinent to introduce the variable

x = r/R, (2.2.6)

where R = R(t) is the radius of the shock; thus, x = 1 represents the shock
locus. The velocity of the shock is denoted by

V =
dR

dt
. (2.2.7)

The solution is sought in the self-similar form

u = V f(x), (2.2.8)

p =
ρ0V

2

γ
g(x), (2.2.9)

ρ = ρ0h(x), (2.2.10)

where ρ0 is the uniform density of the gas ahead of the shock. The total
energy of the gas is

E =

∫
1

2
ρu2dτ +

∫
p

γ − 1
dτ, (2.2.11)

where dτ is the volume element. The first integral in (2.2.11) is the total
kinetic energy while the second is the total internal energy, contained in the
space between the piston surface and the shock surface. If we introduce the
form (2.2.8)–(2.2.10) into (2.2.11) we get

E = ρ0εkV
2Rk+1

∫ 1

x0

{
1

2
hf2 +

g

γ(γ − 1)

}
xkdx, (2.2.12)

where εk = 2kπ
1
2
k(3−k), and x0 is the co-ordinate of the expanding surface.

The integral in (2.2.12) will involve the parameters γ, k and s (see(2.2.1)).
From (2.2.1) and (2.2.12) we have

R
1
2
(k+1) dR

dt
=

[
E0

εkρ0J

]1/2

ts/2, (2.2.13)

where

J =

∫ 1

x0

{
1

2
hf2 +

g

γ(γ − 1)

}
xkdx. (2.2.14)
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2.2 The Piston Problem: Its Connection with the Blast Wave 19

On integration, (2.2.13) yields

R =

(
k + 3

s+ 2

)2/(k+3)(
E0

εkρ0J

)1/(k+3)

t(s+2)/(k+3), (2.2.15)

where we have used the condition R = 0 at t = 0. Two important cases
may first be identified from (2.2.15): (i) s = 0, R ∝ t2/(k+3) yielding the
shock radius for the point explosion for different geometries corresponding
to k = 0, 1, 2, and (ii) s = k + 1, R ∝ t, the case of uniform expansion of
the plane, cylindrical or spherical piston. These special cases also determine
the ends of the interval of physical interest for s, as we shall see. The
transformation (2.2.8)–(2.2.10) changes (2.2.2),(2.2.3) and (2.2.5) to

(x− f)f ′ =
g′

γh
+
s− k − 1

s+ 2
f, (2.2.16)

(x− f)h′ = h

(
f ′ +

kf

x

)
, (2.2.17)

{
xkf

(
1

2
hf2 +

g

γ − 1

)}′
= xk+1E1

′(x) +
2(k + 1 − s)

s+ 2
xkE1(x), (2.2.18)

where

E1 =
1

2
hf2 +

g

γ(γ − 1)
. (2.2.19)

The prime in the above denotes differentiation with respect to x. The
Rankine-Hugoniot conditions for the strong shock are

u1 =
2

γ + 1
V, (2.2.20)

ρ1

ρ0
=

γ + 1

γ − 1
, (2.2.21)

p

ρ0V 2
=

2

γ + 1
. (2.2.22)

In view of (2.2.8)–(2.2.10), they become

f(1) =
2

γ + 1
, (2.2.23)

h(1) =
γ + 1

γ − 1
, (2.2.24)

g(1) =
2γ

γ + 1
. (2.2.25)

The piston motion is given by x = x0, that is, r = x0R(t). The kinematic
conditions at the piston requires that the piston velocity is equal to the
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20 Shock Waves and Explosions

particle velocity there. Therefore, from (2.2.8) and r = x0R(t), we have
f(x0) = x0. The problem thus reduces to finding x0 such that, for a given
γ, the system (2.2.16)–(2.2.18) with the initial conditions (2.2.23)–(2.2.25)
when integrated from x = 1 backward leads to the value x = x0 for which
f(x0) = x0. The similarity assumption implies that the total mass of the
gas between the shock and the piston is the same for all time. This fact
was used as a check on the numerical solution of the problem. Tables 2.1–
2.3 give x0, the point at which the expanding surface occurs, the pressure
g(x0) there and the integral J defined by (2.2.14) for plane, cylindrical and
spherical geometries, respectively, for different values of s. The function J
defines the total energy carried by the flow (see (2.2.12)).

Rogers (1958) also rederived the analytic solution for the blast wave
problem, which we shall discuss in great detail in chapter 3. First we ob-
serve that equations (2.2.16)–(2.2.18) possess a constant solution for plane
symmetry with k = 0. This solution is simply

f(x) =
2

γ + 1
, (2.2.26)

g(x) =
2γ

γ + 1
, (2.2.27)

h(x) =
γ + 1

γ − 1
. (2.2.28)

It is clear that the piston position in this case is given by

x0 = f(x0) =
2

γ + 1
. (2.2.29)

In terms of physical variables, the solution is

u =
2

γ + 1
V, (2.2.30)

ρ = ρ0
γ + 1

γ − 1
, (2.2.31)

p =
2ρ0V

2

γ + 1
, (2.2.32)

where V is the (constant) velocity of the shock front. Clearly, the piston
advances with the constant speed 2V/(γ + 1) so that the volume engulfed
by the shock steadily increases with time. The total (kinetic and internal)
energy of the flow in a volume having unit cross-sectional area (see (2.2.12))
is

E = ρ0V
2R

∫ 1

2/(γ+1)

(
1

2
hf2 +

g

γ(γ − 1)

)
dx

= ρ0V
2R

(
4

γ2 − 1

)∫ 1

2/(γ+1)
dx =

4ρ0V
2R

(γ + 1)2
. (2.2.33)
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2.2 The Piston Problem: Its Connection with the Blast Wave 21

Table 2.1. The position of the piston x0 = f(x0), pressure g(x0) and total energy
J for different values of s for spherically symmetric piston motions with γ = 1.4,
k = 2 (Rogers, 1958).

s x0 g(x0) J

0 0 0.4264 0.4264
0.07 0.578 0.4854 0.3960
0.2 0.736 0.5748 0.3610
0.5 0.846 0.7302 0.3173
1.00 0.900 0.9079 0.2832
2.00 0.932 1.1215 0.2556
3.00 0.942 1.2450 0.2526

Table 2.2. The position of the piston x0, pressure g(x0) and total energy J for
different values of s for cylindrically symmetric piston motions with γ = 1.4, k = 1
(Rogers, 1958).

s x0 g(x0) J

0 0 0.4351 0.6414
0.05 0.408 0.4814 0.5900
0.07 0.468 0.4986 0.5773
0.1 0.534 0.5232 0.5607
0.2 0.664 0.5975 0.5178
0.4 0.776 0.7206 0.4660
0.6 0.828 0.8211 0.4344
1.0 0.875 0.9776 0.3992
2.0 0.915 1.2246 0.3702

It is interesting to observe that the value of each of the integral terms in
(2.2.33) is the same, showing that the kinetic and internal energies are equal
in the present case. Moreover, it follows from differentiating (2.2.33) that

dE
dt

=
4ρ0V

3

(γ + 1)2

=
2ρ0V

2

γ + 1

2V

γ + 1
, (2.2.34)

which is simply the product of the surface pressure and the velocity of ex-
pansion of the plane piston (see (2.2.30) and (2.2.32)).

In the general case, the rate at which the piston motion feeds energy
into the flow is again equal to the product of the surface pressure, the area
and the velocity of the expanding surface. This may be written as

< = εk(x0R)k
ρ0V

2

γ
g(x0)V x0. (2.2.35)

From (2.2.1) we also get

< = sE0t
s−1. (2.2.36)
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22 Shock Waves and Explosions

Table 2.3. The position of the piston x0, pressure g(x0) and total energy J for
different values of s for plane symmetric piston motions with γ = 1.4, k = 0 (Rogers,
1958).

s x0 g(x0) J

0 0 0.4550 1.2174
0.05 0.221 0.5086 1.1001
0.1 0.365 0.5591 1.0206
0.2 0.536 0.6523 0.9177
0.4 0.694 0.8139 0.8094
0.5 0.736 0.8846 0.7774
0.6 0.768 0.9500 0.7500
0.8 0.808 1.0662 0.7164
1.0 0.833 1.1667 0.6958

Equating (2.2.35) and (2.2.36) and using (2.2.15) we get

J =
(s+ 2)

γs(k + 3)
xk+1

0 g(x0). (2.2.37)

The relation (2.2.37) provides an excellent check on the computation of
flows for all cases except s = 0. Figure 2.1 shows the kinetic energy of
the flow expressed as a percentage of the total energy for the spherically
symmetric case for γ = 1.4, 1.2. It is found that as s increases from 0, the
value corresponding to a blast wave, to its limiting value 3, this fraction
approaches 1/2, indicating the equipartition of energy for s = 3. We shall
discuss this matter in greater detail in the context of the blast wave problem
in chapter 3. The non-self-similar piston motions with nonzero pressure
ahead of the shock were treated by Chernii (1960).

Figure 2.1 Ratio of the kinetic energy to total energy as a function of s, see (2.2.1)

(Rogers, 1958).
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2.3 Piston Problem in the Phase Plane 23

2.3 Piston Problem in the Phase Plane

Now we consider a general piston motion with the speed v = ctm giving
rise to a strong shock, which propagates into a medium with pressure p1

' 0. In the manner of section 2.2, a strong explosion can be simulated
as the motion of a mass of gas driven by an expanding cylinder or sphere
with speed v = ctm. This study includes the situation when a peripheral
explosion takes place, giving rise to an imploding shock. In the sequel, we
follow the work of Kochina and Mel’nikova (1958).

We start again with the equations of motion

vt + vvr +
1

ρ
pr = 0, (2.3.1)

ρt + (ρv)r + (ν − 1)
ρv

r
= 0, (2.3.2)

(pρ−γ)t + v(pρ−γ)r = 0, (2.3.3)

where ν = 1, 2, 3 for plane and spherical symmetry, respectively, and
γ = cp/cv . We assume that 1 < γ < 7. The characteristic parameters
of the problem, [r] = L, [t] = T, [ρ] = ML−3, [c] = LT−m−1, lead to the
similarity variable

λ =
ctm+1

r
. (2.3.4)

The solution may be sought in the self-similar form

v =
r

t
V (λ), ρ = ρ1R(λ), p = ρ1

r2

t2
P (λ), (2.3.5)

where ρ1 is the uniform density in the medium ahead of the shock.

We recall that the undisturbed pressure p1 is assumed to be zero, hence
the form for p in (2.3.5). Introducing (2.3.5) into (2.3.1)–(2.3.3) and intro-
ducing the variable z = γP/R, the nondimensional sound speed square, we
obtain

dz

dV
=

z[2(V − 1) + ν(γ − 1)V ](V −m− 1)2

(V −m− 1)[V (V − 1)(V −m− 1) − (2m/γ + νV )z]

−z {(γ − 1)V (V − 1)(V −m− 1) + 2z(V −m− 1 +m/γ)}
(V −m− 1)[V (V − 1)(V −m− 1) − (2m/γ + νV )z]

, (2.3.6)

dR

dV
=

R

(V −m− 1)

{
[(V −m− 1)2 − z]νV

V (V − 1)(V −m− 1) − (2m/γ + νV )z
− 1

}
,

(2.3.7)

dλ

dV
= λ

(V −m− 1)2 − z

V (V − 1)(V −m− 1) − (2m/γ + νV )z
. (2.3.8)
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The strong shock conditions (see (2.2.20)–(2.2.22)), in view of (2.3.5),
become

V2 =
2(m+ 1)

γ + 1
, z2 =

2γ(γ − 1)(m + 1)2

(γ + 1)2
, R2 =

γ + 1

γ − 1
, (2.3.9)

where the subscript 2 denotes conditions immediately behind the shock.
At the piston r∗ = r∗(t), we have

v∗ =
dr∗
dt

=
r∗
t
V∗ = ctm, (2.3.10)

or
r∗ =

c

m+ 1
tm+1, (2.3.11)

where we have used (2.3.5) and the law of motion of the piston, v∗ = ctm.
Thus, from (2.3.4), (2.3.5) and (2.3.11), we have the following conditions at
the piston:

V∗ = m+ 1, λ∗ = m+ 1. (2.3.12)

We must solve (2.3.6)–(2.3.8), subject to boundary conditions (2.3.9)
and (2.3.12) at the shock and at the piston, respectively. The integral curve,
starting from the shock must, for increasing λ, reach either of the points C
and D (see cases 2 and 3 below) where V = m+ 1.

It is easy to check from (2.3.6) and its reciprocal that V = m + 1 and
z = 0 are members of integral curves.

Kochina and Mel’nikova (1958) carried out a very exhaustive study of
the above boundary value problem. We shall discuss the divergent flows with
shocks arising from piston motions in some detail, and summarize the results
for other possible flows described by (2.3.6)–(2.3.8), (2.3.9) and (2.3.12).

First we discuss the singularities of (2.3.6) in the domain 0 < V < m+1,
z > 0. Ĉ in the following denotes a constant.

1. Point O (V = 0, z = 0) is a node. The integral curves in its neigh-
bourhood have the form

V +
2m

(m+ 1)γ
z = Ĉz1/2. (2.3.13)

2. Point C (V = m + 1, z = 0) is a complicated singular point with the
asymptotic solution

(V −m− 1)2m = Ĉzν(m+1)[νz −mγ(V −m− 1)]2m+ν(γ−1)(m+1) .
(2.3.14)

3. Point D (V = m+ 1, z = ∞) has a local solution

z = Ĉ(m+ 1 − V )
2m

2m+νγ(m+1) . (2.3.15)
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2.3 Piston Problem in the Phase Plane 25

4. Point E (V = −2m/νγ, z = ∞).

5. Point G (V = 1, z = 0).

6. Point Fi is intersection of the curves

z = {[2(V − 1) + ν(γ − 1)V ](V −m− 1) − (γ − 1)V (V − 1)}
×(V −m− 1)/2(V −m− 1 +m/γ),

z =
V (V − 1)(V −m− 1)

2m/γ + νV
. (2.3.16)

The parameter m in the piston motion v = ctm ranges from −1 to +∞,
leading to change in the character of the above singularities.

Case 1. m > 0. In this case the points O, C, G are nodes while D and
F are saddle points. The point E is not singular in the present case. The
integral curves starting from the shock (V2, z2) enter the point C where they
have the local behaviour

z = C0(m+ 1 − V )
2m

2m+νγ(m+1) , (2.3.17)

where C0 is a constant. The solution exists for all m > 0. For the special
case m = 0, describing a uniform piston motion (see section 2.2), points O,
C and A (V = 0, z = 1) are nodes while F and D are saddle points. In this
case V = 1 is not an integral curve.

Here the case with the pressure p1 6= 0 ahead of the shock can also be
treated. The solution of this problem is obtained by joining any point (1, z)
to the shock point (V2, z2), where V2 and z2 are connected by the relation

z2 = (1 − V2)

(
1 +

γ − 1

2
V2

)
. (2.3.18)

Case 2. m′′ < m < 0, where

m′′ = − ν(γ − 1)

2 + ν(γ − 1)
(2.3.19)

is greater than −1 (see (2.3.14)). In this case the points O and D are nodes
while E is a saddle point. Three integral curves pass through the point
C: the straight lines V = m + 1 and z = 0, and a certain dividing curve
entering this point at an angle −mγ/ν. Therefore, this point corresponds
to two saddle points. There is an odd number (greater than 1) of points Fi;
the point nearest to C is a node.

For the particular value

m = m′ = − ν

2 + ν
, (2.3.20)
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26 Shock Waves and Explosions

the field of integral curves coincides with those for a strong explosion (for
a spherical explosion m = −2/5). In this case, the integral curve coincides
with ‘the dividing curve’ entering the point C, referred to above. It has the
form

z =

(
γ − 1

2

)
V 2[V − 2/(2 + ν)]

[2/(2 + ν)γ − V ]
. (2.3.21)

It may be checked that the shock point (V2, z2) given by (2.3.9) lies on
(2.3.21). For m > m′, this point lies between the straight line V = m + 1
and the dividing curve, while for m < m′, it lies between the dividing curve
and the z-axis.

It may be checked from (2.3.19) and (2.3.20) that, for γ < 2, m = m′

does not belong to the interval m′′ < m < 0. The solution of the piston
problem exists and the integral curve passes through the point D.

For γ > 2 and m < m′, the integral curve starting from (V2, z2) in the
direction of increasing λ does not reach either C or D where V = m + 1.
Therefore, the solution of the piston problem does not exist in this case.

Returning to the case m = m′, the point F now has the co-ordinates

V =
2

2 + ν(γ − 1)
, z =

2νγ(γ − 1)(γ − 2)

[2 + ν(γ − 1)]2[ν + 2(γ − 1)]
. (2.3.22)

It may be verified that for ν = 1, 2 and for ν = 3 with γ < 7, the point
(V2, z2) lies between points E and F. If ν = 3 and γ = 7, the point (V2, z2)
coincides with the point F. For ν = 3 and γ > 7, it lies between F and C.
Therefore, the integral curve describing the piston motion exists for ν = 3,
γ > 7.

For γ = 7, the solution of the strong explosion problem is given simply
by the point V2 = 0.1, z2 = 0.21, while the solution of the piston problem is
given by the segment of the integral curve (2.3.21) between this point and
the point C. At the shock point (V2, z2), λ = 0, implying that the shock wave
moves instantaneously to infinity.

Summarizing the results so far, the solution of the piston problem exists
for all m in the range m′′ < m < 0 if γ < 2. For γ > 2 and ν = 1 or 2, or
for 2 < γ < 7 and ν = 3, it does not exist for m′′ < m < m′.

There are other cases involving peripheral explosion with neglect of the
motion of the products of explosion or converging shock waves, which arise
for other values of m and different geometries. We refer the reader to the
original paper of Kochina and Mel’nikova (1958) for details for these cases.
Now we present some of the results of numerical integration of (2.3.6)–(2.3.8)
subject to the conditions (2.3.9) and (2.3.12) at the shock and at the piston,
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2.3 Piston Problem in the Phase Plane 27

Figure 2.2 Particle velocity v/v2 and density ρ/ρ2 as a function of r/r2 for different

values of m, see (2.3.4) and (2.3.23) (Kochina and Mel’nikova, 1958).

respectively. We shall restrict our attention to diverging piston motions
for which the shock is ahead of the piston. The integration is carried out,
starting from the shock conditions (2.3.9), for increasing values of λ corre-
sponding to decreasing values of r (see (2.3.4)) until (2.3.12) is satisfied.

The solutions may be expressed as

v

v2
=
λ2

λ

V

V2
,

ρ

ρ2
=

R

R2
,

p

p2
=

(
λ2

λ

)2 zR

z2R2
,

T

T2
=

(
λ2

λ

)2 z

z2
,

r

r2
=
λ2

λ
. (2.3.23)

Figures 2.2–2.3 show v/v2, ρ/ρ2, and p/p2 for varying values of the parameter
m. The conditions immediately behind the shock are given by

p2 =
2ρ1

γ + 1
D2, r2 =

ctm

λ2
,

D =
dr2
dt

=
(m+ 1)ctm

λ2
. (2.3.24)

Thus, for m > 0, the shock speed increases with time so that the counter-
pressure p1 ahead may be ignored only after a long time. It is clear from
Figures 2.2–2.3 that in this case the pressure on the piston at any time
exceeds that at the shock; the density is infinite at the piston while the
temperature is infinitesimally small there. Correspondingly, the pressure is
finite at the piston.

The case m = 0 corresponds to the motion of the piston with constant
speed (see section 2.1). In this case all the variables—pressure, density and
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Figure 2.3 Pressure p/p2 as a function of r/r2 for varying values of the parameter

m, see (2.3.4) and (2.3.23) (Kochina and Mel’nikova, 1958).

temperature—are finite at the piston. Here the motion is self-similar even
when p1 6= 0 (see Sedov (1959)).

The case m < 0 corresponds to a decelerating shock from its initial
infinite strength so that the flow is realistic only at early times when the
shock is of large strength. In these cases, the density at the piston tends to
zero, the temperature tends to infinity, while the pressure remains finite.

2.4 Cauchy Problem in Relation to Automodel

Solutions of One-Dimensional Nonsteady

Gas Flows

In several papers, Grigorian (1958a, 1958b) attempted to show how self-
similar (automodel) solutions may arise from a class of initial conditions.

For the one-dimensional gasdynamic equations

ut + uur +
1

ρ
pr = 0, (2.4.1)

ρt + (ρu)r +
(ν − 1)ρu

r
= 0, (2.4.2)

(pρ−γ)t + u(pρ−γ)r = 0, (2.4.3)

we seek self-similar solutions in the form

u(r, t) =
r

t
V (λ), p(r, t) = B|r|β+2t−2P (λ),

ρ(r, t) = B|r|βR(λ), z =
γP

R
, (2.4.4)
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λ =

√
A

B
t|r|

α−β
2

−1. (2.4.5)

In (2.4.2), ν = 1, 2, 3 for plane, cylindrical and spherical symmetries, respec-
tively. α and β are dimensionless constants while A and B are dimensional
constants. Substituting (2.4.4)–(2.4.5) into (2.4.1)–(2.4.3), we get

dz

dV
=

z

(V − q)W
{[2(V − 1) + ν(γ − 1)V ](V − q)2

−(γ − 1)V (V − 1)(V − q) − [2(V − 1) + κ(γ − 1)]z}, (2.4.6)

q
dlnλ

dV
=

(V − q)2 − z

W
, (2.4.7)

(V − q)
dlnR

dlnλ
= q

W

z − (V − q)2
+ q(β + ν)V, (2.4.8)

where

W = V (V − 1)(V − q) + (κ− νV )z, q =
2

2 − (α− β)
,

κ = −α
γ
q. (2.4.9)

According to the Cauchy-Kowalewskaia theorem, it is possible to write the
solution of the system of ODEs (2.4.6)–(2.4.8) in the neighborhood of λ = 0
in the form

V = M1λ+ V2λ
2 + · · · , (2.4.10)

P = L1λ
2 + P3λ

3 + · · · , (2.4.11)

R = N1 +R1λ+ · · · . (2.4.12)

This solution is unique. Here, M1, L1, N1, and the coefficients of higher
terms in (2.4.10)–(2.4.12) are dimensionless constants. Equations (2.4.4) and
the solution (2.4.10)–(2.4.12) give, in the limit t→ 0, the initial distribution
of the physical variables as

p(r, 0) = L1Ar
α, ρ(r, 0) = N1Br

β,

u(r, 0) = M1

(
A

B

)1/2

(r)
α−β

2 (r > 0). (2.4.13)

In the (z, V ) plane, the corresponding solution in the neighbourhood of
(0, 0) has the form

z =
γL2

N1M
2
1

V 2 + · · · for M1 6= 0, N1 6= 0 (2.4.14)
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and

z = −γ
α
V + · · · for M1 = 0 or N1 = 0. (2.4.15)

In addition to the above solutions, we have for the planar case ν = 1 another
local solution

V = −M2λ+ · · · , (2.4.16)

P = L2λ
2 + · · · , (2.4.17)

R = N2 + · · · . (2.4.18)

Correspondingly, we have

z =
γL2

N2M2
2

V 2 + · · · , or z = −γ
α
V + · · · . (2.4.19)

Thus, two integral curves in the (z, V ) plane correspond to the Cauchy initial
value problem. These integral curves have the asymptotic representation
(2.4.14) and (2.4.15) for (ν = 1, 2, 3). Besides, we have (2.4.19) for ν = 1 in
the neighbourhood of V = 0, z = 0.

Equations similar to (2.4.6) in the (z, V ) plane have been much studied
in the Russian literature. In the present context, the path of an integral
curve originating from (2.4.14), (2.4.15), or (2.4.19) for small values of V
and z must be continued for increasing values of λ (see (2.4.5)). This in-
crease should continue to infinity or to some finite value corresponding to
the moving boundary of the region occupying the gas if such a boundary
exists. An example of this kind is a moving piston pushing the gas ahead.
Thus, the Cauchy problem, stated above, will have a solution if the corre-
sponding integral curve is so constructed that, moving along the curve, the
parameter λ monotonically goes through the indicated set of values.

The parameters α and β in (2.4.4) and (2.4.5) are uniquely determined
in terms of the two parameters q and κ occurring in the present problem
(see (2.4.9)):

α = −γκ
q
, β = −γκ

q
− 2

(
1 − 1

q

)
. (2.4.20)

Here, the parameters γ = cp/cv > 1 and ν = 1, 2, 3 are known. From the
well-studied integral curves of equations of the type (2.4.6) in the (z, V )
plane, describing self-similar or automodel solutions, it is easy to relate
to a Cauchy problem. Grigorian (1958a) describes several such problems
including strong explosions, uniformly moving piston motion, flame fronts
etc.

We may observe that V = 0, z = 0 is a singular point of (2.4.6); it is a
node in the most general case. The fan of integral curves starting from this
point have the asymptotic form (2.4.14), (2.4.15) or (2.4.19) corresponding
to varied initial conditions.
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2.4 Cauchy Problem in Relation to Automodel Solutions 31

To solve a Cauchy problem for these initial distributions one would have
to trace each curve of this bundle to a point where either λ = ∞ or λ = λΠ,
where λΠ is the value corresponding to a moving boundary—a piston, for
example. Such piston motions satisfy the kinematic condition V = q (see
section 2.3). Thus, if the motions are continuous, the problem reduces to
tracing the integral curves of the fan from the rest point V = 0, z = 0 to
some special points V = q where z = 0 or z = ∞ or to points λ = ∞ which
may correspond to infinitely distant singular points. In addition, λ must
change monotonically along an integral curve.

If we refer to the most general discussion of (z, V ) plane in the book of
Sedov (1959), we may find that there exists a parabola

z = (V − q)2 (2.4.21)

in the (z, V ) plane where λ while moving along an integral curve attains a
stationary value. That is, ∂λ/∂s = 0 on this curve where s is measured along
the integral curve. So λ attains a maximum or minimum there, say, λ = λ0.
This implies that the integral curve on meeting the parabola (2.4.21) folds
over back into the region of parameters covered prior to the transition across
the parabola (2.4.21). This implies that the solution is discontinuous for all
t > 0. λ = λ0 is the limit line demarcating the region where continuous
solutions occur. The solution beyond the intersection of the integral curve
with this line can be joined to the one before via shock discontinuities.
Sometimes neither continuous nor discontinuous solutions of the Cauchy
problem may exist (see Grigorian (1958a)).

We discuss now a special piston problem following Grigorian (1958b).
We do not discuss power-law piston motions detailed in section 2.3. Instead
we turn to piston motions following an exponential law, which can also
be obtained from the power law via some transformations and a limiting
process requiring the power to tend to infinity. This exponential solution is
of interest in its own right (see section 3.4). Let the piston motion be given
by

r = aet/τ , (2.4.22)

where a and τ are dimensional constants. We look for self-similar solutions
of the system (2.4.1)–(2.4.3) in the form

u(r, t) =
r

τ
V (λ), p(r, t) = ρ0

r2

τ2
P (λ), ρ(r, t) = ρ0R(λ), (2.4.23)

where

λ =
a

r
et/τ . (2.4.24)

Thus, the piston path is described by λ = 1. Substituting (2.4.23)–
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(2.4.24) into (2.4.1)–(2.4.3), we get

dZ

dV
= Z

[2 + ν(γ − 1)]V (V − 1)2 − (γ − 1)V 2(V − 1) − 2[V − (γ − 1)γ]Z

(V − 1){V 2(V − 1) − [2/γ + νV ]Z} ,

(2.4.25)

dlnλ

dV
=

(V − 1)2 − Z

V 2(V − 1) − (2/γ + νV )Z
, (2.4.26)

(V − 1)
dlnR

dlnλ
=
V 2(V − 1) − (2/γ + νV )Z

Z − (V − 1)2
+ νV, (2.4.27)

where

Z =
γP

R
. (2.4.28)

The field of integral curves of (2.4.25) is shown in Figure 2.4. We assume
that the piston motion is so strong that it leads to shocks of infinite strength.
These shocks propagate into a stationary gas with zero pressure. We must
therefore construct a solution which passes through the point Z = V = 0
(see (2.4.23) and (2.4.28)) in the (V,Z) plane.

The strong shock conditions (see section 2.3) in view of (2.4.23) and
(2.4.28) become

V2 =
2

γ + 1
, Z2 =

2γ(γ − 1)

(γ + 1)2
, (2.4.29)

where the suffix ‘2’ denotes flow immediately behind the shock. These condi-
tions discontinuously connect the point Z = V = 0. It follows from (2.4.231),
(2.4.24), and Ṙ = RV (λ)/τ applied at λ = 1 that V = 1 at the piston. We
also find from (2.4.25) that we must have Z = 0 when V = 1. Thus, the

Figure 2.4 The field of integral curves of equation (2.4.25) for 1 < γ < 2 (Grigorian,

1958).
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2.5 Uniform Expansion of a Cylinder or Sphere into Still Air 33

solution starting from the shock point (2.4.29) must pass through the piston
point V = 1, Z = 0. A local analysis of (2.4.25)–(2.4.27) shows that, in the
vicinity of this point, we have

Z = C1(1 − V )
2

2+νγ , λ = C2

(
V +

2

νγ

) 1
ν

, R = C3

(
V + 2/νγ

1 − V

) 2
2+νγ

,

(2.4.30)
where C1, C2, and C3 are constants. Since the piston motion is assumed to
be given by λ = 1 where V = 1, we find from (2.4.302) that the constant

C2 must be equal to

[
νγ/(2 + νγ)

]1/ν

. The solution of the piston problem

may now be obtained as follows. Starting from the shock point (2.4.29) we
integrate (2.4.25) until the solution matches with the local solution (2.4.301).
A numerical fit determines the constant C1. The parameter λ is found by
integrating (2.4.26) with the conditions λ = 1, Z = 0, V = 1; the solution is
locally known from (2.4.302). The density R is found by integrating (2.4.27),
starting from the shock where R2 = (γ + 1)/(γ − 1). The value of λ at the
shock is known from the previous integration. The integration is carried to
the piston where λ = 1. This numerical integration determines the third
constant C3 in (2.4.30). Thus, the approximate solution (2.4.30) near the
piston is now fully determined. This solution shows that at the piston the
density is infinite, the pressure is finite, and the temperature is zero. This
is in agreement with the results obtained in section 2.3 for power law piston
motions. The present solution may also be obtained as the power in the
law of the piston motion is allowed to tend to infinity appropriately (see
Grigorian (1958b)).

2.5 Uniform Expansion of a Cylinder or Sphere

into Still Air: An Analytic Solution of the

Boundary Value Problem

Lighthill (1948) derived an ‘approximate’ analytic solution to describe the
motion caused by the uniform expansion of a cylinder or sphere into still
air. The motion is supposed to be small so that only weak shocks are pro-
duced; the changes in entropy are therefore ignored. This is a special case
of a kindred class of problems treated by Lighthill (1948). He analysed
the flow in terms of velocity potential and introduced the similarity vari-
able to reduce the governing PDE to an ODE. He then wrote appropriate
boundary conditions both at the piston and the weak shock. The boundary
value problem thus arrived at for the nonlinear second order ODE is still
formidable. Lighthill (1948) proceeded to intuitively ignore certain terms in
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the equation. This enabled him to solve the resulting ODE in a ‘somewhat’
closed form. For the solution of the BVP to exist, the relation between the
shock Mach number, M , and the nondimensional velocity of the piston, α,
was found explicitly.

Consider the uniform expansion of a cylinder, which starts from zero
radius. We summarise the results for the spherical case later. Let r be
the distance measured from the axis of the cylinder. The time t is chosen
to be zero when r = 0. For the uniform expansion of the cylinder it is
natural to introduce the nondimensional variable x = r/(a0t), where a0 is
the undisturbed speed of sound. Let a0α be the velocity of the cylinder
which leads to the velocity a0M of the shock, M ≥ 1. α is assumed to
be small. The region of flow between the piston and the shock in terms
of x becomes α < x < M . Since the flow is assumed to be isentropic, the
equations of continuity and motion may be combined to yield a single second
order PDE for the velocity potential φ (see Von Mises (1958)):

a2
(
φrr +

1

r
φr

)
= φtt + 2φrφrt + (φr)

2φrr. (2.5.1)

The speed of sound a is found from the Bernoulli’s equation

φt +
1

2
q2 +

a2

γ − 1
=

a2
0

γ − 1
, (2.5.2)

where q = ∂φ/∂r is the fluid velocity. The boundary conditions to be
satisfied by the solution are as follows.

(i) The particle velocity at the cylinder is equal to that of the cylinder so
that we have the relation

∂φ

∂r
= a0α, (2.5.3)

holding at the cylinder.

(ii) The velocity potential φ at the shock is continuous; therefore,

φ(M) = 0. (2.5.4)

(iii) From the Rankine-Hugoniot conditions, the velocity behind the shock
is given by

u

a0
=

2

γ + 1

(
M −M−1

)
. (2.5.5)

If we introduce the similarity form of the solution

φ = a2
0tf(x), x = r/a0t (2.5.6)
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into (2.5.1), it reduces to the exact nonlinear ODE

[
1 − (γ − 1)

(
f − xf ′ +

1

2
f ′2
)]

(f ′′ + x−1f ′) = (x− f ′)2f ′′ (2.5.7)

while the BCs (i)–(iii) above become

f ′(α) = α, (2.5.8)

f(M) = 0, (2.5.9)

f ′(M) = 2(M −M−1)/(γ + 1). (2.5.10)

Since we have three BCs (2.5.8)–(2.5.10) for the second order ODE (2.5.7),
there must exist a relation between the parameters α and M for a solution of
this BVP to exist. First we derive a first approximation to this relationship,
following the work of Lighthill (1948). He argued that equation (2.5.7) may
be approximated by

[1 + (γ − 1)f ′]f ′′ + x−1f ′ = (x2 − 2f ′)f ′′, (2.5.11)

where some terms have been dropped. This was done by observing that
φ and, therefore, f are small near x = 1 and f ′2 is small compared to f ′;
besides, x has been put equal to one where ever convenient. Indeed, the
terms that have been dropped are assumed to be small even away from
x = 1. Surprisingly, in spite of these approximations, Lighthill (1948) found
a quite accurate relationship between M and α. Equation (2.5.11) can be
solved in terms of an integral. Introducing the variables

f ′ = y, x−2 = z (2.5.12)

into (2.5.11), we get the first order ODE

[
1 + (γ + 1) y − 1

z

]
dy

dz
=

1

2

y

z
(2.5.13)

or
dz

dy
− 2(γ + 1 − y−1)z = −2y−1. (2.5.14)

Equation (2.5.14) is linear in z and integrates to give

zy−2e−2(γ+1)y =

∫ ∞

y
2t−3e−2(γ+1)tdt+ constant. (2.5.15)

Since y = f ′ is assumed to be small everywhere, retaining only the first
two terms in the asymptotic expansion of the integral in (2.5.15), namely,
−2(γ + 1)e−2(γ+1)yy−1 + e−2(γ+1)yy−2, we get

z = 1 − 2(γ + 1)y +Ky2, (2.5.16)

© 2004 by Chapman & Hall/CRC



36 Shock Waves and Explosions

where K is a constant. The boundary condition (2.5.8) gives z = α−2 when
y = α. Therefore, from (2.5.16), we have

K ∼ 1

α4
as α→ 0. (2.5.17)

The boundary condition (2.5.10) becomes

z = M−2 when y = ε = 2(M −M−1)/(γ + 1). (2.5.18)

Therefore, from (2.5.16), we have

M−2 ≈ 1 − 4(M −M−1) + 4K(M −M−1)2/(γ + 1)2 (2.5.19)

which, for M ∼ 1, implies that

M − 1 ∼ 3(γ + 1)2

8K
∼ 3

8
(γ + 1)2α4 (2.5.20)

as α→ 0 (see (2.5.17)).

The corresponding relation for the spherical symmetry was found to be

log(M − 1) ∼ − 1

(γ + 1)α3
. (2.5.21)

Lighthill (1948) remarked that the solution of the above ‘physical’ prob-
lem must exist for each α; its uniqueness however is not obvious. He also
gave a more rigorous order of magnitude argument to show that the relation
(2.5.20) is correct for small values of α.

We may observe that the approximated equation (2.5.11) is analytically
quite different from the full equation (2.5.7). The latter, for example, is
invariant under the transformation x → −x; this is clearly not true of the
former.

We observe that this problem can be numerically treated as an initial
value problem. For a given γ and an assumed value of M = M1 ∼ 1,
one may integrate (2.5.7), starting at x = M with the initial values (2.5.9)
and (2.5.10). Since the solution of the problem exists (it should in fact
be analytically proved), there would exist a point x = α << M , where
f ′(α) = α. Thus, such a value of α may easily be obtained for given values
of M1 and γ; no iteration is needed to find α.

Our numerical solution of the boundary value problems for both spherical
and cylindrical piston motions with γ = 1.4 shows that Lighthill’s approx-
imate analysis gives good results for M ≥ 1. This is in spite of the fact
that (2.5.11), approximating the original equation (2.5.7), is qualitatively
different.
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2.6 Plane Gas Dynamics in Transformed Co-ordinates 37

2.6 Plane Gas Dynamics in Transformed

Co-ordinates

Sometimes it is useful to express the basic equations of motion in a new
co-ordinate system to discover new forms of solutions. However, the trans-
formation of the governing equations should be such that it is still feasible
to impose boundary conditions at both the moving boundaries—the shock
and the piston. Hodograph transformations do not generally allow this fe-
licity. On the other hand, if one writes the basic equations in conservation
form, it becomes possible to choose new independent variables such that one
of them put equal to constant gives particle lines while the other set equal
to zero delineates the shock path. Thus, the trajectories of the particles
(including that of the piston) and of the shock wave are easily denominated
and determined. There are other choices of co-ordinates which we shall sum-
marize at the end of this section. We shall follow the work of Sachdev and
Venkataswamy Reddy (1982) in the following.

The gasdynamic equations in planar symmetry for a compressible medium
are

ρt + (ρu)x = 0, (2.6.1)

ρ(ut + uux) + px = 0, (2.6.2)

St + uSx = 0, (2.6.3)

where ρ, u, p, and S stand for density, particle velocity, pressure and specific
entropy at any point x and time t, respectively. We also have the equation

of state, p = ργ exp
(

S−S0
cv

)
, where γ = cp/cv is the ratio of specific heats

at constant pressure and constant specific volume, respectively. Equation
(2.6.1) is already in a conservation form. Equations (2.6.1) and (2.6.2) can
be combined to give

∂

∂t
(ρu) +

∂

∂x
(p+ ρu2) = 0. (2.6.4)

The conservation laws (2.6.1) and (2.6.4) suggest the introduction of the
variables τ and ξ:

dτ = ρdx− (ρu)dt, (2.6.5)

dξ = ρudx− (p+ ρu2)dt. (2.6.6)

We can, therefore, write the differential relations

dx = −u
p
dξ +

(p+ ρu2)

ρp
dτ, (2.6.7)

dt = −dξ
p

+
u

p
dτ. (2.6.8)
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Clearly, dτ = 0 or dx/dt = u gives particle lines. This relation also holds
along the piston path. The Rankine-Hugoniot conditions across a shock
propagating into a medium with the variable density ρ∗ = ρ∗(x), constant
pressure p = p0, and particle velocity u0 = 0 are

ρ

ρ∗
=

(γ + 1)p+ (γ − 1)p0

(γ − 1)p+ (γ + 1)p0
, (2.6.9)

u =

(
2

ρ∗

)1/2

(p− p0)[(γ + 1)p+ (γ − 1)p0]
−1/2, (2.6.10)

U = (2ρ∗)
−1/2[(γ + 1)p+ (γ − 1)p0]

1/2, (2.6.11)

where U is the shock velocity. Along the shock, we have

dx = U(t)dt, (2.6.12)

which, on using (2.6.7) and (2.6.8), can be written as

dξ + φ(τ)dτ = 0 (2.6.13)

where we have assumed that we may write

φ(τ) =
p0

ρ∗(x)
U−1. (2.6.14)

The relation (2.6.13) suggests introduction of the variable s according to

ds = dξ + φ(τ)dτ (2.6.15)

so that the shock is given by some line s = constant. The differential
relations (2.6.7)–(2.6.8) can now be written as

dx = −u
p
ds+

(p+ ρu2 + ρuφ)

ρp
dτ, (2.6.16)

dt = −ds
p

+
(u+ φ)

p
dτ. (2.6.17)

Since (2.6.15) is invariant under a translation in s, we may choose s = 0
as the shock path. As we have observed earlier, the lines τ = constant
give particle paths. Since entropy is constant along particle lines, τ = con-
stant give lines of constant entropy in the (τ, s) plane. We may, therefore,
conveniently drop (2.6.3) and transform (2.6.1) and (2.6.2) according to
(2.6.16)–(2.6.17) with τ and s as the new independent variables:

wτ + wws −
f

γ
p−1/γps − φ′(τ) = 0, (2.6.18)

pτ + wps − pws = 0, (2.6.19)
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where
f(τ) = [pρ−γ ]−1/γ , w = u+ φ (2.6.20)

and the function φ(τ) is defined by (2.6.14). The functions φ(τ) and f(τ) will
be fixed so that the shock conditions meet the requirement of a self-similar
solution. Using (2.6.9)–(2.6.11), we may write the following relations along
the shock:

ps=0 =
p0

γ + 1

(
2p0

ρ∗φ2
− γ + 1

)
, (2.6.21)

ws=0 = φ

(
ps=0

p0

)
, (2.6.22)

f(τ) = p
1/γ
s=0

[
(γ − 1)p0 + 2γρ∗φ2

(γ + 1)p0ρ∗φ2

]
φ2. (2.6.23)

Since we seek similarity solutions for equations (2.6.18)–(2.6.20) in terms
of a combination of variables τ and s, we must choose φ(τ), f(τ), and ρ∗(τ)
at the shock such that ρ∗φ2 and f/φ2 are constant.

Sachdev and Venkataswamy Reddy (1982) used infinitesimal transforma-
tions to discover similarity solutions of the system (2.6.18)–(2.6.20) subject
to the conditions (2.6.21)–(2.6.23) with the constraints on the functions ρ∗,
φ, and f mentioned above. They arrived at two forms of solution—the power
law and the exponential form. We discuss the power law form in detail and
summarize the results for the exponential form. The power-law similarity
solution has the form

w = φW (σ), (2.6.24)

p = p0P (σ), (2.6.25)

φ =
p0t0
ρ0x0

(
1 +

aτ

ρ0x0

)α

, (2.6.26)

f =
γp

1/γ
0

bρ0
C1

(
1 +

aτ

ρ0x0

)2α

, (2.6.27)

where

σ =
s

p0t0

(
1 +

aτ

ρ0x0

)−(1+α)

(2.6.28)

is the similarity variable, and x0, t0, p0 and ρ0 are arbitrary constants with
dimensions of distance, time, pressure and density, respectively. α appears
in the exponent in the similarity variable. C1 is a constant. The system of
PDEs (2.6.18)–(2.6.19) reduce via (2.6.24)–(2.6.28) to the system of ODEs

(W − a(α+ 1)σ)W ′ − C1P
−1/γP ′ = aα(1 −W ), (2.6.29)

PW ′ − (W − (α+ 1)aσ)P ′ = 0. (2.6.30)
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The parameter a assumes values +1 or −1. The constant C1 is given by

C1 = P
1/γ
∗

(
γ − 1 + (2γ/b)

γ + 1

)
b

γ
, (2.6.31)

where the pressure P∗ behind the shock is given by

ps=0

p0
= P∗ =

2b− γ + 1

γ + 1
(2.6.32)

with

b =
ρ0x

2
0

p0t20
. (2.6.33)

Equation (2.6.26), the requirement that ρ∗φ2 must be constant, and the
shock condition (2.6.9) imply that the undisturbed density must have the
form

ρ∗ = ρ0

(
1 +

aτ

ρ0x0

)−2α

. (2.6.34)

Thus, we have a five parameter family of solutions, the parameters being
x0, t0, p0, ρ0 and α 6= 0.

To obtain the initial conditions for the ODEs (2.6.29)–(2.6.30) at the
shock s = 0, that is, at σ = 0 (see (2.6.28)), we substitute the similarity
form (2.6.24)–(2.6.28) into the shock conditions (2.6.21)–(2.6.22). We obtain

W (0) = P (0) =
2b− γ + 1

γ + 1
= P∗. (2.6.35)

Here we have used the form of the density stratification (2.6.34) in the
undisturbed medium ahead of the shock. Choosing V = (α + 1)aσ and W
as the dependent variables and P as the independent variable, we may write
(2.6.29), (2.6.30) and (2.6.35) as

dW

dP
= (W − V )/P, (2.6.36)

dV

dP
= a1(C1P

(γ−1)/γ − (W − V )2)/P (W − 1), (2.6.37)

V (P∗) = 0, W (P∗) = P∗, (2.6.38)

where a1 = (α + 1)/α. From (2.6.16) we have, along the shock s = 0, the
relation

dτ = ρ∗dx, (2.6.39)

where ρ∗ is given by (2.6.34). Integrating (2.6.39) we have the x co-ordinate
of the shock as

x

x0
=

1

a(2α+ 1)

[(
1 +

aτ

ρ0x0

)2α+1

− 1

]
, α 6= −1/2,

=
1

a
ln(1 + aτ/ρ0x0), α = −1/2. (2.6.40)
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Now, observing that, along the shock, U = dx/dt, where U is given in
terms of pressure behind the shock by (2.6.11), we may write (2.6.39) as
dτ = ρ∗Udt. Integrating this relation etc., we have, along the shock,

t

t0
=

1

a(α+ 1)

[(
1 +

aτ

ρ0x0

)α+1

− 1

]
, α 6= −1,

=
1

a
ln

(
1 +

aτ

ρ0x0

)
, α = −1, (2.6.41)

where we have assumed that τ = 0 when x = 0, t = 0. Eliminating τ from
(2.6.40) and (2.6.41), we get the shock locus as

x(t)

x0
=

1

a(2α + 1)

{[
1 + a(α+ 1)

t

t0

](2α+1)/(α+1)

− 1

}
, α 6= −1,−1

2
,

=
1

a
(1 − exp(−at/t0)), α = −1,

=
2

a
ln

(
1 +

at

t0

)
, α = −1

2
.

(2.6.42)

The density distribution ahead of the shock is found from (2.6.34) and
(2.6.40) as

ρ∗(x) = ρ0

[
1 + a(2α + 1)

x

x0

]−(2α/2α+1)

, α 6= −1

2
,

= ρ0exp

(
ax

x0

)
, α = −1

2
. (2.6.43)

The shock velocity U = dx/dt may be found from (2.6.42) as

U =
x0

t0

[
1 + a(α+ 1)

t

t0

]α/α+1

, α 6= −1,

=
x0

t0
exp

(
− at

t0

)
, α = −1. (2.6.44)

It may be checked from the explicit results above that if aα > 0, the undis-
turbed density ρ∗ ahead of the shock is a decreasing function of x, the shock
velocity U grows with time and the pressure P = p/p0 in the region behind
the shock is greater that P∗ (see (2.6.32)). Similarly, if aα < 0, ρ∗ increases
with x, U decreases with t and 1 < P < P∗. Figures 2.5–2.7 give shock
locus, pressure behind the shock, and the loci of the particle trajectories
including the piston path for some typical values of the parameters.

Now we shall find the loci of particle paths and the piston path explicitly.
Substituting

s = p0t0σ

(
1 +

aτ

ρ0x0

)α+1

, u = φ(W − 1), p = p0P (2.6.45)
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Figure 2.5 Piston path, isobars and shock locus for γ = 5/3, b = 8/3, α = −1/2,

a = 1, see (2.6.54) (Sachdev and Venkataswamy Reddy, 1982).

Figure 2.6 Piston path, particle trajectories and sonic wave locus for γ = b = 1.4,

α = −1, a = −1 (Sachdev and Venkataswamy Reddy, 1982).

into (2.6.16) and (2.6.17), we may obtain the partial derivatives ∂x/∂P and
∂t/∂P . We recall that σ = σ(P ) under the similarity assumption.

We thus have

∂x

∂P
= −x0

b

(
W − 1

P

)(
1 +

aτ

ρ0x0

)2α+1 dσ

dP
, (2.6.46)

∂t

∂P
= − t0

P

(
1 +

aτ

ρ0x0

)α+1 dσ

dP
(2.6.47)

or, using (2.6.36) and (2.6.37), we have

∂x

∂P
=

x0

aαb

[(
dW

dP

)2

− C1P
−(γ+1)/γ)

][
1 +

ατ

ρ0x0

]2α+1

, (2.6.48)
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∂t

∂P
=

t0
aα

[(
dW

dP

)2

− C1P
−(γ+1/γ)

][
1 +

ατ

ρ0x0

]α+1

/(W − 1).

(2.6.49)

Using the boundary conditions (2.6.40) and (2.6.41) at the shock P = P∗,
we may write (2.6.48)–(2.6.49) in the integrated form as

x

x0
=

(
1 + aτ

ρ0x0

)2α+1

abα

∫ P

P∗

[(
dW

dP

)2

− C1P
−(γ+1/γ)

]
dP

+
1

a(2α+ 1)

[(
1 +

aτ

ρ0x0

)2α+1

− 1

]
, α 6= −1

2
,

= − 2

ab

∫ P

P∗

[(
dW

dP

)2

− C1P
−(γ+1/γ)

]
dP

+
1

a
ln

(
1 +

aτ

ρ0x0

)
, α = −1

2
. (2.6.50)

t

t0
=

(
1 + aτ

ρ0x0

)α+1

aα

∫ P

P∗

[(
dW

dP

)2

− C1P
−(γ+1/γ)

]
dP

(W − 1)

+
1

a(α+ 1)

[(
1 +

aτ

ρ0x0

)α+1

− 1

]
, α 6= −1,

= −1

a

∫ P

P∗

[(
dW

dP

)2

− C1P
−(γ+1/γ)

]
dP

(W − 1)

+
1

a
ln

(
1 +

aτ

ρ0x0

)
, α = −1, (2.6.51)

Figure 2.7 Piston path, particle trajectories and shock locus for γ = 1.4, b = 2.4,

α = −0.75, a = 1 (Sachdev and Venkataswamy Reddy, 1982).
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where

P∗ ≤ P <∞ for aα > 0,

1 < P ≤ P∗ for aα < 0.

If we set τ = constant in (2.6.50)–(2.6.51), we obtain trajectories of the
gas particles in a parametric form. In particular, if we put τ = 0, we have
the piston path

x(P )

x0
=

1

abα

∫ P

P∗

[(
dW

dP

)2

− C1P
−(γ+1/γ)

]
dP,

t(P )

t0
=

1

aα

∫ P

P∗

[(
dW

dP

)2

− C1P
−(γ+1/γ)

]
dP

(W − 1)
. (2.6.52)

This is the piston motion which gives rise to the shock propagation law
(2.6.42). We have thus an analytic solution of the following physical problem.
At t = 0, there is a quiescent gas in the region x ≥ 0 with constant pressure
p0 and density distribution (2.6.34). The piston begins to move at
t = 0 according to (2.6.52), giving rise to a flow headed by a shock with the
trajectory (2.6.42). The solution, describing this flow, contains five arbitrary
constants, namely, x0, t0, p0, ρ0, and α.

It may be verified from the expression of shock velocity and the undis-
turbed density and pressure ahead of the shock that the Mach number of
the shock is simply M0 = (b/γ)1/2. For a compressive shock we must have
M0 > 1, that is, b > γ.

It becomes possible to write the solution in a closed form for
α = −1,−1/2.

α = −1.

x

x0
=

(
1 + aτ

ρ0x0

)−1

ab
[γC1(P∗

−1/γ − P−1/γ) − (P − P∗)]

+
1

a

[
1 −

(
1 +

aτ

ρ0x0

)−1]
,

t

t0
=

1

a

∫ P

P∗

[
C1P

−(γ+1/γ) − 1

]
dP

(P − 1)
+

1

a
ln

(
1 +

aτ

ρ0x0

)
,

u = φ(P − 1), φ =
p0t0
ρ0x0

(
1 +

aτ

ρ0x0

)−1

, (2.6.53)

f(τ) =
γp

1/γ
0

bρ0
C1

(
1 +

aτ

ρ0x0

)−2

, ρ∗ = ρ0

(
1 − ax

x0

)−2

,

x(t)

x0
=

1

a

[
1 − exp

(
− at

t0

)]
,
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where 1 < P ≤ P∗ for a = 1 and P∗ ≤ P <∞ for a = −1. Ustinov’s (1967)
special solution corresponds to the case a = −1.

α = −1/2.

x

x0
=

2

ab

∫ P

P∗

[
C1P

−(γ+1)/γ − (b− γC1P
−1/γ)2

Q

]
dP

+
1

a
ln

(
1 +

aτ

ρ0x0

)
,

t

t0
=

2

(
1 + aτ

ρ0x0

)1/2

a

∫ P

P∗

[
C1P

−(γ+1/γ) − (b− γC1P
−1/γ)2

Q

]
dP

Q1/2

+
2

a

[(
1 +

aτ

ρ0x0

)1/2

− 1

]
, (2.6.54)

u = φQ(P )1/2, φ =
p0t0
x0ρ0

(
1 +

aτ

ρ0x0

)−1/2

,

f =
γ

b
− p

1/γ
0

ρ0
C1

(
1 +

aτ

ρ0x0

)−1

, ρ∗ = ρ0exp

(
ax

x0

)
,

X(t)

x0
=

2

a
ln

(
1 +

at

t0

)
,

1 < P ≤ P∗ for a = 1, and P∗ ≤ P <∞ for a = −1,

where

Q = 1 +
(γ + 1)

γ − 1
P∗ + 2bP − 2γ2C1P

(γ−1)/γ

γ − 1
. (2.6.55)

Sachdev and Venkataswamy Reddy (1982) also considered the limiting
case when M0 → 1, corresponding to b → γ, so that the shock degenerates
into a sonic line. In this case the shock point P = P∗ = 1 is a singularity.
This manifests itself as W = 1, V = 0 in the system of ODEs (2.6.36)–
(2.6.37). A local analysis about this point was carried out to start the
integration from the neighbourhood of the shock. An approximate piston
path was also determined, using this local analysis.

We summarize the results for the other class of similarity solutions,
namely, the exponential type. Here the solution has the form

w = φW (σ), (2.6.56)

p = p0P (σ), (2.6.57)

σ =
s

p0t0
exp

(
− aτ

ρ0x0

)
, (2.6.58)

f =
γp

1/γ
0

bρ0
C1exp

(
− aτ

ρ0x0

)
, (2.6.59)
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φ =
p0t0
ρ0x0

exp

(
aτ

ρ0x0

)
, (2.6.60)

where x0, t0, p0, and C1 are arbitrary constants. The system of PDEs (2.6.18)–
(2.6.19) now reduces to

(W − aσ)W ′ − C1P
−1/γP ′ = a(1 −W ), (2.6.61)

PW ′ − (W − aσ)P ′ = 0, (2.6.62)

provided the undisturbed density is chosen in the form

ρ∗ = ρ0exp

(
− 2aτ

ρx0

)
. (2.6.63)

As before, we may rewrite (2.6.61)–(2.6.62) as

dW

dP
=

(W − V )

P
, (2.6.64)

dV

dP
= (C1P

γ−1/γ − (W − V )2)/P (W − 1). (2.6.65)

The conditions at the shock are

W (P∗) = P∗, V (P∗) = 0, (2.6.66)

where V = aσ. Indeed the above system of ODEs may be recovered from
(2.6.36)–(2.6.37) in the limit α → ±∞, implying a1 = 1. The degenerate
solutions without shocks do not exist for the present class.

As for the power law form, we may derive the parametric form of the
shock locus as

x

x0
=

1

2a

[
exp

(
2aτ

ρ0x0

)
− 1

]
, (2.6.67)

t

t0
=

1

a

[
exp

(
aτ

ρ0x0

)
− 1

]
. (2.6.68)

The shock locus, the shock velocity and the density of the medium ahead of
the shock are therefore given by

x(t)

x0
=

1

2a

((
1 +

at

t0

)2

− 1

)
, (2.6.69)

U(t) =
x0

t0

(
1 +

at

t0

)
, (2.6.70)

ρ∗(x) = ρ0/(1 + 2ax/x0). (2.6.71)

The functions x and t may be written as

x

x0
=

exp

(
2aτ
ρ0x0

)

ab

∫ P

P∗

[(
dW

dP

)2

−C1P
−(γ+1/γ)

]
dP
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+
1

2a

[
exp

(
2aτ

ρ0x0

)
− 1

]
, (2.6.72)

t

t0
=

exp

(
aτ

ρ0x0

)

a

∫ P

P∗

[(
dW

dP

)2

− C1P
−(γ+1/γ)

]
dP

(W − 1)

+
1

a

[
exp

(
aτ

ρ0x0

)
− 1

]
, (2.6.73)

where P∗ ≤ P <∞ for a = 1 and 1 < P ≤ P∗ for a = −1.
The piston path corresponding to τ = 0 is therefore given by

x

x0
=

1

ab

∫ P

P∗

[(
dW

dP

)2

− C1P
−(γ+1/γ)

]
dP,

t

t0
=

1

a

∫ P

P∗

[(
dW

dP

)2

− C1P
−(γ+1/γ)

]
dP

(W − 1)
. (2.6.74)

Sachdev, Gupta and Ahluwalia (1992) generalised the work of Sachdev
and Venkataswamy Reddy (1982) in several ways. The solution of the sys-
tem (2.6.18)–(2.6.20) was written out as Taylor series in s with coefficients
which are functions of τ . The nice thing about this series solution is that
no ODEs need to be solved for the coefficients. This is because s does not
appear explicitly in (2.6.18)–(2.6.19) and the coefficient functions can be
found recursively in an algebraic way. All the self-similar solutions found by
Sachdev and Venkataswamy Reddy (1982) were recovered as special cases.
Another class of solutions, again in series form, were discovered by intro-
ducing a new co-ordinate system which arises from the conservation form
of the equations of continuity and energy. For this new formulation, the
analysis applied to the previous class was repeated. Both classes of series
solutions include solutions of Ustinov (1967, 1986) as special cases. A variety
of solutions describing flows, driven by special piston motions and headed
by strong shocks or shocks of arbitrary strength, were explicitly written out
and graphically depicted. Another class of solutions described flows with
characteristic fronts replacing the shocks.

A different formulation, accruing from another conservation form of
plane gasdynamic equations, led to a certain nonlinear hyperbolic equa-
tion of second order (Ustinov (1967), Sachdev, Dowerah, Mayil Vaganan
and Philip (1997)). This equation was thoroughly analysed by Sachdev et
al. (1997). New intermediate integrals were found generalising the usual
Riemann invariants. This also led to a new class of solutions of gasdynamic
equations, which satisfied boundary conditions both at the piston and the
shock. The medium ahead of the shock was again assumed to be nonuni-
form. Some ad hoc approaches yielded additional classes of solutions. The
solutions of Ustinov (1967) were recovered as special cases. There are other
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related studies due to Steketee (1972, 1976, 1977) and Ardavan-Rhad (1970).
The former author carried out a detailed analysis of one-dimensional gas-
dynamic equations using Lagrangian co-ordinates in plane, cylindrical and
spherical symmetries, while the latter, through a set of transformations, ob-
tained an interesting equation for plane geometry wherein particle velocity
is the dependent variable and sound speed and entropy are the independent
variables. A first integral of this equation was found, generalising the usual
Riemann invariant, and was used to study the catching up of a shock by a
rarefaction wave. This equation merits further analysis and investigation.
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Chapter 3

The Blast Wave

3.1 Introduction

As we remarked in the introductory chapter, in 1941, Sir Geoffrey Taylor
was asked by the Defence Ministry in the U.K., much before the atom bomb
was actually produced, to attempt to predict the mechanical effects such a
nuclear device would bring about—in contrast to those of a common explo-
sive bomb produced by the sudden generation of a large amount of gas at
a high temperature in a confined space. The precise question posed was:
“Would similar effects be produced if energy could be released in a highly
concentrated form unaccompanied by the generation of gas?” It is remark-
able how the analysis of Taylor, based on some physical assumptions, led
to some precise answers which agreed rather closely with the experimental
results made available much later. The self-similar analysis of Taylor gave
an accurate answer up to the point where the maximum pressure behind the
front decreased to about 10 atmospheres. It was Taylor’s special gift to see
how apparently complicated phenomena could be expressed in mathemati-
cal terms and to introduce a quantitative aspect into their description. He
would always idealize the problem so that processes or factors expected to be
of little relevance could be ignored. He would also identify all the relevant
physical or geometrical parameters occurring in the data of the problem,
from which information may be quickly culled.

The physical problem may be succinctly stated as follows. A finite but
large amount of energy is suddenly released by nuclear fission in an infinitely
concentrated form. This at once leads to the formation of a shock which
propagates outward according to the law

R(t) = S(γ)ρ
−1/5
0 E1/5t2/5, (3.1.1)

where ρ0 is the atmospheric density, E is the energy released, and S(γ) is
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50 Shock Waves and Explosions

a function of γ to be determined. The law (3.1.1) may be derived easily by
dimensional considerations. Although a similarity hypothesis is still possi-
ble, as in the problem of the expansion of a spherical piston, it ceases to
hold soon after the initiation of the bomb, since one of the assumptions
underlying the analysis, namely that the intensity of the shock produced is
infinitely high breaks down; the strength of the shock becomes finite as it
propagates even though the total energy of the blast in the flow behind the
shock remains (essentially) constant (see section 2.2 for the piston-driven
flows which contain the blast wave as a special case).

We first derive the system of nonlinear ODEs from the basic system of
PDEs under the similarity hypothesis, following the original work of G.I.
Taylor (1946) and summarize the results of their numerical solution. Later,
we shall write out their analytic solution, found by J.L. Taylor (1955) (see
also Sedov (1946)). The shock propagation law Ṙ ∝ t−3/5 from (3.1.1)
suggests that we seek the self-similar solution in the form

p

p0
= y = R−3f1, (3.1.2)

ρ

ρ0
= ψ, (3.1.3)

u = R−3/2φ1, (3.1.4)

where p0 and ρ0 are undisturbed pressure and density ahead of the shock,
respectively, while f1, ψ and φ1 are functions of η = r/R(t) alone. It will be
seen presently that the form (3.1.2)–(3.1.4) is consistent with the equations
of motion and the equation of state for a perfect gas.

The equations of motion, continuity, and particle isentropy in spherical
geometry are

ut + uur +
1

ρ
pr = 0, (3.1.5)

ρt + uρr + ρur +
2ρu

r
= 0, (3.1.6)

(pρ−γ)t + u(pρ−γ)r = 0, (3.1.7)

respectively, where u, ρ, and p are particle velocity, density and pressure at
the point r at time t, and γ = cp/cv is the ratio of specific heats. Equations
(3.1.5)–(3.1.7) reduce via (3.1.2)–(3.1.4) to the ODEs

−A(
3

2
φ1 + ηφ1

′) + φ1φ1
′ +

a2
0

γ

f1
′

ψ
= 0, (3.1.8)

−Aηψ′ + ψ′φ1 + ψ(φ1
′ +

2

η
φ1) = 0, (3.1.9)

A(3f1 + ηf1
′) +

γf1

ψ
ψ′(−Aη + φ1) − φ1f1

′ = 0, (3.1.10)
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provided we assume that
dR

dt
= AR−3/2, (3.1.11)

where A is a constant. The relation (3.1.11) is consistent with the energy
relation (3.1.1) which itself follows from dimensional considerations alone.
In the above, a2

0 = γp0/ρ0 is the square of the (undisturbed) speed of sound.
The two constants A and a2

0 can be eliminated from (3.1.8)–(3.1.10) by the
simple scaling

f = f1a
2
0/A

2, (3.1.12)

φ = φ1/A, (3.1.13)

so that we finally obtain the system

φ′(η − φ) =
1

γ

f ′

ψ
− 3

2
φ, (3.1.14)

ψ
′

ψ
=
φ

′

+ 2φ/η

η − φ
, (3.1.15)

3f + ηf
′

+
γψ

′

ψ
f(−η + φ) − φf

′

= 0. (3.1.16)

f ′ is obtained from (3.1.14)–(3.1.16) as

f ′ =
f{−3η + φ(3 + 1

2γ) − 2γφ2/η}
{(η − φ)2 − f/ψ} . (3.1.17)

ψ
′

and φ
′

can now be found from (3.1.15) and (3.1.14), respectively. The
strong shock conditions

ρ1

ρ0
=
γ + 1

γ − 1
, (3.1.18)

p1

p0
=
γ + 1

2γ

Ṙ2

a2
0

, (3.1.19)

u1

U
=

2

γ + 1
, (3.1.20)

in view of (3.1.2)–(3.1.4) and (3.1.11)–(3.1.13), become

ψ =
γ + 1

γ − 1
, (3.1.21)

f =
2γ

γ + 1
, (3.1.22)

φ =
2

γ + 1
. (3.1.23)
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It is also relevant to express the total energy of the blast in terms of similarity
functions. Thus, the total energy E behind the shock

E = kinetic energy + heat energy

= 4π

∫ R

0

(
1

2
ρu2

)
r2dr + 4π

∫ R

0

p

γ − 1
r2dr, (3.1.24)

may be expressed in terms of the similarity functions and the similarity
variable η = r/R(t) as

E = 4πA2
{

1

2
ρ0

∫ 1

0
ψφ2η2dη +

(
p0

a2
0(γ − 1)

∫ 1

0
fη2dη

)}

= Jρ0A
2, (3.1.25)

where

J = 2π

∫ 1

0
ψφ2η2dη +

4π

γ(γ − 1)

∫ 1

0
fη2dη. (3.1.26)

Since the two integrals in (3.1.26) are functions of γ alone it is clear that
the constant A2, for a given γ, is a function of E/ρ0.

Taylor (1950) solved the system (3.1.14), (3.1.15), and (3.1.17) for γ=1.4
numerically starting from the values (3.1.21)–(3.1.23) at the shock η=1. The
numerical solution shows three main features of the flow behind the shock:
(1) the velocity curve φ rapidly becomes a straight line passing through
the origin, (2) the density curve ψ approaches almost zero at η ∼ 0.5 and
remains close to it till the center, and (3) the pressure decreases to become
a constant and asymptotes to 0.37 times the maximum pressure just behind
the shock (see Table 3.1 for the results of the numerical integration). Now we
give exact (implicit) solution of this problem due to J.L. Taylor (1955). It is
convenient to follow his notation. It is possible by the use of (3.1.5)–(3.1.6)
to replace (3.1.7) by the equivalent energy equation

Et +
1

r2
(r2uI)r = 0, (3.1.27)

where

E = ρ

{
1

2
u2 +

p

(γ − 1)ρ

}
(3.1.28)

and

I = ρ

{
1

2
u2 +

γp

(γ − 1)ρ

}
(3.1.29)

are total energy of air per unit mass and total heat of air per unit mass,
respectively.

J.L. Taylor, by skipping dimensional constants, sought solutions of (3.1.5),
(3.1.6), and (3.1.27) in the form

ρ = f1(r/t
2/5), (3.1.30)

u = t−3/5f2(r/t
2/5), (3.1.31)

p = t−6/5f3(r/t
2/5), (3.1.32)
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Table 3.1. The results of numerical integration of spherically symmetric
self-similar equations describing the point explosion problem for γ = 1.4 (see
(3.1.14)−(3.1.16) and (3.1.21)−(3.1.23)) (Taylor, 1950).

η f φ ψ

1.00 1.167 0.833 6.000
0.98 0.949 0.798 4.000
0.96 0.808 0.767 2.808
0.94 0.711 0.737 2.052
0.92 0.643 0.711 1.534
0.90 0.593 0.687 1.177
0.88 0.556 0.665 0.919
0.86 0.528 0.644 0.727
0.84 0.507 0.625 0.578
0.82 0.491 0.607 0.462
0.80 0.478 0.590 0.370
0.78 0.468 0.573 0.297
0.76 0.461 0.557 0.239
0.74 0.455 0.542 0.191
0.72 0.450 0.527 0.152
0.70 0.447 0.513 0.120
0.68 0.444 0.498 0.095
0.66 0.442 0.484 0.074
0.64 0.440 0.470 0.058
0.62 0.439 0.456 0.044
0.60 0.438 0.443 0.034
0.58 0.438 0.428 0.026
0.56 0.437 0.415 0.019
0.54 0.437 0.402 0.014
0.52 0.437 0.389 0.010
0.50 0.436 0.375 0.007

(cf. (3.1.2)–(3.1.4)); R = kt2/5 defines the shock trajectory, as before, so
that Ṙ = U = 2

5kt
−3/5. The similarity form (3.1.30)–(3.1.32) was used to

eliminate t derivatives in favour of r derivatives instead of reducing the given
system of PDEs to one of ODEs.

We observe that, in view of (3.1.30)–(3.1.32), we have

∂ρ

∂t
= −2

5

r

t

∂ρ

∂r
= − r

R
U
∂ρ

∂r
, (3.1.33)

∂p

∂t
= −2

5

r

t

∂ρ

∂r
− 6

5

p

t
= − r

R
U
∂p

∂r
− 3

U

R
p. (3.1.34)

Also, since
E = t−6/5f(r/t2/5), (3.1.35)

we have

Et +
6

5

E

t
+

2

5

r

t
Er = 0. (3.1.36)
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Eliminating Et from (3.1.36) with the help of (3.1.27) and integrating with
respect to r, we obtain

r2uI =
2

5
r3E/t, (3.1.37)

or
u

U
=

r

R

E

I
. (3.1.38)

Thus,

u = r

{
1

2
u2 +

p

(γ − 1)ρ

}/{
1

2
u2 +

γp

(γ − 1)ρ

}
, (3.1.39)

where
u =

u

U
, r =

r

R
. (3.1.40)

From (3.1.39), we have

p

ρ
= C1(t)u

2 r − u

γu− r
, (3.1.41)

where C1(t) is a function of t. From (3.1.5) and (3.1.7), we have

1

p

∂p

∂r
− γ − 1

ρ

∂ρ

∂r
= − 1

up

∂p

∂t
+
γ − 1

uρ

∂ρ

∂t
− 1

u

∂u

∂r
− 2

r
. (3.1.42)

Eliminating ρt and pt from (3.1.42) with the help of (3.1.33) and (3.1.34),
we have

(
r

R
− u

U

)(
1

p
pr −

γ − 1

ρ
ρr

)
= − 3

R
+

1

U
ur +

2

r

u

U
, (3.1.43)

or
1

p
pr −

γ − 1

ρ
ρr = −2

r
−
[ 1

R − 1
U ur

r
R − u

U

]
. (3.1.44)

Equation (3.1.44) can be immediately integrated to yield

p

ργ−1
= C2(t)(r − u)−1(r)−2, (3.1.45)

where C2(t) is a function of integration. From (3.1.41) and (3.1.45) we get

ρ = C3(t)[ru(r − u)]−2/(2−γ)(γu− r)1/(2−γ), (3.1.46)

p = C4(t)r
−2/(2−γ)u2(1−γ)/(2−γ)(r− u)−γ/(2−γ)(γu− r)(γ−1)/(2−γ), (3.1.47)

where r and u have been replaced by r and u (without loss of generality)
and C3(t) and C4(t) are functions of t. Using the integral (3.1.46) and the
expression (3.1.33) for ρt in (3.1.6) and integrating with respect to r, we get

2 log u = a log r + b log

(
r − 3γ − 1

5
u

)
+ h log(γu− r) + logC, (3.1.48)
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where

a =
−10(γ − 1)

(3γ − 1)
,

b = (−13γ2 + 7γ − 12)/(3γ − 1)(2γ + 1), (3.1.49)

h =
5(γ − 1)

2γ + 1
.

The functions Ci (i = 1, 2, 3, 4) can be obtained by making use of the shock
conditions (3.1.18)–(3.1.20) at r = R:

C1 =
γ − 1

2
U2,

C2 = 2ρ2−γ
0 {(γ − 1)γ/(γ + 1)γ+1}U2, (3.1.50)

C3 = 22/(2−γ)ρ0(γ + 1)−(γ+1)/(2−γ)(γ − 1)(γ−1)/(2−γ) ,

C4 = 2γ/(2−γ)ρ0(γ + 1)−(γ+1)/(2−γ)(γ − 1)1/(2−γ)U2.

The exact solution thus derived is too implicit and is not particularly
illuminating. We give in the next section an approximate analytic solution
which is more explicit and instructive.

In an interesting paper, Latter (1955) introduced an artificial viscos-
ity term in the inviscid equations to see what effect it would have on the
blast wave problem. This concept is originally due to Richtmeyer and Von
Neumann (1950) who observed that the addition of a particular viscosity-
like term into fluid-dynamic equations could lead to continuous shock-flow
fields wherein the discontinuities at the shocks were smeared. The latter
were replaced by regions in which physical parameters changed rapidly but
smoothly. It was also ensured that the physical variables through such
(smooth) shock transitions satisfied the Rankine-Hugoniot conditions. Such
an artifice facilitated the numerical solutions of shock flows, where now
shocks did not require an explicit fitting. It may be remarked that the
choice of the form of the artificial viscosity term is not unique.

Latter (1955) introduced an artificial viscosity term of the form

q =
1

2
K2ρr2ur(|ur| − ur) (3.1.51)

into the equations of motion and energy

ut + uur = −1

ρ
(p+ q)r, (3.1.52)

pt + upr =
γp+ (γ − 1)q

ρ
(ρt + uρr). (3.1.53)

The equation of continuity in the spherical symmetry remains unaltered:

ρt + uρr = −ρ
(
ur +

2u

r

)
. (3.1.54)
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Equations (3.1.52)–(3.1.54) must be supplemented by the adiabatic equa-
tion p/ργ = σ(s). The choice of viscosity term q in (3.1.51), as we remarked,
is not unique. The details of the flow in the shock region would depend on
the specific choice of q. The choice (3.1.51) admits a similarity form of the
solution; this was one of the motivations for writing it in this form. In-
deed this similarity solution is the same as Taylor’s solution in the smooth
region where q = 0. It is seen from the form (3.1.51) that the equations
(3.1.52)–(3.1.54) in this region are the same as studied by Taylor (1950).
This is because ∂u/∂r > 0 for the particle velocity in the entire flow behind
the strong shock and so q = 0 there. Latter (1955) first rederived Taylor’s
solution in a closed form in the smooth region where q = 0. He also sought
a similarity solution in the undisturbed region beyond the shock. For vis-
cosity to enter the analysis, the discontinuities in the slopes of the physical
quantities must be admitted. This, however, also indicates a possible defi-
ciency of the viscosity formalism which, in numerical applications, assumes
continuity not only of the physical quantities but also of their slopes.

Latter (1955) also found large distance behaviour of the solution. He
showed that there exists a solution in r ≥ 0 which is continuous in 0 ≤ r < 1
and which exhibits a continuous transition region (with slope discontinuities)
from the flow conditions at r = 1 to an undisturbed state at zero pressure
at a large distance.

Latter (1955) computed the viscosity solution in the region r ≥ 1 for
different values of the viscosity coefficient K (see (3.1.51)), starting from
the conditions at the shock. The main conclusion of his study is that the
ratio of density behind the shock to that at infinity in the undisturbed region
changes considerably as the viscosity constant K is increased.

3.2 Approximate Analytic Solution of the Blast

Wave Problem Involving Shocks of Moderate

Strength

Taylor (1950) first solved numerically the system of nonlinear ODEs govern-
ing the self-similar solution of the blast wave, as we have detailed in section
3.1. He observed from the numerical solution that the velocity function φ1

or more accurately φ (see (3.1.4) and (3.1.13)) was almost linear. He in-
troduced a correction to this linear behaviour by adding a nonlinear term.
This enabled him to get a much closer approximation to the numerical so-
lution. He could, with this approximation, integrate the ODEs in a closed
form. This remarkable intuitive idea was generalised to all geometries—
planar, cylindrical and spherical—by Sakurai (1953) who also found a more
accurate local approximation to the solution, showing how well the intuitive
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solution of Taylor (1950) compared with the ‘rigorous’ local solution. In
the sequel we follow Sakurai (1953). This approach also helps in finding
a first approximation to the more general blast wave problem wherein the
shock is not assumed to be infinitely strong; it includes a regime where it is
moderately strong.

The equations of flow behind the blast wave may be written as

ut + uur +
1

ρ
pr = 0, (3.2.1)

ρt + uρr + ρ

(
ur +

αu

r

)
= 0, (3.2.2)

(pρ−γ)t + u(pρ−γ)r = 0, (3.2.3)

where, as before, u, p, and ρ are particle velocity, pressure and density at
the position r and time t. The parameter α assumes values 0, 1, 2 for plane,
cylindrical, and spherical geometry, respectively. Using (3.2.2) we change
(3.2.3) to

pt + upr + γp

(
ur +

αu

r

)
= 0. (3.2.4)

Let the position of the shock be given by R = R(t) so that the shock velocity
is

dR

dt
= U. (3.2.5)

The Rankine-Hugoniot conditions holding across a shock of finite strength
at r = R(t) are

u =
2

γ + 1
U

(
1 − c20

U2

)
, (3.2.6)

p = p0

{
2γ

γ + 1

(
U2

c20

)
− γ − 1

γ + 1

}
, (3.2.7)

ρ = ρ0
γ + 1

γ − 1

{
2

γ − 1

(
c0
U

)2

+ 1

}−1

, (3.2.8)

where p0 and ρ0 are respectively the uniform pressure and density in the
undisturbed medium ahead of the shock and c20 = γp0/ρ0 is the square of
sound speed.

As for the strong shock case, the energy released by the explosive, Eα,
is assumed to be constant. Here we define

Eα =

∫ R

0

{
1

2
u2 +

1

γ − 1

(
p

ρ
− p0

ρ0

)}
ρrαdr, α = 0, 1, 2. (3.2.9)

This is the explosion energy per unit area of the surface of the shock front
when R equals unity. If we make use of the Lagrangian form of the equation
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of conservation of mass, we have

∫ R

0

ρ

ρ0
rαdr =

Rα+1

α+ 1
. (3.2.10)

Equation (3.2.9) may now be written as

Eα =

∫ R

0

(
1

2
ρu2 +

1

γ − 1
p

)
rαdr − p0

γ − 1

Rα+1

α+ 1
. (3.2.11)

Thus, we must solve (3.2.1)–(3.2.3), and (3.2.11), subject to the bound-
ary conditions (3.2.6)–(3.2.8). Moreover, the particle velocity at the center
of explosion must be zero. To generalise the self-similar solution of Taylor
(1950) reported in section 3.1, we must retain the t-dependence in the so-
lution and write a perturbation scheme in which the Taylor solution comes
out as the zeroth order term. The boundary conditions must also assume
the strong shock limit at zeroth order.

Thus, we introduce

r

R
= x,

(
c0
U

)2

= y, (3.2.12)

as the new independent variables. The unknown functions are now written
in the more general form

u = Uf(x, y), (3.2.13)

p = p0

(
U

c0

)2

g(x, y), (3.2.14)

ρ = ρ0h(x, y), (3.2.15)

where the functions f , g, and h are nondimensional. It is clear that

∂

∂r
=

1

R

∂

∂x
, (3.2.16)

(
∂

∂t
+ u

∂

∂r

)
=

U

R

{
(f − x)

∂

∂x
+ λy

∂

∂y

}
. (3.2.17)

Substitution of (3.2.13)–(3.2.15) into (3.2.1), (3.2.2) and (3.2.4) leads to the
following PDEs for f , g, and h:

h

{
−1

2
λf + (f − x)fx + λyfy

}
= −1

γ
gx, (3.2.18)

(f − x)hx + λyhy = −h
(
fx +

αf

x

)
, (3.2.19)

−λg + (f − x)gx + λygy = −γg
(
fx +

λf

x

)
, (3.2.20)
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where λ = (R/y) (dy/dR) is a function of y alone. Equation (3.2.11) now
becomes

y

(
R0

R

)α+1

=

∫ 1

0

(
γ

2
hf2 +

1

γ − 1
g

)
xαdx− y

(α+ 1)(γ − 1)
, (3.2.21)

where

R0 = (Eα/p0)
1

(α+1) . (3.2.22)

The shock conditions (3.2.6)–(3.2.8) assume the form

f(1, y) =
2

γ + 1
(1 − y), (3.2.23)

g(1, y) =
2γ

γ + 1
− γ + 1

γ − 1
y, (3.2.24)

h(1, y) = {(γ + 1)/(γ − 1)}
/
{1 + (2/(γ − 1))y}. (3.2.25)

Writing ∫ 1

0

(
γ

2
hf2 +

g

γ − 1

)
xαdx = J (3.2.26)

in (3.2.21) and differentiating it, we get a relation for λ:

λ =
R

y

(
dy

dR

)
=

(α+ 1)J − y/(γ − 1)

J − y dJ
dy

. (3.2.27)

In the more general setting here, the Taylor’s solution should form zeroth
order approximation in the limit y → 0 when the shock velocity is large
compared to the sound speed in the undisturbed medium ahead. To that
end we write the series form of the solution as

f = f (0)(x) + yf (1)(x) + y2f (2)(x) + · · · , (3.2.28)

g = g(0)(x) + yg(1)(x) + y2g(2)(x) + · · · , (3.2.29)

h = h(0)(x) + yh(1)(x) + y2h(2)(x) + · · · . (3.2.30)

The energy integral J in (3.2.26) is also expanded in the form

J = J0(1 + σ1y + σ2y
2 + · · ·). (3.2.31)

Substituting the expressions (3.2.28)–(3.2.31) into (3.2.26) and equating co-
efficients of different powers of y on both sides, we have

J0 =

∫ 1

0

{
γ

2
h(0)f (0)2 +

1

γ − 1
g(0)

}
xαdx, (3.2.32)

σ1J0 =

∫ 1

0

(
γf (0)h(0)f (1) +

γ

2
f (0)2h(1)
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+
1

γ − 1
g(1)

)
xαdx, (3.2.33)

σ2J0 =

∫ 1

0

(
γf (0)h(0)f (2) +

γ

2
f (0)2h(2) +

1

γ − 1
g(2)

)
xαdx

+
γ

2

∫ 1

0
(h(0)f (1)2 + 2h(1)f (1)f (0))xαdx, (3.2.34)

· · · · · · · · · · · · · · ·

Use of (3.2.31) in (3.2.21) leads to

y

(
R0

R

)α+1

= J0

[
1 +

{
σ1 −

1

J0(α+ 1)(γ − 1)

}
y + σ2y

2 + · · ·
]

(3.2.35)

or more explicitly, in view of the definition y = (c0/U)2,

(
c0
U

)2(R0

R

)α+1

= J0

[
1 +

{
σ1 −

1

J0(α+ 1)(γ − 1)

}(
c0
U

)2

+σ2

(
c0
U

)4

+ · · ·
]
. (3.2.36)

Equation (3.2.36) gives a relation between the shock velocity and R if
J0, σi etc. are known. λ defined by (3.2.27) becomes

λ = (α+ 1)

[
1 +

{
σ1 −

1

J0(α+ 1)(γ − 1)

}
y + 2σ2y

2 + · · ·
]
, (3.2.37)

if the expression (3.2.31) for J is introduced.
Equation (3.2.37) may be rewritten more conveniently as

λ = (α+ 1)

[
1 + λ1y + λ2y

2 + · · ·
]

where

σ1 −
1

J0(α+ 1)(γ − 1)
= λ1, (3.2.38)

2σ2 = λ2,

· · · · · · · · · · · · .

To get the ODEs governing the functions f (i), g(i), h(i), we substitute
(3.2.28)–(3.2.30) into (3.2.18)–(3.2.20) and compare coefficients of various
powers of y on both sides. We obtain

(f (0) − x)h(0)f (0)
x + g(0)

x /γ = (α+ 1)f (0)h(0)/2, (3.2.39)

h(0)f (0)
x + (f (0) − x)h(0)

x = −αf (0)h(0)/x, (3.2.40)
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γg(0)f (0)
x + (f (0) − x)g(0)

x = g(0)(α+ 1 − αγf (0)/x), (3.2.41)

h(0)(f (0) − x)f (1)
x + g(1)

x /γ = −
{
(α+ 1)/2 + f (0)

x

}
h(0)f (1)

+

{
(α + 1)f (0)/2 + (x− f (0))f (0)

x

}
h(1)

+(α+ 1)λ1f
(0)h(0)/2,

(3.2.42)

h(0)f (1)
x + (f (0) − x)h(1)

x = −(h(0)
x + αh(0)/x)f (1)

−(f (0)
x + αf (0)/x+ α+ 1)h(1),

(3.2.43)

γg(0)f (1)
x + (f (0) − x)g(1)

x = −(g(0)
x + αγg(0)/x)f (1)

−γ(f (0)
x + αf (0)/x)g(1)

+(α+ 1)λ1g
(0), (3.2.44)

· · · · · · · · · · · · · · ·

The shock conditions (3.2.23)–(3.2.25) via (3.2.28)–(3.2.30) become

f (0)(1) =
2

γ + 1
, g(0)(1) =

2γ

γ + 1
, h(0)(1) =

γ + 1

γ − 1
, (3.2.45)

f (1)(1) = − 2

γ + 1
, g(1)(1) = −γ − 1

γ + 1
, h(1)(1) = −2

(γ + 1)

(γ − 1)2
,

(3.2.46)

· · · · · · · · · · · · · · ·

The zeroth order solutions for different geometries (α = 0, 1, 2) are ob-
tained by solving (3.2.39)–(3.2.41) subject to the BCs (3.2.45) at the shock.
This solution is substituted into (3.2.32) to find the integral J0 and hence
the solution of the strong blast wave problem; the solution of Taylor dis-
cussed in section 3.1 for spherical symmetry is a special case with α = 2.
This solution may be written as

u = Uf (0)(x), p = p0 (U/c0)
2 g(0)(x),

ρ = ρ0h
(0)(x), (c0/U)2 (R0/R)α+1 = J0. (3.2.47)

The shock locus is found from the last of (3.2.47) where use is made of
(3.2.32). The first order system (3.2.42)–(3.2.44) which is linear and in-
homogeneous involves an unknown parameter λ1, which is obtained from
(3.2.38) in terms of σ1; the latter is given by (3.2.33). Since (3.2.33) itself
involves f (1), g(1) and h(1), the problem must be solved iteratively by as-
suming some value of λ1 and hence integrating the system (3.2.42)–(3.2.44)
subject to the shock conditions (3.2.46) relevant to this order. The higher
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order terms f (i), g(i), h(i), i = 2, 3, · · · are governed by systems similar to
those for i = 1, and hence may be found in the same manner.

Now we discuss the zeroth order solution in some detail. As we remarked
earlier, this analysis was first initiated by G.I. Taylor (1950) for the case
of spherical symmetry. It is profitable to rewrite the zeroth order system
(3.2.39)–(3.2.41) as

(f (0) − x)h(0)f (0)
x + g(0)

x /γ = (α+ 1)f (0)h(0)/2, (3.2.48)

h(0)
x /h(0) = (f (0)

x + αf (0)/x)/(x − f (0)), (3.2.49)

g(0)
x /g(0) = (γf (0)

x + αγf (0)/x− α− 1)/(x− f (0)). (3.2.50)

Eliminating g
(0)
x from (3.2.48) with the help of (3.2.50), we have

f (0)
x =

(α+ 1)/γ − αf (0)/x+ (α+ 1)h(0)(x− f (0))f (0)/2g(0)

1 − h(0)(x− f (0))2/g(0)
. (3.2.51)

Sakurai (1956) found it more convenient to use an intermediate integral to
solve the problem numerically. Writing (γ − 1)× (3.2.49)–(3.2.50), we have

(γ − 1)h(0)
x /h(0) − g(0)

x /g(0) = (1 − f (0)
x )/(x− f (0)) + α/x. (3.2.52)

An integration gives

g(0)(x− f (0))h(0)−(γ−1)
xα = {2γ/(γ + 1)} {(γ − 1)/(γ + 1)}γ , (3.2.53)

where we have used the shock conditions for f (0), g(0), h(0) from (3.2.45).
Making use of (3.2.53), the system (3.2.39)–(3.2.41) can be reduced to

f (0)
x =

(
α+ 1

γ
− αf (0)

x
+
α+ 1

2
Df (0)

)/
{1 − (x− f (0))D},

(3.2.54)

Dx

D
=

{
α+ 2 − γf (0)

x − α(γ − 1)

x
f (0)

}/
(x− f (0)), (3.2.55)

where

D = h(0)(x− f (0))/g(0). (3.2.56)

The boundary conditions at the shock for f (0) and D, derived from
(3.2.45), are

f (0)(1) = 2/(γ + 1), D(1) = (γ + 1)/2γ. (3.2.57)

The numerical solutions to this order for the plane and cylindrical geome-
tries are shown in Tables 3.2 and 3.3. Now we revert to the matter of the
approximate solution of the zeroth order system.
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Table 3.2. Numerical and approximate solutions for the planar blast wave problem
(α = 0) for γ = 1.4 (Sakurai, 1953).

numerical approximate
x f (0) g(0) h(0) f (0) g(0) h(0)

1.00 0.8333 1.167 6.000 0.8333 1.167 6.000
0.98 0.8086 1.070 5.183 0.8087 1.071 5.186
0.96 0.7844 0.987 4.508 0.7848 0.991 4.518
0.94 0.7607 0.917 3.945 0.7616 0.923 3.961
0.92 0.7376 0.856 3.472 0.7390 0.865 3.494
0.90 0.7151 0.804 3.071 0.7170 0.815 3.096
0.88 0.6931 0.756 2.729 — — —
0.86 0.6717 0.720 2.435 — — —
0.84 0.6509 0.686 2.181 — — —
0.82 0.6307 0.656 1.960 — — —
0.80 0.6110 0.631 1.766 0.6151 0.647 1.785
0.78 0.5917 0.608 1.595 — — —
0.76 0.5730 0.588 1.443 — — —
0.74 0.5547 0.571 1.308 — — —
0.72 0.5369 0.555 1.187 — — —
0.70 0.5194 0.542 1.079 0.5239 0.556 1.080
0.68 0.5023 0.530 0.980 — — —
0.66 0.4855 0.520 0.891 — — —
0.64 0.4691 0.511 0.811 — — —
0.62 0.4529 0.503 0.736 — — —
0.60 0.4370 0.496 0.669 0.4405 0.504 0.658
0.58 0.4213 0.490 0.607 — — —
0.56 0.4058 0.484 0.549 — — —
0.54 0.3904 0.480 0.497 — — —
0.52 0.3753 0.476 0.448 — — —
0.50 0.3602 0.472 0.403 0.3624 0.473 0.389
0.48 0.3453 0.469 0.362 — — —
0.46 0.3305 0.467 0.323 — — —
0.44 0.3158 0.465 0.288 — — —
0.42 0.3012 0.463 0.255 — — —
0.40 0.2866 0.461 0.225 0.2877 0.456 0.214
0.30 0.215 0.456 0.107 0.2148 0.447 0.102
0.20 0.143 0.455 0.039 0.1430 0.443 0.037
0.10 0.072 0.455 0.006 0.0714 0.442 0.006
0.00 0.000 0.455 0.000 0.0000 0.442 0.000

Taylor (1950) observed that, for the spherical symmetry, the particle
velocity near x = 0 was linear, with slope 1/γ. So he attempted to improve
upon it by assuming that

f (0) = x/γ +Axn. (3.2.58)

He determined the constants A and n by computing f (0) and f
(0)
x at x = 1

from the shock conditions (3.2.45) and the exact slope (3.2.51), respectively.
Thus, we may write for α = 0, 1, 2,

f (0)(1) =
2

γ + 1
, f (0)

x (1) =
(3 − α)γ + 3(α + 1)

(γ + 1)2
(3.2.59)
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Table 3.3. Numerical and approximate solutions for the cylindrical blast wave
problem (α = 1) for γ = 1.4 (Sakurai, 1953).

numerical approximate

x f (0) g(0) h(0) f (0) g(0) h(0)

1.00 0.8333 1.167 6.000 0.8333 1.167 6.000
0.98 0.8035 1.009 4.578 0.8037 1.011 4.584
0.96 0.7750 0.890 3.575 0.7758 0.895 3.590
0.94 0.7479 0.799 2.845 0.7494 0.807 2.862
0.92 0.7223 0.728 2.300 0.7245 0.739 2.317
0.90 0.6980 0.673 1.884 0.7008 0.685 1.898
0.88 0.6749 0.629 1.560 0.6783 0.641 1.570
0.86 0.6531 0.593 1.303 0.6568 0.605 1.309
0.84 0.6322 0.564 1.095 0.6362 0.576 1.098
0.82 0.6124 0.541 0.926 0.6164 0.551 0.925
0.80 0.5934 0.522 0.786 0.5973 0.531 0.783
0.78 0.5751 0.506 0.670 — — —
0.76 0.5574 0.493 0.572 — — —
0.74 0.5404 0.482 0.488 — — —
0.72 0.5238 0.474 0.417 — — —
0.70 0.5076 0.466 0.356 0.5104 0.468 0.347
0.68 0.4917 0.460 0.304 — — —
0.66 0.4762 0.455 0.258 — — —
0.64 0.4608 0.451 0.219 — — —
0.62 0.4457 0.448 0.186 — — —
0.60 0.4308 0.445 0.157 0.4322 0.441 0.153
0.50 0.360 0.438 0.061 0.3582 0.429 0.058
0.40 0.288 0.435 0.019 0.2859 0.425 0.019
0.30 — — — 0.2143 0.424 0.005
0.20 — — — 0.1429 0.424 0.001
0.10 — — — 0.0714 0.424 0.000
0.00 — — — 0.0000 0.424 0.000

and, therefore,

A =
1

γ

γ − 1

γ + 1
, n =

(2 − α)γ2 + (3α + 1)γ − 1

γ2 − 1
. (3.2.60)

By making use of the expressions for f0 and (f0)x from (3.2.58) in (3.2.49)
and (3.2.50), integrating the latter, and using the shock conditions (3.2.45),
one obtains

g(0) =
2γ

γ + 1

(
γ + 1 − xn−1

γ

)− 2γ2+(3α+1)γ−(α+1)
(1−α)γ+3α+1

, (3.2.61)

h(0) =
γ + 1

γ − 1
x

α+1
γ−1

(
γ + 1 − xn−1

γ

)− 2(2α+1+γ)
(1−α)γ+3α+1

. (3.2.62)
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Table 3.4. The values of J0 (see (3.2.32)) for α = 0, 1, 2 for different values of γ
(see Sakurai (1953) and Taylor (1950)).

γ ↖ α 0 1 2

1.2 3.024 1.547 1.031
1.3 2.147 1.102 0.755
1.4 1.696 0.877 0.596

(1.701) (0.880)
1.667 1.137 0.585 0.404

This approximate solution for α = 0, 1 and γ = 1.4 is given in Tables 3.2
and 3.3 along with the exact numerical solutions (see Table 3.1 for α = 2).
The accuracy of this approximate solution is remarkably good, the error
never exceeding five percent. Table 3.4 gives values of the integral J0, ob-
tained numerically and by the use of approximate solution (in brackets).
Again the agreement is rather close.

Continuing the local analysis of Taylor (1950), Sakurai (1953) developed
a similar approach for the first order solution in the neighbourhood of x = 0
(see chapter 7 of Sachdev (2000) for a general discussion of local analysis
for nonlinear PDEs and ODEs). It may be easily checked that f (0) ∼ x/γ
is the correct zeroth order behaviour of this function as x → 0. It follows
from (3.2.55) that Dx/D ∼ [(γ+α)/(γ−1)x] as x→ 0, leading immediately
to D ∼ D0x

(γ+α)/(γ−1), where D0 is the constant of integration. We also
observe that, in this limit,

x− f (0) → γ − 1

γ
x, 2f (0)

x +
α− 1

2
→ 2

γ
+
α+ 1

2
,

f (0)
x +

α+ 1

2

f (0)

x− f (0)
→ 1

γ
+
α+ 1

2

1

γ − 1
, (3.2.63)

exp

(∫ x

1

α+ 1

x− f (0)
dx

)
→ G0x

(α+1)γ/(γ−1),

where G0 is a constant. Now we introduce the transformation

f (1) = (x− f (0))φ, g(1) = g(0)ψ, h(1) = h(0)χ, (3.2.64)

into (3.2.42)–(3.2.44), (3.2.46) and (3.2.33), and use (3.2.39)–(3.2.41) for the
derivatives of f (0), g(0) and h(0) etc. to arrive at the system

−(x− f (0))φx +
1

γD
ψx = −

(
2f (0)

x +
α− 1

2

)
φ

+

(
f (0)

x +
α+ 1

2

f (0)

x− f (0)

)
(χ− ψ)

+
α+ 1

2

f (0)

x− f (0)
λ1, (3.2.65)

(x− f (0))(−φx + χx) = (α+ 1)(φ + χ), (3.2.66)
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(x− f (0))(−γφx + ψx) = (α+ 1) {(γ − 1)φ+ ψ − λ1} , (3.2.67)

∫ 1

0
{γf (0)(x− f (0))h(0)φ +

g(0)

γ − 1
ψ +

γ

2
f (0)2h(0)χ}xαdx

= λ1J0 +
1

(γ − 1)(α + 1)
, (3.2.68)

φ(1) = −2/(γ − 1), ψ(1) = −(γ − 1)/2γ,

χ(1) = −2/(γ − 1). (3.2.69)

It is again possible to obtain an intermediate integral for this first order
system. If we multiply (3.2.67) by 2, subtract from it (2γ−1) times (3.2.66)
and integrate the resulting equation with the conditions (3.2.69), we obtain

φ − 2ψ + (2γ − 1)χ+ 2λ1

=

(
2λ1 −

3γ − 1

γ

γ + 1

γ − 1

)
exp

(∫ x

1

α+ 1

x− f (0)
dx

)
. (3.2.70)

Sakurai (1954) showed in the appendix to his paper that an integral sim-
ilar to (3.2.70) exists for each of the higher order systems. It is convenient to
use (3.2.70) instead of (3.2.66). Now, if we use the approximation (3.2.63) for
f (0)(x) and its derivative etc., we may change the system (3.2.65), (3.2.67)
and (3.2.70) to

− γ − 1

γ
xφx +

1

γD0
x−(γ+α)/(γ−1)ψx

= −
(

2

γ
+
α− 1

2

)
φ+

(
1

γ
+
α+ 1

2

1

γ − 1

)
(χ− ψ)

+
α+ 1

2

λ1

γ − 1
, (3.2.71)

{(γ − 1)/γ}x(−γφx + ψx) = (α+ 1){(γ − 1)φ + ψ − λ1}, (3.2.72)

φ− 2ψ + (2γ − 1)χ = −2λ1 +

{
2λ1 − (3γ − 1)

γ + 1

γ(γ − 1)

}

×G0x
(α+1)γ/(γ−1) . (3.2.73)

Writing

ξ = xν , ν =
(γ + α)

γ − 1
+ 1, (3.2.74)

in (3.2.71)–(3.2.73), we arrive at the simpler system

γ − 1

γ
ν

(
−ξφξ +

1

γ − 1

1

D0
ψξ

)
= −

(
2

γ
+
α− 1

2

)
φ+

(
1

γ
+
α+ 1

2

1

γ − 1

)

×(χ− ψ) +
α+ 1

2

λ1

γ − 1
,

(3.2.75)
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(
γ − 1

γ

)
ν(−γξφξ + ξψξ) = (α+ 1){(γ − 1)φ + ψ − λ1}, (3.2.76)

φ− 2ψ + (2γ − 1)χ = −2λ1 + {2λ1 − (3γ − 1)(γ + 1)/γ(γ − 1)}
×G0ξ

(α+1)γ/(2γ+α−1) .

(3.2.77)

We now attempt to solve the system of linear inhomogeneous equations
(3.2.75)–(3.2.77). It may be checked by local analysis that, to the lowest
order, this system has a constant solution. Proceeding in the manner de-
scribed in Sachdev (2000), one may determine a particular integral in the
form

φ
S

= φ0 + ξ(α+1)γ/(2γ+α−1)(C00 + C01ξ + · · ·), (3.2.78)

ψS = ψ0 + ξ(α+1)γ/(2γ+α−1)(C11ξ + · · ·), (3.2.79)

χS = χ0 + ξ(α+1)γ/(2γ+α−1)(C20 + C21ξ + · · ·), (3.2.80)

where

φ0 = −χ0

= −
{

2 +
(γ − 1)

2
γ − (γ − 2)

(
1 +

α+ 1

2

γ

γ − 1

)}−1

λ1,

ψ0 = λ1 − (γ − 1)φ0,

C00 = 0, C20 =
G0

2γ − 1

(
2λ1 −

3γ − 1

γ

γ + 1

γ − 1

)
, (3.2.81)

C11 =
(γ − 1)D0

γ(α + 3) + α− 1

(
1 +

α+ 1

2

γ

γ − 1

)
C20.

To get the complementary part of the solution, we eliminate χ from
(3.2.75)–(3.2.77). We obtain

−(γ − 1)ξφξ +
1

D0
ψξ = −1

ν

{
2 +

α− 1

2
γ

+
1

2γ − 1

(
1 +

α+ 1

2

γ

γ − 1

)}
φ

+
1

ν

3 − 2γ

2γ − 1

(
1 +

α+ 1

2

γ

γ − 1

)
ψ,

(3.2.82)

−γξφξ + ξψξ = {γ(α+ 1)/ν} φ+ {γ(α + 1)/ν(γ − 1)}ψ. (3.2.83)

By the balancing argument etc. (Sachdev (2000)), the solution of (3.2.82)–
(3.2.83) may be written out in the form

φ = Aξ−(α+1)/ν(1 + a11ξ + · · ·) +B(a20 + a21ξ + · · ·), (3.2.84)

ψ = Aξ−(α+1)/ν(b10 + b11ξ + · · ·) +B(1 + b21ξ + · · ·), (3.2.85)
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where A and B are arbitrary constants; aij and bij are given by

a11 = − 1

γ2

(
2γ − 1

γ − 1
n− γ

)
b10, a20 = − 1

γ − 1
,

a21 = − n− γ + 1

(γ − 1)(n+ γ)
b21,

b10 =
γl + (γ − 1)n

(n− γ)
D0,

b11 =
D0

2γ − n
[γmb10 − {γl − (γ − 1)(γ − n)}]a11,

b21 =

(
m+

l

γ − 1

)
D0, (3.2.86)

l =
1

ν

{
2 +

α− 1

2
γ +

1

2γ − 1

(
1 +

α+ 1

2

γ

γ − 1

)}
,

m =
1

ν

3 − 2γ

2γ − 1

(
1 +

α+ 1

2

γ

γ − 1

)
,

n =
(α+ 1)γ

ν
.

The general solution of the linear system (3.2.75)–(3.2.77) in terms of x
is obtained by using (3.2.78)–(3.2.80) and (3.2.84)–(3.2.85) appropriately:

φ = φ0 + x(α+1)γ/(γ−1)(c01x
ν + · · ·)

+Ax−(α+1)(1 + a11x
ν + · · ·)

+B(a20 + a21x
ν + · · ·), (3.2.87)

ψ = ψ0 + x(α+1)γ/(γ−1)(c11x
ν + · · ·)

+Axν−(α+1)(b10 + b11x
ν + · · ·)

+B(1 + b21x
ν + · · ·), (3.2.88)

χ =

[
− 2λ1 + {2λ1 − (3γ − 1)(γ + 1)/γ(γ − 1)}

×G0x
(α+1)γ/(γ−1) − φ+ 2ψ

]/
(2γ − 1). (3.2.89)

Since ν and (α+1)γ/(γ−1) are somewhat large and positive, it follows that
ψ → ψ0 + B as x → 0 while φ and χ, for finite A, both tend to infinity as
x→ 0.

The system (3.2.65)–(3.2.67) must now be solved numerically subject
to (3.2.69). The unknown constant λ1 must be found such that (3.2.68) is
satisfied.

Sakurai (1954) separated the solution in the form

φ = φ1 + λ1φ2, ψ = ψ1 + λ1ψ2, χ = χ1 + λ1χ2 , (3.2.90)

and substituted it into the system (3.2.65)–(3.2.67) to get the ODEs for φi,
ψi, and χi (i = 1, 2). He also separated the boundary conditions (3.2.69) at
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the shock in the form

φ1(1) = −2/(γ − 1), ψ1(1) = −(γ − 1)/2γ,

χ1(1) = −2/(γ − 1), (3.2.91)

φ2(1) = ψ2(1) = χ2(1) = 0. (3.2.92)

The same separation may be carried through for the ‘energy equation’
(3.2.68) wherein (3.2.90) is substituted and coefficients with and without
λ1 equated. We obtain

I1 + λ1I2 = λ1J0 +
1

(γ − 1)(α+ 1)
(3.2.93)

or

λ1 =

{
I1 −

1

(γ − 1)(α + 1)

}/
(J0 − I2) (3.2.94)

where

I1 =

∫ 1

0

{
γf (0)(x− f (0))h(0)φ1 +

g(0)

γ − 1
ψ1

+
γ

2
f (0)2h(0)χ1

}
xαdx, (3.2.95)

I2 =

∫ 1

0

{
γf (0)(x− f (0))h(0)φ2 +

g(0)

γ − 1
ψ2

+
γ

2
f (0)2h(0)χ2

}
xαdx. (3.2.96)

Now the separated systems of ODEs obtained from (3.2.65)–(3.2.67) for φi,
ψi, χi (i = 1, 2) are solved subject to initial conditions (3.2.91) and (3.2.92)
at x = 1. The integration is carried to x = 0. The parameter λ1 is then
determined from (3.2.94)–(3.2.96). Putting together all this, φ, ψ, and χ
are found from (3.2.90).

The above process is rendered simpler by eliminating χ from (3.2.65)
and (3.2.70) and rewriting (3.2.67). We then have the equations governing
ψ and φ:

ψx = P1φ+ P2ψ + P3 + P4λ1, (3.2.97)

φx = ψx/γ + P5{(γ − 1)φ + ψ − λ1}, (3.2.98)

where

P1 = − D

1 − (x− f (0))D

{
2γf (0)

x +
α− 1

2
γ

+
γ

2γ − 1

(
f (0)

x +
α+ 1

2

f (0)

x− f (0)

)
+ (α+ 1)(γ − 1)

}
,
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P2 =
D

1 − (x− f (0))D

{
γ

3 − 2γ

2γ − 1

×
(
f (0)

x +
α+ 1

2

f (0)

x− f (0)

)
− α− 1

}
, (3.2.99)

P3 = − D

1 − (x− f (0))D

3γ − 1

2γ − 1

γ + 1

γ − 1

×
(
f (0)

x +
α+ 1

2

f (0)

x− f (0)

)

×exp

(∫ x

1

α+ 1

x− f (0)
dx

)
,

P4 =
D

1 − (x− f (0))D

[ −2γ

2γ − 1

(
f (0)

x +
α+ 1

2

f (0)

x− f (0)

)

×
{

1 − exp

(∫ x

1

α+ 1

x− f (0)
dx

)}

+
α+ 1

2

γf (0)

x− f (0)
+ α+ 1

]
,

P5 = −1

γ

α+ 1

x− f (0)
.

These functions depend on the zeroth order solution via f (0), f
(0)
x and D.

Separating (3.2.97)–(3.2.98) according to (3.2.90) one obtains

ψ1x = P1φ1 + P2ψ1 + P3, (3.2.100)

φ1x =
ψ1x

γ
+ P5{(γ − 1)φ1 + ψ1}, (3.2.101)

ψ2x = P1φ2 + P2ψ2 + P4, (3.2.102)

φ2x =
ψ2x

γ
+ P5{(γ − 1)φ2 + ψ2 − 1}. (3.2.103)

The system (3.2.100)–(3.2.103) was solved numerically by Sakurai (1954)
for γ = 1.4 and α = 0, 1, 2, using the conditions (3.2.91)–(3.2.92). Some
difficulties due to large gradients in φ1, φ2 near x = 0 were encountered. The
local solution (3.2.87)–(3.2.88) near x = 0 was matched with the numerical
solution by evaluating the constants A and B appropriately.

Using φ1, φ2, ψ1, and ψ2 from the numerical solution, the integrals
(3.2.95) and (3.2.96) were evaluated (χ may be obtained from (3.2.73)) and
hence the value of λ1 computed from (3.2.94). This value of λ1 was used to
obtain φ, ψ, χ from (3.2.90). The particle velocity

u = f (0) + (x− f (0))φ (3.2.104)
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Figure 3.1 Shock velocity–distance curves for zeroth and first order solutions for

α = 0, 1, 2; see (3.2.105) (Sakurai, 1954).

tends to zero as x → 0. We recall that f (0) → x/γ in this limit. It is
also observed that φ, ψ, and χ have nearly constant values away from x =
1. Using the values of λ1 and J0 obtained above, one may find the shock
velocity–distance relation as

(
c0
U

)2(R0

R

)α+1

= J0

{
1 + λ1

(
c0
U

)2
}
. (3.2.105)

The relation (3.2.105) is depicted in Figure 3.1 both for zeroth and first
order solutions for α = 0, 1, 2. This relation, together with the Rankine-
Hugoniot condition at the shock

p1/p0 =
2γ

γ + 1

(
U

c0

)2

− γ − 1

γ + 1
, (3.2.106)

yields the relation between the pressure p1 behind the shock and the shock
radius R:

(
R0

R

)α+1

=
γ + 1

2γ
J0

{
2γλ1

γ + 1
+
γ − 1

γ + 1
+
p1

p0

}
. (3.2.107)

The relation (3.2.107) for γ = 1.4 corresponding to different geometries
simplifies to

(p1/p0 − 2.07)(R/R0)
3 = 1.96 for α = 2,

(p1/p0 − 2.16)(R/R0)
2 = 1.33 for α = 1, (3.2.108)

(p1/p0 − 2.33)(R/R0) = 0.69 for α = 0.

The comparison of (3.2.108) with some early experimental results showed
a mixed agreement.
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Sakurai (1954) also depicted the first order solution for Mach numbers
U/c0 = 2, 3, 5,∞ for γ = 1.4 and α = 0, 1, 2. He attempted to find an ap-
proximate analytic solution of the first order system, using WKB approach.
The values of λ1 obtained via this approach compared quite favourably with
those found numerically. While the expansion of Sakurai (1953) was a good
attempt at extending the Taylor solution, it did not prove very successful
since it predicted that, in the first approximation, R → ∞ for a value of
the inverse shock strength y = − 1

λ1
, which is less than one. Sakurai (1959)

attempted to extend his analysis in the manner of Taylor (1950) to cover the
entire range 0 < y < 1. The basic assumption here is that the velocity field
behind the shock is given by f = 2

γ+1(1 − y)x, which is linear in x and sat-
isfies the shock condition exactly at x = 1. In addition, the term λy∂h/∂y
in (3.2.19) was assumed to be small everywhere. It is clearly small at y ∼ 0;
near y ∼ 1, λ is small so that this term is again small. Sakurai (1959)
argued that it may be assumed to be small in the entire interval 0 < y < 1.
With these two assumptions, Sakurai could solve the system of equations
(3.2.18)–(3.2.20) exactly and obtain a relation between the integral J and
the shock radius R. This approximate approach, however, led to an asymp-
totic behaviour for R→ ∞ which is at variance with the well-known analytic
results obtained in this limit by Whitham (1950) and Landau (1945) (see
section 3.9). Thus, although this approximate ‘solution’ has a simple form,
it is rather unsatisfactory from the analytic point of view; it is also not in
good agreement with the numerical solution.

In view of the above, Bach and Lee (1970) proceeded in a different man-
ner to obtain an approximate analytic solution which is valid during the
entire evolution of the blast—from the strong shock to the acoustic wave.
The main assumption in the analysis of Bach and Lee (1970) is that the
density behind the shock wave in the blast has a power law behaviour, the
exponent being a function of time; this exponent is determined from the
mass integral. This is in contrast to Sakurai’s assumptions in his approx-
imate analysis, namely, that the particle velocity profile behind the shock
is linear and that the derivative of the density with respect to shock Mach
number in the continuity equation is small and may be neglected. The lat-
ter assumption introduces serious error in the weak shock regime where the
shock wave gradually decays to become a sound wave. The analysis of Bach
and Lee (1970), in other respects, is quite similar to that of Sakurai (1959).

If we introduce the transformations

u(r, t) = Ṙφ(ξ, η), (3.2.109)

p(r, t) = ρ0Ṙ
2f(ξ, η), (3.2.110)

ρ(r, t) = ρ0ψ(ξ, η), (3.2.111)

with

ξ =
r

R(t)
, η =

c20
Ṙ2

=
1

M2
, (3.2.112)
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R = R(t) being the radius of the shock, into (3.2.1)–(3.2.3), we get

(φ− ξ)ψξ + ψφξ + αφ(ψ/ξ) = 2θηψη , (3.2.113)

(φ− ξ)φξ + θφ+
1

ψ
fξ = 2θηφη , (3.2.114)

(φ− ξ)

(
fξ −

γf

ψ
ψξ

)
+ 2θf = 2θη(fη −

γf

ψ
ψη), (3.2.115)

where

θ(η) =
RR̈

Ṙ2
, (3.2.116)

and α = 0, 1, 2 for planar, cylindrical, and spherical symmetry, respectively.
It is assumed that the mass and total energy enclosed by the blast wave
remain constant so that one may obtain two further relations among the
functions f , ψ, φ and the vairable

y = (R/R0)
α+1, (3.2.117)

where R0 = (E0/ρ0c
2
0kα)1/(α+1) is the characteristic explosion length and

kα = 1, 2π, 4π for α = 0, 1, 2, respectively.

The Lagrangian equation of continuity gives

1

Rα+1

∫ R

0

ρ

ρ0
rαdr =

∫ 1

0
ψξαdξ =

1

α+ 1
, (3.2.118)

where we have used (3.2.111) and (3.2.112) (cf. (3.2.10)). The equation for
the conservation of energy (3.2.9) in view of (3.2.109)–(3.2.112) becomes

1 = y

(
I

η
− 1

γ(γ − 1)(α + 1)

)
, (3.2.119)

where

I =

∫ 1

0

(
f

γ − 1
+
ψφ2

2

)
ξαdξ (3.2.120)

and y is defined by (3.2.117).

The Rankine-Hugoniot conditions at the shock ξ = 1(r = R(t)) are

φ(1, η) = [2/(γ + 1)](1 − η), (3.2.121)

f(1, η) = [2/(γ + 1)] − [(γ − 1)/γ(γ + 1)]η, (3.2.122)

ψ(1, η) = (γ + 1)/(γ − 1 + 2η). (3.2.123)

The geometrical requirement that the particle velocity at the center
(axis) of symmetry must vanish gives φ(0, η) = 0. We must therefore solve
(3.2.113)–(3.2.115), subject to (3.2.121)–(3.2.123) and the symmetry condi-
tion φ(0, η) = 0. The integral conditions on mass and energy of the blast
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further define the dynamics of the blast and its flow structure. The third
equation (3.2.115) is therefore not explicitly used.

The basic approximation in the work of Bach and Lee (1970) is that the
(nondimensional) density behind the blast is given by the power law

ψ(ξ, η) = ψ(1, η)ξq(η) , (3.2.124)

where the boundary condition on ψ(ξ, η) at ξ = 1 (see (3.2.123)) is automati-
cally satisfied. (Observe the complicated nature of (3.2.124).) The exponent
q in (3.2.124) is a function of η and hence time t (see (3.2.112)). Substitut-
ing (3.2.124) into the mass integral (3.2.118) leads to the evaluation of this
exponent:

q(η) = (α+ 1)(ψ(1, η) − 1). (3.2.125)

With ψ(ξ, η) explicitly known via (3.2.124) and (3.2.125), we can write
(3.2.113) as a first order PDE for φ alone:

φξ + (q + α)
φ

ξ
= q +

2θη

ψ(1, η)
[1 + (α+ 1)ψ(1, η)lnξ]

dψ(1, η)

dη
. (3.2.126)

Equation (3.2.126) can be integrated to yield

φ = φ(1, η)ξ(1 − Θlnξ), (3.2.127)

where

Θ =
−2θη

φ(1, η)ψ(1, η)

d

dη
ψ(1, η). (3.2.128)

The solution (3.2.127)–(3.2.128) involves θ, a function of R(t), which
itself must be found as part of the solution (see (3.2.116)).

It may be observed that, in the strong shock limit (M → ∞, η → 0), Θ
tends to zero; therefore, the solution φ for the velocity becomes linear, the
form assumed by Sakurai (1965).

Substituting the expressions for ψ and φ thus obtained into the equation
of motion (3.2.114) and integrating with respect to ξ, we get

f = −
∫

[−2θηξ

(
d

dη
φ(1, η) − d

dη
[φ(1, η)Θ]lnξ

)

+(φ− ξ)φ(1, η)(1 − Θ − Θlnξ) + θφ]

×ψ(1, η)ξq(η)dξ + C(η),

(3.2.129)

where C(η) is the function of integration. Using the boundary condition
(3.2.122) at the shock and simplifying, (3.2.129) may be written as

f(ξ, η) = f(1, η) + f2(ξ
q+2 − 1)

+f3{ξq+2[(q + 2)lnξ − 1] + 1}
+f4{2 − ξq+2[(q + 2)2ln2ξ

−2(q + 2)lnξ + 2]}. (3.2.130)
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Here,

f2 =
ψ(1, η)

q + 2
[(1 − Θ){φ(1, η) − φ2(1, η)}

−θ{φ(1, η) − 2η
d

dη
φ(1, η)}], (3.2.131)

f3 =
ψ(1, η)

(q + 2)2

(
θ

{
Θφ(1, η) − 2η

d

dη
[Θφ(1, η)]

}

−Θφ(1, η) − Θ2φ2(1, η) + 2Θφ2(1, η)

)
, (3.2.132)

f4 = Θ2φ2(1, η)ψ(1, η)/(q + 2)3. (3.2.133)

In the strong shock limit η → 0, the pressure profile (3.2.130) coincides
with that obtained earlier by Sakurai (1965):

f(ξ) = f(1, 0) +
ψ(1, 0)φ(1, 0)

(q + 2)
(ξq+2 − 1)[1 − φ(1, 0) − θ(0)]. (3.2.134)

The pressure function (3.2.130) still requires the knowledge of θ(η) and
θ′(η) for its explicit evaluation. To find θ = θ(η), we substitute (nondimen-
sional) velocity, density, and pressure (3.2.127), (3.2.124), and (3.2.130) into
the energy relation (3.2.119) and solve for dθ/dη:

dθ

dη
= − 1

2η

{
θ + 1 − 2φ(1, η) − (D1 + 4η)

γ + 1

−(γ − 1)(α+ 1)

[
φ(1, η) − (D1 + 4η)2

4θy(γ + 1)

]}

+
(D1 + 4η)

8η2(γ + 1)

[
(D1 + 4η)φ(1, η)

θ
− φ(1, η)(γ + 1)

θψ(1, η)

+2(η + 1) + (γ − 1)(α + 1)
(γ + 1)

2θ
φ2(1, η)

]

+
2θ[2 + (γ − 1)(α + 1)]

D1 + 4η
, (3.2.135)

where
D1 = γ(α+ 3) + (α− 1). (3.2.136)

Equation (3.2.135) involves y, which is related to the radius of the shock.
We must find another equation involving y to determine both θ and y. This
is easily done by differentiating (3.2.117) with respect to η (see (3.2.112)).
We thus have

dy

dη
= −(α+ 1)y/2θη, (3.2.137)

where we have made use of the identity

R
d

dR
= θM

d

dM
= −2θη

d

dη
(3.2.138)
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(see (3.2.116) and (3.2.117)). Equations (3.2.135) and (3.2.137) now can be
solved simultaneously for θ and y. The shock radius itself can be found from
the definition dR/dt = Ṙ which can be expressed in terms of y and θ with
the help of (3.2.112), (3.2.116) and (3.2.117), and hence integrated. We thus
have

c0t

R0
= −1

2

∫ η

0

y1/(α+1)dη

θη1/2
. (3.2.139)

Knowing θ and y as function of η from the integration of the coupled system
(3.2.135) and (3.2.137), we may evaluate the integral in (3.2.139) to find t
as a function of η, and hence the shock locus, in the (y, t) or (R, t) plane
(see (3.2.117)).

Since the shock is at r = 0 where η = 0 and since, according to the
Taylor-Sedov shock law, R ∝ t2/5, θ(0) = θ0, a constant (see (3.2.116)), we
must solve the system (3.2.135) and (3.2.137) subject to the conditions

θ(0) = θ0, y(0) = 0. (3.2.140)

However, it is easily checked that both these equations assume indeterminate
form (0/0) at this initial point; we must therefore carry out a local analysis
in the neighbourhood of the point η = 0. Writing

θ = θ0 + θ1η + θ2η
2 + · · · , (3.2.141)

y = y1η + y2η
2 + y3η

3 · · · , (3.2.142)

and substituting into (3.2.135) and (3.2.137) etc., we get the following ex-
pressions for the coefficients:

θ0 = −(α+ 1)/2,

y1 = −E1/(C1 +A1θ0),

θ1 = θ2
0[A2 +B1θ0 +C2/θ0 +E2/(y1θ0)]/C1,

y2 = −y1θ1/θ0,

θ2 = θ2
0[A3 + (B1 − 1)θ1 +B2θ0 + (C1θ

2
1/θ

2
0 − C2θ1/θ0 + C3)/θ0

+E3/(y1θ0)]/[C1 +E1/(2y1)],

y3 = y1[θ
2
1/θ

2
0 − θ2/(2θ0)],

θ3 = θ2
0[(B1 − 2)θ2 +B2θ1 +B3θ0 + {C1[2θ1θ2/θ

2
0 − θ3

1/θ
3
0]

+C2(θ
2
1/θ

2
0 − θ2/θ0) − C3θ1/θ0 + C4}/θ0

+{E1θ1θ2/(3θ
2
0) −E2θ2/(2θ0)}/(y1θ0)]/{C1 + 2E1/(3y1)},

y4 = y1{7θ1θ2/(2θ2
0) − 3θ3

1/θ
3
0 − θ3/θ0}/3,

(3.2.143)

where

A1 = D1/[4(γ + 1)],
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B1 = −1/2,

C1 = D1[D1 + α(γ + 1)]/[4(γ + 1)2],

D1 = γ(α+ 3) + α− 1,

E1 = −(γ − 1)(α + 1)D2
1/[8(γ + 1)],

A2 = −1/2 + [2 + (γ − 1)(α+ 1)]/(γ + 1) + (3D1 + 4)/4(γ + 1)],

B2 = 2[2 + (γ − 1)(α + 1)]/D1,

C2 = {−D2
1 +D1[6 − (γ − 1)(2α + 1)] + 4α(γ − 1)}/[4(γ + 1)2],

E2 = −(γ − 1)(α + 1)D1/(γ + 1),

A3 = [1 − (γ − 1)(α + 1)]/(γ + 1),

B3 = −8[2 + (γ − 1)(α+ 1)]/D2
1 ,

C3 = {D1[−6 + (γ − 1)(α + 1)] + 4[2 − (γ − 1)(2α + 1)]}/[4(γ + 1)2],

E3 = −2(γ − 1)(α + 1)/(γ + 1).

It is interesting to note that, in the limit of infinite shock strength, η →
0, θ0 → −(α + 1)/2; this leads via (3.2.116) to the known exponents
N = 2/5, 1/2, and 2/3 in the shock law R ∝ tN for spherical, cylindrical
and plane symmetries, respectively.

Substituting (3.2.141)–(3.2.142) into (3.2.139) and integrating with re-
spect to η, we can find an (approximate) explicit form of the shock trajectory
for η << 1:

c0t

R0
= 2y

1/α+1
1 η[(α+3)/2(α+1)]

×
[

1

α+ 3
+

T1η

3α+ 5
+

T2η
2

5α+ 7
+

T3η
3

7α+ 9
+ · · ·

]
,

(3.2.144)

where

T1 = y2(α+ 2)/[y1(α+ 1)],

T2 = (2α+ 3){y3/y1 − αy2
2/[2(α + 1)y2

1 ]}/(α + 1),

T3 = (3α+ 4){y4/y1 − αy2y3/[y
2
1(α+ 1)]

+α(2α+ 1)y3
2/[6y

3
1(α+ 1)2]}/(α + 1).

Bach and Lee (1970) carried out a numerical solution of the problem by their
approach for the spherically symmetric case for γ = 1.4. Their results along
with the exact numerical solution of Goldstine and Von Neumann (1955), the
perturbation solution of Sakurai (1954), the linear velocity (approximate)
solution of Sakurai (1965) and the quasi-similar solution of Oshima (1960)
as computed by Lewis (1961) are shown in Figure 3.2. This figure gives the
shock decay coefficient −θ versus η = 1/M 2. It is clear that the results
of Bach and Lee (1970) are quite close to the numerical solution, although
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there is a clear departure as the shock Mach number diminishes to become
one. It appears (though it has not been explicitly stated) that their analytic
solution does not tend exactly to the appropriate weak shock limit asM → 1.
The main approximation in their theory lies in the assumption (3.2.124)
for the density distribution behind the shock. The solution here does not
satisfy the energy equation (3.2.115) exactly; this error manifests itself in
the departure from the exact solution. This error is somewhat mitigated
by the (imposed) physical conditions that total energy and mass behind the
shock are conserved. This leads to a better determination of the trajectory
of the shock.

Figure 3.2 Variation of the shock decay coefficient −θ with shock strength η for

spherical blast waves for γ = 1.4 (Bach and Lee, 1970).

Figure 3.3 Pressure distributions behind spherical blast waves of various shock

strengths η for γ = 1.4 (Bach and Lee, 1970).
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Figure 3.4 Density distributions behind spherical blast waves of various shock

strengths η for γ = 1.4 (Bach and Lee, 1970).

Figure 3.5 Particle velocity distributions behind spherical blast waves of various

shock strengths η for γ = 1.4 (Bach and Lee, 1970).

The distribution of pressure, density, and particle velocity behind the
shock for different shock strengths η for α = 2, γ = 1.4 is shown in Figures
3.3–3.5. The interesting feature here is the development of a negative phase
in the velocity distribution as the shock becomes weaker. This accords with
the exact numerical results reported in the monograph of Sedov (1959).

3.3 Blast Wave in Lagrangian Co-ordinates

It was Von Neumann (1941) who contemporaneously with G.I. Taylor mod-
elled the blast wave problem in his own independent way. He envisioned the
blast wave as arising from the sudden release of energy from a homogeneous
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gas of much higher pressure. (We shall take up this more realistic model
in subsequent chapters, where we discuss what happens when such a high
pressure gas sphere expands out into a low pressure atmosphere, sending
a shock wave into it). Von Neumann (1941) envisaged the unknown shock
boundary as a free surface which must be found as a part of the solution.
Thus, the continuous flow of air behind the shock must be found as the
solution of the governing nonlinear PDEs; the Rankine-Hugoniot relations
holding at the shock impose more boundary conditions than are required
for the governing system of PDEs and therefore they help find the trajec-
tory of the shock. Von Neumann was aware of the difficulties that would be
encountered when the shock decays and the entropy jump across it changes
with decreasing shock strength. Being conscious of the difficulties associated
with the general (and more realistic) problem, he posited the simpler model
of a point explosion in the manner of G.I. Taylor (1950) (see section 3.1).
However, he found it more useful to use Lagrangian co-ordinates and seek a
similarity solution in this formulation. At t = 0, when an intense explosion
takes place, the only dimensional quantities which appear in the data (apart
from γ = cp/cv , the ratio of specific heats) are E0 ∼ ml2t−2 and ρ0 ∼ ml−3.
They imply that the shock position must be given by

Σ = Σ(t) = at2/5, (3.3.1)

where a is a dimensional constant. If the initial position of a gas element
at t = 0 is x, denominated as its Lagrangian co-ordinate, then its Eulerian
co-ordinate is given by

X = X(x, t). (3.3.2)

From (3.3.1) and (3.3.2), we may write

X

at2/5
= F

(
x

at2/5

)
= F (z), (3.3.3)

where

z =
x

Σ
=

x

at2/5
. (3.3.4)

Ahead of the shock, pressure p0 is assumed to be zero, while density,
temperature, and particle velocity are ρ0, T0, and 0, respectively. After the
particle enters the shock, its density, following the conservation of mass
becomes

ρ = ρ0

[
∂(x3)

∂(X3)

]

t

= ρ0
x2

X2

(
∂X

∂x

)−1

= ρ0
z2

F 2(z)

1

F ′(z)
. (3.3.5)

The velocity of the particle, by definition, is

u =

(
∂X

∂t

)

x
=

2

5
at−3/5[F (z) − zF ′(z)]. (3.3.6)
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The shock velocity according to (3.3.1) clearly is

U =
dΣ

dt
=

2

5
at−3/5. (3.3.7)

The particle position, immediately after entering the shock, becomes
X = x = Σ. (There is no discontinuous change in the position of the
particle, its velocity gets a jump). Therefore, the value of the similarity
variable z behind the shock is z = 1; thus, F (z) = 1 at z = 1 (see (3.3.3)–
(3.3.4)). The geometrical symmetry requires that the particle at the ‘point’
of explosion remains there. Therefore, X(0, t) = 0. This gives the second
boundary condition

F (z) = 0 at z = 0. (3.3.8)

The strong shock conditions at z = 1 are

ρ =
γ + 1

γ − 1
ρ0, (3.3.9)

u =
2

γ + 1
U, (3.3.10)

p =
2

γ + 1
ρ0U

2, (3.3.11)

where U is the velocity of the shock. Comparing (3.3.9) and (3.3.5) applied
at the shock z = 1 and using the condition

F (z) = 1 at z = 1, (3.3.12)

(see below (3.3.7)), we get the second condition at the shock, namely,

F ′(z) =
γ − 1

γ + 1
at z = 1. (3.3.13)

While (3.3.5) gives ρ in terms of F (z) and F ′(z) in the flow behind the
shock, the expression for p is obtained by using the fact that every particle
x, after crossing the shock, retains the value of the entropy it acquired there.
The Lagrangian co-ordinate of a particle may be written in terms of t and
z as x = at2/5z. Since x is continuous across the shock, the time t = t′

at which a particle crosses the shock may be obtained from at′2/5 = at2/5z
or t′ = tz5/2. The entropy function pρ−γ may be obtained by evaluating
it from the conditions immediately behind the shock, given by (3.3.9) and
(3.3.11):

pρ−γ =
2

γ + 1
ρ0U

2
(
γ + 1

γ − 1
ρ0

)−γ

=
2(γ − 1)γ

(γ + 1)γ+1
ρ
−(γ−1)
0 U2. (3.3.14)

On using (3.3.5) and (3.3.7) in (3.3.14), we get

p =
8(γ − 1)γ

25(γ + 1)γ+1
ρ0a

2t′−6/5 z
2γ

[F (z)]
2γ

1

[F ′(z)]γ
. (3.3.15)
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Replacing t′ by tz5/2 in (3.3.15), we have

p =
4

25
Φρ0a

2t−6/5 z2γ−3

[F (z)]2γ

1

[F ′(z)]γ
, (3.3.16)

where

Φ =
2

γ + 1

(
γ − 1

γ + 1

)γ

. (3.3.17)

Von Neumann (1941), having used the equations of continuity and en-
tropy, employed the energy argument rather than the equation of motion to
finally obtain the equation for the unknown function F (z). The functions p,
ρ and u are expressed in terms of F (z) and its derivative through (3.3.16),
(3.3.5), and (3.3.6), respectively. The equation for F (z) must be solved in
the interval 0 < z < 1 subject to the conditions (3.3.8), (3.3.12) and (3.3.13).

The total energy per unit mass of the gas behind the shock is

ε =
1

γ − 1

p

ρ
+

1

2
u2. (3.3.18)

The gas in the spherical shell, reaching from the particles x to the particles
x+dx, is the same for all time and, therefore, may be taken to be 4πρ0x

2dx,
the value at t = 0. Thus the total energy inside the sphere of the particles
x is

ε1(x) = 4πρ0

∫ x

0
εx2dx (3.3.19)

= 4πρ0

∫ x

0

(
1

γ − 1

p

ρ
+

1

2
u2
)
x2dx. (3.3.20)

In terms of z (see (3.3.4)) this becomes ε2(z):

ε1(x) = ε2(z)

= 4πρ0

∫ z

0

{
1

γ − 1

(4/25)Φρ0a
2t−6/5{z2γ−3/[F (z)]2γ}[F ′(z)]−γ

ρ0{z2/[F (z)]2}[F ′(z)]−1

+
1

2
· 4

25
a2t−6/5[F (z) − zF ′(z)]2

}
a3t6/5z2dz,

or equivalently,

ε2(z) =
8π

25
ρ0a

5
∫ z

0

{
2

γ − 1
Φ

z2(γ−1)−3

[F (z)]2(γ−1)

1

[F ′(z)]γ−1

+[F (z) − zF ′(z)]2
}
z2dz. (3.3.21)

Putting z = 1 in (3.3.21), we again arrive at the conclusion that the energy
behind the shock, 0 < z < 1, is independent of time. This is the total energy
acquired by the gas between t = 0 and t finite. Since, by assumption, p0 = 0,
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u = 0, the initial energy of the gas is zero. The energy given by (3.3.21)
with z = 1 must be equal to the energy of explosion. Thus,

E0 =
8π

25
ρ0a

5
∫ 1

0

{
2

γ − 1
Φ

z2(γ−1)−3

[F (z)]2(γ−1)

1

[F ′(z)]γ−1

+[F (z) − zF ′(z)]2
}
z2dz. (3.3.22)

It may also be observed that (3.3.21) holds for each z sphere, that is,
each x-sphere, x = at2/5z, 0 < z < 1. This constancy of energy in each x-
sphere implies that the energy flowing into the sphere with the new material
that enters it exactly balances the work which its original surface does by
expanding against the surrounding pressure. This, in fact, is the energy
principle and is equivalent to the equation of motion. The energy of the
material entering the z-sphere, x = at2/5z, in the time between t and t+ dt
is

4πρ0x
2(dx)tε = 4πρ0

(
1

γ − 1

p

ρ
+

1

2
u2
)
x2(dx)t

= 4πρ0

{
1

γ − 1

(4/25)Φρ0a
2t−6/5

{
z2γ−3/[F (z)]2γ

}
[F ′(z)]−γ

ρ0 {z2/[F (z)]2} [F ′(z)]−1

+
1

2

4

25
a2t−6/5[F (z) − zF ′(z)]2

}
a2t4/5z3 2

5
at−3/5dt

=
16π

125
ρ0a

5t−1
{

2

γ − 1
Φ

z2(γ−1)−3

[F (z)]2(γ−1)

1

[F ′(z)]γ−1

+[F (z) − zF ′(z)]2
}
z3dt. (3.3.23)

The work done by the original (z) surface against the surrounding pres-
sure is 4πpX2udt. This is equal to

4π
4

25
Φρ0a

2t−6/5 z2γ−3

[F (z)]2γ

1

[F ′(z)]γ
a2t4/5[F (z)]2

2

5
at−3/5[F (z) − zF ′(z)]dt

=
32

125
ρ0a

5t−1Φ
z2γ−3

[F (z)]2(γ−1)

1

[F ′(z)]γ
[F (z) − zF ′(z)]dt.

(3.3.24)

We have made use of (3.3.3), (3.3.4), (3.3.6) and (3.3.15) to arrive at (3.3.23)
and (3.3.24). Equating (3.3.23) and (3.3.24) we get an ODE for the function
F (z):

2

γ − 1
Φ

z2(γ−1)

[F (z)]2(γ−1)

1

[F ′(z)]γ−1
+ z3[F (z) − zF ′(z)]2

= 2Φ
z2γ−3

[F (z)]2(γ−1)[F ′(z)]γ
[F (z) − zF ′(z)]. (3.3.25)
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Equation (3.3.25) must be solved subject to the conditions (3.3.8), (3.3.12),
and (3.3.13); the constant a in the shock law (3.3.7) is obtained from (3.3.22).

Von Neumann (1941) changed (3.3.25) through the transformation

z = es, (3.3.26)

F (z) = eνsφ(s), (3.3.27)

to the autonomous form

2

γ − 1
Φ

1

φ2(γ−1)
(

dφ
ds + νφ

)γ−1 +

[
dφ

ds
+ (ν − 1)φ

]2

= −2Φ
dφ
ds + (ν − 1)φ

φ2(γ−1)
(

dφ
ds + νφ

)γ (3.3.28)

by choosing

ν =
3(γ − 2)

3γ − 1
. (3.3.29)

Now writing

Ψ =
dφ

ds
+ νφ, (3.3.30)

which is the same as

zF ′(z) = eνsΨ(s), (3.3.31)

(3.3.28) becomes an algebraic relation in the functions φ and Ψ:

(Ψ − φ)2 + 2Φ
Ψ − φ

φ2(γ−1)Ψγ
+

2

γ − 1
Φ

1

φ2(γ−1)Ψγ−1
= 0. (3.3.32)

If we write

D =
γ − 1

γ + 1
, (3.3.33)

then (see (3.3.17))

Φ =
2

γ + 1

(
γ − 1

γ + 1

)γ

= (1 −D)Dγ , (3.3.34)

2

γ − 1
=

1 −D

D
, (3.3.35)

and (3.3.32) can be written as

(
φ/Ψ − 1

1/D − 1

)2

− 2

φ2(γ−1)(Ψ/D)γ+1

(φ/Ψ − 1)

(1/D − 1)

+
1

φ2(γ−1)(Ψ/D)γ+1
= 0. (3.3.36)
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Now if we introduce the variables

ξ =
φ/Ψ − 1

1/D − 1
, (3.3.37)

and
η = φ2(γ−1)(Ψ/D)γ+1, (3.3.38)

(3.3.36) simply becomes

ξ2 − 2
ξ

η
+

1

η
= 0 (3.3.39)

or

η =
2ξ − 1

ξ2
. (3.3.40)

If we further introduce a parameter θ via

ξ =
1 + θ

2
, (3.3.41)

then, from (3.3.40), we have

η =
4θ

(1 + θ)2
. (3.3.42)

Now, using (3.3.37) and (3.3.38), we can write φ and Ψ in terms of the
parameter θ:

φ = θ1/(3γ−1)
(
θ + 1

2

)−2/(3γ−1)

×
(
θ + γ

γ + 1

)(γ+1)/(3γ−1)

, (3.3.43)

Ψ =
γ − 1

γ + 1
θ1/(3γ−1)

(
θ + 1

2

)−2/(3γ−1)

×
(
θ + γ

γ + 1

)−2(γ−1)/(3γ−1)

. (3.3.44)

Since φ is positive in view of (3.3.3) and (3.3.27) and Ψ is positive since F ′(z)
and ρ0 are, it follows from (3.3.38) that η is positive. Equation (3.3.42) then
implies that θ is positive.
Thus, we have

θ > 0. (3.3.45)

From (3.3.30), we have
dφ

ds
= Ψ − νφ. (3.3.46)

Therefore,

s =

∫
dφ

Ψ − νφ
=

∫
dφ/φ

Ψ/φ− ν
,
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which, on using (3.3.43) and (3.3.44), becomes

s =

∫ 1
3γ−1

dθ
θ − 2

3γ−1
dθ

θ+1 + γ+1
3γ−1

dθ
θ+γ

γ−1
θ+γ + 3(2−γ)

3γ−1

(3.3.47)

or

s = C1 +
γ

2γ + 1
lnθ − 2

5
ln(θ + 1)

+
13γ2 − 7γ + 12

15(2 − γ)(2γ + 1)
ln[3(2 − γ)θ + (2γ + 1)]. (3.3.48)

To get the constant C1, we use the boundary conditions F (z) = 1, F ′(z) =
(γ − 1)/(γ + 1) at z = 1 (see (3.3.12)–(3.3.13)). Since z = 1 corresponds to
s = 0, we have φ = 1 and Ψ = (γ − 1)/(γ + 1) at s = 0 (see (3.3.27) and
(3.3.31)). Using these values at s = 0 in (3.3.43) and (3.3.44), we find that
s = 0 corresponds to θ = 1. This determines C1 in (3.3.48). Therefore, we
have

s =
γ

2γ + 1
lnθ − 2

5
ln
θ + 1

2

+
13γ2 − 7γ + 12

15(2 − γ)(2γ + 1)
ln

3(2 − γ)θ + (2γ + 1)

7 − γ
. (3.3.49)

The similarity variable z may now be written in terms of θ as

z = es = θγ/(2γ+1)
(
θ + 1

2

)−2/5[3(2 − γ)θ + (2γ + 1)

7 − γ

] 13γ2
−7γ+12

15(2−γ)(2γ+1)

.

(3.3.50)

The similarity function F (z), in view of (3.3.27) and (3.3.43), becomes

F (z) = eνsφ(s)

= θ(γ−1)/(2γ+1)
(
θ + 1

2

)−2/5(θ + γ

γ + 1

)(γ+1)/(3γ−1)

×
[
3(2 − γ)θ + (2γ + 1)

7 − γ

]− 13γ2
−7γ+12

5(2γ+1)(3γ−1)

. (3.3.51)

Equation (3.3.51) shows that the condition F (z) → 0 as z → 0, or as
θ → 0, is automatically satisfied. Equations (3.3.50) and (3.3.51) together
constitute the parametric form of the solution for the function F (z) in the
interval

0 < z ≤ 1 (0 < x ≤ Σ), (3.3.52)

which corresponds to the interval 0 < θ ≤ 1.
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To write the final solution for the physical variables in terms of θ, we also
need to find F (z) − zF ′(z). It is easily checked from (3.3.43) and (3.3.44)
that

F (z)

zF ′(z)
− 1 =

φ

Ψ
− 1 =

θ + γ

γ − 1
− 1 =

θ + 1

γ − 1
. (3.3.53)

Using (3.3.50)–(3.3.51) in (3.3.53) we have

F (z) − zF ′(z) = eνs(φ− Ψ)

=
2

γ + 1
θ(γ−1)/(2γ+1)

(
θ + 1

2

)3/5

×
(
θ + γ

γ + 1

)−2(γ−1)/(3γ−1)

×
[
3(2 − γ)θ + (2γ + 1)

7 − γ

]− 13γ2
−7γ+12

5(2γ+1)(3γ−1)

.

(3.3.54)

We can finally write the solution x,X, ρ, u and p from (3.3.4), (3.3.3),
(3.3.5), (3.3.6), and (3.3.15) in terms of t and the parameter θ:

x = at2/5θγ/(2γ+1)
(
θ + 1

2

)−2/5

×
[
3(2 − γ)θ + (2γ + 1)

7 − γ

] 13γ2
−7γ+12

15(2−γ)(2γ+1)

, (3.3.55)

X = at2/5θ(γ−1)/(2γ+1)
(
θ + 1

2

)−2/5

×
(
θ + γ

γ + 1

)(γ+1)/(3γ−1)

×
[
3(2 − γ)θ + (2γ + 1)

7 − γ

]− 13γ2
−7γ+12

5(2γ+1)(3γ−1)

, (3.3.56)

ρ =
γ + 1

γ − 1
ρ0θ

3/(2γ+1)
(
θ + γ

γ + 1

)−4/(3γ−1)

×
[
3(2 − γ)θ + 2γ + 1

7 − γ

] 13γ2
−7γ+12

(2−γ)(2γ+1)(3γ−1)

, (3.3.57)

u =
4

5(γ + 1)
at−3/5θ(γ−1)/(2γ+1)

(
θ + 1

2

)3/5

×
(
θ + γ

γ + 1

)−2(γ−1)/(3γ−1)

×
[
3(2 − γ)θ + 2γ + 1

7 − γ

]− 13γ2
−7γ+12

5(2γ+1)(3γ−1)

, (3.3.58)
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p =
8

25(γ + 1)
ρ0a

2t−6/5
(
θ + 1

2

)6/5

×
(
θ + γ

γ + 1

)−4γ/(3γ−1)

×
[
3(2 − γ)θ + 2γ + 1

7 − γ

] 13γ2
−7γ+12

5(2−γ)(3γ−1)

. (3.3.59)

Besides,

εi =
1

γ − 1

p

ρ

=
8

25(γ + 1)2
a2t−6/5θ−3/(2γ+1)

(
θ + 1

2

)6/5

×
(
θ + γ

γ + 1

)−4(γ−1)/(3γ−1)

×
[
3(2 − γ)θ + (2γ + 1)

7 − γ

]− 2(13γ2
−7γ+12)

5(2γ+1)(3γ−1)

, (3.3.60)

εc =
1

2
u2

=
8

25(γ + 1)2
a2t−6/5θ2(γ−1)/(2γ+1)

(
θ + 1

2

)6/5

×
(
θ + γ

γ + 1

)−4(γ−1)/(3γ−1)

×
[
3(2 − γ)θ + 2γ + 1

7 − γ

]− 2
5

(13γ2
−7γ+12)

5(2γ+1)(3γ−1)

, (3.3.61)

leading to the excellent physical interpretation for the parameter θ as the
ratio of kinetic and internal energies:

εc
εi

= θ. (3.3.62)

Using this relation, we write the total explosion energy in terms of ε′c
and ε′i, the internal and kinetic energies per unit volume:

E0 =

∫ Σ

0
(ε′i + ε′c)4πX

2dX

= 4π

∫ Σ

0
(θ + 1)ε′iX

2dX

= 8πΣ3
∫ 1

0

θ + 1

2
ε′i[F (z)]2dF (z). (3.3.63)
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We may note that ε′c/ε
′
i = εc/εi = θ. If we observe that ε′i = ρεi = p/(γ − 1),

then, using (3.3.59), we have

E0 = Kρ0a
5, (3.3.64)

where

K =
64π

75(γ2 − 1)

∫ 1

0

(
θ + 1

2

)11/5(θ + γ

γ + 1

)−4γ/(3γ−1)

×
[
3(2 − γ)θ + (2γ + 1)

7 − γ

] 13γ2
−7γ+12

5(2−γ)(3γ−1)

d(F 3). (3.3.65)

Here, F 3 may be expressed in terms of θ via (3.3.51). The constant a in the
shock law (3.3.1) has now been determined. This solution for the blast wave
problem in Lagrangian co-ordinates is explicit in terms of the parameter θ,
which itself has now been physically interpreted. This is in contrast to the
exact implicit solution of the Eulerian equations of motion found by J.L.
Taylor (1955) and Sedov (1946) (see section 3.1). It may be noted, however,
that this solution does not hold for γ = 7, the exponent corresponding to
water. The solution (3.3.55)–(3.3.65) can be approximated and written out
more explicitly when γ−1 6= 0 is small. Retaining the most dominant terms,
this approximate solution is found to be

x = at2/5θ1/3+(γ−1)/9, (3.3.66)

X = at2/5θ(γ−1)/3, (3.3.67)

ρ =
2

γ − 1
ρ0θ

1−2(γ−1)/3 θ + 1

2
, (3.3.68)

u =
2

5
at−3/5θ(γ−1)/3, (3.3.69)

p =
4

25
ρ0a

2t−6/5 θ + 1

2
, (3.3.70)

εi =
2

25
a2t−6/5θ−1+2(γ−1)/3, (3.3.71)

εc =
2

25
a2t−6/5θ2(γ−1)/3. (3.3.72)

The form (3.3.55)–(3.3.65) of the solution is also not valid for γ = 2 in
view of the exponent 1/(2 − γ) in the last factor in the products for the
solution x, ρ, and p, namely,

[
3(2 − γ)θ + (2γ + 1)

7 − γ

]1/(2−γ)

. (3.3.73)

This expression may be written as

[
1 − (2 − γ)

3

7 − γ
(1 − θ)

]1/(2−γ)

(3.3.74)
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and hence, in the limit γ → 2, approximated by e−(3/5)(1−θ). Therefore,
the last factor in each of (3.3.55)–(3.3.61) must be replaced in this limit
by e−(2/5)(1−θ), 1, e−(6/5)(1−θ) , 1, e−(6/5)(1−θ), 1, and 1, respectively. Other
factors may be evaluated by setting γ = 2.

The important features of the solution observed by Taylor (1950) are
confirmed here. Most of the material in the blast wave gets accumulated
near the shock. This tendency becomes more pronounced as γ tends to 1.
This is the basis of an analytic theory of point explosion in an exponential
atmosphere, proposed by Laumbach and Probstein (1969), which will be
treated in the next section. The density vanishes at the center of explosion,
but the pressure tends to p(0) where 0 < p(0) < ∞. As γ increases from
1 to 2, the pressure ratio p(0)/pshock changes from 1/2 to about 1/4. The
pressure changes more rapidly near the shock and becomes almost constant
in the region close to the center where density is close to zero. Also, since
ρ→ 0 and p→ p(0) as the center is approached, the temperture T (0) tends
to infinity. Equations (3.3.60) and (3.3.61) show that εi → ∞ and εc → 0
as the center of the blast is approached.

3.4 Point Explosion in an Exponential Atmosphere

We may continue the Lagrangian co-ordinate approach of section 3.3 to the
investigation of a more realistic blast wave model in a cold stratified atmo-
sphere with density varying exponentially with altitude. It is also assumed
that the flow field is locally radial (see Figure 3.6), that is, we may neglect

Figure 3.6 The shock envelope at a given time after explosion along with the polar

co-ordinate system (Laumbach and Probstein, 1969).
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gradients in the θ direction where θ is the polar angle measured from the
vertical. This assumption implies that the streamlines from the origin are
straight lines; it may fail to hold as the shock ascends to 4–5 scale heights
and becomes increasingly asymmetric. It is also assumed that the shock
produced by the blast is strong; this assumption also becomes invalid by
the time the shock has propagated to 4–6 scale heights, except for θ < π/4,
even for large energy sources.

Both Taylor (1950) and Von Neumann (1941) pointed out that much
of the mass of the blast wave gets concentrated in a small neighbourhood
behind the shock. This is the basis of the analytic theory developed by
Laumbach and Probstein (1969), which we detail in this section. They
attempted to obtain an analytic solution valid for all time; they also deduced
scaling laws based on this solution. They compared their analytic results
with the numerical solution of Troutman and Davis (1965) and found a
good agreement. Laumbach and Probstein (1969) also compared the far
field results accruing from their analysis with the asymptotic limits of Raizer
(1964) and Hayes (1968a, 1968b) and found favourable agreement.

With the assumptions referred to above, the flow is axisymmetric about
the vertical axis through the energy release point, called the origin in Figure
3.6.

We denote the Eulerian co-ordinate of a fluid particle of thickness dr by
r. The position of the shock front at a given polar angle θ is denoted by
R(t, θ). The undisturbed density distribution is assumed to be of the form

ρ0 = ρ
B
exp[−(r0/∆)cosθ], (3.4.1)

where ∆ is the scale height and r0 the Lagrangian co-ordinate of a particular
fluid particle at the burst time t = 0; ρ

B
is the density at r0 = 0.

Assuming local radiality, the equation of continuity for any polar angle
is given by

ρ0r
2
0dr0 = ρr2dr. (3.4.2)

The radial momentum equation in the Lagrangian co-ordinate, on using
(3.4.2), becomes

∂2r

∂t2
+

r2

ρ0r
2
0

∂p

∂r0
= 0. (3.4.3)

Since the entropy of a particle after crossing the shock remains constant, we
have the energy equation

p(r0, t)

ps(r0)
=

[
ρ(r0, t)

ρs(r0)

]γ
, (3.4.4)

where the subscript s denotes conditions immediately behind the shock.
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The shock is assumed to be strong. The RH conditions holding across
it are

ρs =
γ + 1

γ − 1
ρ0, (3.4.5)

ps =
2

γ + 1
ρ0Ṙ

2, (3.4.6)

with the dot above R denoting differentiation with respect to t.
Since a finite characteristic length ∆ appears in the problem, it is not

self-similar (see, however, section 3.5 and reference to the work of Hayes
(1968) therein).

Integrating (3.4.3) with respect to r0, we have

p(r0, t; θ) − ps(R; θ) =

∫ R

r0

1

r2
∂2r

∂t2
ρ0r

2
0dr0, (3.4.7)

where ps(R; θ) is the pressure immediately behind the shock. For a given
polar angle, the mass contained within a differential solid angle is constant,
so we may write the energy equation for a given solid angle as

E

4π
=

∫ R

0

p

γ − 1
r2dr +

∫ R

0

1

2

(
∂r

∂t

)2

ρ0r
2
0dr0. (3.4.8)

The first integral in (3.4.8) is the internal energy per unit solid angle and, for
later use, is written in terms of the Eulerian co-ordinate. The second term
in (3.4.8) is the kinetic energy per unit solid angle; E is the total energy
of the flow and is assumed to be known and constant; real gas effects and
radiative transfer etc. have been ignored.

We expand the Eulerian co-ordinate about the shock,

r(r0, t) = R+
∂r

∂r0

∣∣∣∣
R
(r0 −R) +

1

2

∂2r

∂r20

∣∣∣∣
R
(r0 −R)2 + · · · , (3.4.9)

with the expansion parameterised in t through the Taylor coefficients and R.
Implicit in (3.4.9) is the assumption that most of the mass is concentrated
near the shock front so that (r0 − R) << R for r0 ∼ R. Only terms up to
(r0 −R)2 are retained in the expansion (3.4.9). Using (3.4.2) and the shock
condition (3.4.5), we have

∂r

∂r0

∣∣∣∣
R

=
ρ0r

2
0

ρr2

∣∣∣∣
R

=
γ − 1

γ + 1
. (3.4.10)

From (3.4.9)–(3.4.10), we find by differentiation etc. that

r = R+
γ − 1

γ + 1
(r0 −R) +

1

2

∂2r

∂r20

∣∣∣∣
R
(r0 −R)2, (3.4.11)

∂r

∂t
=

2

γ + 1
Ṙ− ∂2r

∂r20

∣∣∣∣
R
(r0 −R)Ṙ, (3.4.12)

∂2r

∂t2
=

2

γ + 1
R̈+

∂2r

∂r20

∣∣∣∣
R
Ṙ2 − ∂2r

∂r20

∣∣∣∣
R
(r0 −R)R̈. (3.4.13)
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Therefore, at the shock front, we have

rs = R, (3.4.14)(
∂r

∂t

)

s
=

2

γ + 1
Ṙ. (3.4.15)

The evaluation of acceleration at the shock requires some calculation.
Eliminating ∂2r/∂t2 from the radial momentum equation (3.4.3) and (3.4.13)
evaluated at the shock, we get

−∂
2r

∂r20

∣∣∣∣
R

Ṙ2 =
2

γ + 1
Ṙ2
(

1

p

∂p

∂r0

)

R

+
2

γ + 1
R̈, (3.4.16)

where use has been made of (3.4.6). The pressure gradient term in (3.4.16)
must now be found. We differentiate (3.4.4) to obtain

1

p

∂p

∂r0

∣∣∣∣
R

=

(
1

ps

∂ps

∂r0
+
γ

ρ

∂ρ

∂r0
− γ

ρ0

∂ρ0

∂r0

)

R
. (3.4.17)

Using the Rankine-Hugoniot condition (3.4.6), along with (3.4.1) in dif-
ferentiated form, we obtain

1

ps

∂ps

∂r0

∣∣∣∣
R

=
1

ρ0

∂ρ0

∂r0

∣∣∣∣
R

+
2

Ṙ
R̈, (3.4.18)

1

ρ0

∂ρ0

∂r0

∣∣∣∣
R

= −cosθ

∆
. (3.4.19)

We still need to find (∂ρ/∂r0)/ρ. This is accomplished by taking a
logarithmic derivative of (3.4.2) with respect to r0 and using (3.4.10) at the
shock:

1

ρ

∂ρ

∂r0

∣∣∣∣
R

=
1

ρ0

∂ρ

∂r0

∣∣∣∣
R

+
4

γ + 1

1

R
− γ + 1

γ − 1

∂2r

∂r02

∣∣∣∣
R
. (3.4.20)

Making use of (3.4.18)–(3.4.20) in (3.4.17) and using the resulting expression
in (3.4.16), we determine (∂2r/∂r2

0)R
Ṙ2. Finally, substituting this term in

(3.4.13), we determine the acceleration at the shock:

(
∂2r

∂t2

)

s
=

4(2γ − 1)

(γ + 1)2
R̈− 2(γ − 1)

(γ + 1)2
cosθ

∆
Ṙ2 +

8γ(γ − 1)

(γ + 1)3
Ṙ2

R
. (3.4.21)

If we substitute the expressions for rs and (∂2r/∂t2)s at the shock from
(3.4.14) and (3.4.21) in the integral term in (3.4.7), use (3.4.1) for ρ0, and
carry out the integration with respect to r0, we obtain

p− ps =

(
2

γ + 1

)2( ∆

cosθ

)2ρ
B

η3
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×
{

2(2γ − 1)ηη̈ − (γ − 1)ηη̇2 +
4γ(γ − 1)

γ + 1
η̇2
}

×
{

exp(−r0
R
η)

[(
r0
R

)2 η2

2
+

(
r0
R

)
η + 1

]

−e−η
[
η2

2
+ η + 1

]}
,

(3.4.22)

where

η = (R/∆)cosθ. (3.4.23)

The pressure immediately behind the shock is found in terms of η from
(3.4.1) and (3.4.6):

ps =
2ρ

B

γ + 1

(
∆

cosθ

)2

η̇2e−η. (3.4.24)

The integrals in (3.4.8) are evaluated by making use again of the basic
assumption in the analysis: to the present approximation, r is not a function
of r0 and, therefore, for all r different from R, we may replace r0 by zero.
This implies that all the mass is pulled forward behind the shock, and the
only mass that remains inside is that which existed in the vicinity of the
origin r0 = 0. Thus, we put p(r, t) = p(0, t) and r0 = 0 in (3.4.22) and
hence evaluate the first integral in (3.4.8). The second integral, namely the
kinetic energy integral, is evaluated by writing ρ0 from (3.4.1) and (∂r/∂t)s

at the shock from (3.4.15). Carrying out the integration with respect to r,
we arrive at the following ODE for η (see (3.4.23)) as a function of time:

f(η)η̈ + g(η)η̇2 =
E

4πρ
B

(
cosθ

∆

)5

, (3.4.25)

where

f(η) =
8

3

(2γ − 1)η

(γ − 1)(γ + 1)2

[
1 − e−η

(
1

2
η2 + η + 1

)]
, (3.4.26)

g(η) =
2

3

η3e−η

(γ − 1)(γ + 1)
+

γ − 1

2(2γ − 1)

[
7γ + 3

(γ + 1)η
− 1

]
f(η).

(3.4.27)

If we change the variable t to

t∗ = t

[
E|cos5θ|
4πρB∆5

]1/2

(3.4.28)

in (3.4.25), we get

f(η)η′′ + g(η)η′2 = 1 for 0 ≤ θ ≤ π/2, (3.4.29)
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f(η)η′′ + g(η)η′2 = −1 for π/2 ≤ θ ≤ π, (3.4.30)

where now the prime denotes differentiation with respect to t∗. The above
scaling has the effect that all motions for θ ≤ π/2 can be obtained from
(3.4.29), while those for θ > π/2 can be found from (3.4.30). Either solution
describes the flow for arbitrary values of E, ∆, and ρB for appropriate θ
values. The autonomous equations (3.4.29) and (3.4.30) can be changed to
linear first order equations in η′2, namely,

f(η)

2

dη′2

dη
+ g(η)η′2 = ±1, (3.4.31)

and integrated to yield

η′2 = ±2exp

{
− 2

∫ η

a

g(z)

f(z)
dz

}∫ η

0
exp

{
2

∫ y

a

g(z)

f(z)
dz

}
dy

f(y)
, (3.4.32)

where a is a zero of the indicated integrals and γ > 1. The + and −
signs in (3.4.32) refer to upward and downward directions, respectively. The
constant of integration in (3.4.32) is put equal to zero to satisfy the condition
that, as ∆ → ∞ corresponding to η → 0, the solution tends to a uniform
density solution (see below). The solution (3.4.32) should be supplemented
by the equation

t∗ =

∫ η

0

dη

η′
(3.4.33)

to relate it to the variable t∗. With η and η′ thus found, the pressure behind
the shock may be found from (3.4.22) and (3.4.24). The density as a function
of r0 and t may now be obtained from the entropy equation (3.4.4). The
Eulerian co-ordinate itself is found from (3.4.2) as

r

R
=

[
3

∫ r0/R

0
(ρ0/ρ)

(
r0
R

)2

d

(
r0
R

)]1/3

. (3.4.34)

The relation (3.4.34) helps find the pressure and density behind the shock
as functions of the Eulerian co-ordinate r. If we let η = R cos θ/∆ → 0 (as
∆ → ∞) in (3.4.25), we recover the limiting case of the atmosphere with
uniform density:

R̈+
γ(5γ + 1)

(2γ − 1)(γ + 1)

Ṙ2

R
=

9(γ − 1)(γ + 1)2

16(2γ − 1)

E

πρB

1

R4
. (3.4.35)

Equation (3.4.35) is again autonomous. Its first integral may be found to be

Ṙ2 =
9

8

E

πρ
B

(γ − 1)(γ + 1)3

(4γ2 − γ + 3)

1

R3
. (3.4.36)

Integrating (3.4.36) we obtain

R =

[
225

32

E

πρ
B

(γ − 1)(γ + 1)3

(4γ2 − γ + 3)

]1/5

t2/5. (3.4.37)
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Figure 3.7 Pressure distribution in Eulerian co-ordinates for uniform density at-

mosphere and γ = 1.4 (Laumbach and Probstein, 1969).

The t2/5 law is thus recovered. Laumbach and Probstein (1969) show that
(3.4.37) differs slightly from the exact Taylor-Sedov solution (see Figure 3.7
for the distribution of pressure). The pressure at the center for γ = 1.4 is
0.37, which compares well with the exact value 0.366 of Taylor (1950). The
discrepancy in R is 1.8% for γ = 1.2 and 2.3% for γ = 1.4.

As Laumbach and Probstein (1969) point out, due to the severe assump-
tions made in the analysis, any exact far field or large time results should
not necessarily agree with those of their analysis; they nevertheless consider
asymptotic forms of their solution both in upward and downward directions
and deduce some qualitative features.

In the downward direction, as −η becomes large, the asymptotic form of
(3.4.25) is found to be

η̈ − γ

2γ − 1
η̇2 =

3E(γ − 1)(γ + 1)2

16πρ
B
(2γ − 1)

(
cosθ

∆

)5 eη

η3
. (3.4.38)

Writing (3.4.38) as a first order ODE in η̇2 and integrating we have

η̇2 ∼ −3E(γ − 1)(γ + 1)2

8πρB

(
cosθ

∆

)5 eη

η3

[
1 +O

(
1

η

)]

+k1exp

(
2γ

2γ − 1
η

)
, (3.4.39)

where k1 is constant of integration. It is clear that, for γ > 1 (and η
negative), the term involving k1 is small in comparison with the energy-
dependent term so that the aymptotic solution becomes

η̇2 ∼ −3E(γ − 1)(γ + 1)2

8πρB

(
cosθ

∆

)5 eη

η3

[
1 +O

(
1

η

)]
. (3.4.40)
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Integration of (3.4.40) yields the dominant term for η:

η = (R/∆)cosθ ∼ −2lnt. (3.4.41)

Therefore,
Ṙ|cosθ| ∼ α∆/t = 2∆/t. (3.4.42)

The form (3.4.42), rather surprisingly, agrees with the (exact) asymp-
totic self-similar solution obtained by Hayes (1968a) for a plane shock trav-
elling downward, with the assumption that the total energy of the blast is
conserved. The coefficient α = 2 is found to be independent of γ. The ex-
planation for this agreement is that, under the assumptions made here, the
cross-sectional area of the flow increases as R2 (local radiality), therefore
the far field results of the present analysis are appropriately compared with
exact asymptotic plane shock solutions. The constant energy constraint is
common to both the analyses.

In the upward direction, as η becomes large, the asymptotic form of
(3.4.25) is

η̈ − γ − 1

2(2γ − 1)
η̇2 =

3E(γ − 1)(γ + 1)2

32πρ
B
(2γ − 1)η

(
cosθ

∆

)5

. (3.4.43)

Integrating (3.4.43) we have

η̇2 ∼ − 3E

16πρ
B

(γ + 1)2

η

(
cosθ

∆

)2[
1 +O

(
1

η

) ]
+ k2exp

(
γ − 1

2γ − 1
η

)
, (3.4.44)

where k2 is a constant of integration. In the present case the first term
containing the energy is asymptotically small compared to the second term;
therefore, we have

η̇2 ∼ k2exp

(
γ − 1

2γ − 1
η

)
. (3.4.45)

An integration of (3.4.45) gives

η =
R

∆
cosθ ∼ −2(2γ − 1)

γ − 1
ln

[
(γ − 1)k

1/2
2

2(2γ − 1)
(τ − t)

]
, (3.4.46)

where τ is a constant of integration. Laumbach and Probstein (1969) com-
pared (3.4.46) with the asymptotic results of Hayes (1968a) and Raizer
(1964) and found it in good qualitative agreement. Now we compare the
results obtained by the approximate theory of Laumbach and Probstein
with the numerical solution found by Troutman and Davis (1965) for the
vertically ascending parts of the shock wave for γ = 1.4. The latter inves-
tigators obtained their solution for a specific energy yield, scale height and
atmospheric density at the burst point, which were appropriately scaled out
by Laumbach and Probstein (1969) using (3.4.23) and (3.4.28). The calcu-
lations were carried out up to the time the upper part of the shock travelled
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to three scale heights from the origin of the blast wave. Although Troutman
and Davis (1965) had performed their calculations with θ = 0 and θ = π,
and these were in a sense one-dimensional, comparison of these results with
the full two-dimensional calculations showed little difference over the ranges
of parameters considered by them.

Figure 3.8 Shock velocity of the ascending shock as a function of shock position

for γ = 1.1, 1.2, 1.4 (Laumbach and Probstein, 1969).

Figure 3.9 Shock velocity of the descending shock as a function of shock position

for γ = 1.1, 1.2, 1.4 (Laumbach and Probstein, 1969).

Figure 3.8 for the shock velocity of the ascending shock shows that it
decreases to some minimum value beyond which it accelerates to infinity
in a finite time. This happens because the decreasing density ahead of the
shock begins to affect the motion of the shock appreciably. On the other
hand, the descending shock does not experience any such theoretical limit
beyond which it cannot remain strong provided there is a sufficiently large
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3.5 Asymptotic Behaviour of Blast Waves at a High Altitude 99

energy source (see Figure 3.9). The behaviour of the ascending part of the
shock wave is in conformity with the earlier studies of Kompaneets (1960)
and Andriankin et al. (1962).

As pointed out earlier, the analysis of Laumbach and Probstein (1969)
works for ascending shock waves for 2 to 3 atmospheric scale heights. At later
times, the error involved in the truncation in the series solution discussed
here becomes more pronounced, leading eventually to an overestimate for
the blow time.

In a later study, Bach, Kuhl and Oppenheim (1975) carried out a per-
turbation analysis similar to that of Sakurai (1953) (see section 3.2) for the
strong blast wave in an exponential medium, which was found to be accurate
even when the front had progressed to ten scale heights. They also found
a similarity solution of the type found by Raizer (1964) and Hayes (1968a,
1968b), which describes the far field. The near field and far field solutions,
it is claimed, matched so well that the extremely difficult analysis of the
intermediate regime was deemed unnecessary.

3.5 Asymptotic Behaviour of Blast Waves at a

High Altitude

We consider a stratified (plane) atmosphere with the density distribution

ρ0 = ρ∗e
x/∆, (3.5.1)

where ∆ is the scale height. The initial pressure is assumed to be zero. An
explosion takes place in the high reaches (x ≈ −∞) where the density is
almost zero, and a (plane) shock propagates downward in the direction of
increasing density (the positive x-axis is in the downward direction). The
heated gas overtaken by the shock expands into the empty space in the
upward direction. The following analysis in Lagrangian co-ordinates is due
to Raizer (1964) (see also the book by Zeldovich and Raizer (1967)). We
consider the limiting motion of the shock. Here, we have a length scale ∆.
The origin of x is arbitrary (see (3.5.1)). This implies that ρ∗ is arbitrary by a
multiplicative constant. There are no time or density scales. By dimensional
arguments, the motion of the shock, X = X(t), is given by

D = Ẋ = α
∆

t
, (3.5.2)

where the coefficient α depends on γ = cp/cv alone. From (3.5.2) we have

X = α∆lnt+ constant. (3.5.3)
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The mass of gas overtaken by the shock is given by

M =

∫ X

−∞
ρ0dx =

∫ X

−∞
ρ∗e

x/∆dx = ρ0(X)∆. (3.5.4)

Equations (3.5.1) and (3.5.4) give

Ṁ = ρ0(X)Ẋ. (3.5.5)

Using (3.5.2), (3.5.4) and (3.5.5) we obtain, after integration,

M = Atα, (3.5.6)

where the constant of integration A characterises the intensity of the shock.
Assuming that the shock is strong, we may write the self-similar solution in
the form

u =
2

γ + 1
α

∆

t
v = usv, (3.5.7)

ρ =
γ + 1

γ − 1

Atα

∆
q = ρsq, (3.5.8)

p =
2

γ + 1
α2 ∆A

t2−α
f = psf, (3.5.9)

where us, ρs, and ps are the appropriate quantities just behind the shock
front, given by the Rankine-Hugoniot conditions, and the functions v, q
and f depend on the similarity variables ξ = (X(t) − x)/∆, a distance
measured from the moving shock, and γ. The Rankine-Hugoniot conditions
at the strong shock, ξ = 0, give v = q = f = 1 there. Raizer (1964) used
Lagrangian co-ordinates to study this problem. He introduced the mass
Lagrangian co-ordinate

m =

∫ x

−∞
ρ(x)dx = const.M

∫ ∞

ξ
q(ξ)dξ, (3.5.10)

(cf. (3.5.4)) so that ξ, and hence v, q and f , are functions of the new
similarity variable

η =
m

M
=

m

Atα
, (3.5.11)

as follows easily from (3.5.10) and (3.5.6).

The planar equations of motion in Lagrangian co-ordinates are

ut + pm = 0, (3.5.12)

(1/ρ)t − um = 0, (3.5.13)

pρ−γ = F (m). (3.5.14)
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Substituting (3.5.7)–(3.5.9) along with (3.5.11) into (3.5.12)–(3.5.14) we get

v + αηv′ − αf ′ = 0, (3.5.15)

1

q
+ η

(
1

q

)′
+

2

γ − 1
v′ = 0, (3.5.16)

fq−γη2/α+γ−1 = 1, (3.5.17)

where dash denotes differentiation with respect to η. Integrating (3.5.16)
and hence eliminating q and v from (3.5.15) and (3.5.17) we get an ODE for
f = f(η):

df

dη
=
γ + 1

2α

1 − γ−1
γ+1

(
1 − 2−α

γ

)
f−1/γη−(2−α)/αγ

1 − γ−1
2γ f

− 1
γ
−1
η1−(2−α)/αγ

. (3.5.18)

Since the point x = −∞ corresponds to η → 0 and since the pressure at
x = −∞ is zero, the solution must pass through the point

η = 0, f = 0. (3.5.19)

It must also pass through the shock point

η = 1, f = 1. (3.5.20)

The conditions for the existence of the solution of BVP (3.5.18)–(3.5.20)
will determine the value of the exponent α for each γ. This is typical of the
self-similar motions of the second kind for which the dimensional arguments
alone do not suffice to yield the exponent α and, therefore, the shock motion.
This matter is discussed in great detail by Zeldovich and Raizer (1967) who
also discuss the present problem in this context. We may observe that the
above BVP has explicit solutions for γ = 2, 1.

For γ = 2, we may check that α = 3/2 so that

M ∼ t3/2,

Ẋ =
3

2

∆

t
,

us ∼ 1

t
, (3.5.21)

ρs ∼ t3/2,

ps ∼ 1

t1/2
,

and the similarity functions are simply

f = η, q = η5/3, v =
3

2

(
1 − 1

3
η−2/3

)
. (3.5.22)
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For γ = 1, it may again be verified that α = 1, f = η, q = η3, v = 1.
Since 1 < γ < 2 for air, these special solutions give a bound for α, 1 < α < 3

2 ,
for this range.

More generally, (3.5.18) must be solved numerically for each γ, starting
from the shock point (1,1). α must be found such that the integral curve
passes through (0, 0).

Figure 3.10 Distribution of f , q, v versusm/M behind the shock wave for γ = 1.25

and α = 1.345 (Raizer, 1964).

Figure 3.11 Distribution of f , q, v versus X−x
∆ behind the shock wave for γ = 1.25

and α = 1.345 (Raizer, 1964).

Often a local analysis about the shock point helps to facilitate the nu-
merical solution. Raizer (1964) found the numerical solution for the special
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value of γ = 1.25; the corresponding value of α was found to be 1.345. The
solution is depicted in Figures 3.10–3.11.

Raizer (1964), referring to earlier studies of Kompaneets (1960), at-
tempted to connect this asymptotic solution to an actual high energy, high
altitude explosion and estimated the distance from the point of explosion
where this analysis would hold.

However, Wallace Hayes, in the editorial footnote to this analysis in
the book of Zeldovich and Raizer (1967), cautioned that such high energy
explosions (1024 ergs) at high altitudes (100 km) would not be realistically
described by hydrodynamical models of a strong explosion because of the
large values of the photon mean free path at very low densities.

Hayes (1968) himself studied self-similar strong shocks in an exponential
medium using Eulerian co-ordinates; his analysis was close to that of Raizer
(1964). Hayes’ numerical value of the parameter α (see (3.5.6)) was slightly
different from Raizer’s. His principal aim was to analyse the approximate
approach of Chester (1954), Chisnell (1957) and Whitham (1958) (CCW for
short) in the light of his numerical results. He improvised the coefficients
in the shock law according to this approximate theory and concluded that,
in contrast to the implosion problem, the shock propagation law obtained
through the CCW approximation was in error by 15% or more.

3.6 Strong Explosion into a Power Law Density

Medium

It is of both physical and mathematical interest to study strong explosions
in a medium whose density decreases with distance according to some law,
say, ρ1 = Ar−ω, where A and ω are positive numbers and r is the distance
measured from the point of explosion. It turns out that, in the spherically
symmetric case that we consider here, the solutions are of two kinds depend-
ing on the parameter ω. If ω < 5, we have generalisations of the well-known
Taylor-Sedov solution (see section 3.2), which can, in fact, be found in an
(implicit) closed form. These constitute the familiar self-similar solutions of
the first kind, as defined by Zeldovich and Raizer (1967). Typically, for this
class of solutions, no constants with the dimension of length or time occur
among the parameters appearing in the boundary conditions. Besides, fluid
dynamic equations do not contain any dimensional constants. The param-
eters with the dimensions of length or time characterising the flow can be
constructed from initial/boundary conditions. These parameters describe
the length and time scales typical of the early time flow. For large times
(and distances) these length and time scales do not characterise the physi-
cal processes. The early flows however are fully described by the self-similar
solutions of the first kind.
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In another class of self-similar solutions, the governing PDEs can still
be reduced to ODEs by the similarity transformation, but the parameters
appearing in the problem do not fully determine the flow. The unknown
parameter (in the shock law in the present case) for the class of problems
under study must be found from the solution of an eigenvalue problem (see
section 3.5). This solution must satisfy the Rankine-Hugoniot conditions at
the shock and pass through an ‘appropriate’ singular point of the reduced
nonlinear ODE in the (nondimensional) sound speed square—particle veloc-
ity phase plane. The most famous example of this second kind of self-similar
solutions is the so-called Guderley’s convergent shock problem (see Zeldovich
and Raizer (1967); see also sections 3.5 and 6.1). The curious thing about
the present problem—propagation of a strong shock into a (power law) inho-
mogeneous medium—is that the parameter ω in the density law has different
ranges for which either self-similar solutions of the first or those of the sec-
ond kind exist. There is a transition point ω = 3 where the solution changes
its character from the first kind to one of the second kind. This parametric
dependence makes this problem particularly interesting. We discuss here the
spherically-symmetric case, although the discussion can be easily extended
to cylindrical and planar cases. This problem is discussed in the present
section and the next.

The equations of motion in spherical symmetry are

ut + uur +
1

ρ
pr = 0, (3.6.1)

ρt + ρur + uρr +
2ρu

r
= 0, (3.6.2)

(
p

ργ

)

t

+ u

(
p

ργ

)

r

= 0, (3.6.3)

with the usual notation for u, p, ρ, and γ. The strong shock conditions are

u2 =
2

γ + 1
U, (3.6.4)

ρ2 =
γ + 1

γ − 1
ρ1, (3.6.5)

p2 =
2

γ + 1
ρ1U

2, (3.6.6)

where the suffixes 2 and 1 denote values immediately behind and ahead of
the shock, respectively. U is the shock velocity.

The density distribution ahead of the shock is chosen to be

ρ1 =
A

rω
, (3.6.7)

where A and ω are positive constants. The parameter A has the dimension
[A] = MLω−3. The shock considered here is strong, the undisturbed pressure
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p1 is assumed to be zero. Thus, we have the following ‘parameters’ appearing
in the problem:

ω, γ,A,E0, r, t, (3.6.8)

where E0 is the energy of the explosion, [E0] = ML2T−2. It is easily checked
from a dimensional argument that all the (dimensionless) quantities are
functions of the ‘parameters’,

ω, γ, λ =

(
Aα

E0

)1/(5−ω) r

t2/(5−ω)
, (3.6.9)

where α is a constant to be determined. The (nondimensional) solution
must depend on the similarity variable λ. The shock locus itself is given by

λ = λ2 = constant, r2 = λ2

(
E0

Aα

)1/(5−ω)

t2/(5−ω), (3.6.10)

U =
dr2
dt

=
2

5 − ω

r2
t

=
2λ

(5−ω)/2
2

5 − ω

(
E0

Aα

)1/2

r
(ω−3)/2
2 . (3.6.11)

The constant α is chosen such that λ = λ2 = 1 at the shock. With this
choice of α, we have

λ =
r

r2
, (3.6.12)

The relation (3.6.11) implies that the shock will decelerate if ω < 3 and
accelerate if ω > 3. The case ω < 3, as we shall show in the next section,
corresponds to a finite spherical mass containing the center of symmetry; it
becomes infinite if ω ≥ 3. Equation (3.6.10) shows that the shock starting
from r = 0 at t = 0 propagates with finite velocity for t > 0 only if ω < 5. We
shall consider the cases 0 < ω < 3, 3 ≤ ω < 5, and ω > 5, separately in the
present section and the following. Here we follow the work of Korobeinikov
and Riazanov (1959).

Introducing the similarity functions

u

u2
= f(λ), (3.6.13)

ρ

ρ2
= g(λ), (3.6.14)

p

p2
= h(λ) (3.6.15)

into (3.6.1)–(3.6.3), we have the following reduced system of nonlinear ordi-
nary differential equations for f(λ), g(λ) and h(λ):

df

dλ
=

1

2

[
4γ(γ − 1)

f

λ
+ (3 − ω)(γ + 1)
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×
(
f − γ + 1

2
λ

)
fg

h
− 3(γ2 − 1)

]

×
[
2

(
f − γ + 1

2
λ

)2 g

h
− γ(γ − 1)

]−1

, (3.6.16)

dg

dλ
= −g

[
df

dλ
+ 2

f

λ
− γ + 1

2
ω

](
f − γ + 1

2
λ

)−1

, (3.6.17)

dh

dλ
= h

[
3(γ + 1)

2
− γ

(
df

dλ
+

2f

λ

)](
f − γ + 1

2
λ

)−1

. (3.6.18)

The boundary conditions (3.6.4)–(3.6.6) at the shock λ = 1 become

f(1) = g(1) = h(1) = 1. (3.6.19)

The symmetry condition at the center of explosion λ = 0 (corresponding to
r = 0) requires that the particle velocity there is zero so that from (3.6.13)
we have

f(0) = 0. (3.6.20)

The system (3.6.16)–(3.6.18) must be solved subject to the conditions (3.6.19)
and (3.6.20). It may be verified that this system admits two intermediate
integrals—the energy integral and the integral of adiabacy (see Sedov (1959)
for details):

g

h
= γf−2

(
f

λ
− γ + 1

2γ

)(
γ + 1

2
− f

λ

)−1

, (3.6.21)

gγ−1 =

[
2

γ − 1

(
γ + 1

2
− f

λ

)]1−ωγ
3

h1−ω
3 λ3−ωγ . (3.6.22)

These integrals satisfy the conditions (3.6.19) and (3.6.20). Using these
integrals it is possible to solve the system (3.6.16)–(3.6.20) in an (implicit)
closed form in terms of the function

F =
f

λ
. (3.6.23)

We thus have

λ(F ) = F−δ
[

2γ

γ − 1

(
F − γ + 1

2γ

)]−α2

×
[

2(3γ − 1)

7 − γ − (γ + 1)ω

(
γ + 1

2

5 − ω

3γ − 1
− F

)]−α1

, (3.6.24)

g(F ) = F ωδ
[

2γ

γ − 1

(
F − γ + 1

2γ

)]α3+ωα2

×
[

2

γ − 1

(
γ + 1

2
− F

)]α5

×
[

2(3γ − 1)

7 − γ − (γ + 1)ω
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×
(
γ + 1

2

5 − ω

3γ − 1
− F

)]α4+ωα1

,

(3.6.25)

h(F ) = F 3δ
[

2

γ − 1

(
γ + 1

2
− F

)]1+α5

×
[

2(3γ − 1)

7 − γ − (γ + 1)ω

×
(
γ + 1

2

5 − ω

3γ − 1
− F

)]α4+(ω−2)α1

,

(3.6.26)

where

δ =
2

5 − ω
, (3.6.27)

α1 =
γ + 1

3γ − 1
− δ − α2, α2 =

1 − γ

2γ + 1 − ωγ
,

α3 =
3 − ω

2γ + 1 − γω
, α4 =

(3 − ω)(5 − ω)

6 − 3γ − ω
α1,

α5 =
ω(γ + 1) − 6

6 − 3γ − ω
. (3.6.28)

Korobeinikov and Riazanov (1959), who extended the results of Sedov (1959)
to cylindrical and plane geometries, used the function F rather than V :

V =
4

(5 − ω)(γ + 1)
F. (3.6.29)

It is easily seen from (3.6.23) and (3.6.24) that the solution extends to λ = 0,
the center of explosion, only if

1 ≥ F ≥ γ + 1

2γ
. (3.6.30)

First we consider this case. We discuss special (singular) cases of this solu-
tion when either the RHS of (3.6.24)–(3.6.26) or αi (i = 1, 2, ..., 5) defined
in (3.6.28) tend to infinity and therefore this form of the solution becomes
invalid. The coefficients in the former case become infinite when

ω = ω1 =
7 − γ

γ + 1
. (3.6.31)

For this singular case the original system (3.6.16)–(3.6.18) admits a simple
exact solution satisfying (3.6.19) and (3.6.20):

f = λ, g = λ, h = λ3. (3.6.32)
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αi (i = 1, 2, 3, 4) tend to infinity when

ω → ω2 =
2γ + 1

γ
. (3.6.33)

In this case, if we use the energy integral (3.6.21) in (3.6.16) and (3.6.17) to
eliminate h, we get the system

df

dλ
= −f

λ

[
2γ(γ − 1)

γ + 1

(
f

λ

)2

+
(ω − 6)γ + 3

2

f

λ

+
(3 − ω)(γ + 1)

4

]

×
[
γ

(
f

λ

)2

− (γ + 1)
f

λ
+
γ + 1

2

]−1

, (3.6.34)

dg

dλ
= −g

(
df

dλ
+

2f

λ
− γ + 1

2
ω

)(
f − γ + 1

2
λ

)−1

,

(3.6.35)

where ω = ω2 is given by (3.6.33). Writing f = λF in (3.6.34) we may
integrate it and satisfy the relevant boundary conditions in (3.6.19) and
(3.6.20). We thus have

λ(F ) = F−2γδ2

[
2γ

γ − 1

(
F − γ + 1

2γ

)](γ−1)δ2

×exp

[
−(γ + 1)δ2

1 − F

F − (γ + 1)/2γ

]
, (3.6.36)

where

δ2 =
1

3γ − 1
. (3.6.37)

Using the intermediate integrals (3.6.21)–(3.6.22), we get an explicit form
for g(F ) and h(F ) for this special case:

g(F ) = F 2(2γ+1)δ2

[
2

γ − 1

(
γ + 1

2
− F

)][3−2(γ+1)]δ2

×
[

2γ

γ − 1

(
F − γ + 1

2γ

)](1−2γ)δ2

×exp

[
2(γ + 1)δ2

1 − F

F − (γ + 1)/2γ

]
, (3.6.38)

h(F ) = F 6γδ2

[
2

γ − 1

(
γ + 1

2
− F

)]γδ2

×
[

2γ

γ − 1

(
F − γ + 1

2γ

)]−3γδ2

. (3.6.39)
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A similar procedure gives the solution for the other singular case
ω = ω3 = 3(2 − γ) when α4 and α5 tend to infinity (see (3.6.28)):

λ(F ) = F−2δ2

[
2

γ − 1

(
γ + 1

2
− F

)]−γδ2

×
[

2γ

γ − 1

(
F − γ + 1

2γ

)]δ2
, (3.6.40)

g(F ) = F 6(2−γ)δ2

[
2

γ − 1

(
γ + 1

2
− F

)](3γ−5)δ2

×
[

2γ

γ − 1

(
F − γ + 1

2γ

)]3(γ−1)δ2

×exp

[
−3γ(γ + 1)δ2

1 − F
γ+1

2 − F

]
, (3.6.41)

h(F ) = F 6δ2

[
2

γ − 1

(
γ + 1

2
− F

)]2(2γ−3)δ2

×exp

[
−3γ(γ + 1)δ2

1 − F
γ+1

2 − F

]
. (3.6.42)

To give an idea of the energy of explosion for these singular cases we observe
that

E0 = 4π

∫ r2

0

(
ρu2

2
+

p

γ − 1

)
r2dr. (3.6.43)

Putting the similarity form of the solution (3.6.13)–(3.6.15) into (3.6.43), we
have the form (3.6.10)–(3.6.11) of the shock law provided that

α(γ, ω) =
8πδ2

(γ2 − 1)

∫ 1

0
(h+ gf2)λ2dλ. (3.6.44)

For the first singular case (3.6.32) with ω = (7 − γ)/(γ + 1), (3.6.44)
assumes the explicit form

α(γ, ω1) =
8π

3

γ + 1

γ − 1

(
1

3γ − 1

)2

. (3.6.45)

The expressions for α for other singular values ω = ω2, ω3 may be found
similarly.

Korobeinikov and Riazanov (1959) indicated how these singular solutions
may be obtained from the general solution (3.6.24)–(3.6.26) by taking the
limit ω → ωi (i = 1, 2, 3). They specifically showed this for the special
case ω3 → 0, that is, γ → 2 (see below (3.6.39)). The main conclusion of
their study is that the solution of the problem of a strong explosion into
an inhomogeneous (or homogeneous) medium is continuous in γ, as may be
expected from the form (3.6.1)–(3.6.3) of the basic equations and the BCs
(3.6.4)–(3.6.6), provided γ > 1.

We continue this study in greater detail in the next section.
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3.7 Strong Explosion into Power Law Nonuniform

Medium: Self-similar Solutions of the Second

Kind

We discussed in the previous section self-similar solutions of the first kind
for the parametric regime 0 ≤ ω < 3 (see (3.6.7)). It turns out that
ω is a crucial parameter in deciding the nature of the solutions describ-
ing propagation of (point) explosion waves into a medium with density
ρ0 = Kr−w. Indeed, for ω ≥ 3 the so-called self-similar solutions of the
second kind make their appearance. Here the shock trajectory is not given
by dimensional considerations of the physical parameters that appear in the
problem (see section 3.6), but is found from the condition that the self-
similar solution must pass through a singular point of the reduced ordinary
differential equation in the sound speed–particle velocity plane. The best
known example of this kind of solution is Guderley’s (1942) solution for
converging spherical or cylindrical shock waves. This matter is discussed in
great detail in the last chapter of the book by Zeldovich and Raizer (1967).
In the sequel we follow the work of Waxman and Shvarts (1993).

Here we seek a self-similar solution in a slightly different form. The flow
equations in terms of particle velocity u, sound speed c and particle density
ρ may be written for the case of spherical symmetry as

ut + uur +
1

ρ
pr = 0, (3.7.1)

ρt + uρr + ρ

(
ur +

2u

r

)
= 0, (3.7.2)

ct + ucr +

(
γ − 1

2

)(
cur +

2cu

r

)
= 0. (3.7.3)

The solution of the system (3.7.1)–(3.7.3) is sought in the form

u(r, t) = ṘξU(ξ), (3.7.4)

c(r, t) = ṘξC(ξ), (3.7.5)

ρ(r, t) = BtβG(ξ), (3.7.6)

where

ξ(r, t) = r/R(t). (3.7.7)

The shock radius R(t) in the above is assumed to follow the law

R(t) = Atα, (3.7.8)

where A > 0 is a constant, and α is a parameter to be determined.
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In the analysis of Waxman and Shvarts (1993) it is assumed that the
flow due to the strong explosion takes place over a length scale given by
R(t) and that this scale diverges as t→ ∞. Moreover, the boundary condi-
tions at the shock front are determined by a single dimensional parameterK,
which appears in the undisturbed density distribution, ρ0 = Kr−ω. In the
Taylor-Sedov type solution the second relevant parameter is the energy E
of explosion. As explained in section 3.6, the similarity form (3.7.4)–(3.7.7)
requires that the nondimensional constants A and B and the similarity ex-
ponents α and β are related by

A = φ(γ, ω)

(
E

K

)α/2

, α =
2

5 − ω
,

B = KA−ω, β = −αω. (3.7.9)

φ is a dimensionless function of the dimensionless constants γ and ω; it arises
from the assumption that the energy of explosion is the energy of flow for
all time.

It is clear from (3.7.9) that α becomes infinite when ω = 5. It is positive
for ω < 5 and negative for ω > 5.

The main point of the work of Waxman and Shvarts (1993) is to show
that, for the present problem, the first kind of solutions in the Taylor-Sedov
similarity form are available only when ω < 3. In this case the energy of the
explosion is the appropriate second dimensional parameter. For ω ≥ 3, it
is shown that the self-similar form alone does not give a full description of
the flow. In this case the explosion energy becomes infinite and is not the
relevant second dimensional parameter. The asymptotic self-similar solution
must then be of the second kind. The other relevant parameter in this case
is found by using the condition that the self-similar solution passes through
an appropriate singular point of the flow equations. It is pointed out that
the energy divergence itself does not imply that the Taylor-Sedov type of
solution cannot describe the asymptotic flow due to the strong explosion
for ω ≥ 3. The inconsistency in the present case arises from the fact that,
for a Taylor-Sedov solution, the divergence of the energy implies that the
flow in some region whose size diverges in proportion to R depends on the
initial length and time scales as R diverges; this does not happen for the
self-similar solutions of the first kind. The self-similar solution of the second
kind holding in this case with ω > 3 possesses infinite initial energy.

We may reduce the system (3.7.1)–(3.7.3) via (3.7.4)–(3.7.8) in the man-
ner of section 3.6 to the (U,C) plane, and also derive the equation connecting
ξ and U . For details we refer the reader to the last chapter of Zeldovich and
Raizer (1967). We thus have

dU

d log ξ
=

∆1(U,C)

∆(U,C)
, (3.7.10)
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dC

d log ξ
=

∆2(U,C)

∆(U,C)
, (3.7.11)

or
dU

dC
=

∆1(U,C)

∆2(U,C)
(3.7.12)

and
d log ξ

dU
=

∆(U,C)

∆1(U,C)
, (3.7.13)

where the functions ∆, ∆1, and ∆2 are defined by

∆ = C2 − (1 − U)2, (3.7.14)

∆1 = U(1 − U)

(
1 − U − α− 1

α

)

−C2
(

3U − ω − 2[(α − 1)/α]

γ

)
, (3.7.15)

∆2 = C

[
(1 − U)

(
1 − U − α− 1

α

)

−γ − 1

2
U

(
2(1 − U) +

α− 1

α

)
−C2

+
(γ − 1)ω + 2[(α − 1)/α]

2γ

C2

1 − U

]
. (3.7.16)

The density function G in (3.7.6) is obtained from the first integral

C−2(1 − U)λGγ−1+λξ3λ−2 = constant, (3.7.17)

where

λ =
(γ − 1)ω + 2[(α − 1)/α]

3 − ω
. (3.7.18)

The strong shock conditions (see section 3.6) in terms of the similarity func-
tions U , C, and G may be written as

U(1) =
2

γ + 1
, C(1) =

√
2γ(γ − 1)

γ + 1
, G(1) =

γ + 1

γ − 1
. (3.7.19)

Before discussing the case ω > 3, it is instructive to consider the Taylor-
Sedov type of solution via energy arguments. The total energy contained in
the region ξ1 ≤ ξ ≤ 1, corresponding to ξ1R(t) ≤ r ≤ R(t), is given by

E1 =

∫ R

ξ1R
dr4πr2ρ

(
1

2
u2 +

1

γ(γ − 1)
c2
)

= 4πKR3−ωṘ2
∫ 1

ξ1
dξ ξ4G

(
1

2
U2 +

1

γ(γ − 1)
C2
)

(3.7.20)
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or, on using (3.7.8)–(3.7.9),

E1 =

[
4π

(
2

5 − ω

)2

φ5−ω
∫ 1

ξ1
dξ ξ4

×G
(

1

2
U2 +

1

γ(γ − 1)
C2
)]

×E. (3.7.21)

Thus, the similarity form of the solution leads to E1 which is independent
of time. This is possible if the work done by a fluid element, which lies at
ξ at time t, on the fluid that occupies the domain ξ > ξ1 during the time
interval dt, equals the energy that leaves the region ξ1 ≤ ξ ≤ 1 during the
same time through the surface ξ1 = constant. This argument is expressed
mathematically in the following manner. The work done by a fluid element
at ξ1 at time t (that is, at r1 = ξ1R(t)) on the fluid that occupies the region
r > ξ1R(t) in time dt is

4πr2
1u(r1, t)dtγ

−1ρ(r1, t)c
2(r1, t)

= 4πγ−1KR2−ωṘ3ξ51U(ξ1)G(ξ1)C
2(ξ1)dt.

(3.7.22)

The energy that leaves ξ > ξ1 during the same time through the surface
ξ1 = constant is

4πr2
1 [ξ1Ṙ− u(r1, t)]dt

(
1
2ρ(r1, t)u

2(r1, t) + 1
γ(γ−1) c

2(r1, t)
)

= 4πγ−1KR2−ωṘ3ξ51 [1 − U(ξ1)]G(ξ1)

×
(

γ
2U

2(ξ1) + 1
γ−1C

2(ξ1)
)
dt. (3.7.23)

Comparing (3.7.22) and (3.7.23), we have

C2 =
γ(γ − 1)

2

U2(1 − U)

γU − 1
. (3.7.24)

Therefore, the equation for the curve (ξ, U) is obtained from (3.7.13) as

d log ξ

dU
= (γ + 1)

γU2 − 2U + [2/(γ + 1)]

U(γU − 1)[5 − ω − (3γ − 1)U ]
. (3.7.25)

Now we show that U(log ξ) is an increasing function of its argument
for ω < (7 − γ)/(γ + 1). The numerator in (3.7.25) is always positive for
γ > 1. The term [5 − ω − (3γ − 1)U ] in the denominator of (3.7.25) must
now be considered. Since ξ decreases from 1 at the shock to 0 at the cen-
ter, log ξ varies from 0 to −∞ correspondingly. Thus, [5 − ω − (3γ − 1)U ]
is positive for U ≤ U(log ξ = 0) = 2/(γ + 1). Also, γU − 1 is positive for
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1/γ < U ≤ U(log ξ = 0). Thus, as log ξ decreases from 0 to −∞ correspond-
ing to ξ decreasing from 1 to 0, U(log ξ) also decreases and approaches the
value 1/γ. We may write (3.7.25) near U = 1/γ as

d log ξ

dU
=

f(γ)

U − 1/γ
, (3.7.26)

where f(γ) is some positive function of γ. Integrating (3.7.26), we have

ξ = constant · (U − 1/γ)f(γ) . (3.7.27)

Thus ξ tends to zero as U tends to 1/γ. We find therefore that U(ξ) is
a strictly increasing function of ξ that approaches 1/γ as ξ tends to zero.

By differentiating (3.7.24) we find that

dC2

dU
= −γ(γ − 1)

2

U [2γU2 − (γ + 3)U + 2]

(γU − 1)2
. (3.7.28)

The quadratic in U in the numerator of (3.7.28) has no real roots for
1 < γ < 8 and is always positive. Therefore, C is a decreasing function
of U . Also, it follows from (3.7.24) that C tends to infinity as U tends to
1/γ.

The function [5−ω− (3γ− 1)U ] in the denominator of (3.7.25) assumes

the value
(

7−γ
γ+1 − ω

)
at the shock where U(1) = 2/(γ + 1). The behaviour of

the solution is different depending on the sign of this term (see section 3.6).
For ω > (7 − γ)/(γ + 1), the self-similar solution has a void in the center.
There exists a region ξin ≤ ξ ≤ 1 which is separated from the vacuum by a
tangential or weak discontinuity at ξ = ξin. In this case U tends to 1 and
C tends to zero as ξ tends to ξin.

We now consider specifically the case ω ≥ 3 for which 3 > (7−γ)/(γ+1)
provided γ > 1. In this case the solution curve approaches the point C = 0,
U = 1 as ξ tends to ξin. Considering the local behaviour of the solution in
the neighbourhood of this point by analysing (3.7.24), (3.7.25) and (3.7.17),
we find that

U(ξ) = 1 − 3γ + ω − 6

γ
log

(
ξ

ξin

)
, (3.7.29)

C(ξ) =

[
3γ + ω − 6

2
log

(
ξ

ξin

)]1/2

, (3.7.30)

G(ξ) = const ×
[
log

(
ξ

ξin

)]−(γω+ω−6)/(3γ+ω−6)

. (3.7.31)

Using this local solution in the energy integral (3.7.21), one may verify that

E1 → ∞ as ξ1 → ξin for ω ≥ 3. (3.7.32)
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Since the energy E1(ξ1) in ξ1 < ξ < 1 for the Taylor-Sedov blast wave is
independent of time and, since it tends to infinity as ξ1 → ξin for ω ≥ 3,
there exists a point ξ1 = ξ∗ for which E1 equals the explosion energy E.
We conclude that the explosion from a finite energy can be described by
this solution only in the region ξ∗ ≤ ξ0 ≤ ξ ≤ 1. There must be a different
flow in the range ξin ≤ ξ ≤ ξ0 . This contradicts the assumptions underlying
self-similarity since it implies that there exist initial length and time scales
which influence the behaviour of the flow over a scale of order R even as
R→ ∞. The region ξin ≤ ξ ≤ ξ0 corresponds to ξinR ≤ r ≤ ξ0R. Thus the
energy of explosion tending to infinity alone does not explain the nonvalidity
of the Taylor-Sedov type of solutions for ω ≥ 3.

The above discussion also indicates that, for ω ≥ 3, the energy which
tends to infinity as ξ → ξin, cannot constitute a relevant dimensional pa-
rameter. This is a relevant parameter only for ω < 3.

We observe that the inner boundary of the self-similar solution, ξ = ξin,
must be a particle path. For this to be true, dr0(t)/dt = u[r = r0(t), t] so
that, using the definition (3.7.7) for ξ, we have, for ξ = ξ0 = r0/R,

d log ξ0
d logR

= U(log ξ0) − 1. (3.7.33)

Since, at the inner boundary, U(log ξ0) → 1, ξ0 = ξin is a solution of (3.7.33).
The curve rin(t) = ξinR(t) describes the path of a fluid element. Therefore,
there is no mass flow through this inner boundary of the self-similar solution.
All the mass swept by the shock is contained in the region ξin ≤ ξ ≤ 1 and
the region ξ < ξin is void. Also, the speed of sound (3.7.30) at the inner
boundary is zero, implying that the density is zero there.

For ω = (7 − γ)/(γ + 1), the solution in the (U,C) plane degenerates to
the point solution U = 1, C = 0.

Waxman and Shvarts (1993) argue that even when initial length and
time scales are relevant, self-similar solutions defined by (3.7.4)–(3.7.8) can
describe an outer region bounded by the surfaces r = r1(t) and r = R(t).
It is assumed that the flow in this region is independent of the flow pattern
in the inner region 0 ≤ r ≤ r1(t). That is, it is assumed that the flow in
r1(t) ≤ r ≤ R(t) is fully determined by the conditions there at t = t0. It is
also assumed that r1(t)/R(t) → 0 as R → ∞. The integral of the reduced
system of ODEs with appropriate shock conditions describes the outer flow
in this case. Under these circumstances, the initial length and time scales
influence the flow pattern only in the inner (irrelevant) region.

For such a separated flow, the upper boundary of the inner flow r = r1(t)
can be shown to be a C+ characteristic (Zeldovich and Raizer (1967)); the
self-similar solution of the second kind is now constructed following these
authors.
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The C+ characteristic
dr+
dt

= u+ c, (3.7.34)

may be written in terms of the similarity variables as

dξ+
dt

=
Ṙ

R
ξ+[U(ξ+) + C(ξ+) − 1],

or
d log ξ+
d logR

= U(ξ+) + C(ξ+) − 1. (3.7.35)

It is easily checked that the value of U+C at the shock ξ = 1 is greater than
1 so that the shock point lies above the sonic line U(ξ+) + C(ξ+) = 1 (see
(3.7.19)). The gradients (3.7.10) and (3.7.11) become infinite on the sonic
line U +C = 1 since ∆ = 0 there. For the solution to remain single-valued,
the numerators in these equations must also vanish when U +C = 1. Thus
the parameter α in (3.7.12) is found such that the solution starting from the
shock [U(1), C(1)] crosses the sonic line at a singular point. It will now be
shown that such a solution exists for all ω > 3.

First, it may be observed that an exact analytic solution of this problem
exists for a particular choice of ω = ωa = 2(4γ − 1)/(γ+1). In this case the
exponent α in the shock law (3.7.8) is found to be (γ + 1)/2. This exponent
is quite different from that obtained from the Taylor-Sedov solution for
ω = ωa, namely, 2(γ + 1)/(7 − 3γ) (see section 3.6). The analytic form of
the solution for ω = ωa satisfying the boundary conditions (3.7.19) at the
shock ξ = 1 is simply

U(ξ) =
2

γ + 1
, (3.7.36)

C(ξ) =

√
2γ(γ − 1)

γ + 1
ξ3, (3.7.37)

G(ξ) =
γ + 1

γ − 1
ξ−8. (3.7.38)

This solution also passes through the singular point
U = 2/(γ + 1), C = 0 of (3.7.12) as ξ → 0. It crosses the sonic line
U +C = 1 at U = 2/(γ + 1), C = (γ − 1)/(γ + 1). This singular point also
exists generally for all (relevant) values of ω and α and is located at the
point P: U = 1/α, C = 0. All self-similar solutions for ω > 3 cross the sonic
line and approach this singular point as ξ → 0. Two examples considered by
Waxman and Shvarts (1993) are ω = 3.4 and ω = 5.5. The corresponding
values of α obtained by requiring that the solution of (3.7.12) starting from
the shock passes through the singular point (U = 1/α,C = 0) are found to
be 1.04 and 2.14, respectively. These agree very closely with the asymptotic

© 2004 by Chapman & Hall/CRC



3.7 Strong Explosions into Power Law Nonuniform Medium 117

form of the solution. For the direct numerical simulation of this asymptotic
solution, Waxman and Shvarts (1993) chose the initial conditions to be zero
velocity everywhere, constant density and pressure for r < d, and zero pres-
sure and a density profile proportional to r−ω for r > d. They used the
artificial viscosity approach of Richtmyer and Von Neumann (1950). The
asymptotic profiles agreed very well with the self-similar solution described
here. This is in contrast to the results from Taylor-Sedov type of solutions.
The latter exists for ω = 3.4 but not for ω = 5.4, a value greater than 5 (see
section 3.6).

We may observe from (3.7.12) that dU/dC = 0 when U = 1. Also,
dU/dC < 0 as C decreases from its value [2γ(γ− 1)]1/2/(γ+1) at the shock
to 0 at the singular point; moreover, U < 1 behind the shock. We conclude
that the new singular point P (U = 1/α,C = 0) is important only when
α > 1. Thus the similarity exponent α for this self-similar solution of the
second kind is greater than 1 in contrast to that for the Taylor-Sedov type
of solutions for ω < 3 when it is less than 1 (see section 3.6).

It is interesting to write the local solution of the present system in the
neighbourhood of the singular point P . First, we may approximately write
∆,∆1,∆2 near this point from (3.7.14)–(3.7.16) as

∆ = −
(

1 − 1

α

)2

, (3.7.39)

∆1 = − 1

α

(
1 − 1

α

)(
U − 1

α

)

+

(
ω − 2[(α− 1)/α]

γ
− 3

α

)
C2, (3.7.40)

∆2 = − 3

α

(
1 − 1

α

)
γ − 1

2
C. (3.7.41)

With these approximations we may solve (3.7.12) in the form

U =
1

α
+





const.× C2/3(γ−1), γ > 4/3,
f1(γ, ω, α)C2 logC, γ = 4/3,
f2(γ, ω, α)C2, γ < 4/3,

(3.7.42)

where

f1 =

(
3

α
− ω − 2[(α − 1)/α]

γ

)
2α

α− 1
, (3.7.43)

f2 =

(
3

α
− ω − 2[(α − 1)/α]

γ

)
α2

(α− 1)(3γ − 4)
. (3.7.44)

The solution of (3.7.11) may now be written as

C(ξ) = const. × ξ3(γ−1)/2(α−1) . (3.7.45)
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Figure 3.12 The function α(ω) for γ = 5/3 for self-similar solutions of second kind

(Waxman and Shvarts, 1993).

The function G(ξ) is obtained from (3.7.17) as

G(ξ) = const. × ξ−(αω−3)/(α−1). (3.7.46)

The second kind of solution presented above exists only for a limited range
of ω values. The parameter α = α(ω) for γ = 5/3 is shown in Figure 3.12.

It is observed that α → 1 as ω ↓ ωg for some ωg > 3 while α → ∞ as
ω ↑ ωc for some ωc. ωg and ωc for γ = 5/3 are 3.256 and 7.686, respec-
tively. For 3 ≤ ω ≤ ωg(γ), there is no α for which the integral curve in
the (U,C) plane crosses the sonic line at the singular point. The intervals
3 ≤ ω ≤ ωg(γ) and ω ≥ ωc for the density exponent need further investiga-
tion.

Waxman and Shvarts (1993) considered the qualitative nature of the
flows in the outer and inner regions, as described above. Their asymptotic
nature was confirmed with reference to the numerical solution of the basic
system of PDEs with appropriate initial conditions.

3.8 Point Explosion with Heat Conduction

In section 3.1, we discussed the Taylor-Sedov solution for a point explosion
in a self-similar form which gave the famous shock law, rs ∼ t2/5. However,
this solution predicted an anomalous behaviour of infinite temperature and
infinite temperature gradient near the center of explosion. What caused this
singularity was the omission of the effect of heat transfer by conduction,
which is significant at such high temperatures. Indeed, the very early phase
(t→ 0) of the phenomenon is essentially described by the heat equation

∂T

∂t
=

1

r2
∂

∂r

(
χr2

∂T

∂r

)
, (3.8.1)
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where the coefficient of heat conduction is given by

χ = χ0ρ
aT b. (3.8.2)

χ0 , a, and b are constants appropriate to a given material; here

a ≤ 0, b ≥ 1. (3.8.3)

Indeed, Barenblatt (1979) considered this equation with a = 0, subject to
the conditions

T (r, 0) = 0 (r 6= 0); 4πC

∫ r∗

0
T (r, 0)r2dr = E,

T (∞, t) = 0 (t > 0), (3.8.4)

and found a self-similar solution of this problem. Here, r∗ is a positive
constant. The constant C is related to χ0 . This solution describes a spherical
heat wave with a sharp front, which moves supersonically, much faster than
the hydrodynamic flow. The front of this thermal wave moves according to
rh(t) ∝ t1/(3b+2), determined by the relevant form of the similarity variable,
namely, ξ = rt−1/(3b+2). Thus the shock wave according to Taylor-Sedov
solution and the thermal wave front move according to the same law only if
b = 1/6. In a more realistic situation, b ≥ 1, and therefore the trajectories
of the shock and the thermal front are different (see Figure 3.13). These
fronts intersect at a finite time t = t1 at some r = r1. What actually
transpires in an intense explosion is that at the very early times the explosion
front is supersonic and is governed essentially by nonlinear heat conduction.
This front soon decelerates. There sets in behind it a large hydrodynamic
motion including an isothermal shock. As the thermal front decelerates, it
is overtaken by the isothermal shock at some time t = t1. At this point the
heat front becomes subsonic and the shock front runs ahead of it. The flow

Figure 3.13 Trajectories of shock front and heat front driven by a strong point

explosion in a uniform gas (Reinicke and Meyer-ter-Vehn, 1991).
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from now onwards is governed by the Taylor-Sedov solution except in a
central region where heat conduction still plays an important role and keeps
the temperature finite.

In a paper by Reinicke and Meyer-ter-Vehn (1991), an attempt was
made to combine these two transport processes—hydrodynamic and thermal
conduction—in the framework of self-similarity with both shock front and
heat front running against each other. Since the equations of motion with
heat conduction do not admit a similarity hypothesis as such, an additional
freedom was introduced by regarding the medium ahead of the disturbed
region to be stratified according to ρ0 ∼ ρk with k ≈ −2. This enables
complete self-similarity with physically reasonable parameters for the coeffi-
cient of heat conduction. By varying the energy release E0 of the explosion,
the situations with different ratios rh/rs, corresponding to the heat front rh

running behind the shock rs or vice versa, can be realized. The qualitative
features in the self-similar solution—the occurrence of two sharp fronts and
the way they shift against each other as a function of E0—are also charac-
teristics of the non-self-similar solutions. The artifice of varying the density
ahead of the disturbed medium proves handy in achieving self-similarity
and hence a fairly comprehensive qualitative analysis of the problem. In the
sequel we follow the work of Reinicke and Meyer-ter-Vehn (1991).

The gasdynamic equations in different geometries, with the inclusion of
the heat conduction effects, are

ρt + uρr +
ρ

rn−1
(rn−1u) = 0, (3.8.5)

ut + uur +
1

ρ
pr = 0, (3.8.6)

et + uer −
p

ρ2
(ρt + uρr) = −(ρrn−1)−1(rn−1S)r, (3.8.7)

where

S = −χ∂T
∂r

(3.8.8)

and

e =
1

γ − 1

p

ρ
= ΓT. (3.8.9)

Here, Γ = (γ − 1)−1R, and n = 1, 2, 3 for plane, cylindrical and spherical
symmetries, respectively. The coefficient of heat conduction χ is given by
(3.8.2) and (3.8.3). For the electronic heat conduction in a plasma, a = 0,
b = 5/2, for radiative heat conduction in Dyson’s limit, a = −1, b = 4, and
for radiative heat conduction in a fully ionised plasma, a = −2, b = 13/2.

Reinicke and Meyer-ter-Vehn (1991) carried out invariance analysis of
the above system of PDEs, considering the boundary conditions at the heat
front and the isothermal shock, and arrived at the following form of the
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similarity solution:

u(r, t) =

(
αr

t

)
U(ξ), (3.8.10)

T (r, t) =
1

Γ

(
αr

t

)2

Θ(ξ), (3.8.11)

ρ(r, t) = (g0r
k)G(ξ), (3.8.12)

where
ξ =

r

(ζ|t|α)
. (3.8.13)

ζ and g0 are constants. The system (3.8.5)–(3.8.9) now reduces to a system
of nonlinear ODEs for U(ξ), Θ(ξ), and G(ξ) provided

(a− 1)k = (2b− 1)(α−1 − 1) + 1. (3.8.14)

The reduced system of ODEs is

U ′ − (1 − U)(lnG)′ + (n+ k)U = 0, (3.8.15)

(1 − U)U ′ + U(α−1 − U) = Θ[ln(ξ2+kGΘ)]′, (3.8.16)

2[U ′ + nU − µ(α−1 − 1)] − µ(1 − U)[ln(ξ2Θ)]′

= β0Θ
bGa−1ξ(2b−1)/α((ln Θ)′′ + [ln(ξ2Θ)]′

×{n− 2 + a[ln(ξkG)]′ + (b+ 1)[ln(ξ2Θ)]′}), (3.8.17)

where ′ = d/d ln ξ, µ = 2/(γ − 1), and

β0 = [2χ0(αζ
1/α)(2b−1)/Γb+1g1−a

0 ]sgn(t).

It is convenient to introduce the variables

H(ξ) = ξ−σG(ξ), σ = (2b− 1)/α(1 − a), (3.8.18)

W (ξ) = −β0H
a−1Θb[ln(ξ2Θ)]′/2. (3.8.19)

It follows from the identity

S(r, t)/p(r, t) = α(r/t)W (ξ), (3.8.20)

that W represents a reduced heat velocity. In terms of W (ξ) and H(ξ),
equations (3.8.15)–(3.8.17) can be written as

(lnΘ)′ = −2[1 + (W/β0H
a−1Θb)], (3.8.21)

U ′ + (U − 1)(lnH)′ = σ − (n+ k + σ)U, (3.8.22)
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(U − 1)U ′ + Θ(lnH)′ = U(α−1 − U) + Θ[(2W/β0H
a−1Θb)

−k − σ],

(3.8.23)

W ′ + U ′ +W (lnH)′ = (W/β0H
a−1Θb)

×[µ(U − 1) + 2W ] + µ(α−1 − 1)

−nU − (n+ k + σ)W. (3.8.24)

Solving for the derivatives from (3.8.21)–(3.8.24), we have

dlnξ

Nξ
=
dlnH

NH
=
dU

NU
=
dlnΘ

NΘ
=
dW

NW
, (3.8.25)

where

Nξ = (1 − U)2 − Θ,

NH = −(n+ k + σ − 1)Nξ +N2,

NU = (1 − U − n− k)Nξ + (1 − U)N2,

NΘ = ANξ, (3.8.26)

NW = {(n− 1)(1 − U) −W + k + µ(α−1 − 1)

−(2 +A)[W − µ(1 − U)/2]}Nξ

−(1 − U +W )N2,

and

A = (lnΘ)′ = −2[1 +W/β0H
a−1Θb],

N2 = Θ(A+ 3 − n) + (k + n+ α−1 − 2)(1 − U) (3.8.27)

−(α−1 − 1).

The above form is useful for local singularity analysis, which is crucial for
numerical integration of the system (3.8.25). In the five dimensional space
[lnξ, U,Θ1/2, (lnΘ)′,H], the main singularity falls where Nξ = 0, that is, on
the ‘sonic’ hyperplanes

U = 1 ± (Θ)1/2. (3.8.28)

For the derivative d(lnΘ)/dU to be finite, NU and NΘ must each vanish
along (3.8.28), requiring that N2 is also zero herewith:

(lnΘ)′
∣∣∣∣
Θ=(U−1)2

= n− 3 +
n− 2 + α−1 + k

U − 1
+
α−1 − 1

(U − 1)2
(3.8.29)

(see (3.8.27)). An investigation of the second derivative of ξ shows that it
reaches its maximum or minimum at the above crossing point and, there-
fore, the corresponding solution curves U(ξ), Θ(ξ), H(ξ), and W (ξ) are
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double-valued and hence nonphysical. Physical solutions may be obtained
by introducing a shock discontinuity connecting points on different sides of
the sonic plane.

A local analysis near the center ξ = 0 is necessary to identify those
(physical) solutions which give a finite pressure there. For the nonplanar
cases n 6= 1, a local analysis of the system (3.8.21)–(3.8.24) shows that, for
ξ ∼ 0, we have

U ∼ U0ξ
w, G ∼ G0ξ

δ−k, Θ ∼ Θ0ξ
−δ−2, (3.8.30)

where we may identify

w = 0, U0 = (δ − k)/(δ + n). (3.8.31)

These values lead to one of the following possibilities:

i) δ = (n− 2)/(b + 1 − a), n = 3; (3.8.32)

ii) δ = 0; (3.8.33)

iii) δ = −2/(b+ 1 − a),

2nU0 − 2µ(α−1 − 1) + µ(1 − U0)δ = −δnβ0Θ
b
0G

a−1
0 . (3.8.34)

iv) −2 < δ < −2/(b+ 1 − a),

2nU0 − 2µ(α−1 − 1) + µ(1 − U0)δ = 0. (3.8.35)

In physical variables, these asymptotic behaviours (r → 0) would have the
form

ρ ∼ rδtα(k−δ),

u ∼ r/t, (3.8.36)

T ∼ r−δtα(2+δ)−2,

S ∼ r−1−δ(b+1−a)tα[δ(b+1−a)+4+k]−3.

The cases (iii) and (iv) place severe constraints on the parameters. Cases
(i)–(ii) lead to some interesting solutions. For case(i), the local behaviour
near ξ ∼ 0 can be written out as

U = U0 + U1ξ + · · · ,
G = G0ξ

δ−k(1 +G1ξ + · · ·), (3.8.37)

Θ = Θ0ξ
−δ−2(1 + T1ξ + · · ·),
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where G0, Θ0, and T1 are free parameters while

G1 = −T1, U1 = [(1 − U0)/(4 + δ)]T1 (3.8.38)

(see (3.8.31) for U0). We may observe from (3.8.373) that the heat flux near
r = 0 tends to infinity like r−2.

The case (ii) alone gives finite temperature at r = 0. Defining

ξ̃ = ξ2/(zΘ0), z = βΘb−1
0 Ga−1

0 , a constant, (3.8.39)

one may write the local solution at r = 0 as

U = −k
n

+
∞∑

i=1




i∑

j=0

µi,jz
j


 ξ̃i,

G = G0ξ
−k


1 +

∞∑

i=1




i∑

j=0

γi,jz
j


 ξ̃i


 , (3.8.40)

Θ = Θ0ξ
−2


1 +

∞∑

i=1




i−1∑

j=0

τi,jz
j


 ξ̃i


 ,

where the coefficients µi,j, γi,j and τi,j are independent of Θ0, G0, and β0.
The first coefficients in (3.8.40) are

µ1,j =
2 + 2k/n

n+ 2
γ1,j, j = 1, 2,

τ1,0 = −γ1,0 = −k + µ(α−1 − 1)

n
, (3.8.41)

γ1,1 = − k

2n

(
1

α
+
k

n

)
.

For this case, the heat flux at r = 0 may be checked to tend to zero like r.
Moreover, the temperature at r = 0 has a relative maximum or minimum
depending on whether k + 2(α−1 − 1)/(γ − 1) is positive or negative. We
may also observe that τ1,0 + γi,0 = 0 holds for all i. Therefore, reverting to
physical variables ρ and T and using (3.8.40) one may check that the pressure
becomes independent of r. Thus, the flow is nearly isobaric in the central
region. This condition seems to hold even for non-self-similar regimes and
is made the basis of an analytic approach by Reinicke and Meyer-ter-Vehn
(1991).

It is important to have a local solution in the neighbourhood of the
front of the heat wave which runs into a cold medium with the density
distribution ρ0(r) ∝ rk. Thus, the boundary conditions at the heat front,
which is assumed to be given by ξ = ξf , are

Θ → 0, U → 0, G→ 1, S → 0 as ξ → ξf . (3.8.42)
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Assuming the local solution satisfying (3.8.42) in the form

U = U0|1 − x|β1 , G = 1 +G1|1 − x|β2 ,

Θ = Θ0|1 − x|β3 , x = ξ/ξf , (3.8.43)

introducing it into (3.8.15)–(3.8.17), and balancing the terms etc., one may
arrive at the following determination of the parameters:

β1 = β2 = β3 = 1/b, G1 = U0 = Θ0,

β0U
b
0ξ

(2b−1)/α
f sgn(1 − x) = µb. (3.8.44)

The last equality in (3.8.44) requires that β0(1 − x) is positive. Observing
the definition of β0 below (3.8.17), we infer that t(1 − x) > 0. This implies
that, for an exploding heat wave, time must be taken to be positive. The
normalisation G → 1 at the front is possible since (3.8.12) contains an
arbitrary dimensional constant g0. It is clear that if the solution joins two
singular points this choice can be made use of at one of the singular points
only. To get a better approximation, Reinicke and Meyer-ter-Vehn (1991)
used the local solution (3.8.43)–(3.8.44) to connect the functions and write
the solution in the form

G = (1 − U)−1,

Θ = U(1 − U), (3.8.45)

W = [µ− (µ+ 1)U ]/2.

This leads to the integral

lnx = −β0ξ
(2b−1)/α
f

∫ U

0
yb−1(1 − y)b−a

× 1 − 2y

µ− (µ+ 1)y
dy. (3.8.46)

The approximate solution (3.8.45)–(3.8.46) holds in the neighbourhood of
the thermal front ξ = ξf , that is, x = 1. It is obtained analytically from
(3.8.15)–(3.8.17) by ignoring smaller terms in this neighbourhood.

Finally, the isothermal shock conditions are (see Marshak (1958))

T2 = T1,

ρ2(u2 −D) = ρ1(u1 −D),

p2 + j2/ρ2 = p1 + j2/ρ1, (3.8.47)

E2 +
p2

ρ2
+

(u2 −D)2

2
+
S2

j
= E1 +

p1

ρ1
+

(u1 −D)2

2
+
S1

j
,

where D is the shock velocity and suffixes 1 and 2 give conditions ahead of
and behind the shock (see (3.8.8) for the definition of S).
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The system (3.8.47) in terms of the similarity functions Θ, U , G and W
may be solved in the form

Θ2 = Θ1 =: Θ,

U2 = 1 − Θ/(1 − U1), (3.8.48)

G2 = [(1 − U1)
2/Θ]G1,

W2 =
ΘW1 − {[(1 − U1)

4 − Θ2]/2(1 − U1)}
(1 − U1)2

.

We shall now describe the numerical integration of the self-similar system
of equations describing a point explosion with heat conduction. We first
discuss the parameters involved. The density distribution in the undisturbed
medium ρ0 = g0r

k fixes the constants g0 and k. (The latter appears in the
shock conditions too.) The energy of the point explosion E0 at r = 0 is also
prescribed. The total energy of the explosion may be written as (see section
3.7)

Etot(t) ∝ tα(n+2+k)−2 (3.8.49)

and is therefore constant if

α(n+ 2 + k) = 2. (3.8.50)

For an explosion in a nonheat-conducting uniform medium we have n = 3,
k = 0 and, therefore, α = 2/5 from (3.8.50), confirming the famous shock
law Rs = ξsζt

2/5. In the present case, the self-similarity condition (3.8.14)
and the constancy of total energy (3.8.50) fix the parameters α and k as

α =
2b− 2a+ 1

2b− (n+ 2)a+ n
, k = −(2b− 1)n+ 2

2b− 2a+ 1
, (3.8.51)

in terms of the exponents a and b in the heat conduction coefficient in (3.8.2)
for different geometries n = 3, 2, 1. Since a ≤ 0 and b ≥ 1 in (3.8.2), (3.8.51)
implies that 0 < α < 1 and −n < k < 0. For given values of the parameters
a, b, and γ, the solution depends now on the dimensional parameters E0, g0,
and 2χ0/Γ

b+1, which combine to give the dimensionless parameter

λ = [2χ0/Γ
b+1g1−a

0 ](E0/g0)
b−1/2. (3.8.52)

For sufficiently large explosion energy E0, λ is large and so the leading front
moving into the undisturbed gas ahead is a heat wave and is described by
ξf = rf/(ζt

α). In this case it turns out that the solution curves in the
(U,Θ1/2) plane have to connect points on the two sides of the sonic discon-
tinuity. This transition must therefore be brought about by an isothermal
shock. For an appropriate choice of ζ (see (3.8.13)), this shock may be
identified as ξ = ξs = 1 < ξf . As the strength of explosion λ decreases,
ξf decreases until ξf → ξs; thereafter, the flow is headed by a strong shock
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wave, the flow resembling the usual hydrodynamic explosion with heat con-
duction dominating only near the center of explosion.

The integration of (3.8.21)–(3.8.24) may now be performed as follows.
Starting at the heat front with U = 0, Θ = 0 (cold conditions ahead) and a
trial value of β0, we choose some value ξf > 1 and integrate in the direction
of decreasing ξ (see the approximate solution (3.8.45)). We continue the
integration to the point ξ = 1 and apply the shock conditions (3.8.48) to
cross the sonic line U = 1 −

√
Θ. We continue the integration towards

ξ = 0. As we vary the parameter β0 (see below (3.8.17)), a family of curves
is obtained all except one of which run into the upper or lower sonic line
and therefore are unphysical. The exceptional integral curve goes through
the singular point (−k/n,∞) in the (U,Θ1/2) plane, which corresponds to
ξ = 0. From the definition of β0, λ in (3.8.52), and the energy equation, we
find that

λ(ξf ) = β0(ξf )[I(ξf )]b−1/2, (3.8.53)

E0/g0 = g0(αζ
1/α)2I(ξf ), (3.8.54)

where

I(ξf ) = 2π

∫ ξf

0
ξn+k+1G(ξ)[U 2(ξ) + µΘ(ξ)]dξ (3.8.55)

(cf. (3.1.25)). Here ζ is obtained in terms of E0/g0; E0 and g0 are known
parameters. The parameter λ(ξf ) fully determines the solution of the prob-
lem.

Using the similarity transformation (3.8.10)–(3.8.14), the entropy equa-
tion may be written as

p/ργ = r−εA(ξ), (3.8.56)

where

ε = k(γ − 1) + 2(α−1 − 1) (3.8.57)

and A(ξ) is the reduced entropy function. If we use (3.8.51) in (3.8.57) to
express the latter in terms of a and b only, we may verify, using (3.8.3), that
there is a temperature maximum at the center if ε > 0. It is a minimum
if ε < 0. This point has been discussed earlier. ε determines the radial
distribution of entropy. For the nonheat-conducting case (see section 3.2),
the temperature near the center of the explosion is given by

T (r, t) ∝ r−ε/(γ−1)t−α(nγ−2n−k)/(γ−1). (3.8.58)

It diverges or vanishes as r → 0, depending on the sign of ε. The inclusion of
heat conduction makes the temperature at the center finite with a relative
maximum or minimum there. ε > 0 (ε < 0) corresponds to γ < γ0 (γ > γ0),
where

γ0 = 1 + [2n(1 − a) − 2]/[(2b − 1)n+ 2]. (3.8.59)
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Taylor-Sedov solution (without the effect of heat conduction) exists pro-
vided γ < γ1, where

γ1 = (3n− 2 + k)/(n− 2 − k), (3.8.60)

(see section 3.2). This condition changes to γ > γ1 if γ1 < 0. For k = 0,
n = 3, γ1 = 7, we have the well-known Primakoff solution for water which
has constant (reduced) velocity U and temperature Θ and is distinct in
character from the Taylor-Sedov solution. Reinicke and Meyer-ter-Vehn
(1991) used (3.8.60) for γ1 with k given by (3.8.51) for the heat-conducting
case and found it a ‘reasonable’ condition here too.

The transition of the heat front to a strong shock is analytically examined
by using the approximation (3.8.45)–(3.8.46) in the limit ξf → ξs = 1. In
this limit, β0 tends to 0 (see below (3.8.17)). It then follows from (3.8.19)
that the heat velocity W = W2 behind the shock vanishes since H2, Θ2, and
(Θ′)2 are finite there. With W2 = 0, the shock conditions (3.8.48) reduce to

U2 = µ/(1 + µ), G2 = µ+ 1, Θ2 = µ/(µ+ 1),

corresponding to those with no heat conduction. Here, µ = 2/(γ − 1).

Figures 3.14 and 3.15 show typical self-similar flows in spherical symme-
try with a strong heat conduction with β0 = 7.12×107 and ξf = 2 and weak
heat conduction with β0 = 2.14 × 10 and ξf = 1 + 10−7. The parameters in

Figure 3.14 Spherically symmetric self-similar flows with a strong heat conduction

with β0 = 7.12× 107 and ξf = 2. The dashed lines mark the shock front (Reinicke

and Meyer-ter-Vehn, 1991).
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3.8 Point Explosion with Heat Conduction 129

Figure 3.15 Spherically symmetric self-similar flows with a weak heat conduction

with β0 = 2.14 × 10 and ξf = 1 + 10−7. The thin dashed lines mark the shock

front; the dashed lines behind the shock represent the solution without any heat

conduction (Reinicke and Meyer-ter-Vehn, 1991).

the heat conduction coefficient (3.8.2) are chosen to be a = −2, b = 13/2,
while γ = 5/4. The cases (a)–(d) in each figure show normalised tempera-
ture, density, heat flux and velocity, respectively.

In the conduction-dominated case, the heat front is located at r/rs = 2,
far ahead of the shock at r/rs = 1. In this case there is a large heat flux
in the region 1 < r/rs < 2. The particle velocity and density have large
values just behind the shock front at r = rs. Figure 3.15 shows essentially
the hydrodynamic case with a strong shock at the head with typical density
and velocity discontinuities and vanishing heat flux. The heat wave itself
has now retreated to the inner region; there is, however, a makedly sharp
front in the temperature and heat flux at r/rs ≈ 0.5. It is also observed
that the pressure in the heat region is almost constant.

It was found from the computational results that as E0 is increased by
a factor of 14, keeping all other parameters fixed, there is a drastic change
from a hydrodynamic (Figure 3.15) to a heat transport mode (Figure 3.14).
If E0 is further multiplied by 2 so that ξf/ξs ≈ 20, the total explosive wave
assumes the character of Barenblatt’s pure heat wave solution. Contrarily,
if E0 is reduced to values below those indicated in Figure 3.15, ξf/ξs → 0
with the heat wave present near the center only. The work of Reinicke and
Meyer-ter-Vehn (1991) concludes with an interesting analysis of the solution
in the inner region, based on the observation that the pressure determined
by the hydrodynamic motion is almost uniform there and remains unaffected
by heat conduction. Assuming the pressure to be a function of time alone,
as given by the purely hydrodynamic Taylor-Sedov model, the equations
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of motion were solved by a non-self-similar analysis; the medium ahead is
assumed to be uniform. For large t, an interesting flow regime develops.
Here, the total explosion, with a shock front at rs ∝ tα as well as an inner
heat wave region with a front at rh ∝ tδ, becomes self-similar, and rh → rs as
time increases. The similarity exponents α and δ, however, are different with
δ < α. The new heat wave exponent δ in the inner region is also different
from that when the entire flow is assumed to be heat-dominated. From this
approximate analysis the central temperature and the extent of the heat
wave region are derived. Thus, the well-known hydrodynamic solution of
the problem without heat conduction becomes valid except in the central
region where heat conduction modifies it to make the temperature finite.

3.9 The Blast Wave at a Large Distance

We have so far dealt with strong shocks in the early stage of the blast
wave propagation. We now discuss the other end—the nearly linear regime
when the shock has become rather weak. Whitham (1950) gave a general
theory to cover such flows. His method describes the attenuation of spherical
shocks at large distances from the origin. It also describes the situation
when the disturbances are small from the start. In the latter case, his
approach, which involves modification of the linearised form of the solution,
gives results which are uniformly valid at all distances from the origin. One
basic assumption of the theory is that, since the entropy changes at the shock
are of third order in strength, the flow with weak shocks may be considered
isentropic; this, however, is the only assumption underlying the theory.

We consider spherically symmetric isentropic flow in air, governed by the
equation

a2∇2φ = φtt + 2φrφrt + (φr)
2φrr. (3.9.1)

where φ is the velocity potential and a is the velocity of sound, given by
Bernoulli’s equation

a2 = a2
0 − (γ − 1)

[
φt +

1

2
φ2

r

]
. (3.9.2)

a0 is the velocity of sound in the undisturbed air (see also section 4.1). We
may rewrite (3.9.1) as the system

vt − ur = 0, (3.9.3)

vr

[
a2

0 − (γ − 1)u− 1

2
(γ + 1)v2

]
− ut − 2vvt

+
2v

r

[
a2

0 − (γ − 1)u− 1

2
(γ − 1)v2

]
= 0, (3.9.4)

where u = φt and v = φr.
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As in the piston problem considered by Taylor (1946) (see section 3.1),
the linear theory provides the motivation for the asymptotic results. In this
case, the velocity potential is given by φ = f0(a0t− r)/r; therefore, u and v
have the form

u =
f1(a0t− r)

r
, (3.9.5)

v =
f2(a0t− r)

r
+
f3(a0t− r)

r2
. (3.9.6)

Equations (3.9.5)–(3.9.6) suggest that u and v may be sought in descending
powers of r, with coefficients that are constant on exact characteristics de-
scribed by z = constant, where z is a function of r and t to be found in the
process of solution. Thus, we write

u = a2
0

[
f(z)

r
+
g(z)

r2
+ · · ·

]
, (3.9.7)

v = − u

a0
+ a0

[
b(z)

r2
+
c(z)

r3
+ · · ·

]
. (3.9.8)

The characteristics of the system (3.9.3)–(3.9.4) are given by

(
dt

dr

)2 [
a2

0 − (γ − 1)u− 1

2
(γ + 1)v2

]
+ 2v

dt

dr
− 1 = 0. (3.9.9)

Substitution of (3.9.7)–(3.9.8) into (3.9.9) shows that, if z = constant is an
exact characteristic, it must have the form

a0t = r − z log r − h(z) − m(z)

r
· · · · · · . (3.9.10)

On the other hand, the log r term in (3.9.10) would require that the
expansions (3.9.7), (3.9.8) and (3.9.10) must be changed with g, b, c, and m
replaced by

g1(z) log r + g2(z), b1(z) log r + b2(z),

c1(z) log r + c2(z), m1(z) log r +m2(z), (3.9.11)

respectively, if equations (3.9.3) and (3.9.4) are to be satisfied. Substituting
(3.9.7), (3.9.8) and (3.9.10) with the changed coefficients (3.9.11) into (3.9.3),
(3.9.4) and (3.9.9) and equating coefficients of different products of 1/r and
log r to zero lead to the conclusion that the unknown functions of z may be
expressed in terms of h(z) and that the function g1(z) is identically zero.
The result is

u = a2
0

[
−kz
r

+
K1z

2 + 1
2B

2
1

r2
+ · · ·

]
, (3.9.12)
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v = − u

a0
− a0

[
(1
2kz

2 +B1) log r + 1
2kz

2 + k
∫ z
0 ζh

′(ζ)dζ +B2

r2

]

+ · · · · · · , (3.9.13)

a0t = r − z log r − h(z)

−(1
2kz

2 +B1) log r +K2z
2 + 1

4 (γ + 5)B1 + k
∫ z
0 ζh

′(ζ)dζ +B2

r
+ · · · · · · , (3.9.14)

where B1 and B2 are arbitrary constants, k = 2/(γ + 1), K1 = k2 − k/4,
K2 = 5/4 + 3k/2.

It is convenient to impose the shock conditions in the following form:
(i) the angle property which states that, to first order in strength of the
shock, the angles that the shock makes with the characteristics on each side
of it are equal, and (ii) φ is continuous along the shock path so that the
derivative φr + U−1φt assumes the same value on each side of it; here U is
the velocity of the shock (see Figure 3.16). Let the main shock be referred
to as S while the secondary shock (if any) behind the main shock may be
called S1. Let the equation of a characteristic C meeting the main shock be
written as

a0t = r − z log r − h(z) +O(r−1 log r), z = constant. (3.9.15)

Since the characteristic C lies between the two shocks, for a fixed r, t is
bounded. It follows that z and h(z) must be bounded in this region. If the
equation of the shock S is assumed to be a0t = r − f(r), then the angle
property via (3.9.14) gives

f ′(r) =
1

2
zr−1 +O(r−2 log r). (3.9.16)

Figure 3.16 The main shock S and the secondary shock S1 in (r, a0t) plane

(Whitham, 1950).
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From (3.9.15) and the shock locus a0t = r − f(r) we get

f(r) = z log r + h(z) +O(r−1 log r). (3.9.17)

For each characteristic meeting the shock we may have a value of the
co-ordinate r correspond to z. This relation may be written as r = r(z).
Differentiating (3.9.17) with respect to z and substituting for f ′(r) from
(3.9.16) we have

[
zr−1 +O(r−2 log r)

] dr
dz

+ 2 log r = −2h′(z), (3.9.18)

that is,
d

dz

[
z2 log r +O(zr−1 log r)

]
= −2zh′(z). (3.9.19)

Therefore,

z2 log r +O(zr−1 log r) = −2

∫
zh′(z)dz

= −2zh(z) + 2h1(z) + b2, (3.9.20)

where

h1(z) =

∫ z

0
h(z)dz (3.9.21)

and b is an arbitrary constant. We thus have

log r =
b2

z2
− 2h(z)

z
+ 2

h1(z)

z2
+O(r−1 log

3
2 r), (3.9.22)

and so, using (3.9.17),

f(r) =
b2

z
− 2h(z) + 2

h1(z)

z
+O(r−1 log r). (3.9.23)

The velocity U of the shock in the (r, t) plane is given by
1/U = dt/dr = (1 − f ′(r))/a0. Applying condition (ii) behind the shock,
namely, φ is continuous at the shock, we have a0 [φr + φt/U ] = a0v + u
−uf ′(r) = 0 immediately behind the shock, since φ is zero ahead of the
shock. Using (3.9.12), (3.9.13) and (3.9.23) in this equation, we easily check
that B1 = 0, B2 = −kb2/2.

Equation (3.9.22) gives the relation between r and z at any point of
the shock. Therefore, as r → ∞, z → 0. This implies that there exists a
characteristic C∗ behind the shock for which a0t = r − h(0) + O(r−1 log r)
(see (3.9.14)). This characteristic is thus a straight line in the limit r → ∞.
Therefore, the results developed by Whitham (1950) would apply to any
flow for which some characteristic behind the front shock is asymptotically
straight.
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Now we apply these results to analyse an explosion. The distant be-
haviour of the blast wave may be assumed to be produced by some piston
motion R = R(a0t). To show that there would exist a straight characteristic
between the piston and the shock as r → ∞, we may argue as follows. The
function R(ξ) has either a maximum at a finite value ξ0, or R′(ξ) > 0 for all
ξ and R(ξ) → R0 (a constant) as ξ → ∞. The latter is the case for a piston
motion simulating an explosion. It follows that the function R2R′(ξ) is zero
at ξ = 0 and is also zero either at some ξ0 or tends to zero as ξ → ∞. In
either case, Rolle’s theorem implies that there exists a zero of the function
F (ξ) = −d(R2R′)/dξ different from ξ = 0. We shall presently identify the
function F (ξ) by reference to the piston motion. The boundary condition
on the piston is that the velocity of the piston is equal to that of the particle
on it. If the piston motion is given by r = R(a0t), then ∂φ/∂r = v = dR/dt
on the piston. As stated earlier, the flow here is found from the (linear)
solution

u =
a2

0F (ξ)

r
, (3.9.24)

v = − u

a0
− a0

∫ ξ
0 F (ξ′)dξ′

r2
, (3.9.25)

where ξ, however, must be identified with the exact characteristics (cf.
(3.9.5) and (3.9.6)). Using (3.9.24) for u and the relation v = dR/dt in
(3.9.25) and differentiating the resulting expression, we identify F (ξ) as

F (ξ) = − d

dξ
[R2(ξ)R′(ξ)], (3.9.26)

if terms of fifth order in R,R′, and R′′ are ignored. We may, in fact, write
the solution (3.9.12)–(3.9.14) for large r in a slightly different form which
resembles more closely the system (3.9.24)–(3.9.25). The arbitrary function
h(z) in (3.9.10) must contain a term of the form −z log d where d has the
dimension of length. We may write y = h(z)+z log d and let z = −k−1F (y).
Then the expressions (3.9.12)–(3.9.14) may be rewritten as

u = a2
0

[
F (y)

r
+

1
2B1 +O(F 2)

r2
+ · · ·

]
, (3.9.27)

v = − u

a0

−a0

[
(B1 +O(F 2)) log r +

∫ y
y0
F (y

′

)dy
′

+B2 +O(F 2)

r2

]
(3.9.28)

+ · · · · · · ,
y = a0t− r − k−1F (y) log(r/d) − · · · , (3.9.29)

where y0 is the zero of F (y), the value of y for an asymptotically straight
characteristic C∗. The coefficient b2 which appears in the locus of the front
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shock a0t = t− f(r), where (3.9.22)–(3.9.23) hold, is now chosen to be

b2 = −2k−1B2 = −2k−1
∫ y0

0
F (y′)dy′ = 2k−1R2(y0)R

′(y0), (3.9.30)

(see (3.9.26) and the discussion below (3.9.23)). The form (3.9.27)–(3.9.29)
is now essentially the same as (3.9.24)–(3.9.25) if B1 and B2 are taken to be
0 and

∫ y0
0 F (y′)dy′, respectively. The nonlinear characteristics are given by

(3.9.29).
As an example, we may consider the piston curve R(a0t) = δa0t/(1+a0t),

δ << 1, so that initial velocity of the piston, δa0, is small while its radius
R(a0t) → δ as t→ ∞. In this case, in view of (3.9.26), we have

F (y) = −2δ3y(1 − y)/(1 + y)5. (3.9.31)

The (relevant) zero of F (y) is y0 = 1. Using (3.9.30), we have

b2 = 2k−1R2(1)R′(1) = 0.15δ3 for γ = 1.4. (3.9.32)

The excess pressure at a point behind the shock in this case is given by

p

p0
= −ρ0

p0

∂φ

∂t
+O

[(
∂φ

∂r

)2
]
,

=
γkz

r
+O(z2r−2), (3.9.33)

where z is given in terms of r and t by (3.9.15) and p0 and ρ0 are undisturbed
pressure and density, respectively. Expanding h(z) in (3.9.15) etc., we may
write (3.9.33) more explicitly as

p

p0
=

2γ

γ + 1

r − a0t− h(0)

r log r
+O(r−1 log−3/2 r). (3.9.34)

Therefore, for γ = 1.4, p/p0 falls from its higher value at the main shock at
a rate 1.16r−1 log−1 r atm/sec until the secondary shock is reached where it
may presumably return to a smaller value.
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Chapter 4

Shock Propagation Theories:

Some Initial Studies

4.1 Shock Wave Theory of Kirkwood and Bethe

As we mentioned in Chapter 1, there was much activity in the area of shock
waves and explosions during World War II, which continued to grow for
several decades. Some of the work in this area was carried out independently
by researchers, quite unaware of others’ contributions. Thus, occasionally,
ideas and assumptions overlapped, as we shall show. In the present chapter
we discuss two approximate theories of shock propagation due to Kirkwood
and Bethe (1942) and Brinkley and Kirkwood (1947) and the extension
of the latter by several other authors. The Kirkwood–Bethe theory has
essentially the same underlying ideas as were later proposed and developed
by Whitham (1950, 1952, 1956) in his theory of weak shock waves (see
section 3.9). We may also refer to the work of Akulichev, Boguslavskii,
Ioffe, and Naugol’nykh (1968).

The equations of continuity and motion may be written as

1

ρ

dρ

dt
= −∇ · ~u, (4.1.1)

d~u

dt
= −1

ρ
∇p, (4.1.2)

where, as usual, ~u, ρ, and p stand for particle velocity, density, and pressure,
respectively, at any point r and time t, and d/dt = ∂/∂t + ~u · ∇. We
first derive some thermodynamic relations and then make the assumption
that the flow is isentropic. The implications of this assumption have been

137
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discussed in detail in section 3.9 with reference to Whitham’s work. It is a
reasonable assumption when the shocks involved are weak or when the flow
being considered is asymptotic in nature so that the shocks, initially strong,
have become relatively weak.

Equations (4.1.1) and (4.1.2) should be supplemented by the equation
of state

p = f(ρ, S) (4.1.3)

and the equation of particle entropy

dS

dt
= 0. (4.1.4)

We introduce enthalpy or heat content,

H = E + p/ρ, (4.1.5)

where E is the internal energy per unit mass of the fluid, and the enthalpy
increment

w = H −H0, (4.1.6)

where H0 is the enthalpy of the undisturbed fluid in front of the shock.
We write the fundamental thermodynamic equation for H or w as

dw = TdS +
dp

ρ
, (4.1.7)

where T is the absolute temperature. Integrating (4.1.7) we have

w =

∫ p

p0

dp′

ρ(S0, p′)
+

∫ S

S0

T (p0, S
′)dS′, (4.1.8)

where p0 and S0 are (undisturbed) pressure and entropy ahead of the shock,
respectively, and the line integrals in (4.1.8) are on paths of constant entropy
and constant pressure, respectively. Using (4.1.8), we may write (4.1.1),
(4.1.2) and (4.1.4) as

∇ · ~u = − 1

c2
dw

dt
, (4.1.9)

∂~u

∂t
− ~u× (∇× ~u) = −∇Ω + T∇S, (4.1.10)

dS

dt
= 0, (4.1.11)

where

Ω = w + u2/2, c2 =

(
∂p

∂ρ

)

S

. (4.1.12)

Ω may be referred to as kinetic enthalpy; c is the speed of sound. Kirkwood
and Bethe (1942) observed that if the (nondimensional) pressure across the
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shock in water is up to 50,000, the Rankine-Hugoniot conditions show that
the dissipated enthalpy

∫ S
S0
T (p0, S

′)dS′ is only a few percent of the total.
Therefore, they replaced (4.1.8) by

w =

∫ p

p0

dp′

ρ(S0, p′)
, (4.1.13)

thus ignoring the entropy changes across the shock.
The governing equations (4.1.9)–(4.1.12) then simplify and become

∇ · ~u = − 1

c2
dw

dt
, (4.1.14)

∂~u

∂t
− ~u×∇× ~u = −∇Ω, (4.1.15)

Ω = w + u2/2, c2 =

(
∂p

∂ρ

)

S0

. (4.1.16)

Assuming the initial flow to be irrotational, equation (4.1.15) would imply
that ∇ × ~u = 0 for all time. (This is always true for the flows which
we consider in what follows). This permits the introduction of a velocity
potential ψ such that

~u = −∇ψ, (4.1.17)

so that (4.1.14)–(4.1.15) become

∇2ψ − 1

c2
dw

dt
= 0, (4.1.18)

Ω =
∂ψ

∂t
. (4.1.19)

Eliminating w from (4.1.18) with the help of (4.1.16), (4.1.17) and (4.1.19),
we arrive at the equation

∇2ψ − 1

c2
∂2ψ

∂t2
=

1

c2

[
~u

2
· ∇u2 − du2

dt

]
, (4.1.20)

where

∇2ψ =
∂2ψ

∂r2
+

2

r

∂ψ

∂r
. (4.1.21)

Equation (4.1.20) and the variables ψ, Ω, G and u may be expressed in
terms of φ as follows:

ψ =
φ

r
, Ω =

G

r
, G =

∂φ

∂t
, (4.1.22)

u =
φ

r2
− 1

r

∂φ

∂r
, (4.1.23)

∂2φ

∂r2
− 1

c2
∂2φ

∂t2
=

1

c2

[
u

2

∂u2

∂r
− du2

dt

]
. (4.1.24)
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Two approximations of (4.1.24) may be noted. If the medium is incom-
pressible so that c → ∞, (4.1.24) reduces to ∂2φ/∂r2 = 0 which, with the
boundary condition Ω → 0 as r → ∞ (see (4.1.22)) leads to the solution
φ = φ(t), implying that

Ω =
G(t)

r
, G(t) = φ′(t),

u =
φ(t)

r2
. (4.1.25)

We observe that in this case the function rΩ propagates outward with infinite
velocity. In the acoustic limit, the nonlinear terms in (4.1.24) may be ignored
while c may be replaced by its undisturbed value c0. Thus, (4.1.24) becomes

φrr −
1

c20
φtt = 0, (4.1.26)

with the relevant solution φ = φ(t−r/c0). The limiting solution in this case
of small amplitude waves becomes

Ω =
G(t− r/c0)

r
,

u =
φ(t− r/c0)

r2
+

Ω

c0
. (4.1.27)

In the present limit the function rΩ propagates with the constant speed c0

of sound in the undisturbed medium. Since it is not possible to write an
exact form for the speed with which rΩ propagates, a plausible choice is the
local sound speed c + u in the moving medium (cf. Whitham’s approach
in section 3.9). Now we give Sachdev’s (1976) modified form of Kirkwood–
Bethe theory.

Let G = rΩ = r∂ψ/∂t propagate with the exact speed of the positive
characteristics so that

∂G

∂t
+ (u+ c)

∂G

∂r
= 0. (4.1.28)

We observe from (4.1.16) and (4.1.19) that

G(r, t) = r
∂ψ

∂t
= r

(
w +

u2

2

)
, (4.1.29)

where

w =

∫ p

p0

dp

ρ
. (4.1.30)

(see (4.1.13)). We consider specifically the motion produced by a spherical
piston with the equation R = R(t) so that u = dR/dt and d2R/dt2 = ut+uur

there.
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We may write the equations of continuity and motion explicitly in the
present case, assuming that the flow is isentropic:

ut + uur +
1

ρ
pr = 0, (4.1.31)

ρt + uρr + ρur +
2ρu

r
= 0. (4.1.32)

We substitute (4.1.29) into (4.1.28) and get an equation in w. We may
also express p and ρ in terms of w with the help of (4.1.30) and the equation
of isentropy, p = kργ . The three equations (4.1.28), (4.1.31), and (4.1.32)
can then be combined to write the rate of change of the function w along
the piston path dr/dt = u:

r

c

(
1 − u

c

)
(wt + uwr) +

(
u

c
+ 1

)
w

= r

(
1 − u

c

)
(ut + uur) +

3

2

(
1 − u

3c

)
u2. (4.1.33)

Since, in the present case, the function w is related to c2 by

w =
c20

(γ − 1)

(
c2

c20
− 1

)
, (4.1.34)

(4.1.33) may be transformed to express the rate of change of sound speed c
along the piston path:

dc

dt
=
∂c

∂t
+ u

∂c

∂r

=
γ − 1

2R
(
1 − u

c

)
{
R
d2R

dt2

(
1 − u

c

)
+

3

2

(
dR

dt

)2 (
1 − u

3c

)

− 1

(γ − 1)

(
1 +

u

c

)(
c2 − c20

)}
, (4.1.35)

where, as observed earlier, R = R(t), u = dR/dt, ut + uur = d2R/dt2 along
the piston path.

The next step is to connect the piston motion with that of the shock via
the Rankine-Hugoniot conditions and the basic assumption (4.1.28) under-
lying the present theory. According to the latter,

G(r, t) = G(R, τ) = GR(τ), (4.1.36)

where

t = τ +

∫ r

R

dr

u+ c
. (4.1.37)

τ is the characteristic variable which labels individual characteristics. This
variable is specified (there is some freedom in this choice, cf. Whitham
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(1956)) such that it is equal to the time t when a given positive characteristic
or wavelet originates from the piston. Since we are dealing here with weak
shocks, the relations holding along them give (see Whitham (1974) p. 176))

G = c0ru(1 + βu), (4.1.38)

u+ c = c0(1 + 2βu), β =
γ + 1

4c0
. (4.1.39)

To draw the individual characteristics from a given piston path, we take
recourse to the following procedure. For a given piston motion R = R(t),
equations (4.1.34) and (4.1.35) give c, w, and G = R(w+u2/2) as functions
of τ , which is equal to t at the piston. Then, (4.1.37) gives t = t(r) as
the locus of the characteristics. Substituting (4.1.38)–(4.1.39) in (4.1.37),
remembering that G is constant along a positive characteristic, and inte-
grating from the piston we get

t = τ +
βG

c20

[
1 + 2βu

βu(1 + βu)
− 1 + 2βU

βU(1 + βU)
− 2ln

(1 + βu)βU

(1 + βU)βu

]
, (4.1.40)

where, in accordance with (4.1.38)–(4.1.39), we have

βu =
1

2

[(
1 +

γ + 1

rc20
G

)1/2

− 1

]
, (4.1.41)

βU =
1

2

[(
1 +

γ + 1

Rc20
G

)1/2

− 1

]
. (4.1.42)

Here, U = dR
dt at the piston. Thus, (4.1.40) represents a relation between

t, τ,G, r, and R = R(t).

It is interesting to observe that if we assume the perturbation to be small
so that βu→ 0 in (4.1.40), we simply get

t− τ =
r −R

c0
. (4.1.43)

Equation (4.1.43) shows that the time t−τ for the perturbation to propagate
from the expanding sphere R to the point r is independent of G. If we retain
the next term in the expansion of (4.1.40) in βu, we obtain

t− τ =
r −R

c0
− 2βG

c20
ln
r

R
. (4.1.44)

This is exactly the result obtained by Whitham (1950, 1956) in his theory of
weak shocks (see section 3.9). Here the time of propagation of the wavelet
from the expanding sphere to the point r depends on G. This result clearly
exhibits the nonlinear effect which leads to the distortion of the wave.
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To derive the shock locus we first observe that, to second order in u, the
shock velocity is given by

Us = c0

(
1 + βu+

1

2
β2u2

)
, (4.1.45)

where u is the particle velocity behind the shock. Let the shock locus be
described by τ = T (r). If this functional relation is found, (4.1.40) gives the
shock locus in the (r, t) plane. Now, we put τ = T (r) in (4.1.40), differentiate
the resulting equation with respect to r and write
dt/dr equal to U−1

s , where the shock velocity Us is given by the Rankine-
Hugoniot relation (4.1.45). We thus obtain

dT

dr
=

γ+1
r2 ĜLr +

(
1 + βu+ 1

2β
2u2
)−1

D
, (4.1.46)

where

D = 1 +

[
1 + 2βu

u(1 + βu)
− 1 + 2βU

U(1 + βU)
− 2βln

(1 + βu)U

(1 + βU)u

]
dĜ

dT

+
(γ + 1)

r
Lr
dĜ

dT
−
(
γ + 1

R

dĜ

dT
− (γ + 1)

R2
Ĝ
dR

dT

)
LR,

Lr =
Ĝ

4β
(
1 + γ+1

r Ĝ
)1/2

[
2β

(1 + βu)u
− 1 + 2βu

u2(1 + βu)

−β(1 + 2βu)

u(1 + βu)2
− 2β2

(1 + βu)
+

2β

u

]
, (4.1.47)

Ĝ = G/c20, (4.1.48)

and LR is obtained from Lr in (4.1.47) by replacing r by R and u by U .
βu and βU are defined by (4.1.41) and (4.1.42), respectively. R,G and H
(see (4.1.6)) are functions of τ as obtained from the piston motion R = R(t),
(4.1.36), and (4.1.34). In (4.1.46), these are evaluated at τ = T (r). Equation
(4.1.46) is solved for T = T (r), subject to some initial condition at the shock.
Equation (4.1.40), along with τ = T (r) thus found, gives the locus of the
shock in the (r, t) plane.

Cole (1948), in his review of Kirkwood–Bethe theory, remarked that the
speed with which the function G propagates may better be taken to be c+σ
rather than c + u, where σ =

∫ ρ
0 (c/ρ) dρ. The discussion of this matter

in the appendix to his book, however, does not confirm this claim. c + u,
we believe, is a good choice in the light of Whitham’s more recent work
(Whitham (1974)).

© 2004 by Chapman & Hall/CRC



144 Shock Waves and Explosions

4.2 The Brinkley-Kirkwood Theory

The work discussed in section 4.1 due to Kirkwood and Bethe (1942) (as
also the related theory of Whitham (1950)) has implicit in it the assump-
tion that shocks are of small strength. Both these theories are of second
order in shock strength and ignore the finite entropy jump across the shock.
In another war time work due to Brinkley and Kirkwood (1947)—BK for
short—this simplifying assumption is not made. Shocks of all strengths are
permitted and the Rankine-Hugoniot relations are exactly satisfied. This
theory, however, also suffers from two limitations: (i) it is local and gives
the shock trajectory and the flow immediately behind it; it does not give
the flow in the entire domain behind the shock, (ii) it uses a physical argu-
ment regarding nonacoustic decay of waves of finite amplitude, associated
with the finite entropy increment experienced by the fluid passing through
the shock front and the accompanying dissipation of energy. As a shock
passes through a fluid element, it leaves in its path a residual energy incre-
ment determined by the entropy jump due to the passage of the shock. As
a consequence, the energy carried by the shock decreases with distance as
it travels away from the source. This physical description is written as a
partial differential equation which, together with other governing equations,
is used to find the decay of the shock in terms of pressure ratio across it (cf.
Von Neumann’s approach in section 3.3). This physical argument however
is not unique.

The equations of motion here are written in a hybrid Euler-Lagrangian
form as

ρrα

ρ0Rα
u

R
+
αu

R
= − 1

ρc2
pt, (4.2.1)

Rα

rα
ut = − 1

ρ0
pR , (4.2.2)

u =

(
∂r

∂t

)

R
, (4.2.3)

where u is particle velocity, p is the pressure in excess of the undisturbed
pressure p0, ρ is the density and ρ0 is the undisturbed density. r is the
Eulerian co-ordinate at time t of an element of fluid which has the La-
grangian co-ordinate R. c is the speed of sound, equal to [(∂p/∂ρ)S ]1/2.
The coefficient α is equal to 0, 1, 2 for plane, cylindrical, and spherical ge-
ometry, respectively. Equations (4.2.1)–(4.2.3) can easily be written from
the Eulerian system by making use of the conservation of mass relation,
ρrαdr = ρ0R

αdR. The partial derivative ∂/∂R denotes derivative following
the particle. The basic PDEs must be solved subject to the conditions on
the piston curve in the (R, t) plane and to the Rankine-Hugoniot conditions
across the shock, namely,

p = ρ0uU, (4.2.4)
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ρ(U − u) = ρ0U, (4.2.5)

∆H = (p/2)

(
1

ρ0
+

1

ρ

)
, (4.2.6)

where ∆H is the specific enthalpy increment in the fluid element as it is
overtaken by the shock and U is the shock velocity. The enthalpy H in
(4.2.6) is equal to E + (p+ p0)/ρ = γ(p + p0)/(γ − 1)ρ, where E is the
internal energy. The shock locus, R = R(t), must be found as part of the
solution. The main idea of the BK theory is to write four partial differential
equations from the basic system and the physical argument referred to above
and hence determine the partial derivatives pt, pR, ut, uR, which may be
combined to give the total derivative

d

dR
=

∂

∂R
+

1

U

∂

∂t
, (4.2.7)

of the excess pressure along the shock path. Two of these PDEs are obtained
by localising (4.2.1)–(4.2.2) at the shock r = R(t), the third is obtained by
differentiating the relation (4.2.4) along the shock path, and the fourth is
found from the energy argument stated above. Thus, from (4.2.1) and (4.2.2)
localised at the shock, and (4.2.4) differentiated in the direction (4.2.7), we
obtain

ρ

ρ0
uR +

1

ρc2
pt +

αu

R
= 0, (4.2.8)

ut +
1

ρ0
p

R
= 0, (4.2.9)

ut + Uu
R
− g

ρ0
p

R
− g

ρ0U
pt = 0, (4.2.10)

where

g = ρ0U
du

dp
= 1 − p

U

dU

dp
. (4.2.11)

We observe that, with the help of the Rankine-Hugoniot conditions
(4.2.4)–(4.2.6), all the coefficients in (4.2.8)–(4.2.11) may be expressed as
functions of excess pressure p across the shock.

Now we translate the energy argument into a PDE. We denote by w0

the adiabatic work done per unit area by the initial generating surface on
the fluid exterior to itself. Thus, we have

w0a
α
0 =

∫ R

a0

ρ0r
α
0E[p(r0)]dr0 +

∫ ∞

t0(R)
rαu′(p′ + p0)dt

= I1 + I2, (4.2.12)

where u′ and p′ denote particle velocity and excess pressure behind the shock
front, respectively; the corresponding values immediately behind the shock
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will be denoted by unprimed letters. t0(R) is the time of arrival of the shock
front at the point R. E(p) is the jump in the specific energy of a fluid
element as it crosses the shock; this is related to the entropy jump across
the shock at the pressure p. a0 is the Lagrangian co-ordinate of the initial
generating surface. The two terms in (4.2.12) represent, respectively, the
increased internal energy of fluid at pressure p0 within a radius R and the
work done on the generating spherical surface (for all time).

We may write

∫ ∞

t0(R)
p0r

αu′dt = p0∆V + p0

∫ R

a0

(
ρ0

ρ
− 1

)
rα
0 dr0, (4.2.13)

where ρ is density of the fluid and ∆V is the volume swept out by the
generating surface per unit area of the initial generating surface. In writing
(4.2.13) we have used the relation ρr2dr = ρ0r

2
0dr0. Putting (4.2.13) into

the second term I2 of (4.2.12), we have

w0a
α
0 = p0∆V +

∫ R

a0

ρ0r
α
0 h[p(r0)]dr0 +

∫ ∞

t0(R)
rαu′p′dt, (4.2.14)

where h(p) = E + p0∆(1/ρ) is the specific enthalpy of an element of fluid
traversed by a shock wave which has excess pressure p and which returns
to pressure p0 along its new adiabatic. As t → ∞ and R → ∞, the second
integral in (4.2.14) is assumed to tend to zero. Now subtracting (4.2.14)
from its limiting form as t→ ∞, we get

D(R) =

∫ ∞

t0(R)
rαu′p′dt, (4.2.15)

where

D(R) =

∫ ∞

R
ρ0r

α
0 h[p(r0)]dr0. (4.2.16)

It is clear from (4.2.15) that a−α
0 D(R) is the shock wave energy at R

per unit area of the initial generating surface. This is also the work done
(per unit area) on the fluid exterior to R. (The BK theory assumes that no
secondary shock is formed in the flow behind.)

The energy time integral (4.2.15) can be normalised by writing it in the
form

D(R) = Rαpuµν, (4.2.17)

where

1

µ
= −

(
∂

∂t
log p′u′rα

)

t=t0(R)

= −1

p
pt −

1

u
ut −

αu

R
,
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ν =

∫ ∞

0
f(R, τ)dτ, τ =

t− t0(R)

µ
, (4.2.18)

f(R, τ) =
rαp′u′

Rαpu
.

Brinkley and Kirkwood (1947) succinctly describe the integrand in
(4.2.18): the function f(R, τ) is the energy time integrand, normalised by
its peak value Rαpu at the shock front and expressed as a function of R
and a reduced time τ which normalises its initial slope to −1 if µ does not
vanish.

The function f(R, τ) is not known. It is found from the data on ex-
plosions that this function is a slowly varying function of R. It is also
known that initial pressure-time and energy-time curves of an explosion
wave rapidly decrease with time. It is therefore assumed that

f(R, τ) = f(τ) = e−τ (4.2.19)

so that ν = 1. More realistic estimates for ν have been suggested by other
investigators (Sachdev (1971, 1972)). Choosing ν = 1 and eliminating µ
from (4.2.17) with the help of (4.2.18), we get the fourth equation involving
the derivatives of u and p:

1

u
ut +

1

p
pt +

αu

R
= −R

αpu

D(R)
. (4.2.20)

Solving for ∂p/∂R and ∂p/∂t from the four equations (4.2.8)–(4.2.10) and
(4.2.20) and combining them appropriately, we get the total deriva-
tive dp/dR = ∂p/∂R + (∂p/∂t)/U along the shock path; the corresponding
derivative for dD/dR is obtained from (4.2.16). We thus arrive at the fol-
lowing coupled system of ODEs for D and p along the shock curve:

dD

dR
= −RαL(p), (4.2.21)

dp

dR
= −νR

αp3

D
M(p) − αp

2R
N(p), (4.2.22)

where

L(p) = ρ0h(p),

M(p) =
1

ρ0U2

G

2(1 + g) −G
,

N(p) =
4(ρ0/ρ) + 2(1 − ρ0/ρ)G

2(1 + g) −G
, (4.2.23)

G = 1 − (ρ0U/ρc)
2, g = 1 − p

U

dU

dp
.

The functions L(p),M(p), and N(p) can be expressed entirely as functions
of pressure with the help of the equation of state and the Rankine-Hugoniot
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conditions. The system (4.2.21)–(4.2.23) applies both to air and water, if
the corresponding equations of state are used, and takes full account of
the finite entropy jump at the shock. This system is clearly not integrable
in a closed form and must be solved numerically with appropriate initial
conditions. However, we may first check its asymptotic form as p→ 0, that
is, as the shock degenerates to a sound wave. In this limit (assuming the
undisturbed medium to be air with the ideal adiabatic equation of state
p = p0[(ρ/ρ0)

γ − 1]) and γ = cp/cv , we check that

lim
p→0

L(p) =
γ + 1

12γ2

p3

p2
0

,

lim
p→0

M(p) =
γ + 1

8γ2

p

p2
0

, (4.2.24)

lim
p→0

N(p) = 1,

lim
p→0

ν =
2

3
.

The last relation follows if it is assumed that

f(τ) = (1 − τ/2)2 τ ≤ 2,

= 0 τ > 2. (4.2.25)

Equations (4.2.21)–(4.2.22) now become

dD

dR
= −γ + 1

12γ2

Rαp3

p2
0

, (4.2.26)

dp

dR
+
αp

2R
= −(γ + 1)

12γ2

Rαp4

Dp2
0

. (4.2.27)

The system (4.2.26)–(4.2.27) may be integrated for different geometries:

Spherical (α = 2):

Rp = P1[log(R/R1)]
−1/2,

D = [(γ + 1)/6γ2p2
0]P

2
1Rp. (4.2.28)

Cylindrical (α = 1):
√
Rp = P1[2(R

1/2 −R
1/2
1 )]−1/2,

D = [(γ + 1)/6γ2p2
0]P

2
1

√
Rp. (4.2.29)

Plane (α = 0):

p = P1[(R −R1)]
−1/2,

D = [(γ + 1)/6γ2p2
0]P

2
1 p. (4.2.30)

Here P1 and R1 are constants.
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The above results for air may be extended to water if p0 is replaced by
the characteristic pressure B in the Tait equation of state for water, namely,
p = B[(ρ/ρ0)

γ−1] where, however, γ 6= cp/cγ but is the exponent of (ρ/ρ0) in
the Tait equation. We observe that the asymptotic result (4.2.28) for α = 2
is in agreement with the results of Kirkwood–Bethe theory and Whitham’s
weak shock theory (see sections 4.1 and 3.9).

The theory of Brinkley and Kirkwood (1947) attracted considerable at-
tention, particularly in the astrophysical context, since, analogous to the ap-
proximate approach of Chester (1954), Chisnell (1957) and Whitham (1958),
it offered a convenient way of finding shock decay and shock locus for explo-
sions. It was generalised to apply to nonuniform media by several authors
(Nadezhin and Frank-Kamenetskii (1965) and Kogure and Osaki (1962))
and hence used to study shock wave phenomena in the stars.

Sachdev (1971, 1972) showed how to extend the BK theory so that it gave
correct asymptotic limits both when the shock becomes weak (see (4.2.26)–
(4.2.30)) and when it is infinitely strong and has the Taylor-Sedov limiting
solution in its early stages of propagation. For the latter purpose, the follow-
ing thermodynamic argument was used to find the decay of the shock. As
a particle crosses the shock, its entropy and internal energy increase. This
particle, with the new value of entropy, expands adiabatically until it comes
to its original pressure (but higher temperature) and then it radiates en-
ergy at constant pressure, finally assuming its ambient value of pressure and
specific volume. This path in the thermodynamic variables was suggested
by Schatzman (1949) and is in conformity with pressure–specific volume
relation used by Taylor (1950) to determine the fraction of explosion en-
ergy which is degraded as heat and is thus not available for doing work as
the shock propagates. This process is expressed as an equation which de-
scribes the dissipation of the energy of explosion as heat. Sachdev (1971,
1972) exploited the arbitrariness of the parameter ν in (4.2.17) to obtain
the correct limiting behaviour in the strong shock limit. It was shown that
if, in (4.2.21), the shock strength is allowed to tend to infinity, the rate
of decay of shock energy, dD/dR, tends to zero. Equation (4.2.22) with
D = constant then leads to a solution which has exactly the same form
as the Taylor-Sedov solution. The similarity parameter ν is now made to
depend on γ and is so chosen that the form of the solution in the strong
shock limit exactly coincides with the Taylor-Sedov solution. The value of
ν in the weak shock limit is 2/3 and does not change significantly with γ.
Comparison of the analytic results so obtained with the numerical solution
of Lutzky and Lehto (1968) showed that the two agreed very well in the
strong shock limit if ν is appropriately chosen as a function of γ. The above
argument was shown to hold even when the medium ahead of the shock is
nonuniform.
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4.3 Pressure Behind the Shock: A Practical

Formula

An approach closely related to that of Brinkley and Kirkwood (1947), sim-
pler, less rigorous, but useful nevertheless is due to Theilheimer (1950). The
time history of the pressure behind the shock may be written down in an
empirical form as

p(t) = p0 + pse
−t/θ , (4.3.1)

where θ is a (dimensional) constant. Here, ps and p0 are pressure behind
the shock at t = 0 and the undisturbed pressure, respectively. It is clear
from (4.3.1) that

θ = −(p− p0)

(∂p/∂t)
. (4.3.2)

Theilheimer (1950) exploited the definition (4.3.2) to derive the ‘constant’
θ as a function of γ. To that end, he made use of basic equations of motion
and the Rankine-Hugoniot conditions. From (4.3.1)–(4.3.2) we immediately
find that

θ = − ps

(∂p/∂t)t=0+

. (4.3.3)

That is, θ defines the initial pressure decay behind the shock front. Intro-

ducing the speed of sound a =
√

(∂p/∂ρ)
S

, equations of motion for spherical

symmetry may be written in the form

ρ(ut + uur) + pr = 0, (4.3.4)

pt + upr + a2ρur +
2a2ρu

r
= 0. (4.3.5)

We may write the derivatives of p and u along the shock as

dp

dR
= pr +

1

U
pt, (4.3.6)

du

dR
= ur +

1

U
ut. (4.3.7)

Equations (4.3.4)–(4.3.7) can be solved for ∂p/∂t:

∂p

∂t
=
U
{

2ρua2

R (U − u) + dp
dR [a2 + u(U − u)] + du

dRa
2ρU

}

a2 − (U − u)2
. (4.3.8)

If we know the quantities behind the shock, we may use (4.3.8) to find the
initial decay in the pressure-time history. By introducing the nondimen-
sional pressure behind the shock,

ps =
ps

p0
=
p− p0

p0
, (4.3.9)
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equation (4.3.8) may be rewritten in terms of θ (see (4.3.2)) as

1

θ
=

−U
{

2ρua2

Rp0
(U − u) + dps

dR [a2 + u(U − u)] + du
dR

a2ρU
p0

}

ps[a
2 − (U − u)2]

. (4.3.10)

Using the Rankine-Hugoniot conditions and explicit equation of state for air,
(4.3.10) may be simplified further. For example, for γ = 1.4, Theilheimer
wrote (4.3.10) as

1

θ
= −a0

(
6ps + 7

7

)1/2 [7(ps + 1)

3psR
+
dps

dR

(
7

3p2
s

+
7

2ps

+
2

ps + 7

)]
. (4.3.11)

Equation (4.3.11) gives θ explicitly in terms of dimensionless shock over-
pressure ps and its derivative with respect to shock radius R. If the shock
‘line’, ps versus R, is known from experiment or theory, then θ may be found.
Theilheimer (1950) computed θ from (4.3.11) by using an empirical fit to the
‘shock line’ for Pentolite spheres obtained earlier by Stoner and Bleakney
(1948).

With θ thus obtained, (4.3.1) gives an ‘empirical’ time history of pressure
behind the shock. This may be used for comparison with overpressure gauge
records and may thus provide an independent check of the initial decay rate
of these records.
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Chapter 5

Some Exact Analytic

Solutions of Gasdynamic

Equations Involving Shocks

5.1 Exact Solutions of Spherically Symmetric Flows

in Eulerian Co-ordinates

It is illuminating to study attempts at the exact solution of one-dimensional
gasdynamic equations, which would throw light on the structure of the so-
lutions, the blast waves being one class of solutions of these equations. In
the present section we consider the work in this context by McVittie (1953)
and in the following section that by Keller (1956). The former is in Eulerian
co-ordinates while the latter uses Lagrangian co-ordinates (cf. Taylor (1950)
and Von Neumann (1941) for the blast wave problem).

McVittie (1953) gave explicit form of the solution for the equations of
motion and continuity in three dimensions but then restricted his analysis
to the spherically symmetric case. We discuss here this special case. We
write the equations of motion and continuity in spherical symmetry:

qt + qqr +
1

ρ
pr = 0, (5.1.1)

ρt +
1

r2
(r2ρq)r = 0. (5.1.2)

Here q, p, and ρ are particle velocity, pressure and density at the point r at
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time t. Using (5.1.1), we may write (5.1.2) in the alternative form

(ρq)t + (ρq2 + p)r +
2

r
ρq2 = 0. (5.1.3)

Motivated by “the Einstein’s gravitational potential function,” McVittie
(1953) showed that the expressions

q = −φrt/∇2φ, (5.1.4)

ρ = −∇2φ, (5.1.5)

p = P (t) − φtt + 2

∫
I

r
dr + I, (5.1.6)

in terms of an arbitrary function φ(r, t), satisfy (5.1.1) and (5.1.3) identically.
Here,

I = (φrt)
2/∇2φ, (5.1.7)

and

∇2φ =

(
∂2

∂r2
+

2

r

∂

∂r

)
φ. (5.1.8)

P (t) is an arbitrary function of t.
The above statement may be verified by substituting (5.1.4)–(5.1.8) di-

rectly into (5.1.1) and (5.1.3). We emphasise that the solution (5.1.4)–(5.1.8)
of (5.1.1) and (5.1.3) holds for an arbitrary ‘appropriately’ smooth function
φ. This ‘solution’ is expressed in terms of an integral which itself involves
the function I, defined by (5.1.7). It must satisfy the third equation, namely,
the particle isentropy, as well as appropriate boundary conditions, say, at
the shock or vacuum front, to yield a physically meaningful solution. Here
we follow McVittie’s analysis and shall detail its generalisation in section
5.3.

McVittie (1953) restricted the form of φ to describe ‘progressive waves’,

φ = −f(t)w(x), (5.1.9)

where f is an arbitrary function of t,

x = rt−α, (5.1.10)

and α is a constant. w(x) is an arbitrary function of x. Using the above
definitions, we may write the derivatives of φ etc. as

φtt = −α2ft−2
{
αg2 − g + tgt

α
w

−
(

2g − 1

α

)
xwx + x(xwx)x

}
, (5.1.11)

φrt = −αft−(α+1){(g − 1)wx − xwxx},
∇2φ = −ft−2αx−2(x2wx)x,
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where

g =
tft

αf
. (5.1.12)

For convenience, we introduce the function

v = x−(g−1)wx. (5.1.13)

Therefore, (5.1.11) becomes

φtt = −α2ft−2
{
αg2 − g + tgt

α
w

−
(

2g − 1

α

)
xgv + x(xgv)x

}
,

φrt = αft−(α+1)xgvx, (5.1.14)

∇2φ = −ft−2αx−2(xg+1v)x.

Now the function I in (5.1.7) and the integral 2
∫
(I/r)dr become

I = −α2ft−2xg+2u, (5.1.15)

2

∫
I

r
dr = −2α2ft−2

∫
xg+1udx, (5.1.16)

where

u =
xg(vx)2

(xg+1v)x
=

v2
x

xvx + (g + 1)v
. (5.1.17)

The ‘solution’ (5.1.4)–(5.1.6) now has the form

q = αtα−1xg+2 vx

(xg+1v)x
= αtα−1xg+2 (x−(g−1)wx)x

(x2wx)x
, (5.1.18)

ρ = ft−2αx−2(xg+1v)x = ft−2αx−2(x2wx)x, (5.1.19)

p− P = α2ft−2
{
αg2 − g + tgt

α
w −

(
2g − 1

α

)
xgv + x(xgv)x

−xg+2u− 2

∫
xg+1udx

}

= α2ft−2
{
αg2 − g + tgt

α
w −

(
2g − 1

α

)
xwx + x(xwx)x

−xg+2u− 2

∫
xg+1udx

}
, (5.1.20)

where v and u are defined in terms of w and f by (5.1.12), (5.1.13) and
(5.1.17).

Now one may find different subclasses of solutions which have special
properties. For example, one may assume that the velocity q is proportional
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to rµ, requiring g to be a constant. Here we shall give a few simple examples
due to McVittie (1953) and give more general results in section 5.3.

First we discuss the solutions for which the particle isentropy equation,
∂S/∂t + q∂S/∂x = 0, has not been imposed. In the special case for which
q ∝ r, the particle velocity (5.1.18) becomes

q = αt−1 (−g + 1)wx + xwxx

2wx + xwxx
r. (5.1.21)

Two simple cases may be identified.
Case A.

xwxx = (λ− 1)wx (5.1.22)

so that

w =
xλ

λ
(5.1.23)

and (5.1.21) reduces to

q =
a(t)

t
r, (5.1.24)

where

a(t) = α
λ− g

λ+ 1
=
αλ− tft/f

λ+ 1
. (5.1.25)

Here λ is a constant. In the present case, w(x) is determined while f(t)
remains arbitrary.
Case B. If we choose g = −1, the numerator in (5.1.21) becomes equal to
the denominator. We thus have

q = αrt−1. (5.1.26)

Here, the function w(x) remains arbitrary.

In both these cases the solution (5.1.18)–(5.1.20) can be written out
explicitly.

Case A. Here,

w =
xλ

λ
, v = xλ−g, u =

(λ− g)2

λ+ 1
xλ−g−2,

∫
uxg+1dx =

(λ− g)2

λ(λ+ 1)
xλ. (5.1.27)

The solution becomes

q =
a

t
r,

ρ = (λ+ 1)ft−2αxλ−2, (5.1.28)

p = α2ft−2{b(t)xλ +Q(t)},
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where α and λ are arbitrary constants, a(t) is related to f(t) by (5.1.25),
Q(t) is a new (arbitrary) function of t replacing P (t), and

b(t) =
λ+ 1

λα2
{−a2 + a− tat}. (5.1.29)

Case B. Since g = −1 in this case, (5.1.12) gives f = t−α. We, therefore,
have

q = α
r

t
,

ρ = t−3αF (x), (5.1.30)

p = α2t−α−2{G(x) +Q(t)},

where Q(t) is again an arbitrary function of t and

F (x) = x−2(x2wx)x,

G(x) =
α+ 1

α
w +

(
2 +

1

α

)
xwx (5.1.31)

+x(xwx)x − xu− 2

∫
udx.

For case A we observe from (5.1.28) that α and λ are arbitrary, but if the
density is to remain bounded at r = 0 for t > 0 we must have λ ≥ 2. Further,
if the pressure at r = 0 is zero, we also require that Q = 0. For case B, w(x)
must be chosen such that F (0) is either zero or constant so that there is no
singularity of density at r = 0. To keep the pressure at r = 0 nonsingular,
we must choose G(0) = 0. We again require that Q ≡ 0.

A case common to both A and B is obtained when pressure and density
are both functions of time alone. In this case we must have

λ = 2, b(t) = 0, (5.1.32)

while Q(t) 6= 0. We then have

a = t(τ + t)−1, f = σt2α(1 + t/τ)−3 (5.1.33)

from (5.1.25) and (5.1.29); τ and σ are constants of integration.
The solution in this case assumes the simple form

q =
r

τ + t
,

ρ = 3σ(1 + t/τ)−3, (5.1.34)

p = P (t).

We may observe that, in the present case, pressure and density are inde-
pendent of each other. This is a ‘cosmological’ solution which has similar
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behaviour even when self-gravitation of the mass of gas is allowed for. This
solution, however, is not of much practical interest.

Now we impose the particle adiabacy condition on the nonsingular solu-
tions from cases A and B. For case A, we require that Q(t) = 0 and λ > 2
so that

q =
a(t)

t
r,

ρ = (λ+ 1)ft−2αxλ−2, (5.1.35)

p = α2ft−2b(t)xλ.

Substituting (5.1.35) into the particle adiabacy condition

dS

dt
=

(
∂

∂t
+ q

∂

∂r

)
(lnp− γlnρ) = 0, (5.1.36)

we have

1

t

{
−2 + (3γ − 1)a+ t

bt
b

}
= 0

or

t
bt
b

= 2 − (3γ − 1)a. (5.1.37)

Here, γ = cp/cv.
Using the definition (5.1.29) of b(t) in (5.1.37) and introducing the trans-

formation z = lnt, we get

azz + {−3 + (3γ + 1)a}az + {2 − (3γ − 1)a}(1 − a)a = 0. (5.1.38)

If we use (5.1.29) in (5.1.37) and write

a = (tjt/j), (5.1.39)

we obtain the third order equation

jjttt + (3γ − 2)jtjtt = 0. (5.1.40)

This equation can be integrated to yield

jt =

{
2C

3(1 − γ)
j3(1−γ) + 2D

}1/2

(5.1.41)

or

t =

∫ [
2C

3(1 − γ)
j3(1−γ) + 2D

]−1/2

dj +E, (5.1.42)

where C, D, and E are arbitrary constants.
Thus, the adiabatic cases of the solutions (5.1.35) hold if a(t) and b(t)

are given by equations (5.1.29), (5.1.39) and (5.1.42).
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For case B, if we substitute (5.1.30) into (5.1.36), we get

1

t(G+Q)
{[α(3γ − 1) − 2]G+ [α(3γ − 1) − 2]Q+ tQt} = 0. (5.1.43)

Two solutions of (5.1.43) are easily obtained:

(i) If G(x) is not a constant, then

α = 2/(3γ − 1),

Q = constant. (5.1.44)

(ii) If G = ε, a constant, then

Q = −ε+ δt−α(3γ−1)+2, (5.1.45)

where δ is a constant of integration. With this choice of Q, (5.1.30) shows
that p = α2δt−3αγ , a function of t alone. We ignore this case and look at the
alternative (i) with Q = 0. The adiabatic motions in this case are governed
by

q =
2

3γ − 1

r

t
,

ρ = t−6/(3γ−1)F (x), (5.1.46)

p = α2t−2/(3γ−1)−2G(x),

where F (x) and G(x) are to be computed from (5.1.31), (5.1.13) and (5.1.17)
with α = 2/(3γ − 1) and w(x) arbitrary.

a = 2/(3γ − 1) is a constant solution of (5.1.38), which is common to
both cases A and B; this is in addition to the cosmological solution referred
to earlier without the condition of particle isentropy. With this choice of a,
equation (5.1.25) and (5.1.29) give

f = σ(λ+ 1)−1tαλ−{2(λ+1)}/(3γ−1) , (5.1.47)

b = 6(λ+ 1)λ−1α−2(γ − 1)(3γ − 1)−2, (5.1.48)

where σ is a constant of integration different from that in (5.1.34). Intro-
ducing these expressions in (5.1.35), we have

q =
2

3γ − 1

r

t
,

ρ = σt−{2(λ+1)}/(3γ−1)rλ−2 (λ > 2), (5.1.49)

p = 6σλ−1(γ − 1)(3γ − 1)−2t−2−{2(λ+1)}/(3γ−1)rλ.

This solution may also be obtained from case B by simply choosing

α = 2/(3γ − 1), w(x) = σλ−1(λ+ 1)−1xλ, Q = 0. (5.1.50)
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The cosmological solution (5.1.34) also satisfies the adiabatic condition
(5.1.36) provided P (t) = P0(1 + t/τ)−3γ , where P0 is constant. With this
definition of P (t), the pressure and density in (5.1.34) become related, in
contrast to the more general ‘cosmological’ case.

McVittie (1953) showed how each of the shock conditions may be fitted
to the solution (5.1.49). We shall discuss only the case for which all of these
conditions can be satisfied. Assuming the medium ahead of the shock to
be quiescent and uniform with pressure p0 and density ρ0, the Rankine-
Hugoniot conditions across the shock h = h(t) may be written as

ρ1(q1 − ht) = −ρ0ht, (5.1.51)

p1 + ρ1(q1 − ht)
2 = p0 + ρ0h

2
t , (5.1.52)

γ

γ − 1

p1

ρ1
+

1

2
(q1 − ht)

2 =
γ

γ − 1

p0

ρ0
+

1

2
h2

t , (5.1.53)

where ht is the velocity of the shock. The solution (5.1.49) involving two
arbitrary constants σ and λ must be subjected to the conditions (5.1.51)–
(5.1.53). For brevity, the following notation is introduced:

µ =
2

3γ − 1
, β = µ(λ+ 1),

δ = λ− 2, η =
1

3
ρ0(λ+ 1),

µ1 = ρ0µ
2σ−2/δ,

µ2 =
µ

λ
(1 − µ)σ−2/δ

=
6(γ − 1)σ−2/δ

λ(3γ − 1)2
, (5.1.54)

µ3 =
2

µ

{(
γ

γ − 1

)
µ2σ

2/δ +
1

2
µ2
}

=
2γ

γ − 1

1 − µ

λ
+ µ,

µ4 =
2γ

γ − 1

1

µ

p0

ρ0
.

The motion inside the shock r = h(t) may now be written from (5.1.49) as

q = µ
r

t
,

ρ = σt−βrδ (δ > 0), (5.1.55)

p = σ1+2/δµ2t
−2−βr2+δ.

It is also convenient to introduce the density behind the shock in the form
H(t) = ρ1 = σt−βhδ or

h = σ−1/δtβ/δH1/δ. (5.1.56)
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Also from (5.1.51), we have

ht = ρ1q1(ρ1 − ρ0)
−1. (5.1.57)

Using (5.1.55)2 , (5.1.56) and (5.1.57), an equation for H(t) is obtained:

t
ρ0 −H

H
Ht = (β − γµ)H − ρ0β. (5.1.58)

The solution of (5.1.58) is

βlnt− δ

3
ln(νµ) = −lnH +

µδ

µδ − β
ln{(δµ − β)H + ρ0β}, (5.1.59)

where ν is a constant of integration. Since (δµ− β)/δµ = −3/δ, we may
rewrite (5.1.59) as

3(η −H) = νt−(3β)/δH−3/δ. (5.1.60)

H, given by (5.1.60), satisfies (5.1.51). Now we turn to the second condition
(5.1.52). Eliminating ht from (5.1.51) and (5.1.52) we have

ρ0ρ1q
2
1 = (p1 − p0)(ρ1 − ρ0). (5.1.61)

Using the solution (5.1.55) at r = h(t), (5.1.56) and (5.1.54) in (5.1.61), we
have

µ1 = (H − ρ0){µ2 − p0t
2(1−β/δ)H−(1+2/δ)}. (5.1.62)

This must be an identity for any solution of (5.1.60). McVittie (1953)
chose this solution to be

ν = 0, H = constant = η. (5.1.63)

The conditions (5.1.62) and (5.1.63) then lead to two possibilities:

(i) β = δ, p0 6= 0,

µ1 = (η − ρ0){µ2 − p0η
−(1+2/δ)}. (5.1.64)

(ii) β 6= δ, p0 ≈ 0,

µ1 = (η − ρ0)µ2. (5.1.65)

McVittie (1953) showed that case (i) is incompatible with the third shock
condition (5.1.53). We, therefore, consider only case (ii) of a strong shock
for which p0 ≈ 0.

In this case, (5.1.54) and (5.1.65) with µ = 2
3γ−1 give

λ =
2(γ − 1)

γ − 3
. (5.1.66)
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Now, δ = λ − 2 = 4/(γ − 3) and, since λ > 2 and, therefore, δ > 0, we
have γ ≥ 3. From (5.1.54) we have

η =
1

3

3γ − 5

γ − 3
ρ0, (5.1.67)

even as σ remains arbitrary. Thus, the first two conditions across the shock
r = h(t) are satisfied provided (5.1.66)–(5.1.67) hold and γ ≥ 3. The third
shock condition (5.1.53), after the use of (5.1.55) along with (5.1.54) and
some simplification, reduces to

µ3h
2t−2 − t−1dh

2

dt
= µ4. (5.1.68)

This has the integral

h =

(
κtµ3 − µ4

2 − µ3
t2
)1/2

(5.1.69)

which, on using (5.1.56), becomes

H2/δ = σ2/δ
(
κtµ3−(2β/δ) − µ4

2 − µ3
t2(1−β/δ)

)
. (5.1.70)

This gives the function H(t) such that the third condition at the shock is
also satisfied. Since H = η and λ = 2(γ − 1)/(γ − 3), we must have

µ3 =
3γ2 − 7γ − 2

(3γ − 1)(γ − 1)
, µ3 −

2β

δ
=

γ − 7

(3γ − 1)(γ − 1)
,

µ4 =
γ(3γ − 1)

γ − 1

p0

ρ0
. (5.1.71)

Furthermore, since p0 ≈ 0, and, therefore, µ4 ≈ 0, (5.1.70) becomes

(
σ

ρ0

)2/δ

= κ−1t−(γ−7)/{(3γ−1)(γ−1)}
(
λ+ 1

3

)2/δ

. (5.1.72)

The LHS of (5.1.72) is independent of t; we must, therefore, have

γ = 7, κ =

(
σ

ρ0

)−2/δ (λ+ 1

3

)2/δ

. (5.1.73)

With this value of γ, we have λ = 3 (see (5.1.66)) and the special solution
(5.1.55) reduces to the well-known Primakoff solution for explosion in water:

q =
1

10

r

t
, ρ = σt−2/5r, p =

3σ

100
t−

12
5 r3, (5.1.74)

where

0 ≤ r ≤ 4

3

ρ0

σ
t2/5; (5.1.75)
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see (5.1.56) and the definition of the constants in (5.1.71) and (5.1.54).
It is clear from the above that while the basic idea of expressing the

solution of the equations of motion and continuity in terms of a ‘potential
function’ is very ingenious, there is a need to generalise the work of McVittie
(1953). All the solutions found by him have a linear velocity profile. The
particle adiabacy condition further restricts the class of explicit solutions.
This class of solutions must be enlarged so that they can be applied to other
physically realistic situations. This is what we attempt to do in section 5.3.

5.2 Exact Solutions of Gasdynamic Equations in

Lagrangian Co-ordinates

A study related to that of McVittie (1953) is due to Keller (1956) who
apparently was not aware of the former work. The approach here, how-
ever, is quite distinct and applies to all geometries—planar, cylindrical,
and spherical. The basic idea is to use the single second order nonlinear
partial differential equation governing the Eulerian co-ordinate with the La-
grangian co-ordinate h and time t as independent variables (see Courant and
Friedrichs (1948)). First, product solutions were sought without reference
to boundary conditions. These solutions depend upon an arbitrary func-
tion which is related to the entropy distribution in the gas. Applications of
isentropic and nonisentropic solutions include flows with shocks of finite and
infinite strength and vacuum fronts. We shall bring out the relationship of
these solutions with those of McVittie (1953).

Let us introduce the Lagrangian co-ordinate of a particle, namely,

h =

∫ y(h,t)

y(0,t)
rn−1ρ(r, t)dr, n = 1, 2, 3, (5.2.1)

where y(h, t) is the radius of the particle with Lagrangian co-ordinate h
at time t, and n = 1, 2, 3 for planar, cylindrical and spherical symmetry,
respectively. In the latter two cases y represents the distance from the axis
and center of symmetry, respectively. From the definition of y, the velocity
u of a particle is given by

u = yt. (5.2.2)

Differentiating (5.2.1) with respect to h, we have the density ρ and specific
volume τ given by

τ = ρ−1 = yn−1yh. (5.2.3)

We assume that the flow is inviscid and nonconducting so that the entropy
s of a particle is independent of time and, therefore,

s = s(h), (5.2.4)
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The function s(h) is given either by the initial data or is determined by the
shock motion imparting different entropy values to different particles.

The thermodynamic relation for a polytropic gas or liquid has the form

p = p(ρ, s) = g(τ, s)

= g0 +A(s)τ−γ , (5.2.5)

where the function A(s), the adiabatic exponent γ = cp/cv, and the internal
pressure g0 are assumed to be known. The advantage of the Lagrangian
co-ordinate system is that the equation of particle isentropy does not need
to be imposed explicitly.

In terms of the quantities defined above, the equation of motion is simply

ytt = −yn−1[gτ (yn−1yh)h + gssh] (5.2.6)

or, for a polytropic gas obeying (5.2.5), we have

ytt = γA(s)(yn−1yh)−γ−1(yn−1yh)hy
n−1 −Ah(yn−1yh)−γyn−1. (5.2.7)

One disadvantage of (5.2.7) is that the exponents of y and its derivative are
in general nonintegral. Equation (5.2.7) is a second order nonlinear PDE
for y(h, t), where the function A is assumed to be a known function of s and
hence of h (see Courant and Friedrichs (1948)). Once solutions of (5.2.7)
are known, the physical quantities may be found from (5.2.2)–(5.2.5).

Looking for product solutions of (5.2.7) we write

y(h, t) = f(h)j(t). (5.2.8)

Substituting (5.2.8) into (5.2.7) and separating the variables, we have

j′′ − λjn(1−γ)−1 = 0, (5.2.9)

−A[(fn−1f ′)−γ ]′fn−2 −A′(fn−1f ′)−γfn−2 = λ, (5.2.10)

where λ is the separation parameter and prime denotes derivative with re-
spect to t in (5.2.9) and with respect to h in (5.2.10). Equation (5.2.9) is
easily integrated to give

(j′)2 =
2λ

n(1 − γ)
jn(1−γ) + a (γ 6= 1), (5.2.11)

(j′)2 = 2λ log j + a, (γ = 1), (5.2.12)

where a is the constant of integration. Excluding the case j = constant
which is possible only if λ = a = 0 or if j = 0, we have an implicit solution
for j given by

∫ j

j0

[
2λ

n(2 − γ)
jn(1−γ) + a

]−1/2

dj = t (γ 6= 1), (5.2.13)

∫ j

j0
[2λ log j + a]−1/2dj = t (γ = 1). (5.2.14)

© 2004 by Chapman & Hall/CRC



5.2 Solutions of Gasdynamic Equations in Lagrangian Co-ordinates 165

Writing (5.2.10) more explicitly, we have

γA[f ′′fn−1 + (n− 1)fn−2(f ′)2](fn−1f ′)−γ−1fn−2

−fn−2(fn−1f ′)−γA′ = λ. (5.2.15)

Introducing the inverse function h = h(f) and writing h′(f) = q(f), (5.2.15)
may be written as

γA[−q′q−3fn−1 + (n− 1)fn−2q−2][fn−1q−1]−γ−1fn−2

−fn−2(fn−1q−1)−γA′(h) = λ. (5.2.16)

Assuming that γ 6= 1 and introducing further the functions

z = qγ−1, B(f) = A[h(f)], (5.2.17)

in (5.2.16), we have

z′ + z[−(n− 1)(γ − 1)f−1 +
γ − 1

γ
(logB)′]

+
λ(γ − 1)

γB
f (n−1)(γ−1)+1 = 0, (5.2.18)

where prime denotes differentiation with respect to f . The solution of
(5.2.18) may be written as

z = f (n−1)(γ−1)B(1−γ)/γ

[
G− λ(γ − 1)

γ

∫ f

fB−1/γdf

]
, (5.2.19)

whereG is a constant. We have q from (5.2.17) and (5.2.19). Since h′(f) = q,
we also have

h =

∫ f

f0

fn−1B−1/γ

[
G− λ(γ − 1)

γ

∫ f

fB−1/γdf

]γ/(γ−1)

df. (5.2.20)

Equation (5.2.20) gives f as a function of h implicitly. If we define

F (f) =

[
G− λ(γ − 1)

γ

∫ f

fB−1/γdf

]γ/(γ−1)

, (5.2.21)

we may solve for B(f) provided λ 6= 0:

B(f) = (−λf)γ(F ′)−γF. (5.2.22)

The flow variables may now formally be written from (5.2.2)–(5.2.5),
(5.2.8), (5.2.20) and (5.2.21), where we assume that γ 6= 1 and λ 6= 0 and
where f = y/j(t). Thus, we have

u(y, t) = y
j′

j
, (5.2.23)

τ(y, t) = −λyjn−1/F ′(yj−1), (5.2.24)

p(y, t) = g0 + j−nγF (yj−1). (5.2.25)
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We may observe that, provided j(t) is governed by (5.2.13) and (5.2.14),
equations (5.2.23)–(5.2.25) give solutions of gasdynamic equations in Eule-
rian co-ordinates for n = 1, 2, 3 for arbitrary choice of the function F . This
is the same form as obtained by McVittie (1953). Indeed, the expressions
(5.2.13) and (5.2.14) for j(t) may be verified to be essentially the solution
of the Abel equation derived by McVittie (1953) (see section 5.1). In the
solution (5.2.23)–(5.2.25), the function F must be chosen such that τ (and
hence density) given by (5.2.24) is positive, that is, F must be monotonic
in the region where y is of one sign. For the excluded case γ 6= 1, λ = 0, the
solution is given by

u(y, t) = y
j′

j
=
y

t
, (5.2.26)

τ(y, t) = jnB1/γ(yj−1)G1/(1−γ)

= tnb(yt−1), (5.2.27)

p(y, t) = g0 + j−nγGγ/(1−γ)

= g0 + lt−nγ , (5.2.28)

where an arbitrary function b and a constant l have been introduced. The
solution in the present case becomes simpler since (5.2.13) now integrates
to give

j(t) = ±a1/2t, (5.2.29)

where we have assumed that j(0) = 0.

Now we consider the case γ = 1. With B(f) from (5.2.17), (5.2.16)
becomes

q′q−1 − (n− 1)f−1 +
B′

B
+
λf

B
= 0 (5.2.30)

and integrates to give

q(f) = fn−1B−1(f)exp

∫ f

−λfB−1(f)df, (5.2.31)

and, since h′(f) = q(f), we have

h(f) =

∫ f

f0

[fn−1B−1(f)exp

∫ f

−λfB−1(f)df ]df. (5.2.32)

Equation (5.2.32) gives f = f(h) implicitly. Again, if we define

F (f) = exp

∫ f

−λfB−1(f)df, (5.2.33)

then, for λ 6= 0, we have

B(f) = −λfF (F ′)−1. (5.2.34)
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The special cases γ = 1, λ 6= 0 and γ = 1, λ = 0 may be obtained from
the above appropriately.

The forms (5.2.23)–(5.2.25) and (5.2.26)–(5.2.28) each represent non-
isentropic solutions of the basic gasdynamic equation and involve an arbi-
trary function. The pressure in the latter solution is a function of time alone.
These solutions are explicit if the integrals in (5.2.13) and (5.2.14) can be
found explicitly.

Now we consider isentropic solutions as a special case. Here the function
A(= B) is constant. Then, from (5.2.21) and (5.2.33), we have

F (f) =

[
G− λ(γ − 1)

2γB1/γ
f2
]γ/(γ−1)

γ 6= 1, (5.2.35)

F (f) = exp − λf2

2B
γ = 1. (5.2.36)

The solution (5.2.23)–(5.2.25) with γ 6= 1, λ 6= 0, and f = yj−1 becomes

u(y, t) = yj ′j−1, (5.2.37)

τ(y, t) = jnB1/γ
[
G− λ(γ − 1)

2γB1/γ
y2j−2

]−1/(γ−1)

, (5.2.38)

p(y, t) = g0 + j−nγ
[
G− λ(γ − 1)

2γB1/γ
y2j−2

]γ/(γ−1)

. (5.2.39)

Here, B and G are constants while j(t) is given by (5.2.13). For λ = 0 and
all γ 6= 1, the solution (5.2.26)–(5.2.28) holds with b a constant.

For γ = 1 and all λ, equation (5.2.37) still holds but (5.2.38)–(5.2.39)
become

τ(y, t) = jnBexp
−λj−2y2

2B
, (5.2.40)

p(y, t) = g0 + j−nexp
−λj−2y2

2B
, (5.2.41)

where B is a constant. j(t) is now given by (5.2.14).

For an example of isentropic flows we choose a = 0, γ 6= 1 in (5.2.13)
and integrate to get

j(t) =

{[
2λ

n(1 − γ)

]1/2 (n(γ − 1) + 2

2

)
t

}2/{n(γ−1)+2}
. (5.2.42)

With G = 0 in (5.2.38)–(5.2.39) we obtain a simple explicit solution for
isentropic flows:

u(y, t) =
2

n(γ − 1) + 2
yt−1, (5.2.43)
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τ(y, t) =

[
γB

n

(
n(γ − 1) + 2

γ − 1

)2
]1/(γ−1)

×(yt−1)−2/(γ−1), (5.2.44)

p(y, t) = g0 +B

[
γB

n

(
n(γ − 1) + 2

γ − 1

)2
]γ/(1−γ)

×(yt−1)2γ/(γ−1). (5.2.45)

As an application we again consider the propagation of a strong shock
with the equation y = R(t) into a quiet medium with variable density ρ0(y)
and pressure zero. The shock conditions in this case are

ρ

ρ0
=

γ + 1

γ − 1
, (5.2.46)

u =

[
2p

(γ + 1)ρ0

]1/2

, (5.2.47)

Ṙ =

[
(γ + 1)p

2ρ0

]1/2

, (5.2.48)

where p is the pressure behind the shock. We wish to find the functions
F (yj−1), R(t) and ρ0(y) such that the solution, given by (5.2.23)–(5.2.25),
satisfies the Rankine-Hugoniot conditions (5.2.46)–(5.2.48). To that end, we
insert the former into the latter and obtain

F ′(Rj−1)

−λRjn−1ρ0(R)
=
γ + 1

γ − 1
, (5.2.49)

Rj′

j
=

[
2g0 + 2j−nγF (Rj−1)

(γ + 1)ρ0(R)

]1/2

, (5.2.50)

Ṙ =

[
(γ + 1){g0 + j−nγF (Rj−1)}

2ρ0(R)

]1/2

. (5.2.51)

From (5.2.50)–(5.2.51) we have

Ṙ

R
=
γ + 1

2

j′

j
. (5.2.52)

Integrating (5.2.52) we get

R(t) = R0[j(t)]
(γ+1)/2 , (5.2.53)

where R0 is a constant of integration. Putting (5.2.53) into (5.2.50) and
using (5.2.11) satisfied by j(t), we have

F (x) =
γ + 1

2
ρ0(x

(γ+1)/(γ−1)R
2/(1−γ)
0 )
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×
[

2λ

n(1 − γ)
(xR−1

0 )−2n +D

]

×R(−2nγ)/(γ−1)x[(2n+2)γ−2]/(γ−1)

−g0(xR−1
0 )(2nγ)/(γ−1) . (5.2.54)

Thus, the function R(t) is given by (5.2.53) while F (x) and ρ0(x) are re-
lated by (5.2.54). The solution so obtained has R0, D, and λ as arbitrary
constants. The conditions (5.2.47)–(5.2.48) across the shock are already
satisfied. We substitute (5.2.53) and (5.2.54) into the third shock condition
(5.2.46) to find F . We let g0 = 0 for simplicity. We thus obtain

F (x) = F0x
n

[
2λR2n

0

n(1 − γ)
+Dx2n

]−1/2

. (5.2.55)

From (5.2.55) and (5.2.54) we get the undisturbed density as

ρ0(R) =
2F0R0

(2nγ)/(γ−1)

γ + 1

[
2λR2n

0

n(1 − γ)

+DR
(4n)/(γ+1)
0 R[2n(γ−1)/(γ+1)]

]−3/2

×R[(n−2)γ−3n+2]/(γ+1)

×R[2(n−2)γ−6n+4]/(γ+1)(γ−1) . (5.2.56)

F0 in (5.2.55) and (5.2.56) is an arbitrary constant. The corresponding
solution with g0 6= 0 is somewhat more complicated. The above solution
involves four arbitrary constants—F0, λ,R0, and D—and describes a shock
moving according to (5.2.53), where j(t) is given by (5.2.13). The flow
behind the shock is given by (5.2.23)–(5.2.25) with F (x) defined by (5.2.55).
This flow may be viewed as produced by a piston moving along one of the
particle paths, Y (t) = Y0j(t), say. The above solution was derived subject
to the constraints that γ 6= 1 and λ 6= 0.

As in the paper of McVittie (1953), the well-known Primakoff solution
may be obtained as a special case if it is assumed that ρ0(R) = constant. It
follows from (5.2.56) that we must now have

D = 0, γ =
3n− 2

n− 2
. (5.2.57)

For the spherically symmetric case, n = 3, (5.2.57) gives γ = 7. In this case,
we get from (5.2.13) and (5.2.55),

j =

[
5(−λ)1/2

3
t

]1/10

, F (x) = x3 3F0R
−3
0

(−λ)1/2
. (5.2.58)

The solution (5.2.23)–(5.2.25) with the functions j(t) and F (x) given by
(5.2.58) coincides exactly with the solution of the point explosion problem
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in water found first by Primakoff (Courant and Friedrichs (1948)). Here we
assume that λ < 0. Now we may compare the approaches and results of
McVittie (1953) and Keller (1956). McVittie (1953) wrote a very general
form of the solution of equations of continuity and motion in Eulerian co-
ordinates in spherical symmetry in terms of a potential function but then
restricted its form to a product of a function of time and a function of a
similarity variable. He obtained solutions which have a linear distribution
of particle velocity. In the two forms he wrote, one involves a function
of time governed by an Abel equation while the other has an arbitrary
function of the similarity variable. Keller (1956) adopted an entirely different
approach. He attempted to solve the single second order nonlinear PDE for
the Eulerian co-ordinate with the Lagrangian co-ordinates as independent
variables. His product solutions again end up with a particle velocity which
is linear in distance. Both these approaches deserve further investigation
and generalisation. We take up this matter in the next section.

5.3 Exact Solutions of Gasdynamic Equations with

Nonlinear Particle Velocity

As we pointed out earlier in section 5.2, the investigations of McVittie (1953)
and Keller (1956) are both restricted to flow velocities which are linear
functions of the spatial co-ordinate. There is considerable scope to extend
their results such that the velocity distribution is given by a more realistic
nonlinear function. We recall that Taylor (1950) chose particle velocity
behind the shock heading a blast wave as a sum of a linear term and a
nonlinear term in the similarity variable (see section 3.2). He then found
an approximate solution analytically which was in excellent agreement with
the numerical solution. This work was later extended by Sakurai (1953,
1954) to other geometries. We shall generalise the work of McVittie (1953)
in two ways. First, we shall write (5.1.18) or (5.1.21) as q = α(r/t)a(x),
where α is a constant, and find an equation for the function a(x) such that
the adiabatic condition (5.1.36) is satisfied; the solutions (5.1.18)–(5.1.20)
already satisfy equations of momentum and continuity. We shall discuss
in some detail a particular form of a(x) which is similar to that of Taylor
(1950); our solution, however, would be exact and satisfy all the equations of
motion. The second generalisation is motivated by the simple form (5.1.19)
for the density distribution. Several results of McVittie (1953) and Keller
(1956) may be identified as special cases of these more general solutions.

We begin by writing the particle velocity in the formal solution of equa-
tions of motion and continuity (5.1.18)–(5.1.20) as

q = αrt−1a(x), (5.3.1)
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where

a(x) =
(1 − g)wx + xwxx

2wx + xwxx
. (5.3.2)

For this case, the function f(t) has already been chosen to be f = tαg where
g is a constant. We may write (5.3.2) as

w′′ = A(x)w′, (5.3.3)

where ′ = d/dx and

A(x) =
1 − g − 2a

(a− 1)x
. (5.3.4)

The function a = a(x) is arbitrary so far. It will be determined to satisfy
the equation of particle isentropy. It follows from (5.3.3) that

w(x) = c1 + c0

∫ x

e
∫ y

A(z)dzdy, (5.3.5)

where c0 and c1 are constants of integration. With this form for w(x) we
may write the solution (5.1.18)–(5.1.20) as

q(x, t) = αtα−1Q(x), (5.3.6)

ρ(x, t) = −c0(1 + g)tα(g−2)R(x), (5.3.7)

p(x, t) = p0 + α2tαg−2P (x), (5.3.8)

where

Q(x) = xa(x),

R(x) =
1

x(a− 1)
e
∫ x

A(z)dz, (5.3.9)

P (x) = g

(
g − 1

α

)
c1 + c0

[(
1

α
− g

)
+ (1 + g)a(x))

]
xe
∫ x

A(z)dz

+c0

∫ x
[
2(1 + g)

a2(y)

a(y) − 1
+

(
g2 − g

α

)]
e
∫ y

A(z)dzdy.

Here, p0, c0 amd c1 are constants.
We may observe that for any function F = F (x), x = rt−α, and q(x, t)

given by (5.3.6) and (5.3.9)1, we have

(
∂

∂t
+ q

∂

∂r

)
F = α(a− 1)

x

t
F ′(x). (5.3.10)

Therefore, substituting the expressions for q, p and ρ from (5.3.6)–(5.3.9)
into the equation of particle isentropy,

(
∂

∂t
+ q

∂

∂r

)
(log p− γ log ρ) = 0, (5.3.11)
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and making use of (5.3.10), we obtain

β + αx(a− 1)

(
P ′

P
− γ

R′

R

)
= 0, (5.3.12)

where
β = αg(1 − γ) + 2(αγ − 1). (5.3.13)

We let c0 = 1, c1 = 0 in (5.3.9)2. From (5.3.9)2, we have

R′

R
=

2 − g − 3a− xa′

x(a− 1)
. (5.3.14)

Here we assume that a(x) 6= 1. This singular case would be treated sepa-
rately.

From (5.3.12) and (5.3.14), we have

P ′ =
1

C(x)
P (x), (5.3.15)

where

C(x) =
αx(a− 1)

2 − αg − 3αγa − αγxa′
. (5.3.16)

Differentiating (5.3.15) we get

(1 − C ′(x))P ′ = C(x)P ′′. (5.3.17)

From (5.3.9)3 with c0 = 1, c1 = 0 it follows that

P ′(x) = (1 + g)[(1 − 1/α) +
(1 − 1/α)

a− 1
+ a+ xa′]e

∫ x
A(z)dz , (5.3.18)

P ′′(x) =
(1 + g)

x(a− 1)2
e
∫ x

A(z)dz ×
[
x2a2a′′ − 2x2aa′′ + x2a′′ − (1 + g)xaa′

−2a3 +

(
1 +

2

α
− g

)
a2 +

(
1

α
+ g

)
xa′ − 1

α
(1 − g)a

]
.

(5.3.19)

Substituting (5.3.18) and (5.3.19) into (5.3.17), we obtain

(1 − C ′)[(1 − (1/α))(a/(a − 1)) + a+ xa′] =
C

x(a− 1)2

×[x2a2a′′ − 2x2aa′′ + x2a′′ − (1 + g)xaa′ − 2a3

+(1 + (2/α) − g)a2 + (g + (1/α))xa′ − (1/α)(1 − g)a]. (5.3.20)

Substituting for C(x) and C ′(x) from (5.3.16) into (5.3.20), we get

[(2/α − g − γ(3a+ xa′))2 − (g − 2/α) − (2/α − g + 3γ)a

−(2/α − g − 3γ)xa′ + γx2a′2 − γx2aa′′ + 3γa2 + γx2a′′]

×[a2 − (a/α) + xaa′ − xa′] − [(2/α − g) − γ(3a+ xa′)]

×[x2a2a′′ − 2x2aa′′ + x2a′′ − (1 + g)xaa′ − 2a3 + (1 + 2/α− g)a2

+(g + 1/α)xa′ − (1/α)(1 − g)a] = 0.

(5.3.21)

© 2004 by Chapman & Hall/CRC



5.3 Solutions with Nonlinear Particle Velocity 173

Thus, the solution (5.3.6)–(5.3.8) of the equations of motion also satisfies
particle isentropy (5.3.11) provided the function a(x) 6= 1 satisfies (5.3.21).
This function is related to w(x) via (5.3.2). Indeed we may derive a third
order ODE for w′ which however is not much simpler to handle.

Motivated by the approximate form of the similarity solution of Taylor
(1950), we consider the special case

a(x) = λ0x
µ + λ1, (5.3.22)

where µ, λ0 and λ1 are constants. With this choice of a(x), the function
A(x) in (5.3.4) becomes

A(x) =
1 − g − 2λ0x

µ − 2λ1

x(λ0xµ + λ1 − 1)

= −(1 + g)

λ0
x−(1+µ) − 2x−1, λ1 = 1 (5.3.23)

=
(1 − g − 2λ1)

λ1 − 1

1

x
− (1 + g)

λ1 − 1

λ0x
µ−1

λ0xµ + λ1 − 1
, λ1 6= 1.

Therefore, we have
∫ x

A(z)dz =
(1 + g)

λ0µ
x−µ − 2 log x+A0, λ1 = 1

and

∫ x

A(z)dz = logA0 + log
(λ0x

µ + λ1 − 1)
1+g

µ(1−λ1)

x
1−g−2λ1

1−λ1

, λ1 6= 1. (5.3.24)

The solution (5.3.6)–(5.3.8) now assumes the following forms for λ1 = 1 and
λ1 6= 1, respectively.

λ1 = 1.

q(x, t) = αtα−1x(λ0x
µ + 1),

ρ(x, t) = −c0A0λ
−1
0 (1 + g)tα(g−2)x−(µ+3)e

(1+g)
λ0µ

x−µ

, (5.3.25)

p(x, t) = p0 + α2tαg−2P (x),

where

P (x) = g

(
g − 1

α

)
c1 + c0A0

(
1

α
− g + (1 + g)(λ0x

µ + 1)

)

×x−1e
(1+g)
λ0µ

x−µ

+ c0A0

∫ x (2(1 + g)(λ0s
µ + λ1)

2

λ0sµ + λ1 − 1

+g2 − g

α

)
s−2e

1+g
λ0µ

s−µ

ds (5.3.26)

and p0 is a constant.
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λ1 6= 1.

q(x, t) = αtα−1x(λ0x
µ + λ1),

ρ(x, t) = −c0A0(1 + g)tα(g−2)

×(λ0x
µ + λ1 − 1)

1+g
µ(1−λ1)

−1

x
1+

1−g−2λ1
1−λ1

, (5.3.27)

p(x, t) = p0 + α2tαg−2P (x),

where

P (x) = g

(
g − 1

α

)
c1 + c0A0

[(
1

α
− g

)

+(1 + g)(λ0x
µ + λ1)

(λ0x
µ + λ1 − 1)

1+g
µ(1−λ1)

x
−1+

(1−g−2λ1)
1−λ1

]

+c0A0

∫ x [
2(1 + g)

(λ0s
µ + λ1)

2

(λ0sµ + λ1 − 1)

+

(
g2 − g

α

)]
(λ0s

µ + λ1 − 1)
1+g

µ(1−λ1)

s
1−g−2λ1

1−λ1

ds.

(5.3.28)

We consider the special case g = 2/α, λ1 = 0, which leads to a simple
solution. To satisfy the adiabatic condition (5.3.11) with a(x) = λ0x

µ, we
must find C(x) from (5.3.16):

C(x) = − x

γ(3 + µ)
+

x1−µ

λ0γ(3 + µ)
. (5.3.29)

Equation (5.3.21) in the present case becomes

−λ3
0(1 + µ)(1 + γ(3 + µ))x3µ + λ2

0[(1/α + µ)

×(1 + γ(3 + µ) + (1 − µ)(1 + µ)x2µ] − λ0(1 − µ)(1/α + µ)xµ

= λ3
0(µ(µ− 1) − 2)x3µ + λ2

0[1 − 2µ(µ− 1) − (1 + 2/α)µ]x2µ

+λ0[µ(µ− 1) + (3µ/α) − 1/α(1 − 2/α)]xµ. (5.3.30)

This equation is identically satisfied if

µ = −1/α,

and
either µ+ 1 = 0 or 1 + γ(3 + µ) = 2 − µ. (5.3.31)

These relations yield
µ = −1, α = 1, (5.3.32)

both when γ 6= 1 and when γ = 1.
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It is clear from (5.3.14) that the case a(x) = 1 is singular and must be
treated separately. Using (5.1.13) and (5.1.17), we find that the solution
(5.1.18)–(5.1.20) of the equations of continuity and momentum for this case
becomes

q = αtα−1x = α
r

t
,

ρ = t−3α 2wx + xwxx

x
, (5.3.33)

p = p0 + α(1 − α)t−2−α(w + xwx +Q(t)),

where p0 is a constant. When the particle adiabacy condition (5.3.11) is
imposed on the solution (5.3.33), we get

α(3γ − 1) − 2

t
+

Q′(t)
w + xwx +Q(t)

= 0. (5.3.34)

This equation may be satisfied if either of the following conditions hold:

(i) Q′(t) = 0, i.e., Q = constant, and α = 2/(3γ − 1).

(ii) (xw)x = c0, a constant, and so w = c0 + c1/x, where c1 is a constant of
integration. Moreover, Q(t) = −c0 + c2t

2−α(3γ−1), where c2 is another
constant.

Correspondingly, we have the following representations of the physical quan-
tities. For case (i), we have

q =
2

3γ − 1
t

2
3γ−1

−1
x,

ρ = t
−6

3γ−1
2wx + xwxx

x
, (5.3.35)

p = p0 +
6(γ − 1)

(3γ − 1)2
t−2− 2

3γ−1 ((xw)x + c0),

where p0 and c0 are constants. In (5.3.35), w is an arbitrary function of
x = rt−α.

For case (ii), we have the particle adiabatic solution

q = αtα−1x,

ρ = 0, (5.3.36)

p = p0 + αc2(1 − α)t−3αγ .

McVittie (1953) studied the subcase (i) of this singular solution with
a = 1. Thus, his analysis for the particle adiabatic motions relates only to
this special case.

Now we indicate how to generalise the solutions of McVittie (1953) from
a different point of view. The form (5.1.19) of the solution for the density
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function suggests that, provided this function is analytic in the neighbour-
hood of x = 0, we may write

[
t2α/f(t)

]
ρ = x−2(x2wx)x =

∞∑

n=0

anx
n. (5.3.37)

where an are arbitrary constants. Integrating (5.3.37) twice we have

w(x) =
∞∑

n=0

bnx
n+2, (5.3.38)

where
bn =

an

(n+ 2)(n+ 3)
. (5.3.39)

The particle velocity and pressure may then be found from (5.1.18) and
(5.1.20). It may easily be verified that case B of McVittie (1953), given
by (5.1.30) and (5.1.31), is obtained if we choose g = −1 and f = t−α.
However, the function F (x), which is arbitrary therein, is now specified as
an analytic function

∑∞
n=0 anx

n about x = 0; the velocity profile, however, is
now rendered more general. We may impose the particle isentropy condition
(5.3.11) on the present form of the solution to determine the coefficients
an. Since the details are rather complicated, we shall publish these results
subsequently.

© 2004 by Chapman & Hall/CRC



Chapter 6

Converging Shock Waves

6.1 Converging Shock Waves: The Implosion

Problem

The generation and propagation of converging shock waves is a fascinating
phenomenon which has a long history and continues to arouse interest. It
was first treated by Guderley (1942). This may be visualised in two ways—
either arising from a converging spherical or cylindrical piston, or by the
instantaneous release of energy on a rigid spherical or cylindrical wall. In
the latter case we may imagine a spherical or cylindrical chamber of radius
R0 containing a test gas at initial pressure p0 and initial density ρ0. At
time t = ti < 0, a finite amount of energy E0 or, for the cylindrical case
E0 per unit length, is released instantaneously at a radius R0, generating a
strong shock wave. At subsequent times, the shock wave collapses towards
the center or axis of symmetry.

We first consider the simplest situation when the resulting flow is self-
similar, as considered first by Guderley (1942). Here, however, we follow
the more recent work of Chisnell (1998) who has studied this problem for a
long time (see Chisnell (1957)). This problem is also an excellent example of
self-similar solutions of the second kind when the similarity exponent is not
obtained from the dimensional considerations alone but must be determined
by solving an eigenvalue problem for a nonlinear ordinary differential equa-
tion. There are other attractive features of this problem—a rich analytic
structure and asymptotic character of the solution relating to its stability.
We may mention that not all questions regarding the nature of the possible
solutions of this problem have been answered.

Chisnell (1998), unlike previous investigators, was able to get accurate
analytic and numerical results—the former, though approximate, give an
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‘extremely good’ value of the similarity exponent and yield a simple analytic
description of flow variables at all points behind the converging shock.

We write the equations of symmetric (spherical and cylindrical) adiabatic
equations of motions as

ρt + uρr + ρr1−s(urs−1)r = 0, (6.1.1)

ut + uur +
1

ρ
pr = 0, (6.1.2)

(
∂

∂t
+ u

∂

∂r

)
(ln(p/ργ)) = 0, (6.1.3)

where the last equation describes constancy of entropy along a particle line.
s = 2, 3 for cylindrical and spherical symmetry, respectively. We may replace
p in (6.1.2) and (6.1.3) by the speed of sound via c2 = γp/ρ. Introducing
now the variables

ρ = ρ0G, u =
r

t
V, c2 =

r2

t2
Z, (6.1.4)

the partial differential equations (6.1.1)–(6.1.3) assume the form

tGt + V rGr +GrVr = −sV G, (6.1.5)

tVt + V rVr +
1

γ

Z

G
rGr +

1

γ
rZr = V − V 2 − 2Z

γ
, (6.1.6)

t
Zt

Z
+ rV

Zr

Z
− γ − 1

G
(tGt + V rGr) = 2 − 2V. (6.1.7)

Introducing the similarity variable

ξ =
r

R
, (6.1.8)

where R(t) is the distance of the shock from the origin or axis of symmetry
at time t(< 0), the derivatives in (6.1.5)–(6.1.7) change according to

∂

∂r
=

1

R

∂

∂ξ
,

∂

∂t
=

∂

∂t
− ξ

Ṙ

R

∂

∂ξ
, (6.1.9)

where Ṙ = dR/dt. The explicit time dependence in the resulting equations
will occur only in the form tṘ/R. If we let

t
Ṙ

R
= α or R = A(−t)α, (6.1.10)

where α and A are constants, and let G,V and Z depend on ξ alone, we get
the system of ODEs

ξV ′ + (V − α)ξ
G′

G
= −sV, (6.1.11)

(V − α)ξV ′ +
Z

γ
ξ
G′

G
+

1

γ
ξZ ′ = V − V 2 − 2Z

γ
, (6.1.12)

(γ − 1)Zξ
G′

G
− ξZ ′ = −2Z(1 − V )

V − α
. (6.1.13)
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Solving for V ′, G′ and Z ′, we have

ξV ′ =
∆1

∆
, (6.1.14)

ξ
G′

G
=

∆2

∆
, (6.1.15)

ξZ ′ =
∆3

∆
, (6.1.16)

where

∆ = −Z + (V − α)2, (6.1.17)

∆1 = −∆

{
sV − 2(1 − α)

γ

}
− (α− V )Q(V ), (6.1.18)

∆2 =
2(1 − α)

γ(α− V )
∆ −Q(V ), (6.1.19)

∆3 =
Z

V − α

[
2∆

{
α− V +

1 − α

γ

}

+(γ − 1)(α − V )Q(V )

]
, (6.1.20)

and

Q(V ) = sV (V − α) +
2(1 − α)

γ
(α− V ) − V (V − 1). (6.1.21)

We may reduce the discussion of the above system to the (Z, V ) plane since

dZ

dV
=

∆3

∆1
, (6.1.22)

and relate other variables via

1

G

dG

dV
=

∆2

∆1
, (6.1.23)

1

ξ

dξ

dV
=

∆

∆1
. (6.1.24)

Once the solution of (6.1.22) is known, (6.1.23) and (6.1.24) give G as a
function of Z or V and relate (V,Z,G) to the variable ξ.

Assuming that the shock produced is strong, the Rankine-Hugoniot con-
ditions across it are

ρ

ρ0
=

γ + 1

γ − 1
, (6.1.25)

u =
2

γ + 1
Ṙ, (6.1.26)

c2 =
2γ(γ − 1)

(γ + 1)2
Ṙ2. (6.1.27)
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On using (6.1.4) and (6.1.10), these conditions at the shock ξ = 1 become

Gs =
γ + 1

γ − 1
, Vs =

2α

γ + 1
, Zs =

2γ(γ − 1)α2

(γ + 1)2
, (6.1.28)

where the suffix s denotes conditions immediately behind the shock. Since
ξ = r

R = (r/A(−t)α), the point far behind the shock where r is large corre-
sponds to ξ = ∞ so that

V (∞) = 0, Z(∞) = 0, (6.1.29)

stating that the particle velocity and sound speed both are zero there.
Now we pose the BVP problem in the (V,Z) plane. According to (6.1.17),

∆ = 0 is a parabola touching the V-axis at V = α. Also, in view of (6.1.28),
∆ has a negative value −α2(γ − 1)/(γ + 1) at the shock ξ = 1. It is equal
to α2 > 0 at ξ = ∞. The solution curve must cross the parabola to reach
the point (0, 0) which represents the point far behind the shock. To avoid
infinite slope at the point of crossing, the denominators ∆i (i = 1, 2, 3) in
(6.1.14)–(6.1.16) must also vanish there. According to (6.1.18), ∆1 = 0 when
∆ = 0 provided Q(V ) = 0. Q(V ) (see (6.1.21)) is a quadratic in V . For a
given value of γ, there is a value of the parameter α for which a solution
of (6.1.22), starting at a singular point on ∆ = 0, passes through the shock
point (6.1.28). Only one of the zeros of Q(V ) would permit that. Besides,
one would have to resort to iteration to solve this eigenvalue problem with
α as the eigenvalue. One could alternatively start from the shock and find
α such that the solution passes through the ‘appropriate’ singular point (see
Zeldovich and Raizer (1967)). After solving the problem in the (Z, V ) plane
one could numerically integrate (6.1.23)–(6.1.24) to complete the solution.
Since the approximate solution given by Chisnell (1998) still requires an
iteration to find the exponent α, we content ourselves here with a summary
of his analytic approach. Equation (6.1.22) is written as

1

Z

dZ

dV
=

2∆(α− V + (1 − α)/γ) + (γ − 1)(α − V )Q

∆(sV − 2(1 − α)/γ)(α − V ) + (α− V )2Q
. (6.1.30)

Q is given by (6.1.21). The basic idea is to examine the local behaviour of
the function Z at the two singular points, guess a trial function ZT which
has the right behaviour at these points and hence substitute it into ∆ on
the right hand side of (6.1.30). This enables an integration of (6.1.30) in a
closed form.

Using the auxilary equations (6.1.23)–(6.1.24) along with the conditions
at the shock, the (approximate) analytic form of the solution behind the
shock is determined. Unfortunately it introduces another unknown constant
into the solution, namely V0, the value of V at the other singular point (a
zero of Q(V ) = 0) which also must be found as part of the solution. However,
a relation between α and V0 is found such that ultimately one has to find
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Figure 6.1 The particle velocity u/uS versus 1/ξ = R(t)/r for (a) spherical and

(b) cylindrical symmetries for different values of γ (Chisnell, 1998).

Figure 6.2 The density ρ
S
/ρ versus 1/ξ = R(t)/r for (a) spherical and (b) cylin-

drical symmetries for different values of γ (Chisnell, 1998).

only the parameter V0/α using iteration. It is observed that, for γ = 1.4, a
six figure accuracy for α/V0 is obtained, with just one iteration. For γ = 3,
however, one has to iterate five times to obtain an accurate value of α/V0 to
five decimal places. A local analysis in the neighbourhood of the appropri-
ate singular point was also performed earlier by Sakurai (1959) in the context
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Figure 6.3 The pressure pS/p versus 1/ξ = R(t)/r for (a) spherical and (b) cylin-

drical symmetries for different values of γ (Chisnell, 1998).

of self-similar solution of second kind describing the expansion of a shock at
the edge of a star.

Chisnell (1998) also observed that, as the value V0 at the singular point
changes from the larger zero of Q(V ) to the smaller one, its nature also
changes. In literature it is the larger singular point which is referred to in
this class of problems. This is the well-known saddle point singular point.
This is the case for γ ≤ 5/3. However, when V0 is the smaller zero of Q(V ),
which is the case for γ ≥ 2, the singular point has a nodal character.

The numerical results for u/u
S
, ρ

S
/ρ, and p

S
/p versus 1/ξ = R(t)/r

for spherical and cylindrical symmetries for different values of γ are shown
in Figures 6.1–6.3. The velocity and density profiles have a monotonic be-
haviour. The pressure has a more complicated distribution. It decreases
monotonically behind the shock if γ ≥ 3 but has a maximum behind it
if γ ≤ 2. In the next section we show how the existence of the pressure
maximum behind the shock may be used to give an analytic solution of the
problem.

An interesting review of self-similar spherical compression waves in gas
dynamics with applications to inertial confinement fusion (ICF) was given
by Meyer-ter-Vehn and Schalk (1982). The analysis here follows closely the
original work of Guderley (1942) on imploding shock waves. The relation
between different isentropic and nonisentropic self-similar waves describing
imploding and exploding flows is brought out by placing them all on Gud-
erley’s original chart of solutions. This includes the cumulative isentropic
solutions of Kidder (1974) where all matter finally collapses into a point
and the noncumulative isentropic solutions discussed by Ferro Fontan et al.
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(1975, 1977) which contain the reflected shock after the imploding shock has
reached the center, and finally the imploding shock solution and its exten-
sion to nonisentropic imploding shells. The latter is closest to the situation
in ICF target implosions. It was shown that the solution in the center behind
the reflected shock after shell collapse is of the same origin as the famous
blast wave solution of Taylor (1950) and Sedov (1946).

An important comment on the intermediate asymptotic nature of self-
similar solutions of the second kind in the context of the converging shock
solution was made by Meyer-ter-Vehn and Schalk (1982). It may be observed
that a large class of non-self-similar spherically imploding waves with rather
general boundary conditions outside and a shock front propagating into the
undisturbed gas approaches the self-similar solution asymptotically for radii
r and times t close enough to the collapse point r = 0 and t = 0. It is also
known that, in Guderley’s solution, the shock velocity and strength as well
as other parameters behind the shock, such as temperature, tend to infin-
ity upon convergence. This is clearly unphysical and comes about because
of the neglect of such effects as heat conduction and radiation. Therefore,
the real shock implosions will deviate from the self-similar solution in the
neighbourhood of the center of implosion. This is typically the intermedi-
ate region where the self-similar solution is approached by more realistic,
non-self-similar solutions, leading to the term ‘intermediate asymptotics’.
Only numerical attempts have been made to study this aspect of self-similar
solutions of the second kind and more work needs to be done to establish
the intermediate asymptotic character of these solutions.

Meyer-ter-Vehn and Schalk (1982) carefully analysed the singular points
(six in number) in the reduced particle velocity–sound speed plane and in-
terpreted various solutions arising from the joining of these singularities by
separatrices or otherwise. The medium ahead of the converging fronts is as-
sumed to be variable, ρ0 ∼ rK , so that the solution, in general, depends upon
four parameters, namely, K, n, the dimensionality parameter equal to 3, 2,
1 for spherical, cylindrical and plane geometries, respectively, γ = cp/cv ,
and the similarity exponent α. A variety of solutions were discussed with
regard to their dependence on these parameters.

6.2 Spherical Converging Shock Waves: Shock

Exponent via the Pressure Maximum

In an interesting paper, Fujimoto and Mishkin (1978) made an effective use
of the existence of a pressure maximum behind the shock to find analytically
the exponent in the converging shock law; this is in contrast to the analysis
of the last section. We consider the spherically symmetric converging shock
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waves, governed by the system

ρt + uρr + +ρur +
2ρu

r
= 0, (6.2.1)

ut + uur +
1

ρ
pr = 0, (6.2.2)

∂

∂t
(pρ−γ) + u

∂

∂r
(pρ−γ) = 0, (6.2.3)

and write the self-similar solution in the form

p = ρ0Ṙ
2P (ξ), ρ(r, t) = ρ0<(ξ), u(r, t) = ṘU1(ξ), (6.2.4)

where

ξ =
r

R
, (6.2.5)

and R = R(t) is the distance of the converging shock from the center of
implosion. Introducing (6.2.4)–(6.2.5) and the auxiliary function U(ξ) via

U1(ξ) = U(ξ) + ξ, (6.2.6)

into (6.2.1)–(6.2.3) we obtain the system of ODEs

−<−1<′ = U−1U ′ + 3U−1 + 2ξ−1, (6.2.7)

−<−1P ′ = UU ′ + (λ+ 1)U + λξ, (6.2.8)

P−1P ′ − γ<−1<′ = −2λU−1 (6.2.9)

provided

λ = RṘ−2R̈ (6.2.10)

is a constant. This requires that

R(t) = const · (1 − t/tc)
α , α =

1

1 − λ
, (6.2.11)

where α and tc are constants.

The strong shock conditions

p(R, t) =
2

γ + 1
ρ0Ṙ

2, ρ(R, t) =
γ + 1

γ − 1
ρ0,

u(R, t) =
2

γ + 1
Ṙ, (6.2.12)

in the light of (6.2.4), (6.2.6), and (6.2.11), become

P (1) =
2

γ + 1
, <(1) =

γ + 1

γ − 1
, U(1) =

1 − γ

1 + γ
. (6.2.13)
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It is assumed that the shock radius is given by ξ = 1, that is,
R(t) = const. (1 − t/tc)

α. The exponent α must be found by solving (6.2.7)–
(6.2.9) analytically or numerically subject to (6.2.13). It is not difficult to
write the equations (6.2.7) and (6.2.9) in the ‘integrated’ form

P (ξ)

P (1)
=

(
U(1)

ξ2U(ξ)

)γ

σ2λ+3γ , (6.2.14)

<(ξ)

<(1)
=

U(1)

ξ2U(ξ)
σ3, (6.2.15)

implying the relation

(
P (ξ)

P (1)

)3

=

(<(ξ)

<(1)

)2λ+3γ
(
ξ2U(ξ)

U(1)

)2λ

, (6.2.16)

where

σ(ξ) = exp

(
−
∫ ξ

1
U−1(ξ′)dξ′

)
, σ(1) = 1, (6.2.17)

or
σ′(ξ) = −σ(ξ)U−1(ξ). (6.2.18)

If we use the RH conditions (6.2.13), equations (6.2.14) and (6.2.15) become

P (ξ) =
2

γ + 1

(
1 − γ

(1 + γ)ξ2U(ξ)

)γ

σ2λ+3γ , (6.2.19)

<(ξ) = − σ3

ξ2U(ξ)
, (6.2.20)

implying the relation

P (ξ) =
2

γ + 1

[
γ − 1

γ + 1
<(ξ)

]γ
σ2λ. (6.2.21)

Since <(ξ) and P (ξ) can be expressed in terms of U(ξ) and σ, (6.2.8) in-
volves U,U ′ and σ only. Substituting (6.2.14) and (6.2.15) into (6.2.8) and
simplifying we get

σ2λ+3γ−3 =
UU ′ + (λ+ 1)U + λξ

γξU ′ + 2γU + (2λ+ 3γ)ξ

×Uγξ2γ−1<(1)P−1(1)U(1)1−γ . (6.2.22)

Differentiating (6.2.22) we have

−(2λ+ 3γ − 3)U−1 =
UU ′′ + U ′2 + (λ+ 1)U ′ + λ

UU ′ + (λ+ 1)U + λξ

− γξU ′2 + 3γU ′ + 2λ+ 3λ

γξU ′ + 2γU + (2λ+ 3λ)ξ

+γU−1U ′ + (2γ − 1)ξ−1. (6.2.23)
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If we now introduce the variables x and y via

x = U ′(ξ), y = ξ−1U(ξ), (6.2.24)

then

dx

dξ
= U ′′,

dy

dξ
= ξ−1(x− y),

and so
dy

dx
= ξ−1(x− y)(U ′′(ξ))−1. (6.2.25)

The second derivative U ′′(ξ) can be eliminated from (6.2.25) with the help
of (6.2.23). The former therefore becomes

dy

dx
= y(y − x)

F (y;λ)

G(x, y;λ)
, (6.2.26)

where
F (y;λ) = 2γy2 + (2λ+ 2γ − γλ)y − γλ, (6.2.27)

and

G(x, y;λ) = y(γx+ 2γy + 2λ+ 3γ)[x2 + (λ+ 1)x+ λ]

+[xy + (λ+ 1)y + λ]{(γx + 2γy + 2λ+ 3γ)

×[γx+ (2γ − 1)y + 2λ+ 3γ − 3]

−y(3γx+ 2λ+ 3γ)}. (6.2.28)

The curve G(x, y;λ) = 0 intersects the straight line y = x at the four points

x = y = −1,−1 − 2λ

3γ
,−1 − 2(λ− 1)

3γ − 1
,−λ. (6.2.29)

As ξ → ∞, the reduced velocity U1(∞) must vanish; therefore,

x(∞) = lim
ξ→∞

d

dξ
[U1(ξ) − ξ] = −1, (6.2.30)

y(∞) = lim
ξ→∞

U1(ξ) − ξ

ξ
= −1, (6.2.31)

see (6.2.24). Also, at the shock ξ = 1, we have

x(1) = −6(γ + 1)λ+ γ2 + 10γ + 1

(γ + 1)2
, y(1) =

1 − γ

1 + γ
, (6.2.32)

see (6.2.6), (6.2.22), (6.2.24) and (6.2.13). It was observed in section 6.1 that,
for some values of γ, the reduced pressure behind the shock first increases
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and then decreases. In fact, it follows from (6.2.8) and the integral (6.2.14)
that the slope P ′(ξ) at the shock ξ = 1 is positive if γ < 2 +

√
3. It

therefore follows that the reduced pressure must have a maximum at some
finite positive value ξ = ξm where P ′(ξm) = 0. We can also deduce from
(6.2.14), (6.2.15) and (6.2.8) by using the expressions for x and y in (6.2.24)
that, at the maximum P ′(ξ) = 0, we have

xy + (λ+ 1)y + λ = 0, (6.2.33)

γx+ 2γy + 2λ+ 3γ = 0 (6.2.34)

or

y2 +
2λ+ 2γ − λγ

2γ
y − λ

2
= 0. (6.2.35)

Since there is only one pressure maximum behind the shock, (6.2.35) implies
that

λ = λm = − 2γ

(
√
γ +

√
2)2

. (6.2.36)

From (6.2.33)–(6.2.34) we have the corresponding co-ordinates of the maxi-
mum as

ym = −(−1

2
λm)1/2, xm = λm(2/γ)1/2 − 1. (6.2.37)

Thus the exponent λ in (6.2.36) depends only on γ; it does not depend
on the strength of the shock and its manner of excitation. It may now
be verified that both numerator and denominator on the RHS of (6.2.26)
vanish when (6.2.33) and (6.2.34) are satisfied. Therefore, the integral curve
of (6.2.26) passes through the point (xm, ym) and the slope dy/dx remains
finite there. We also infer from (6.2.24) and (6.2.37) that Um at this point
is given by

Um = −ξm(−1

2
λm)1/2. (6.2.38)

As γ increases, the similarity variable ξ = ξm (where the maximum pressure
occurs) decreases until at γ = 2 +

√
3, λm = −2/3, we have ym = y(1) (see

(6.2.32), (6.2.36) and (6.2.37)). Thus, the maximum pressure for this value
of γ occurs at the shock front where

ym = y(1) = −
(
−1

2
λm

)1/2

= −1/
√

3. (6.2.39)

This statement is not easy to derive from numerical results.
Brushlinskii and Kazhdan (1963) showed that there is a whole inter-

val of possible α values corresponding to each γ and conjectured that the
unique solution corresponds to the smallest value of α. Butler (1954) had
encountered the same situation in his investigations.

From the analysis of Fujimoto and Mishkin (1978) it follows that dy/dx
as given by (6.2.26) is nonsingular when (6.2.33) and (6.2.34) are both sat-
isfied. The argument of existence of a point of maximum pressure and the
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Table 6.1. Analytic and numerical values of self-similar exponent α for different
values of γ (see (6.2.11)) (Fujimoto and Mishkin, 1978).

γ Analytic values of α Numerical values of α
(Fujimoto and Mishkin (1978)) (Lazarus and Richtmyer (1977))

1.0 0.749
1.1 0.734 0.769
1.4 0.707 0.717
5/3 0.687 0.688
2.0 0.667 0.667
3.0 0.623 0.636

2 +
√

3 0.600 0.625
6 0.562 0.610
∞ 0.500 0.588

analyticity arguments proffered by Butler (1954) lead to the same unique
solution (see also reference to I.M. Gelfand in Brushlinskii and Kazhdan
(1963)).

The above arguments hold only for γ ≤ 2 +
√

3. For higher values of γ,
other arguments must be used. Table 6.1 gives the values of α as obtained by
the theory presented here and the direct numerical solution of the eigenvalue
problem (see section 6.1). The agreement is good except when γ is close to
1. For larger values of γ, the numerical solution and the analysis presented
here do not agree.

Lazarus (1980) criticised the above work as ‘erroneous’. However, in a
rejoinder, Mishkin (1980) rebutted the charge and showed that there was no
logical error in the analysis of Fujimoto and Mishkin (1978).

6.3 Converging Shock Waves Caused by Spherical

or Cylindrical Piston Motions

It is natural to enquire how the converging shock may be generated. It
may then be related to its asymptotic behaviour near the center or axis of
symmetry (see sections 6.1 and 6.2). This aspect was analysed by Van Dyke
and Guttman (1982) who treated the entire problem analytically, requiring
however, in the end, an efficient computation of the series solution they
obtained. Imagine a spherical (or cylindrical) container of initial radius R0,
filled with a perfect gas at rest with density ρ0 and adiabatic constant γ. Let
the container move at t = 0 with a very large constant velocity V , causing
a strong shock of radius R = R(t). This shock rushes ahead to the center
(axis).
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6.3 Converging Shock Waves Caused by Piston Motions 189

The equations of motion governing the flow behind the shock are

ρt + (ρv)r + j
ρv

r
= 0, (6.3.1)

vt + vvr +
1

ρ
pr = 0, (6.3.2)

(
∂

∂t
+ v

∂

∂r

)
(pρ−γ) = 0, (6.3.3)

with the usual notation for density, pressure and particle velocity. j = 1, 2
for cylindrical and spherical symmetry, respectively. The Rankine-Hugoniot
conditions at the strong shock r = R(t) are

v =
2

γ + 1
Ṙ, (6.3.4)

ρ =
γ + 1

γ − 1
ρ0, (6.3.5)

p =
2

γ + 1
ρ0Ṙ

2. (6.3.6)

The boundary condition at the piston is

v = −V at r = R0 − V t, (6.3.7)

describing the motion of the piston inward with initial radius R0 at
t = 0. Van Dyke and Guttman (1982) used this transformation, measuring
the distance r inward from the original radius R0. The inward particle ve-
locity u equals −v. We may also introduce the variable, x = R0 − r. The
basic assumption in this analysis is that the initial motion of the piston
may be considered planar so that the shock thus produced moves with the
speed 1

2(γ + 1)V (see (6.3.4)), where V is the constant speed of the gas
between the piston and the shock. The other quantities in this region are
ρ = ρ0(γ + 1)/(γ − 1) and p = 1

2(γ + 1)ρ0V
2.

It is convenient to introduce the variable

ξ =
2

γ − 1

(
x

V t
− 1

)
, (6.3.8)

which varies, in the planar case, from zero at the piston to unity at the basic
position of the shock. We may also render the variables dimensionless by
referring the length to R0, speed to V , density to ρ0, pressure to ρ0V

2, and
time to R0/V . The system (6.3.1)–(6.3.3) now becomes
[
1 −

(
1 +

1

2
(γ − 1)ξ

)
t

]

×
[
ρuξ +

(
u− 1 − 1

2
(γ − 1)ξ

)
ρξ +

1

2
(γ − 1)tρt

]

=
1

2
(γ − 1)jtρu, (6.3.9)
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ρ

(
u− 1 − 1

2
(γ − 1)ξ

)
uξ +

1

2
(γ − 1)tρut + pξ = 0, (6.3.10)

(
u− 1 − 1

2
(γ − 1)ξ

)
(ρpξ − γpρξ)

+
1

2
(γ − 1) t(ρpt − γpρt) = 0. (6.3.11)

The boundary conditions (6.3.4)–(6.3.6) at the shock and (6.3.7) at the
piston now become

u =
2

γ + 1
Ẋ, ρ =

γ + 1

γ − 1
, p =

2

γ + 1
Ẋ2 (6.3.12)

at ξ = 2
γ−1

[
X(t)

t − 1
]

and

u = 1 at ξ = 0, (6.3.13)

respectively. A basic assumption of the analysis is that the solution is ana-
lytic in time so that one may assume the shock position X(t) in the form

X(t) =
∞∑

n=1

Xnt
n. (6.3.14)

The other flow variables behind the shock have the form

u =
∞∑

n=1

Un(ξ)tn−1, ρ =
∞∑

n=1

Rn(ξ)tn−1, p =
∞∑

n=1

Pn(ξ)tn−1. (6.3.15)

The lowest approximation in (6.3.15) is assumed to be that given by the
plane piston motion as noted above:

U1 = 1, R1 =
γ + 1

γ − 1
, P1 =

1

2
(γ + 1), X1 =

1

2
(γ + 1). (6.3.16)

Substituting (6.3.15) into (6.3.9)–(6.3.11) and equating like powers of t on
both sides, we get the following system of ODEs for the first order terms:

γ + 1

γ − 1
U ′

2 −
1

2
(γ − 1)ξR′

2 +
1

2
(γ − 1)R2 =

1

2
(γ + 1)j, (6.3.17)

−ξU ′
2 + U2 +

2

γ + 1
P ′

2 = 0, (6.3.18)

ξ

(
P ′

2 −
1

2
γ(γ − 1)R′

2

)
−
(
P2 −

1

2
γ(γ − 1)R2

)
= 0. (6.3.19)

The substitution of first of (6.3.15) into the boundary condition (6.3.13) at
the piston gives

Un(0) = 0 for all n > 1. (6.3.20)
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The boundary conditions (6.3.12) at the shock ξ = 1 are satisfied if we
put (6.3.14) and (6.3.15) therein and equate like powers of t on both sides.
The second order BCs are

U2(1) =
4

γ + 1
X2, R2(1) = 0, P2(1) = 4X2. (6.3.21)

The solution of (6.3.17)–(6.3.19), subject to (6.3.21) and U2(0) = 0, is found
to be

U2 =
γ(γ − 1)

2(2γ − 1)
jξ, R2 =

γ + 1

2γ − 1
j(1 − ξ),

P2 =
γ(γ + 1)(γ − 1)

2(2γ − 1)
j, X2 =

γ(γ + 1)(γ − 1)

8(2γ − 1)
j. (6.3.22)

Van Dyke and Guttman (1982), extrapolating from first and second order
forms of the solution, wrote the nth order solution in the form of polynomials
in ξ of degree n− 1:

Un(ξ) =
n∑

k=2

Unkξ
k−1, Rn(ξ) =

n∑

k=1

Rnkξ
k−1, Pn(ξ) =

n∑

k=1

Pnkξ
k−1.

(6.3.23)

We substitute (6.3.23) into the system of ODEs for Un(ξ), Rn(ξ), and Pn(ξ)
obtained from (6.3.9)–(6.3.11) via (6.3.15) and equate like powers of ξ. We
thus obtain for each approximation a system of 3n linear algebraic equations
for the coefficients Unk, Rnk, Pnk and Xn, whose nonhomogeneous terms de-
pend on all previous approximations. The conditions at the shock are

Figure 6.4 The shock locus for a spherical converging shock for γ = 7/5. Dotted

lines represent a one term approximation to the shock wave; dashed line is a three

term approximation; thick line is the full solution. The bottom line represents the

path of the piston (Van Dyke and Guttman, 1982).
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obtained by transferring them to the basic position ξ = 1 by Taylor series
expansion. The trajectory of the shock, to third order in t, is found to be

X(t) =
1

2
(γ + 1)t+

γ(γ + 1)(γ − 1)

8(2γ − 1)
jt2

+
(γ + 1)(γ − 1)

48(7γ − 5)

[
(γ + 1)(3γ + 1)j

+
γ(13γ3 − 21γ2 + 13γ − 1)

(2γ − 1)2
j2
]
t3

+ · · · · · · . (6.3.24)

This shock locus is shown in Figure 6.4 for a spherical converging shock for
γ = 7/5. The numerical results thus obtained for the cylindrical shock for
γ = 7/5 agree closely with the direct numerical integration of the governing
system of ODEs to this order by Lee (1968). Van Dyke and Guttman (1982)
carried out the expansion (6.3.24) for γ = 3 for a spherical piston to fifth
order and further confirmed the accuracy of this procedure. To obtain more
accurate results, Van Dyke and Guttman (1982) wrote a computer program
for the general term and computed the results to 40th approximation; they
claim an accuracy to 14 figures. They also used Domb and Sykes (1957)
method to estimate the radius of convergence of the series (6.3.24). Thus,
writing

X(t) = ΣXnt
n ∼ A1 (1 − t/tc)

α1 as t→ tc, (6.3.25)

one has
Xn

Xn−1
∼ 1

tc

(
1 − 1 + α1

n

)
as n→ ∞. (6.3.26)

Figure 6.5 Xn/Xn−1 versus 1/n with the value of α1 = 0.717 of Guderley’s expo-

nent for spherical symmetry with γ = 7/5, see (6.3.26) (Van Dyke and Guttman,

1982).
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Table 6.2. The history of evaluation of Guderley’s similarity exponent α1 (Van
Dyke and Guttman, 1982).

Spherical, Spherical, Spherical, Cylindrical,
γ = 7/5 γ = 5/3 γ = 3 γ = 7/5

Guderley (1942) 0.717 − − 0.834
Butler (1954) 0.717173 0.688377 − 0.835217
Stanyukovich (1960) 0.717 − 0.638 0.834
Brushlinskii & Kazhdan (1963) 0.7170 0.68838 0.6364 −
Welsh (1967) 0.717174 0.688377 0.636411 0.835323
Goldman (1973) − 0.688377 − −
Lazarus & Richtmyer (1977) 0.71717450 0.68837682 0.63641060 0.83532320
Fujimoto & Mishkin (1978) 0.707 0.687 0.623 −
Mishkin & Fujimoto (1978) − − − 0.828

Figure 6.5 shows that, for spherical symmetry and γ = 7/5, a linear fit in
1/n with the value α1 = 0.717 of Guderley’s exponent gives 1/tc ∼ 1.61
or tc ∼ 0.62 to graphical accuracy. All these values were later refined to
higher accuracy for various values of γ for both spherical and cylindrical
symmetries. The history of evaluation of Guderley’s similarity exponent α1

is given in Table 6.2. The value 0.707 of Fujimoto and Mishkin for γ = 7/5
for spherical geometry, reported in section 6.2, differs significantly from the
accurate value 0.717174 obtained by several other authors.

Following the conjecture of Guderley (1942), Van Dyke and Guttman
(1982) sought the following expansion for the radius of the shock wave

R(t) = 1 −X(t) ∼
∑

i=1

Ai (1 − t/tc)
αi , (6.3.27)

using the method of Padé approximants. The values of Ai and αi, i = 1, 2, 3,
for γ = 7/5, 5/3, 3 for spherical symmetry and for γ = 7/5 for cylindrical
symmetry are listed in Table 6.3. The radius of the converging shock is
given to an accuracy of 1/2 percent by the first three terms (see (6.3.14)).
Other piston motions could lead to the same asymptotic similarity solution
of the converging shock. An analysis proving this statement remains to be
carried out.

We conclude this section by summarising an interesting review paper by
Lazarus (1981). He laid stress on the role of nonanalytic solutions which
involve simultaneous arrival at the origin of two (or more) discontinuities,
for example, a shock and a discontinuous pressure gradient, or of one dis-
continuity and a point of nonanalytic continuity. These solutions may seem
artificial. Lazarus (1981) asserted that this view is not right since, for self-
similar solutions, all the information contained in the solution arrives simul-
taneously at the origin. In some of the new solutions found by Lazarus,
an arbitrary number of secondary shocks are possible; the physical nature
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Table 6.3. Exponents αi(i = 1, 2, 3) and amplitudes Ai(i = 1, 2, 3) in Guderley’s
local expansion (6.3.27) for spherical and cylindrical converging shocks correspond-
ing to γ = 7/5, 5/3, 3 (Van Dyke and Guttman, 1982).

Geometry γ α1 α2 α3 A1 A2 A3

Spherical 7/5 0.7171745 2.045 3.4 0.981706 0.0140 0.007
Spherical 5/3 0.6883768 1.885 3.1 0.989732 0.0055 0.006
Spherical 3 0.636411 1.638 2.5 1.016952 −0.0244 0.01
Cylindrical 7/5 0.835324 2.033 3 0.983865 0.0133 0.01

of the previously rejected partial solutions is discussed. Many (unresolved)
questions are also posed. In particular it is suggested that the asymptotic
approach (or nonapproach) to self-similar solutions obtained by direct nu-
merical integration of partial differential equations needs more careful analy-
sis since the evidence available for approach to a unique self-similar solution
is not convincing.
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Chapter 7

Spherical Blast Waves

Produced by Sudden

Expansion of a High

Pressure Gas

7.1 Introduction

We have so far modelled the blast wave in several idealised ways. Each of
these models represents reality in certain space-time regimes and describes
some physical aspect(s) of the phenomenon. For example, the Taylor-Sedov
self-similar solution is an extremely good descriptor of the initial stages of
a very strong blast wave but begins to depart from reality as the shock
moderates to a finite strength; Sakurai’s (1953) extension gives a solution
which is valid for some further time and distance. Similarly, the piston
motions describe blast waves for which the energy released is not constant.
Taylor-Sedov solution comes out as a special case with constant energy of
the blast wave. Bethe’s theory (1942), as also that of Whitham (1950), deals
with weak explosions. Brinkley and Kirkwood (1947) and Sachdev (1971,
1972) give a local theory of the blast wave. It describes how the shock decays
all the way to a sound wave; it does not give details of the flow behind the
shock.

A different, more realistic, but also mathematically more complicated,
model was proposed by McFadden (1952) and Friedman (1961). Each of

195
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these investigators assumed that at t = 0, a unit sphere containing a perfect
gas at a high pressure is allowed to expand suddenly into a homogeneous
atmosphere, referred to as air. This is an analogue of a plane shock tube
problem where, additionally, the spherical term must also be included. The
subsequent behaviour for t > 0, the ‘equalisation’, may be described in
the space-time diagram as follows. The region (0) is the undisturbed air;
the air which has been overtaken by the main blast wave is contained in
region (1). These two regions are separated by the main shock. There is
an interface, a contact discontinuity, which separates the (hot) air in region
(1) from the gas in region (2). The latter is a nearly uniform region outside
the main expansion which itself spans region (3); this region is bounded by
its head, adjoining the uniform gas region (4) and a tail which separates it
from the nearly uniform region (2) outside of the main expansion region.
Both McFadden (1952) and Friedman (1961) essentially deal with the same
model, but their analysis is quite distinct. The gas-sphere in the former is at
a relatively lower pressure so that the phenomenon of secondary shock is not
observed. In the case of expansion of a higher pressure gas sphere considered
by Friedman (1961), the secondary shock is clearly seen. This shock is
absent in the one-dimensional shock-tube problem since the main shock and
the expansion come into an instantaneous equilibrium, being separated by
a region of uniform pressure and velocity. Physically, the high pressure gas
passing through a spherical rarefaction wave must expand to lower pressures
than those reached through an equivalent one-dimensional expansion, clearly
due to the increase in volume. Therefore, the pressures at the tail of the
rarefaction wave are lower than those transmitted by the main shock and
a compression or a secondary shock must be inserted to connect these two
phases. McFadden (1952), however, considered the case when the pressure
difference referred to above is not severe so that a weak discontinuity or a
characteristic replaces the secondary shock.

The main aim of McFadden’s (1952) analysis was to get an initial (t ∼ 0)
analytic behaviour of the blast wave where the initial discontinuities are
smeared and the flow may be computed by the numerical methods popular
in those years. The basic idea was to write a series solution in time with
coefficients functions of an appropriate ‘similarity’ variable, suggested by
the solution of one-dimensional shock tube problem. The series solutions in
each of the domains were appropriately matched to those in other regions;
the loci of the dividing surfaces were also determined to first order in time.

The analysis of Friedman (1961) is entirely different; he was probably
not aware of the work of McFadden (1952). Here the rarefaction wave is
found by a perturbation of the corresponding plane rarefaction wave. A
considerable use is made of the approximate shock wave theory of Chisnell
(1957), Chester(1954, 1960) and Whitham (1958) to determine both the
secondary shock and the main shock. The solution, though explicit, is quite
intuitive and approximate.
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It is the purpose of this chapter to bring out the analytic features of
these valiant approches, to vindicate the power of analysis for this very
complicated problem. Section 7.2 deals with the McFadden (1952) approach
while section 7.3 corrects and corroborates the work of Friedman (1961).

7.2 Expansion of a High Pressure Gas into Air:

A Series Solution

One of the earliest attempts to simulate a blast wave, which is not too
strong, is due to McFadden (1952). Here, the point explosion hypothesis
and the assumption that the energy of the blast wave remains constant are
both dispensed with. The blast is also not assumed to be weak. Instead
it is envisioned that a unit sphere (in nondimensional variables), containing
a perfect gas at a (uniform) high pressure, is allowed to expand suddenly
at t = 0 into a homogeneous atmosphere. The medium in the sphere is
called ‘gas’ while that outside is referred to as ‘air’. After the ‘diaphragm’
is destroyed, the gas rushes outward compressing the air around it. The
flow for t > 0 may be described succinctly in the (x, t) plane (see Figure
7.1). Region A is the undisturbed gas. Region B is a rarefaction wave which
is bounded by its ‘head’, a straight characteristic on the left, and its ‘tail’
on the right. The latter, another characteristic, adjoins region C, which is
a rarefied gas moving outward. This rarefied gas and the air overtaken by
the main shock are separated by an interface, a contact discontinuity across
which pressure and particle velocity are continuous but other variables get a
jump. The region D contains compressed air, overtaken by the main shock,
and is bounded by the contact discontinuity and the main shock. The gas

Figure 7.1 Space–time diagram for a spherical blast (McFadden, 1952).
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sphere is not envisaged to be at a very high pressure; thus, it is assumed
that no secondary shock is formed. This phenomenon was subsequently
discussed by Friedman (1961) and is detailed in the next section. An earlier
study due to Wecken (1950) had indicated the formation and strengthening
of the secondary shock.

McFadden (1952) was interested in an analysis which would provide an
initial solution to continue the computation of the problem by numerical
methods then available, without the need to tackle discontinuities in the
initial data. He wrote out a series form of the solution for particle velocity,
pressure and entropy in powers of (nondimensional) time with coefficients
dependent on a slope co-ordinate which is a combination of space and time
co-ordinates and which appears prominently in the solution of the planar
form of this problem (the shock tube problem). Indeed, the zeroth or-
der solution in the series is simply the solution of the shock tube problem.
McFadden (1952) found first order correction for various regions shown in
Figure 7.1 and explained how geometry affected the solutions of the shock
tube problem.

Here we indicate how to generalise the work of McFadden (1952) to write
a series solution (different in each region) with an arbitrary number of terms,
which satisfies appropriate boundary conditions on each of the boundaries
shown in Figure 7.1. The solution is given explicitly up to two terms. The
series is summed up as it is and by the use of Padé approximation, and is
shown to converge for different times t = tc for different values of γ. The
latter is assumed to be constant in the entire flow.

We remark that the mathematical approach here is essentially the same
as was used much later by Van Dyke and Guttman (1982) for the converging
shock wave arising from a spherical or cylindrical piston motion. The series
solution was shown to converge to Guderley’s self-similar solution holding
near the focusing (see section 6.3 for a detailed discussion).

The spherical term introduces severe complications in the flow and hence
its analysis: the separating boundaries—the tail of the rarefaction, the in-
terface and the main shock each travel with nonuniform speeds and so their
trajectories must be found as part of the solution. The entropy behind the
shock varies as the shock propagates and decays.

For the present problem it is more convenient to write the equations of
motion in terms of particle velocity, sound speed and entropy:

ut + uux + (2N − 1)ccx − c2sx = 0, (7.2.1)

(2N − 1)(ct + ucx) + c(ux + 2u/x) = 0, (7.2.2)

st + usx = 0, (7.2.3)

where

s = S/cvγ(γ − 1), p = c2N+1 exp(−γs),
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ρ = γc2N−1 exp(−γs), (7.2.4)

N =
1

2

(γ + 1)

γ − 1
;

where S is the entropy per unit mole. The equation of state is chosen in the
form

pρ−γ = γ−γ exp(S/cv), (7.2.5)

so that S = 0 when p = 1 and ρ = γ. The other dependent variables p,
ρ, and u have the usual meaning. The distance x is measured from the
geometric center and t is the time. The system of equations (7.2.1)–(7.2.3)
must be solved in each of the regions A to E, shown in Figure 7.1.

If the conditions in the high pressured gas sphere, 0 < x < 1, are taken
to be u = 0, c = cA, s = sA , where cA and sA are constant, and those in the
air ahead, x > 1, as u = 0, c = 1 and s = 0, these respectively constitute the
solutions in the regions A and E (s = 0 is actually normalised by subtracting
from it some value s = s0 , say).

We now turn to the conditions to be imposed on the boundaries between
these constant regions. The head of the rarefaction wave,

xH = 1 − c
A
t, (7.2.6)

is a characteristic and permits a jump in the derivatives of u and c across it;
the functions u, c, and s must however be continuous. Thus, when x = xH ,
we have on the head of the rarefaction wave the conditions

u
B

= 0, c
B

= c
A
, s

B
= s

A
, (7.2.7)

until it reaches the center. This imposes the restriction 0 < t < 1/c
A

(see
(7.2.6)).

The tail of the rarefaction wave is assumed to be a characteristic moving
inward relative to the particles; it is not a straight line. Its actual slope may
be negative or positive. McFadden (1952) made this assumption in conso-
nance with the shock tube solution. In actual practice, there is possibility of
a weak shock developing and moving inward to collapse at the center. This
aspect of the problem remains to be incorporated in the present analysis.
Here we continue to use McFadden’s assumptions.

The interface between the rarefied gas and the compressed air is a contact
surface. It is a particle path. Therefore, the particle velocity must assume
the same value as the interface is approached from both sides. The interface
moves with a finite speed (except at t = 0); the pressure and the particle
velocity across it are continuous. Thus, denoting the interface by x = x

I
(t),

we have, on this moving front,

u
C

= c
D
, t ≥ 0, p

C
= p

D
, t > 0. (7.2.8)
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The other variables, namely, density, sound speed, and entropy suffer a jump
across x = xI (t).

With nondimensionalised values of the variables in the air ahead of the
main shock, namely, p = 1, c = 1, u = 0, the Rankine-Hugoniot conditions
give the following relations across the shock, xs = xs(t), t > 0 in terms of
the shock velocity U(t):

u
D

= (2N − 1)(U 2 − 1)/2NU,

c2
D

= [(2N + 1)U 2 − 1][U2 + (2N − 1)]/4N 2U2, (7.2.9)

p
D

= [(2N + 1)U 2 − 1]/2N.

We introduce the independent variables

q = (1/2N)[(2N − 1) + (1 − x)/c
A
t] and y = c

A
t (7.2.10)

into the basic system of equations (7.2.1)–(7.2.3) since q appears prominently
in the solution of the shock tube problem. The transformed system becomes

2NycAuy + cA{(2N −1)−2Nq}uq −uuq − (2N −1)ccq + c2sq = 0, (7.2.11)

2N(2N − 1)cA{1 + (2N − 1 − 2Nq)y}ycy
+cA{(2N − 1) − 2Nq}{(2N − 1) + (2N − 1)y((2N − 1) − 2Nq)cq

−(2N − 1){1 + ((2N − 1) − 2Nq)y}ucq
−{1 + ((2N − 1) − 2Nq)y}cuq + 4Nycq = 0, (7.2.12)

2NycAsy + cA{(2N − 1) − 2Nq}sq − usq = 0, (7.2.13)

We seek a series solution of the system (7.2.11)–(7.2.13) in each of the
regions B, C, and D for 0 < t < 1/c

A
, that is, for 0 < y < 1. Thus, we write

u(q, y) =
∞∑

n=0

un(q)yn, c(q, y) =
∞∑

n=0

cn(q)yn,

s(q, y) =
∞∑

n=0

sn(q)yn, (7.2.14)

where the coefficients un(q), cn(q), and sn(q) are assumed to be sufficiently
smooth. Substituting (7.2.14) into (7.2.11)–(7.2.13), we get the zeroth order
system as

[c
A
{(2N − 1) − 2Nq} − u0]u

′
0 − (2N − 1)c0c

′
0 + c20s

′
0

= 0, (7.2.15)

−c0u′0 + (2N − 1){[cA [(2N − 1) − 2Nq] − u0}c′0 = 0, (7.2.16)

[c
A
{(2N − 1) − 2Nq} − u0]s

′
0 = 0. (7.2.17)
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We may observe that the zeroth order system of ODEs is nonlinear while
all higher order systems are linear and inhomogeneous. We write the first
order system later (see (7.2.56)–(7.2.58)).

We must now find the boundary conditions, to different orders, across
different interfaces to use them in conjunction with systems of different
orders.

The q-co-ordinates, q = q
T
(y), q = q

I
(y),and q = q

S
(y) of the un-

known boundaries—the tail of the rarefaction wave, the contact front and
the shock—are written as series in time:

q
T

=
∞∑

n=0

q
Tn
yn, q

I
=

∞∑

n=0

q
In
yn, q

S
=

∞∑

n=0

q
Sn
yn, (7.2.18)

where qT 0
, qI0

, and qS0
are related to the slopes of the respective paths at

t = 0 in view of (7.2.10).
At the head of the rarefaction wave (7.2.6), q = 1 (see (7.2.10)), the

boundary conditions (7.2.7) by virtue of (7.2.14) become

u0(1) = 0, c0(1) = c
A
, s0(1) = s

A
, (7.2.19)

and

un(1) = 0, cn(1) = 0, sn(1) = 0, n ≥ 1. (7.2.20)

These conditions suffice to determine uniquely the series solution in the
region B.

Now we proceed to derive conditions across the tail of the rarefaction
wave which is a negative characteristic with the slope

dx

dt
= u− c. (7.2.21)

Substituting (7.2.14) and (7.2.181) into (7.2.21), using (7.2.10) for q = qT ,
x = xT , etc. and equating different powers of y on both sides, we have

u0(qT0
) − c0(qT0

) = c
A
{(2N − 1) − 2Nq

T0
}, (7.2.22)

u1(qT0
) − c1(qT0

) = −2Nc
A
q

T1
, etc. (7.2.23)

It suffices to consider the continuity of the positive Riemann invariant
u + (2N − 1)c across the tail to carry the information from the region B
to the region C. Introducing in this expression the expansions (7.2.14) along
the tail q = qT (see (7.2.18)) and equating coefficients of different powers of
y on both sides, we have

[u0(qT0
) + (2N − 1)c0(qT0

)]B = [u0(qT0
) + (2N − 1)c0(qT0

)]
C
, (7.2.24)

[u1(qT0
) + (2N − 1)c1(qT0

)]B = [u1(qT0
) + (2N − 1)c1(qT0

)]
C
, etc. (7.2.25)
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The locus of the contact discontinuity dx/dt = u is found in the same manner
as the tail of the expansion wave (see (7.2.21)–(7.2.23)). The result is

u0(qI0
) = c

A
[(2N − 1) − 2Nq

I0
], (7.2.26)

u1(qI0
) = −4Nc

A
q

I1
, etc. (7.2.27)

At the contact surface the conditions (7.2.8) apply. Therefore, using the
expansions (7.2.14) in (7.2.8), evaluating them at q = q

I
(see (7.2.18)) and

equating powers of y on both sides, we get

[u0(qI0
)]C = [u0(qI0

)]D , (7.2.28)

[u1(qI0
)]C = [u1(qI0

)]D , etc. (7.2.29)

[p0(qI0
)]C = [p0(qI0

)]D , (7.2.30)

[p1(qI0
)]C = [p1(qI0

)]D , etc. (7.2.31)

Finally, we consider the conditions at the shock front. If the shock law
is assumed in the form

U =
∞∑

n=0

Uny
n (7.2.32)

or
dx

S

dt
=

∞∑

n=0

Uny
n, (7.2.33)

then, putting q = q
S

(see (7.2.18)) and x = x
S

in the definition (7.2.10) of
q, we obtain, as for the tail of the rarefaction wave, the following relation:

U0 = c
A
{(2N − 1) − 2Nq

S0
}, (7.2.34)

U1 = −4Nc
A
q

S1
, etc. (7.2.35)

Substituting the expansions (7.2.14) and (7.2.183) into the Rankine-Hugoniot
conditions (7.2.9) and equating coefficients of equal powers of y on both
sides, we get

u
D0

(q
S0

+ 0) =
2N − 1

2N

(
U2

0 − 1

U0

)
, (7.2.36)

u
D1

(q
S0

+ 0) =
2N − 1

2N

(
U2

0 + 1

U2
0

)
U1, (7.2.37)

c2D0
(q

S0
+ 0) =

{(2N + 1)U 2
0 − 1}(U2

0 + (2N − 1))

4N2U2
0

, (7.2.38)

cD1(qS0
+ 0) =

{(2N + 1)U 4
0 + (2N − 1)}U1

4N2cD0U
3
0

, (7.2.39)
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c2N+1
D0

(qS0
+ 0)e−γs0 =

(2N + 1)U 2
0 − 1

2N
, (7.2.40)

SD1(qS0
) =

{
(2N − 1)cD1

cD0

− (2N − 1)2U0

(2N + 1)U 2
0 − 1

}
U1, etc. (7.2.41)

Now we turn to explicit forms of the zeroth and first order solutions which
satisfy appropriate boundary conditions at the boundaries of regions B, C,
and D. From (7.2.17) it follows that s′

0
= 0. Thus,

s0 = s
A
, 1 ≥ q ≥ q

I0
(7.2.42)

in the entire gaseous region A. The constant value of entropy in region D
may be denoted by

s0 = C0, q
I0
> q > q

S0
, (7.2.43)

where C0 6= s
A
. To this order, the entropy is constant also in the regions B

and C. Putting s′
0

= 0 in equations (7.2.15)–(7.2.16) and combining them
suitably we obtain

{cA [(2N − 1) − 2Nq] − (u0 ± c0)}[u′0 ± (2N − 1)c′0] = 0. (7.2.44)

These are easily checked to be equations for plane isentropic flow in the
variable q. Of the four possibilities, three give a solution linear in q while
the fourth leads to a constant solution. The linear solution compatible with
the boundary condition (7.2.19) at the head of the rarefaction wave is

u0 = c
A
(2N − 1)(1 − q), c0 = c

A
q, 1 ≥ q ≥ q

T0
. (7.2.45)

This is a centered simple wave. The only solution compatible with the
zeroth order boundary conditions in regions C and D is a constant solution
(see (7.2.28), (7.2.36),(7.2.38) and (7.2.40)). Since this solution must match
(7.2.45) at q = q

T0
, we have

u0 = c
A
(2N − 1)(1 − q

T0
), c0 = c

A
q

T0
, q

T0
≥ q ≥ q

I0
. (7.2.46)

In region D, we denote the constant solution by A0 and B0:

u0 = A0, c0 = B0, qI0
> q > qS0

. (7.2.47)

We match the solution (7.2.43) and (7.2.47) in region D to (7.2.42) and
(7.2.46) in region C via the boundary conditions expressing the continuity
of particle velocity and pressure across the contact front. We obtain

A0 = c
A
(2N − 1)(1 − q

T0

), (7.2.48)

B2N+1
0 exp(−γC0) = (c

A
q

T0
)2N+1 exp(−γS

A
). (7.2.49)
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Using the zeroth order solution (7.2.43) and (7.2.47) in the zeroth order R-H
conditions (7.2.36), (7.2.38), and (7.2.40), we get

A0 = (2N − 1)(U 2
0 − 1)/2NU0, (7.2.50)

B2
0 = [(2N + 1)U 2

0 − 1][U2
0 + (2N − 1)]/4N 2U2

0 , (7.2.51)

B2N+1
0 exp(−γC0) = [(2N + 1)U 2

0 − 1]/2N. (7.2.52)

The system of equations (7.2.48)–(7.2.52) must be solved for the five
constants A0, B0, C0, qT0

and U0. This problem can be reduced to the
solution of the equation

[cA(2N − 1)(1 − q
T0

)]2 =
(2N − 1)2

2N + 1

(p
A
q2N+1

T0
− 1)2

2NpAq
2N+1
T0

+ 1
(7.2.53)

for q
T0

, where p
A

= c2N+1
A

exp(−γs
A
) is the pressure in the (undisturbed)

gas region A. Once qT0
is determined, other unknowns may be found from

(7.2.48)–(7.2.52). The constant q
S0

in the series representation of the shock

locus (7.2.18) may be found by substituting U0 from the above into (7.2.34).
From (7.2.26) and (7.2.47), we have

A0 = cA[(2N − 1) − 2Nq
I0

]. (7.2.54)

Eliminating A0 between (7.2.48) and (7.2.54), we get a relation between q
I0

and q
T0

:

qI0
= (2N − 1)qT0

/2N. (7.2.55)

The solution thus found corresponds to the plane shock tube problem and
forms the basis for the series solution presented here. Higher order terms
give the effect of geometry.

To obtain the first order system, we consider the solution of this system
in each region by substituting the respective zeroth order solution on the
right hand sides.

For the rarefaction region B, if we use the zeroth order solution (7.2.42)
and (7.2.45), we get the following inhomogeneous system of ODEs:

qu′1 − (4N − 1)u1 + (2N − 1)qc′1 + (2N − 1)c1 = cAq
2s′1, (7.2.56)

qu′1 + (2N − 1)u1 + (2N − 1)qc′1 − (4N2 − 1)c1 = 4cAN(2N − 1)

×q(1 − q),

(7.2.57)

qs′1 − 2Ns1 = 0. (7.2.58)

The system (7.2.56)–(7.2.58) must be solved subject to the boundary condi-
tions (7.2.20) with n = 1 at the head of the wave. The solution s1 = s10q

2N
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of (7.2.58), with s10 a constant, shows that s1 = 0 since the entropy is con-
tinuous across the head of the rarefaction wave. The solution of the above
system in region B has different forms depending on the value of N .

For N 6= 1, 2, we have

u1 = −cA(2N − 1)q

2

2(N − 2) − 3(N − 1)q + (N + 1)qN−1

(N − 1)(N − 2)
, (7.2.59)

c1 = −cAq
2

2(N − 2)(2N − 1) − (N − 1)(4N − 3)q + (3N − 1)qN−1

(N − 1)(N − 2)
,

(7.2.60)

s1 = 0, 1 ≥ q > q
T
. (7.2.61)

For N = 3, 4, 5, u1 and c1 are polynomials of degree N in q. For N = 1, 2,
the solution involves logarithmic terms. For N = 2, which corresponds to
γ = 5/3, the solution has the form

u1 = −(3cAq/2)[3q log q + 2(1 − q)], (7.2.62)

c1 = −(cAq/2)[5q log q + 6(1 − q)], (7.2.63)

s1 = 0, 1 ≥ q > qT . (7.2.64)

To get the first order solution in region C, we use the corresponding
zeroth order solution (7.2.42) and (7.2.46). We thus have

[(2N − 1)q
T0

− 2Nq]u′1 + 2Nu1 − (2N − 1)q
T0
c′1 + cAq

2
T0
s′1 = 0, (7.2.65)

−qT0
u′1 + (2N − 1)[(2N − 1)qT0

− 2Nq]c′1

+2N(2N − 1)c1 = −4cAN(2N − 1)q
T0

(1 − q
T0

), (7.2.66)

[(2N − 1)q
T0

− 2Nq]s′1 + 2Ns1 = 0. (7.2.67)

The system (7.2.65)–(7.2.67) has the following general solution for
N 6= 0, 1/2:

u1/cA = k1[(N − 1)q
T0

−Nq] − k2N [q
T0

− q]

−k3q
2
T0
/2N, (7.2.68)

c1/cA =
k1[(N − 1)q

T0
−Nq] − k2N [q

T0
− q]

2N − 1
−2qT0

(1 − qT0
), (7.2.69)

s1 = −(k3/2N)[(2N − 1)q
T0

− 2Nq], q
T
> q > q

I
,

(7.2.70)

where k1, k2, and k3 are constants of integration.
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Using (7.2.55) in (7.2.70), we infer that as q → qI0
, s1 → 0, for any value

of k3. Therefore, we have

s(q
I
+ 0, y) = sA +O(y2) (7.2.71)

at the contact surface.

In fact, s(qI + 0, y) = sA to all orders in regions B and C since there is
no entropy jump across the head and the tail of the rarefaction wave.

The solution of the first order system of ODEs holding in region D is
found in the same way as for region C; here the zeroth order solution is
constant and is given by (7.2.43) and (7.2.47). The constant A0 is ‘partially’
eliminated in terms of q

I0
with the help of (7.2.54). The result is

u1 =

(
K1

2

)
[2cAN(q

I0
− q) −B0] +

(
K2

2

)
[2cAN(q

I0
− q) +B0]

−B2
0K3/2cAN, (7.2.72)

c1 =
K1[2cAN(qI0

− q) −B0] −K2[2cAN(qI0
− q) +B0]

2(2N − 1)
,

− 2A0B0

cA(2N − 1)
, (7.2.73)

s1 = −K3(qI0
− q), qI > q > qs, (7.2.74)

where K1, K2, and K3 are constants of integration. In the zeroth and
first order solutions for regions B, C, and D, cA and N are known from
the statement of the problem while q

T0
, q

I0
, A0 and B0 have already been

found from the zeroth order solution. We shall now investigate how to
find the constants k1,k2, K1, K2, and K3 from the boundary conditions
corresponding to order one.

McFadden (1952) showed that, in fact, all the variables namely, velocity,
sound speed and entropy can all be made continuous across the tail to first
order in y. That is,

u(q
T

+ 0, y) − u(q
T
− 0, y) = O(y2),

c(q
T

+ 0, y) − c(q
T
− 0, y) = O(y2), (7.2.75)

s(qT + 0, y) − s(qT − 0, y) = O(y2),

It is easily seen from (7.2.70) that, if we choose k3 = 0, s1 = 0 and,
therefore, entropy is continuous across the tail to first order. If we consider
the negative Riemann invariant, namely, u− (2N − 1)c in region C and take
the limit q → q

T
− 0, then, since k3 = 0, q

T
− 0 depends only on cA, N and

q
T0

to first order. The same can be shown to be true if we approach the tail
of rarefaction wave from region B. Thus, the negative Riemann invariant is
continuous across the tail to first order for any k1 or k2. Now, we consider
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the positive Riemann invariant u+ (2N − 1)c in regions B and C; it can be
made continuous across the tail of the rarefaction wave provided

k1 =
2N − 1

(N − 1)(N − 2)
[(N − 2) − 2(N − 1)q

T0
+NqN−1

T0
], N 6= 1, 2,

= 6q
T0

log q
T0

+ 3(1 − q
T0

), N = 2; (7.2.76)

see (7.2.59)–(7.2.61) and (7.2.68)–(7.2.70). Here we have assumed that k3 =
0. From the value of k1 given by (7.2.76) and k3 = 0, the solutions in regions
B and C satisfy (7.2.75) for arbitrary k2. The three shock conditions (7.2.37),
(7.2.39) and (7.2.41) can be used to determineK1, K2 andK3 in terms of U1.
The solution of order one is then substituted into the interface conditions
(7.2.29) and (7.2.31). These together give U1 and u0(qI0

+ 0).

The coefficients q
T1

, q
I1

, and q
S1

in the loci of the tail of the rarefac-
tion wave, the contact discontinuity and the shock may now be found from
(7.2.23), (7.2.27), and (7.2.35) as

q
T1

=
c1(qT0

) − u1(qT0
)

2cAN
, (7.2.77)

qI1
= −

u1(qI0
+ 0)

4cAN
, (7.2.78)

qS1
= − U1

4cAN
. (7.2.79)

Thus the solutions (7.2.59)–(7.2.61), (7.2.68)–(7.2.70), and (7.2.72)–(7.2.74)
in regions B, C, and D, respectively, and the loci of the boundaries, namely,
the tail of the rarefaction wave, the interface, and the shock, have been
completely found to order one.

The above procedure can be systematized as an algorithm to find higher
order terms in the series solution (7.2.14).

It may be observed that the process of finding the higher order coeffi-
cients in the series (7.2.14) and (7.2.18) becomes rather unwieldy. The task
of generating higher order terms satisfying appropriate boundary conditions
in each of the regions was delegated to the computer. Twenty terms were
generated in each of the regions and summed directly and by the use of
Padé summation. The results were obtained by direct summation and by
the use of Padé summation for cAt = 0.05, 0.30, 0.55. The initial pressure
ratio and the initial density ratio with γ = 1.4 were chosen to be 12.817
and 3.956, respectively. These are the same initial conditions as were used
by McFadden (1952). The direct series sum and the Padé sum agree very
well for t ≤ 0.2. They begin to diverge thereafter. Padé summation extends
the validity of the series solution to t = 1/cA, the time up to which the
present analysis holds. The series solution is significantly different from the
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first order solution of McFadden (1952) (see Yogi (1995) for details). The
convergence of the series solution deserves further investigation.

The pressure decreases monotonically from the head of the rarefaction
to the tail. Then it increases through the contact discontinuity to reach its
maximum behind the shock. The density decreases from the head of the
rarefaction to the tail. Then it begins to increase, gets a (positive) jump
at the contact discontinuity and continues to grow until the shock. The
particle velocity increases from its value 0 at the head of the rarefaction
wave to its tail and then monotonically decreases through regions C and D.
The sound speed behaves like the pressure from the head of the rarefaction
to the contact discontinuity. It suffers a jump there and then decreases
monotonically to the shock. The qualitative behaviour described above was
also observed by Saito and Glass (1979) in their numerical solution. We may
point out that Saito and Glass (1979) too did not envisage the presence of
a secondary shock behind the main shock.

7.3 Blast Wave Caused by the Expansion of a

High Pressure Gas Sphere: An Approximate

Analytic Solution

In section 7.2 we studied the initial behaviour of a spherical blast as sim-
ulated by the sudden expansion of a uniform high pressure gas into the
ambient air when the gas-pressure is not too high. The solution was sought
in the form of series in time with coefficients functions of a ‘similarity vari-
able’. It was essentially a short time solution but, by an efficient use of the
series, could be made to yield good results even for a finite time. The scheme
of the series solution was such that the zeroth order term constituted the
solution of the shock tube problem.

Essentially the same problem was treated subsequently by Friedman
(1961). There was one major difference in the model though. The gas
pressure was of such intensity that it gave rise to the phenomenon of a sec-
ondary shock, not treated by McFadden (1952). The latter author, however,
does refer to the possibility of this shock, attributing it to an earlier investi-
gation of Wecken (1950). McFadden (1952) also referred to some numerical
evidence for the secondary shock. He himself studied the problem such that
there was no secondary shock to first order approximation in the solution
that he actually constructed.

In addition to treating the phenomenon of secondary shock, Friedman
(1961) dealt with the blast wave problem by an approximate method quite
distinct from that of McFadden (1952). The solution in the rarefaction
region was found as a perturbation on the plane (shock tube) solution. The
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trajectory of the main shock and the formation and subsequent motion of
the secondary shock were found by using an approximate technique, called
CCW method (Chester (1954), Chisnell (1957) and Whitham (1958)). The
contact surface was found explicitly by making use of these approximate
results.

The analysis of Friedman (1961), though novel, is in error, as we shall
show, since the approximate integration of some of the equations leads to
(spurious) singularities for γ = 5/3 and γ = 3 and, therefore, to large
values of the perturbation term rendering the perturbation scheme invalid.
This therefore affects the entire solution of the problem. We shall first
briefly describe Friedman’s solution and show how more precise integration
eliminates the errors in his analysis.

We now discuss the physical model and Friedman’s approach in some
detail. At time t = 0, a gas sphere (or cylinder) of radius x0 under high
internal pressure p = p4, say, is surrounded by still air at pressure p = p0,
where p4 >> p0. As in section 7.2, the medium in the sphere is referred
to as gas while that outside is air. For t ≥ 0, an equalisation or explosion
takes place giving rise to the following regions in the (x, t) plane (see Figure
7.2): (0) refers to the air which is not overtaken by the main shock, (1) is the
compressed air enveloped by the main shock, (2) refers to the nearly uniform
region outside the main expansion, (3) is the main expansion or rarefaction
region, and (4) is the gas not yet disturbed by the centered expansion. The
surface separating regions (1) and (2) is a contact discontinuity across which
pressure and particle velocity are continuous while temperature, density and
entropy suffer a jump.

The phenomenon of secondary shock which does not appear in the shock
tube problem may be described as follows. The high pressure gas upon

Figure 7.2 Explosion flow diagram (Friedman,

1961).
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passing through a spherical rarefaction must expand to lower pressures
than those reached through an equivalent one-dimensional expansion; this is
caused by the increase in volume. This results in lower pressures at the tail
of the rarefaction than the pressures transmitted by the main shock. A com-
pression or secondary shock must be inserted to connect these two phases.
Mathematically, this can be explained as follows. The centred expansion is
described by a set of negative characteristics (dx/dt = u− a) which, initially,
point in the direction of decreasing x. However, later they turn around to
the increasing x direction as the particle velocity increases. Negative char-
acteristics also carry information after reflection from the shock. As the
main shock propagates outward, it becomes weaker and the reflected nega-
tive characteristics incline more and more toward the decreasing x-direction.
Thus the characteristics of the same family but arising from two different
sources tend to meet and a shock must be inserted to make the flow compat-
ible. This weak shock itself is determined by the following well-known result
(see Courant and Friedrichs (1948)): the slope of a weak shock at each point
is nearly equal to the average of the slopes of the incoming characteristics at
that point. Friedman (1961) used this idea, developed earlier by Whitham
(1952). This secondary shock ceases to be weak as it evolves. Friedman
(1961) used the CCW approach, referred to earlier, to find the locus of this
secondary shock; the flow ahead of this shock is nonuniform. The main
shock between regions 0 and 1 was also found by the CCW method. For the
trajectory of the contact front, Friedman (1961) derived a differential equa-
tion from the known flow properties on the characteristics coming from the
main shock. The flow is assumed to be isentropic in the expansion region (3)
and in the initial portions of the region (2) since here the secondary shock
is weak. The shock-area rule (CCW method), where ever it has been used,
correctly takes entropy changes into account via the shock conditions. In
region (1) the entropy changes were ignored in following the flow properties
from the main shock to the contact front; this may affect the solution.

We first treat region (3) and show how Friedman’s approximation of the
perturbation solution introduces errors. Since this region is isentropic, we
may write equations of continuity and motion in nonplanar geometry in the
following characteristic form:

(
1

γ − 1
at +

1

2
ut

)
+ (u+ a)

(
1

γ − 1
ax +

1

2
ux

)
+
nua

2x
= 0, (7.3.1)

(
1

γ − 1
at −

1

2
ut

)
+ (u− a)

(
1

γ − 1
ax − 1

2
ux

)
+
nua

2x
= 0. (7.3.2)

n = 1, 2 for cylindrical and spherical symmetry, respectively, and γ is the ra-
tio of specific heats. Equations (7.3.1)–(7.3.2) have already been normalised
by using the dimensional parameters a0 and x0, the speed of sound in the
undisturbed medium and the initial radius of the blast, respectively:

a = a/a0, u = u/a0, x = x/x0, t = ta0/x0. (7.3.3)
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Here, the barred quantities are dimensional. Friedmann (1961) first wrote
out the one-dimensional centered expansion for the plane case with n = 0
in (7.3.1)–(7.3.2):

u1 = 2µr + (1 − µ)
x− 1

t
,

a1 = µ

(
2r − x− 1

t

)
, µ =

γ − 1

γ + 1
, r =

1

γ − 1
a1 +

1

2
u1 = constant,

s =
1

γ − 1
a1 −

1

2
u1 = (1 − 2µ)r − (1 − µ)

x− 1

t
, (7.3.4)

where r and s are the Riemann invariants. For the plane centered expansion
wave, r is constant throughout the region (3). Friedman (1961) sought
solution of (7.3.1) and (7.3.2) with n = 1, 2 in the form

u = u1 + u2, a = a1 + a2,

R =
1

γ − 1
a2 +

1

2
u2, S =

1

γ − 1
a2 −

1

2
u2, (7.3.5)

where the subscript ‘2’ denotes perturbation quantities due to the nonplanar
geometrical terms. The perturbation in Riemann invariants are denoted by
capital letters, R and S. Substituting (7.3.5) in (7.3.1) and retaining only
first order terms in R, we have

Rt + (u1 + a1)Rx +
nu1a1

2x
= 0 (7.3.6)

which, in the characteristic form, is

dt

t
=

dx

4µrt+ (1 − 2µ)(x− 1)
= −2x

dR

ntu1a1
. (7.3.7)

The first of (7.3.7) written with x as the dependent variable can be solved
to yield

x− 1

t
− 2r = −Kt−2µ, (7.3.8)

or using the expression for a1 from (7.3.4),

a1t
2µ = Kµ, (7.3.9)

where K is a constant for each characteristic. Eliminating x from the
second of (7.3.7) with the help of (7.3.8) we obtain an equation for
R = R(t) along the positive characteristic:

dR

dt
= −nµK[2r − (1 − µ)Kt−2µ]t−2µ

2[1 + t(2r −Kt−2µ)]
. (7.3.10)
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Friedman (1961) approximated the denominator in (7.3.10) by 1, imply-
ing thus that the characteristics remain close to x = 1 (see (7.3.8)). This,
he averred, holds except for blasts of high intensity. Thus, (7.3.10) re-
duces to

dR

dt
= −nµK

2
[2r − (1 − 2µ)Kt−2µ]t−2µ. (7.3.11)

The solution of (7.3.6), therefore, is

R = −nKµt
2

[
2r

1 − 2µ
t−2µ − 1 − µ

1 − 4µ
Kt−4µ

]
+ f(a1t

2µ), (7.3.12)

where f(a1t
2µ) is a ‘function’ of integration which is constant along the

characteristic (7.3.7) (see (7.3.9)). It is clear from (7.3.12) that R blows
up when either µ = 1/2 or µ = 1/4, that is, when γ = 3, 5/3. Moreover,
the factor 1 − 2µ would also be small in the range 1 < γ < 5/3. Thus,
the approximation x ∼ 1 introduces considerable errors. One must solve
(7.3.10) exactly to eliminate these inaccuracies which also affect subsequent
analysis.

Equation (7.3.10) can be written more simply as

dR

dT
=

A+BT

CTm +DT +E
, T = t−1/m, (7.3.13)

where

m =
1

2µ
=

1

2

γ + 1

γ − 1
,

A = 2nKγ,

B = −nK
2(2m− 1)

2m
, (7.3.14)

C = 4, D = −4K, E = 8γ.

For integral values ofm = 1, 2, 3, 4, which correspond to γ = 3, 5/3, 7/5, 9/7,
respectively, it is possible to integrate (7.3.13) in a closed form. We write
the solution for γ = 5/3 for whichR in (7.3.12) blows up.

For γ = 5/3, m = 2, and µ = 1/4, and the exact solution of (7.3.6 is

R =





log

[(
2t−1/2

−K−

√
K2−8γ

2t−1/2
−K+

√
K2−8γ

)(8γ− 3
2

K2) nK

16
√

K2−8γ

]

(t−1−Kt−1/2+2γ)
3nK2

32

+ f(a1t
1/2), K2 > 8γ,

−3nK2

32 log(t−1 −Kt−1/2 + 2γ) + nK
8

(8γ− 3
2
K2)√

8γ−K2
tan−1 2t−1/2−K√

8γ−K2

+f(a1t
1/2), K2 < 8γ,

−3nK2

32 log(t−1 −Kt−1/2 + 2γ) − 2
2t−1/2−K

+ f(a1t
1/2), K2 = 8γ.

(7.3.15)
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Friedman (1961) argued that since his entire analysis was approximate, this
kind of complicated form was not called for. This argument is fallacious
for γ = 5/3, as we pointed out earlier, since R blows up for this value of
γ. For γ = 1.4, however, the integral (7.3.12), though approximate, may
qualitatively be correct. Following Friedman (1961), this is the case we
shall discuss specifically though we carry out the analysis for general γ. We
may write (7.3.12) in the form

R =
nt

2

[
(1 − µ)

µ(1 − 4µ)
a2

1 −
2r

1 − 2µ
a1

]
+ f(a1t

2µ) (7.3.16)

if we eliminate K therein with the help of (7.3.9). The function f(a1t
2µ),

constant along each positive characteristic, and the constant r are obtained
by using the continuity of (γ−1)−1a+ 1

2u across the boundary characteristic
between regions (3) and (4). Since u4 = 0 and a4 is constant in the region
(4), the rarefaction front is given by

x− 1 = −a4t. (7.3.17)

The value of the Riemann invariant in region (4) is

r =
1

γ − 1
a4. (7.3.18)

Since R = 0 in region 4, we have

f(a4t
2µ) = −nt

2

[
1 − µ

µ(1 − 4µ)
a2

4 −
2r

1 − 2µ
a4

]
. (7.3.19)

Therefore, we may easily find that

f(a1t
2µ) = −nt

2

(
a1

a4

)1/2µ [ 1 − µ

µ(1 − 4µ)
a2

4 −
2r

1 − 2µ
a4

]
. (7.3.20)

We may obtain the Reimann invariant in region (3) with the help of (7.3.16)
and (7.3.20) as

1

γ − 1
a3 +

1

2
u3 =

(
1

γ − 1
a4 + 0

)
+R,

=
1

γ − 1
a4 +R,

=
1

γ − 1
a4 + tH(a1), (7.3.21)

where

H(a1) =
n

2
{ 1 − µ

µ(1 − 4µ)
[a2

1 − (
a1

a4
)1/2µa2

4] −
2r

1 − 2µ
[a1 − (

a1

a4
)1/2µa4]},

a1 = µ(2r − x− 1

t
). (7.3.22)
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Using the perturbation form (7.3.5) in the negative characteristic form
(7.3.2) and retaining the lowest order terms we get an equation for the
perturbation S in the other Riemann invariant, namely s,

tSt + (x− 1)Sx + [(2µ− 1)R+ S] +
nu1a1t

2x
= 0, (7.3.23)

where R = tH(a1) and H(a1) is given by (7.3.22). The characteristic form
of (7.3.23) is

dt

t
=

dx

x− 1
=

dS

−[(2µ− 1)R + S] − nu1a1t
2x

. (7.3.24)

The first of (7.3.24) gives the characteristics, x − 1 = Lt, where L is a
constant along each characteristic. Equations (7.3.24) can be combined to
yield

d

dt
(tS) = (1 − 2µ)R − nu1a1t

2(1 + Lt)
= (1 − 2µ)tH(a1) −

nu1a1t

2(1 + Lt)
.

(7.3.25)

Since u1, a1 and L are constant along a negative characteristic, (7.3.25) can
be integrated to yield

S = (1 − 2µ)
t

2
H(a1) −

nu1a1

2L

[
1 − log(1 + Lt)

Lt

]
. (7.3.26)

Recalling that the (negative) Riemann invariant is given by s + S, we use
(7.3.4) and (7.3.26) to obtain

s+ S =
1

γ − 1
a3 −

1

2
u3 = (1 − 2µ)r − (1 − µ)

x− 1

t
+

(1 − 2µ)

2
tH(a1)

− nu1a1t

2(x− 1)2
[x− 1 − log x], (7.3.27)

where we have put L = (x− 1)/t.
In the above we have used x = 1 + Lt as the lowest order equation for

the negative characteristics. We employ the above results to obtain more
accurate slope of the characteristics u3 − a3 and hence their loci.

Thus, combining (7.3.21) and (7.3.27) suitably we have

dx

dt
= u3 − a3 =

x− 1

t
+

1 − 2µ

2 − 2µ
tH(a1) +

nu1a1t

2(1 − µ)(x− 1)2
[x− 1 − log x].

(7.3.28)
To solve (7.3.28), we again let x = 1 + Lt on its RHS and assume that

u1, a1, and L are all constant along the negative characteristics. This gives

dx

dt
= L+

1 − 2µ

2 − 2µ
tH(a1) +

nu1a1

2(1 − µ)L

[
1 − log(1 + Lt)

Lt

]
. (7.3.29)
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On integration of (7.3.29), we have

x = 1 + Lt+
(1 − 2µ)t2

4(1 − µ)
H(a1) +

nu1a1

2(1 − µ)L

∫ [
1 − log(1 + Lt)

Lt

]
dt.

(7.3.30)

An approximate evaluation of the integral in (7.3.30) gives

x = 1 + Lt+
(1 − 2µ)t2

4(1 − µ)
H(a1) +

nu1a1

2(1 − µ)L

[
1 − log(1 + Lt)

Lt

]
t

2
.

(7.3.31)

or putting L = (x− 1)/t in the last term in (7.3.31) we have

x = 1 + Lt+
(1 − 2µ)t2

4(1 − µ)
H(a1) +

nu1a1t
2

4(1 − µ)(x− 1)

[
1 − log(x)

x− 1

]
.

(7.3.32)

where H(a1) is given by (7.3.22).
We turn now to the other end of the flow, namely, the main shock. Fried-

man (1961), as we remarked earlier, followed CCW approach to obtain the
locus of this shock. We briefly describe this approach. Whitham (1958),
‘rather illogically’, proposed that, to get the trajectory of a forward moving
shock, one may write the compatibility condition holding along the positive
characteristic and substitute the Rankine-Hugoniot conditions on this dif-
ferential relation. This leads to an ODE for the Mach number with distance
as the independent variable. This ODE may be solved in a closed form or
integrated numerically with an appropriate initial condition. This approach
makes sense if the shock is weak and therefore may be approximated by
a characteristic close to it. That it works ‘reasonably’ even for a strong
shock is surprising. Whitham (1958) also attempted to explain why this ap-
proach works. There have been several other attempts to critically examine
and improvise upon this technique. Essentially, it works when there are no
major effects catching up with the shock; this is true, for example, where
self-similar solutions of the second kind hold (see section 6.1 for converging
shocks).

Writing again the given flow equations with pressure and density as the
dependent variables, we have

pt + ρaut + (u+ a)(px + ρaux) +
nρa2u

x
= 0, (7.3.33)

pt − ρaut + (u− a)(px − ρaux) +
nρa2u

x
= 0. (7.3.34)

These equations hold along the characteristic directions, u + a and u − a,
respectively, whether the flow is isentropic or not. In the present case, it is
nonisentropic behind the shock.
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Since the positive characteristics meet the main shock, Whitham’s rule
requires their use. Thus, we have the following compatibility relation holding
along dx

dt = u+ a:

dp+ ρadu = −nρa
2u

u+ a

dx

x
. (7.3.35)

The Rankine-Hugoniot conditions are

u =
2a0

γ + 1
(M −M−1), p =

p0

γ + 1
(2γM2 − γ + 1),

ρ =
ρ0(γ + 1)M 2

(γ − 1)M 2 + 2
, a2 =

a2
0(2γM

2 − γ + 1){M 2(γ − 1) + 2}
(γ + 1)2M2

,

(7.3.36)

where M = U/a0, U is the shock velocity, and ‘0’ refers to the undisturbed
conditions in the region (0). Substituting (7.3.36) into (7.3.35) we have the
following differential relation holding along the shock, xm = xm(t):

−ndxm

xm
= dM

{
4M

2γM2 − γ + 1
+

2(M2 + 1)

M{[2γM 2 − γ + 1][(γ − 1)M 2 + 2]}1/2

+
2M

M2 − 1

(
(γ − 1)M 2 + 2

2γM2 − γ + 1

)1/2

+
M2 + 1

M(M2 − 1)

}

or

dM

dtm
= −M

n
xm

{
4M

2γM2 − γ + 1
+

2(M2 + 1)

M{[2γM 2 − γ + 1][(γ − 1)M 2 + 2]}1/2

+
2M

M2 − 1

(
(γ − 1)M 2 + 2

2γM2 − γ + 1

)1/2

+
M2 + 1

M(M2 − 1)

}−1

≡ −Mxm

n
F (M). (7.3.37)

Curiously, this complicated equation can be solved in a closed form:

(xm)n[
{2γM2 − γ + 1}1/2 − {(γ − 1)M 2 + 2}1/2

M
]2[{(γ − 1)(2γM 2

−γ + 1)}1/2 − {2γ[(γ − 1)M 2 + 2]}1/2]
√

2γ/(γ−1)(2γM2 − γ + 1)1/γ

× exp[
1

{2(γ − 1)}1/2
sin−1{2(2γM2 − γ + 1) − (γ − 1)[(γ − 1)M 2 + 2]

M2(γ + 1)2
}]

= const. (7.3.38)

The (dimensionless) time may now be obtained from the relation

Mdtm = dxm, (7.3.39)
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where dxm is defined by (7.3.37). If we know the Mach number of the initial
shock produced by the detonation at time t = t0, say, equations (7.3.37) and
(7.3.39) may be integrated simultaneously to give (xm, tm) as functions of
Mach number. Specifically, if the high pressure gas has the initial pressure
p4 and sound speed a4 while the outside atmospheric conditions are p0 and
a0, the one-dimensional (shock tube) theory gives relation

p4

p0

{
1 − µ

a0

a4
(M −M−1)

}(µ+1)/µ

= (1 + µ)M 2 − µ (7.3.40)

for the initial shock Mach number.
To get the flow between the main shock and the contact discontinuity,

we need the loci of negative characteristics reflected from the main shock.
Friedman (1961) argued that, since the distance between the shock and
contact discontinuity is relatively short, the slope of each negative charac-
teristic, u1 − a1, may be assumed to be constant and computed from the
values of u1 and a1 immediately behind the main shock. This is tantamount
to ignoring the effects of entropy changes and three dimensionality behind
the shock. Changes in the shock strength are appropriately accounted for.
Thus the negative characteristics are simply

x = xm + w1(M)(t− tm), (7.3.41)

where w1(M) = u− a is evaluated at the point (xm, tm) on the main shock.
Thus, (7.3.37), (7.3.39) and (7.3.41) define the main shock and negative
characteristics behind the shock as functions of the shock Mach number M .

Now we turn to the determination of the trajectory of the contact dis-
continuity. In the nature of the analysis carried out by him, Friedman (1961)
made several further assumptions to accomplish this task. He made use of
the solution in domain (3), ignoring the presence of the secondary shock;
he also assumed that the characteristics coming from the main shock were
straight lines. The conditions at the contact surface—continuity of pressure
and particle velocity—were satisfied. The path of the contact surface was
found by observing that it was a particle line.

Since the contact front moves with the local particle velocity u, the
positive characteristics with slope u + a meet it from region (2) while the
negative characteristics with slope u − a intersect it from region (1). The
Riemann invariant (γ − 1)−1a+ (1/2)u is computed from (7.3.21), ignoring
the entropy jump across the weak secondary shock separating regions (2)
and (3). Introducing the notation

Q = (γ − 1)−1a+
1

2
u, (7.3.42)

and w = u−a, as before, we observe that, since particle velocity is continuous
across the contact front, we have in terms of Q and w,

Q2 +
1

γ − 1
w2 = Q1 +

1

γ − 1
w1
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or

w2 − w1 = −(γ − 1)(Q2 −Q1). (7.3.43)

The contact front is also a particle line, therefore, the entropy along it is
constant. Thus, we have

p

pi
=

(
a

ai

)2γ/(γ−1)

, (7.3.44)

where the subscript i denotes the initial state. Since the pressure is contin-
uous across this front, we have from (7.3.43), (7.3.44) and the definition of
w, the relation (

a

ai

)

2
=

(
a

ai

)

1
(7.3.45)

or

2Q2 − w2 =
ai2

ai1
(2Q1 − w1). (7.3.46)

Eliminating Q1 from (7.3.43) and (7.3.46), we have the slope w2 of negative
characteristics in region (2) in terms of known quantities:

w2 =

γ+1
γ−1

ai2
ai1
w1 + 2

(
1 − ai2

ai1

)
Q2

1 +
(

2
γ−1

)
ai2
ai1

. (7.3.47)

This slope, however, involves the functions w1 = w1(M) and Q2 = Q(x, t)
(see (7.3.41) and (7.3.42)). We must determine the (x, t) co-ordinates of
the contact front in terms of the parameter M . For this purpose, we first
express a1 in terms of w1 and Q2. Since the particle velocity is continuous
across the contact front, we have

2Q2 − w1 =
2

γ − 1
a2 + a1. (7.3.48)

Combining this relation with (7.3.47), we have

a1 =
2Q2 − w1

1 +
(

2
γ−1

)
ai2
ai1

. (7.3.49)

We may write the equation of the contact front as xc = C(tc). The negative
characteristic (7.3.41) from the main shock meets the contact front at

C(tc) = xm + w1(M)(tc − tm). (7.3.50)

Therefore,
dC

dtc
= w1 +

dM

dtc
{x′m +w′

1(tc − tm) − w1t
′
m}, (7.3.51)
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where prime denotes differentiation with respect to M . Also, at the contact
front, we have the speed

dC

dtc
=
dxc

dtc
= u. (7.3.52)

Using (7.3.51), (7.3.52) and the relation w1 = u1 − a1, we have

a1 =
dM

dtc
{x′m + w′

1(tc − tm) −w1t
′
m}. (7.3.53)

Eliminating a1 from (7.3.49) and (7.3.53), we have an ODE relating tc and
M :

dtc
dM

=
{1 +

(
2

γ−1

)
ai2
ai1

}{x′m + w′
1(tc − tm) −w1t

′
m}

2Q2 − w1
. (7.3.54)

This equation, together with

xc = xm + w1(M)(tc − tm), (7.3.55)

defines the co-ordinates (xc, tc) of the contact front as functions of the pa-
rameter M . We thus have the locus of the negative characteristics in region
(2) as

x = xc + (t− tc)w2, (7.3.56)

where w2 is given by (7.3.47); tc and xc are obtained from (7.3.54) and
(7.3.55).

With the above information from regions (2), (3) and (1), we may fit the
secondary shock between regions (2) and (3). Friedman (1961) again made
several assumptions to accomplish this. The secondary shock is formed by
the intersection of negative characteristics from the main shock via the con-
tact front and from the expansion region. The former tend to point more
and more towards the decreasing x-direction due to weakening of the main
shock, causing the characteristic slope u1 − a1 to decrease. The characteris-
tics from the expansion region fan into the increasing x-direction. During the
early phase the secondary shock is weak and, therefore, Whitham’s (1952)
rule may be justifiably used to find its locus.

The negative characteristics from the expansion fan and the main shock
are given by (7.3.30) and (7.3.56), respectively:

x = 1 + Lt+ f(x, t), (7.3.57)

x = xc + w2(t− tc), (7.3.58)

where f(x, t) represents other terms appearing in (7.3.30). tc, xc, and w2

are functions of the main shock Mach number and are given by (7.3.54),
(7.3.55), and (7.3.47), respectively. If we write the path of the secondary
shock as

xs = 1 + S(ts), (7.3.59)
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then, along this path we have, on using (7.3.57) and (7.3.58),

S(ts) = w2(ts − tc) + xc − 1

= Lts + f{xc + (ts − tc)w2, ts}. (7.3.60)

With the known slopes of the characteristics (7.3.57) and (7.3.58), we may
write the slope of the secondary shock as their average:

dS

dts
=

1

2

(
w2 +

L+ ft

1 − fx

)
. (7.3.61)

Friedman (1961) also obtained this slope following another route. Letting
the parameters, M , L, and the co-ordinate xs to depend on ts, he found the
derivative dS/dts from the two expressions for the shock path in (7.3.60)
and took their average:

dS

dts
=

1

2

(
w2 +

dM

dts
[x′c + w′

2(ts − tc) − w2t
′
c] +

L+ ft

1 − fx
+
ts(dL/dt)

1 − fx

)
.

(7.3.62)
Equating (7.3.61) and (7.3.62) and simplifying, we get

t
dL

dM
= −(1 − fx){x′c + w′

2(ts − tc) − w2t
′
c}. (7.3.63)

Eliminating L from this equation with the help of (7.3.60) we have

dts
dM

=
2(1 − fxs)(x

′
c + w′

2(ts − tc) − w2t
′
c]ts

xc − 1 − w2tc − f + (fts + w2fxs)ts
.

or
dts
dtm

=
2(1 − fxs)[(x

′
c + w′

2(ts − tc) − w2t
′
c]ts

xc − 1 − w2tc − f + (fts + w2fxs)ts

dM

dtm
. (7.3.64)

Here, f(x, t) and fx(x, t) are evaluated at xs = xc + (ts − tc)w2, t = ts.
Integrating (7.3.64), we get a relation between ts and M :

[xc − 1 − tcw2]
2 = ts

∫ M

Mi

[xc − 1 − tcw2]

[
− 2w′

2 +
d

dM

(
f

ts

)

+fx/ts{x′c + w′
2(ts − tc) − w2t

′
c}
]
dM. (7.3.65)

Here, Mi is the initial Mach number of the main shock. The secondary shock
does not form at the the initial point of the fluid flow field. The time of
formation of the secondary shock was found by Friedman (1961) by solving
the integral equation (7.3.65) iteratively. For the specific problem solved by
Friedman (1961), which we discuss towards the end of this section, the point
of secondary shock formation was found to be xi = 1.14, ti = 0.41.
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Equation (7.3.64) is solved in conjunction with

dM

dtm
= −M

n
xmF (M), (7.3.66)

dxm

dtm
= M, (7.3.67)

dtc
dtm

=

{
1 +

(
2

γ−1

)
ai2
ai1

}
{x′m + w′

1(tc − tm) − w1t
′
m}

2Q2 − w1

dM

dtm
(7.3.68)

(see (7.3.37), (7.3.39) and (7.3.54)) to obtain ts, M , xm and tc as functions
of tm. xc may then be found from (7.3.55). Equations (7.3.64) and (7.3.66)–
(7.3.68) may be solved with the initial conditions M = Mi, xM = 1, tci = 0,
ts = tsi to obtain M , xm, tc as functions of tm, where Mi is the initial Mach
number of the main shock. ts is obtained from (7.3.64) for t ≥ tsi .

The above technique for the initial motion of the secondary shock as-
sumes that it is weak. It strengthens as it is carried outward by the expand-
ing gases. Friedman (1961) again used the CCW approach to find the locus
of the secondary shock. This procedure was adopted when the secondary
shock begins to turn back towards the origin or when its strength M − 1
becomes O(1), which ever happens first; M is the Mach number of the sec-
ondary shock, given by (u3 − Us)/a3. Us is the velocity of the secondary
shock.

In the present case we have an inward moving shock for which conditions
ahead are given by a3, p3, and ρ3, the flow in the expansion wave. The
particle velocity across the shock now is

u = u3 −
2a3

γ + 1
(M −M

−1
). (7.3.69)

The other conditions are

p =
p3

γ + 1
(2γM

2 − γ + 1), (7.3.70)

ρ = ρ3(γ + 1)M
2
/[(γ − 1)M

2
+ 2], (7.3.71)

a2 =
a2

3R
2

(γ + 1)2M
2 , (7.3.72)

where

R = {(2γM 2 − γ + 1)((γ − 1)M
2
+ 2)}

1/2
.

The compatibility relation holding along the negative characteristic is

dp− ρadu = −ρa
2un

u− a

dx

x
. (7.3.73)
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Substituting the shock relations (7.3.69)–(7.3.72) into (7.3.73) we obtain the
following relations holding along the secondary shock:

dM

dx
=

{
γ + 1

2

M

R

[
a3t/Us + a3x

a3

]
−
[
M

2 − 1

R
+

1

γ − 1

] [
a3t/Us + a3x

a3

]

+

[
2a3(M

2 − 1) − (γ + 1)Mu3

(γ + 1)Mu3 − 2a3(M
2 − 1) −R

]
n

2x

}

/{
2M

2γM − γ + 1
+
M

2
+ 1

MR

}
, (7.3.74)

dt

dx
= U−1

s , Us = u3 −Ma3. (7.3.75)

The functions u3, a3 and their deivatives are obtained from (7.3.21) and
(7.3.28). The system (7.3.74)–(7.3.75) is solved numerically starting from a
point where x, t, and Us (or M) are prescribed.

As an example, Friedman analysed the case treated earlier numerically
by Brode (1957) and experimentally by Boyer (1960). A sphere of (nondi-
mensional) unit radius contains compressed gas at 22 atmospheres. It is
surrounded by air at 1 atmosphere. The specific heat ratio γ of air and gas
is assumed to be 1.4. Using plane shock tube theory, the initial strength of
the main shock is found to be 1.846. The constant of integration of ODE
in the Whitham’s rule on the RHS of (7.3.38) is found to be 26.1 if these
initial conditions are used. The initial conditions at x = 1 and t = 0+

in different regions are given by u0 = 0, a0 = 1, u1 = 1.087, a1 = 1.252,
u2 = 1.087, a2 = 0.729. The centered simple wave for γ = 1.4 is described

Figure 7.3 Experimental and theoretical spherical blast results: −−−, experimen-

tal (Boyer); ——, numerical integration (Brode); •, Friedman theory; ×, simplified

secondary shock approximation (Friedman, 1961).
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by u3 = 5
6

(
1 + x−1

t

)
, a3 = 1

6

(
5 − x−1

t

)
. It follows from (7.3.21), (7.3.28)

and (7.3.32) that the flow in the region (3) for γ = 1.4 is given by

2.5a3 + 0.5u3 = 2.5 − t

28.8

(
5 − x− 1

t

)(
1 +

x− 1

t

)2

, (7.3.76)

u3 − a3 =
x− 1

t
− 1

72

[(
5 − x− 1

t

)(
1 +

x− 1

t

)
t

]

×
[(

1 +
x− 1

t

)
− 12

x− 1

(
1 − log x

x− 1

)]
,

(7.3.77)

x = 1 + Lt− 1

144

[(
5 − x− 1

t

)(
1 +

x− 1

t

)
t2
]

×
[(

1 +
x− 1

t

)
− 12

x− 1

(
1 − log x

x− 1

)]
.

(7.3.78)

Figure 7.3 shows a comparison of results–experimental, numerical and by
the simplified analysis of Friedman (1961). The main shock obtained by
the CCW method is described quite well. Friedman (1961) points out the
inadequecies of the numerical scheme of Brode (1957) and the experimental
procedures of Boyer (1960). It is remarkable that, in spite of the highly
simplified form of the analysis and neglect of entropy changes in different
regimes, there is a reasonable qualitative agreement between the numerical
solution and the analytic results of Friedman (1961). To obtain quanti-
tatively correct results, the entire analysis of Friedman would have to be
refurbished and made more rigorous. This is a formidable task, requiring
considerable work.
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Chapter 8

Numerical Simulation of

Blast Waves

8.1 Introduction

The rapid, almost exponential, growth of the power of the silicon comput-
ing chip, made available to the user at ever-decreasing cost, has made the
computational approach a viable and practical alternative for a variety of
problems in physics and engineering, in particular the complex nonlinear
problems of fluid mechanics. Nearly a half century earlier, Von Neumann,
the inventor of the modern electronic computing machine, carried out the
first numerical calculations for the inviscid, nonlinear problem of gas dy-
namics involving shock waves. The concept of artificial viscosity, proposed
first by Von Neumann and Richtmeyer (1950) and refined subsequently to a
high degree of perfection by many others, has proved to be a powerful tool
that made the numerical algorithms for such problems not only possible but
also accurate, reliable and robust. The progress in the efficiency and accu-
racy of solution algorithms during the last five decades, keeping pace with
the power of the computing chip, has proved beyond doubt the truth of Von
Neumann’s forecast in 1945: “Really efficient high speed computing devices
may, in the field of nonlinear partial differential equations as well as in many
other fields which are now difficult or are entirely denied of access, provide
us with those heuristic hints which are needed in all parts of mathematics for
genuine progress”. Needless to say progress in numerical methods is equally
dependent on the sharpening of the analytical tools of applied mathematics.

Goldstine and Von Neumann (1955) initiated one of the earliest numeri-
cal approaches to the explosion problem, assuming a point source and ideal
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226 Shock Waves and Explosions

gas behaviour; they could relax the strong shock assumption implicit in the
similarity solution. In the same year, Brode (1955) published numerically
computed results for the point source problem and found that the calculated
distributions of the flow parameters closely followed the results from simi-
larity theory for shock overpressure decay up to 20 atmospheres. He used
the method of artificial viscosity. Both the studies could predict blast wave
history down to shock overpressures as low as 0.1 atmosphere. Brode (1959)
relaxed the ideal gas assumption. He used the thermal equation of state for
approximating the thermodynamic behaviour of real gas at high tempera-
tures, encountered in strong explosions. The computed results showed that
the blast wave overpressure at any radius is lower than the corresponding
value predicted by the assumption of ideal gas behaviour, since a part of
the available energy is absorbed by the ionization and dissociation processes
occurring at high temperatures.

It was already clear that the numerical approaches need not be limited
to a point source or to other simplifying assumptions implicit in the analytic
treatment of this problem. Finite compressed gas ball explosions are char-
acterized by the multiple wave phenomena that ensue after the rupture of
the diaphragm separating the compressed gas and the surrounding medium.
Away from solid boundaries, the flow that develops can be assumed to be
well-described by the inviscid equations of gas dynamics with almost ar-
bitrary but admissible thermodynamic behaviour. The wave system that
develops in the flow is almost completely described by the eigenstructure
of the above mentioned equations which, though nonlinear, are strictly hy-
perbolic in time, subject to some necessary but very liberal assumptions
about the thermodynamic behaviour of the material medium through which
the blast wave propagation occurs; solution to the Riemann problem with
arbitrary data exists and is computable. The last observation provides the
necessary underpinnings for the success and reliability of most of the nu-
merical schemes that have been developed during the last three decades, as
we shall elaborate in the following.

The point source approximation, no longer required by a numerical ap-
proach, was dispensed with quite early by Brode (1959) who described nu-
merical results for two cases of considerable practical importance, namely,
the explosion of a spherical charge of TNT and the sudden release of ini-
tially static high pressure gas from spherical enclosures. Using a Lagrangian
approach, Brode succeeded in capturing the complete post-explosion wave
structure and the birth and evolution of the secondary shock which orig-
inates at the tail of the inward facing rarefaction wave. The calculations
further revealed that the contact front moves initially outwards following
the blast wave but decelerates and subsequently reverses direction to move
inward. Brode’s (1959) calculations were carried out using a real gas equa-
tion of state for both air and helium; his results were subsequently compared
with the experimental data by Boyer (1960). These early calculations, using
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finite sources, confirmed that the late evolution of the blast wave history
is independent of the early time behaviour and is closely approximated by
the point source calculations as long as basic assumptions in the analytic
solutions are not violated.

The first finite-difference-based numerical algorithm for the solution of
the Euler equations for the finite source problem appears to have been de-
scribed by Payne (1957). He applied a numerical approach, later called
Lax-Friedrich (1954) scheme, to the quasi-conservative form of the one-
dimensional equations of gas-dynamics to obtain solutions for the implod-
ing cylindrical shocks. The geometric singularity occurring at the axis was
addressed by some ad hoc extrapolation formulae which ensured that the
calculations did not fail at the instant when the imploding shock reflects
off the axis. The monotone nature of the Lax-Friedrich scheme made sure
that the computed shock transition was oscillation-free, even as it smeared
the contact discontinuity. Payne (1957) found very good agreement for the
computed strength of the converging cylindrical shock with Chisnell’s (1957)
analytic results. The problem of the singularity at the axis was overcome
in a subsequent work by Lapidus (1971) who solved the same problem in
cartesian co-ordinates in two space dimensions using a two-step variation of
the Lax and Wendroff (1960) scheme in conservative form. Being second
order in space and time the scheme is not monotone and exhibits post-shock
oscillations in computed solutions; however, the contact discontinuity can
be clearly discerned. Abarbanel and Goldberg (1972) addressed the prob-
lem of the converging cylindrical shock using a quasi-conservative approach
in cylindrical co-ordinates. They derived a second order difference scheme
based on the classical Lax-Wendroff technique and established the linear
stability of the scheme under slightly relaxed Courant-Friedrichs-Lewy con-
dition typical of single-step explicit schemes (see Richtmyer and Morton
(1967)). Their computed solutions disagreed somewhat with those of Payne
(1957) and Lapidus (1971) with respect to shock arrival times at the centre.

A numerical algorithm based on a Reimann solver for the above prob-
lem appears to have been first advocated by Sod (1977). Glimm’s (1965)
random choice method, together with an exact Riemann solver, was used to
integrate the homogeneous part of the equations of one-dimensional gas dy-
namics. Operator-splitting was used to integrate in time the singular source
terms. The cell-centred nature of the scheme ensured that the boundary
conditions at the axis could be implemented by simple reflection to fix the
values for a ghost cell. The inherent virtue of Glimm’s method enabled Sod
(1977) to capture sharp shock and contact discontinuities; the rarefaction
fan, however, showed a jagged transition.

All the methods mentioned above were based on either first order schemes
or nonmonotone higher order schemes and assumed ideal gas thermodynam-
ics. Glimm’s scheme, despite its ability to produce sharp shock and contact
transitions in an Eulerian framework, could not be satisfactorily extended
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to multiple dimensions to ensure similar performance. The high resolu-
tion schemes developed by Harten (1983) and the essentially nonoscillatory
(ENO) schemes of Shu and Osher (1988) made possible robust and reli-
able computation of discontinuous flows using high order accurate schemes.
Special techniques such as sub-cell resolution (Harten (1989)) have been de-
veloped to sharpen the captured discontinuous fronts. Liu et al. (1999)
used a high resolution total variation diminishing (TVD) scheme of Harten
(1983) with suitable modifications for sharp capture of contact surfaces in
the flow fields caused by cylindrical and spherical explosions. Here, the per-
fect gas equation was assumed. Computed results for explosions in air were
compared with those of Brode (1955) and found to be in close agreement.
Comparison with experimental data from Boyer (1960), however, showed
some notable disagreements such as the arrival time of the secondary shock
at the centre. Liu et al. (1999) also solved the problem of cylindrical im-
plosion. Comparisons of relevant results with Sod’s (1977) computations
showed agreement within 10 percent. In a related work, Liu et al. (1999a)
extended the scope of the method to explosions in water.

8.2 A Brief Review of Difference Schemes for

Hyperbolic Systems

It is clear from the analysis of flows with shock waves reported in earlier
chapters that very few realistic problems can be solved exactly. The exact
solutions that have been found such as Taylor-Sedov for the point explosion
or Guderley’s solution for the converging shocks are asymptotic in nature,
holding under specific limiting conditions. Thus, there is a need to de-
velop numerical schemes which can effectively reproduce solutions of the
governing system of partial differential equations with appropriate bound-
ary conditions across discontinuities such as shocks, as they develop; these
solutions must satisfy given initial conditions. The locus of these surfaces
of discontinuity which evolve with the flow must also be found as part of
the solution. This would require ticklish recursive procedures such as those
employed in the classical method of characteristics.

Von Neumann and Richtmyer (1950) proposed an approach, called the
method of artificial viscosity, which eliminates the need to apply such bound-
ary conditions explicitly. Using this method, the solutions can be found as
accurately as desired by a suitable choice of mesh sizes and other parameters
occurring in the problem. The shock discontinuities are treated correctly and
automatically whenever and wherever they may arise.

The purpose of this additional term is to introduce a dissipative mech-
anism in the shock layer such as viscosity (an artificial term, not ‘real’ vis-
cosity, with the dimension of pressure) which smears the shock so that the
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mathematical surfaces of discontinuity are replaced by thin layers in which
temperature, density, pressure and velocity vary rapidly but continuously.
More specifically, the artificial viscosity term is chosen to meet the follow-
ing specific requirements: (1) equations of motion with the introduction of
the extra term possess solutions without discontinuities; (2) the thickness of
shock layers must be of the order of the mesh size, ∆x, chosen for the numer-
ical scheme, independent of the strength of the shock and of the conditions
prevailing ahead of the shock; (3) the effect of the artificial term is negligible
outside the shock layer(s); and (4) the Rankine-Hugoniot conditions must
hold when all other dimensions characterising the flow are large in compar-
ison with the shock thickness. Von Neumann and Richtmyer (1950) chose
the expression

q = −(c∆x)2

V

∂U

∂x

∣∣∣∣
∂U

∂x

∣∣∣∣, (8.2.1)

for the one-dimensional case and showed by seeking a travelling wave solu-
tion of the governing system of equations in plane symmetry, including q,
that this term meets the requirements (1)–(4) set out above. Here U is the
fluid velocity, V is its specific volume, and c is a (dimensionless) constant
of order unity. It was found that the travelling wave solution of the plane
gasdynamic system is a half sine wave, which may be pieced together with
two other constant solutions. The half sine is of order ∆x provided c in
(8.2.1) is a constant close to unity. q is found to be negligible in comparison
with p everywhere because of the factor (∆x)2, except in the shock layer
where the derivative ∂U/∂x is very large. The finite difference scheme used
to discretise the governing system of PDEs is detailed in section 8.3, where
we discuss the application of the present method to the study of spherical
explosion in air (Brode (1957)). As we note in that section, the dissipative
term introduces its own stability requirement which is more stringent than
the familiar Courant, Friedrich and Lewy condition; however, this condition
is not too severe if the amount of dissipation introduced is enough to produce
a shock thickness comparable with the spatial mesh size. One may refer to
the book of Richtmyer and Morton (1967) for a discussion of the stability
conditions in the present context. In spite of the spherical symmetry of the
problem studied by Brode (1955), the q term in (8.2.1) chosen for the planar
symmetry was found to serve quite adequately.

Sachdev and Prasad (1966), following the work of Von Neumann and
Richtmyer (1950), investigated the effect of artificial heat conduction term
in lieu of the viscosity term. The qualitative features of the solution were
found to be essentially the same for both the dissipative mechanisms.

It is of some interest to study the effect of dissipation on the level of
the difference equations rather than that of differential equations. We dis-
cuss this matter in the context of the Lax-Wendroff scheme. Here again
an additional artificial viscosity term is added to the hyperbolic equation,
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simulating a diffusive term proportional to uxx. This term must also meet
the usual requirements, referred to earlier. It must have a coefficient that
vanishes as the mesh sizes tend to zero so that it remains consistent with
the hyperbolic equation. Besides, this coefficient must vanish sufficiently
quickly so that the order of accuracy of the high order methods on smooth
solutions is unaffected. This term must be large near the discontinuities
and small in the smooth regions. To illustrate these ideas we look at the
Lax-Wendroff difference form of the linear equation ut + aux = 0 (here a is
a constant) with the addition of an artificial difference form of viscosity:

Un+1
j = Un

j − ν

2
(Un

j+1 − Un
j−1) +

1

2
ν2(Un

j+1 − 2Un
j + Un

j−1)

+kQ(Un
j+1 − 2Un

j + Un
j−1), (8.2.2)

where ν = ak/h is the so-called Courant number and Q is the coefficient of
artificial viscosity. It is known (see LeVeque (1992)) that the Lax-Wendroff
scheme itself is a third order accurate approximation to the solution of the
PDE

ut + aux =
h2

6
a(ν2 − 1)uxxx. (8.2.3)

The modified Lax-Wendroff scheme (8.2.2) with artificial viscosity produces
a third order approximation to the solution of the PDE

ut + aux =
h2

6
a(ν2 − 1)uxxx + h2Quxx. (8.2.4)

The dispersive term uxxx, which causes oscillations in the Lax-Wendroff
scheme, must now compete with the dissipative term involving uxx and,
for Q sufficiently large, should yield nonoscillatory solution. This, unfortu-
nately, is not true since, with constant Q, it is still a linear method and is
second-order accurate. Q must be made to depend on the data U n. The
method then becomes nonlinear in the manner of the method of artificial
viscosity due to Von Neumann and Richtmyer (1950). As in the latter ap-
proach, it is hard to determine an appropriate form for Q that introduces
just enough dissipation to preserve monotonicity (nonoscillatory character)
without causing unnecessary smearing.

The local truncation error L(x, t) for the scheme (8.2.2) can be written
as

u(x, t) = u(x, t+ k) +
k

2h
{u(x+ h, t) − u(x− h, t)}

− k2

2h2
{u(x+ h, t) − 2u(x, t) + u(x− h, t)}

−Qk {u(x+ h, t) − 2u(x, t) + u(x− h, t)}

= u(x, t+ k) +
k

2h
{u(x+ h, t) − u(x− h, t)}
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− k2

2h2
{u(x+ h, t) − 2u(x, t) + u(x− h, t)}

−Qh2uxx(x, t) +O(h4)

= O(k2) as k → 0, (8.2.5)

since h2 = O(k2) as k → 0.

The Lax-Wendroff method remains second order accurate for any choice
of Q = constant.

Before turning to more recent high resolution methods wherein the nonoscil-
latory requirement can be imposed more directly, we briefly discuss the
Lax-Friedrichs scheme which was used by Payne (1957) in the context of
converging shock waves (see section 8.4). If we again consider the equation
ut + aux = 0 and replace ut by a forward (in time) approximation and ux

by a spatially centered approximation, we obtain

Un+1
j − Un

j

k
+ a

(Un
j+1 − Un

j−1)

2h
= 0, (8.2.6)

or

Un+1
j = Un

j − k

2h
a(Un

j+1 − Un
j−1) = 0. (8.2.7)

This scheme, though natural and simple, suffers from severe stability prob-
lems and is of little practical use. If, in (8.2.7), we replace U n

j by
1
2(Un

j−1 + Un
j+1), it is found that this scheme is stable provided k/h is

sufficiently small. This changed scheme may be directly incorporated in
ut + aux = 0. Thus, we have

1

k

[
Un+1

j − 1

2
(Un

j−1 + Un
j+1)

]
+

1

2h
a[Un

j+1 − Un
j−1] = 0. (8.2.8)

The local truncation error for this scheme is

Lk(x, t) =
1

h

[
u(x, t+ k) − 1

2
(u(x− h, t) + u(x+ h, t))

]

+
1

2h
a [u(x+ h, t) − u(x− h, t)] . (8.2.9)

Assuming the solution to be smooth, we may expand the right hand side of
(8.2.9) in a Taylor series about (x, t) and obtain

Lk(x, t) =
1

k

[(
u+ kut +

1

2
k2utt + · · · · · ·

)
−
(
u+

1

2
h2uxx + · · · · · ·

)]

+
1

2h
a

[
2hux +

1

3
h3uxxx + · · · · · ·

]
.

= ut + aux +
1

2

(
kutt −

h2

k
uxx

)
+O(h2), (8.2.10)

© 2004 by Chapman & Hall/CRC



232 Shock Waves and Explosions

and since u(x, t) is the exact solution of ut +aux = 0, we may write (8.2.10)
as

Lk(x, t) =
1

2
k

(
a2 − h2

k2

)
uxx(x, t) +O(k2)

= O(k) as k → 0, (8.2.11)

provided we assume that k/h = constant as the mesh size is refined. This
explains why the truncation is defined as Lk(x, t) rather than Lk,h(x, t). By a
careful analysis of the remainder in the Taylor’s theorem, assuming uniform
boundedness of the appropriate derivatives of u(x, t), one may prove a sharp
bound of the form

|Lk(x, t)| ≤ Ck for all k < k0, (8.2.12)

where C depends only on the initial data u0. The Lax-Friedrichs method,
summarised above, is first order accurate since the local error Lk(x, t) de-
pends linearly on k.

As we mentioned earlier, Lax-Friedrichs scheme is only first order accu-
rate on smooth data and gives unacceptably smeared shock profiles. To get
over these deficiencies, the so called “high resolution” methods were devel-
oped. These methods are second order accurate in the smooth regions and
yield much sharper discontinuities. We shall briefly describe one of these,
namely, the Godunov (1959) scheme. This scheme uses information via char-
acteristics within the framework of a conservation method. The basic idea is
to solve the Riemann problem forward in time for piecewise constant initial
data. Since these are exact solutions of the conservation laws, they lead to
‘conservative numerical methods’ (see LeVeque (1992)). Choose ũn(x, tn),
the solution at tn, as the initial data for the conservation law

ut + f(u)ux = 0. (8.2.13)

This problem must be solved to obtain ũn(x, tn) for tn ≤ t ≤ tn+1. Equation
(8.2.13) is solved exactly for a short time by choosing the initial data ũn(x, t)
in a piecewise constant manner. The solution is obtained simply by putting
together these Riemann solutions; it holds till waves from the neighbouring
Riemann problems begin to interact. For details of constructing these so-
lutions we refer the reader to LeVeque (1992). After the exact solution is
obtained over the interval [tn, tn+1], the approximate solution Un+1

J at tn+1

is defined by averaging it from xj−1/2 to xj+1/2:

Un+1
j =

1

h

∫ xj+1/2

xj−1/2

ũn(x, tn+1)dx. (8.2.14)

These values are then used to define new piecewise constant data
ũn+1(x, tn+1) and the process of solution is repeated. Making use of the
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fact that the cell average (8.2.14) may be easily computed by using the
integral form of the conservation law, one may write (8.2.14) as

Un+1
j = Un

j − k

h
[F (Un

j , U
n
j+1) − F (Un

j−1, U
n
j )], (8.2.15)

where the numerical flux function F is given by

F (Un
j , U

n
j+1) =

1

k

∫ tn+1

tn
f(ũn(xj+1/2, t))dt, (8.2.16)

showing further that the Godunov scheme may be written in ‘conservation
form’. We may observe that the value ũn along the line x = xj+1/2 depends
only on points Un

j and Un
j+1 of this Riemann problem. Denoting this value

by u∗(Un
j , U

n
j+1), we may write (8.2.16) as

F (Un
j , U

n
j+1) = f(u∗(Un

j , U
n
j+1)), (8.2.17)

and hence the Godunov scheme (8.2.15) becomes

Un+1
j = Un

j − k

h
[f(u∗(Un

j , U
n
j+1)) − f(u∗(Un

j−1, U
n
j ))]. (8.2.18)

The stability condition for the present scheme may be appropriately derived
(see LeVeque (1992)). We may observe that the Godunov scheme under the
Courant-Friedrich-Lewy condition is total variation diminishing (see section
8.5).

8.3 Blast Wave Computations via Artificial

Viscosity

One of the earliest attempts to numerically simulate a spherical blast wave
is due to Brode (1955) who considered two models for initial conditions:
(i) strong shock, point source solution due to Taylor (1950), Sedov (1946)
and Von Neumann (1941) (see sections 3.1–3.4); and (ii) hot high pressure
isothermal spheres. We shall discuss the solution subject to initial con-
ditions (i) in some detail and summarize the results for the latter. Brode
(1955) set before himself the following practical conditions for accomplishing
the numerical solution: the difference scheme must be stable, it must yield
reasonably accurate results, it must conserve numerical significance (must
tend to the solution of the original system of PDEs as mesh sizes tend to
zero), and must be fast enough to give the desired solution with a sensible
expenditure of machine time.

To meet the above goals, Brode (1955) employed the method of artificial
viscosity proposed earlier by Von Neumann and Richtmyer (1950). This ar-
tificial viscosity term has the dimension of pressure (see (8.3.4), (8.3.5), and
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(8.3.9)). The introduction of this term must meet the following conditions:
(1) the governing equations must possess solutions without (shock) disconti-
nuities; (2) the thickness of the shock layer must be everywhere of the same
order as the interval length chosen for the numerical solution, independent
of the strength of the shock and the conditions of the material into which it
propagates; (3) the effect of the artificial viscosity term must be negligible
outside the shock layer(s), and (4) the Rankine-Hugoniot conditions must
hold when all other dimensions characterising the flow are large compared to
the shock thickness. These conditions were met by the term first suggested
by Von Neumann and Richtmyer (1950) for plane symmetry. The term cho-
sen by Brode (1955) (see (8.3.9)) satisfies all the requirements laid down
above except that there is no convenient steady state solution in the spheri-
cally symmetric system by which one may show that the Rankine-Hugoniot
conditions are satisfied. Thus, the form (8.3.9) chosen by Brode (1955) is
asymptotically the same as the verified form of artificial viscosity in plane
symmetry. We have already discussed in section 3.1 the similarity solution
of the gasdynamic equations including an artificial viscosity term; this solu-
tion describes the strong blast wave, has the correct nonviscous behaviour
in the regions away from the shock, and reasonable transition in the shock
layer (Latter (1955)).

We may observe that Brode (1955) used Von Neumann’s (1941) point
explosion solution in Lagrangian co-ordinates for the purpose of initial con-
ditions. This solution, detailed in section 3.3, is explicit in terms of the
parameter θ, the ratio of kinetic energy to internal energy, and is therefore
convenient to use. Brode (1955) also employed the Lagrangian form of the
basic equations of motion.

We denote by p, ρ, u, and c the pressure, density, particle velocity
and speed of sound, respectively. The corresponding undisturbed quantities
will be denoted by the subscript ‘0’. The overpressure will be denoted by
∆p = p − p0, where p0 is the atmospheric pressure. The pressure will, in
general, be measured in atmospheres, that is, in units of p0. Thus, the excess
pressure will be written as ∆p = p − 1. The Lagrangian co-ordinate and
time are r0 and t, respectively, while the Eulerian co-ordinate is denoted by
r = r(r0, t).

To render the variables nondimensional, we choose the typical length
ε arising from the total energy, Etot, of the blast wave and the ambient
pressure p0:

ε3 =
Etot

p0
=

4π

p0

∫ R

0
ρ

(
Eint +

u2

2

)
r2dr − 4πR3

3(γ − 1)
, (8.3.1)

where Eint is the specific internal energy. The term 4πR3/3(γ − 1) in (8.3.1)
arises from the pre-shock internal energy of the gas, engulfed by the shock.
R is the shock radius. The Eulerian co-ordinate r, Lagrangian co-ordinate
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r0, and the time t are rendered nondimensional with the help of ε and c0
where c0 is the sound speed in the undisturbed medium:

λ = r/ε, λ0 = (r0/ε), τ = tc0/ε. (8.3.2)

The nondimensional form of equations of motion in Lagrangian co-ordinates
is

∂λ

∂x
=

1

ρλ2
or

∂ρ

∂τ
= −ρ

(
2u

λ
+
∂u/∂x

∂λ/∂x

)
, (8.3.3)

∂u

∂t
= −λ

2

γ

∂

∂x
(p+ q), (8.3.4)

∂p

∂τ
=

1

ρ

∂ρ

∂τ
[γp+ (γ − 1)q], (8.3.5)

u =
∂λ

∂τ
. (8.3.6)

Here the Lagrangian space co-ordinate has been redefined as

x =
1

3
(r0/ε)

3. (8.3.7)

The equation for internal energy for an ideal gas is assumed in the form

E =
p

ρ(γ − 1)

ρ0

p0
. (8.3.8)

The artificial viscosity term q in (8.3.4)–(8.3.5) acts like a pressure term and
was chosen by Brode (1955) as

q =
9γ(γ + 1)

4

(
M

3π

)2

ρ(∆x)2
(
∂u

∂x

)(
∂u

∂x
−
∣∣∣∣
∂u

∂x

∣∣∣∣
)
, (8.3.9)

where ∆x is the grid size and M is the number of grid zones in the shock
front. We have already discussed the nature of this term earlier in this
section. Latter (1955) verified that, with this form of q, the nonlinear
ODEs that result from the reduction via similarity transformations give
shock thickness for the spherically symmetric case quite close to that for the
plane symmetry (see section 3.1). It is clear from the form (8.3.9) that q is
zero in the expansion region where ∂u/∂x > 0 and is nonzero only in the
compression phase of the shock. In Lagrangian co-ordinates it has the addi-
tional advantage that it eliminates a spurious contribution near the region
where the positive velocity gradient is large.

Brode (1955) wrote the following difference form for the system (8.3.3)–
(8.3.6):

u
n+1/2
l = u

n−1/2
l − ∆τ(λn

l )2

(∆x)
l
γ

[
pn

l+1/2 − pn
l−1/2 + q

n−1/2
l+1/2 − q

n−1/2
l−1/2

]
,

(8.3.10)
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λn+1
l = λn

l + u
n+1/2
l ∆τ, (8.3.11)

ρn+1
l−1/2 = ρn

l−1/2

(
1 −W

1 +W

)
, (8.3.12)

where

W = ∆τ


 2(u

n+1/2
l + u

n+1/2
l−1 )

λn+1
l + λn

l + λn+1
l−1 + λn

l−1

+
u

n+1/2
l − u

n+1/2
l−1

λn+1
l + λn

l − λn+1
l−1 − λn

l−1


 ,

(8.3.13)

q
n+1/2
l−1/2 = 9

γ(γ + 1)

2

(
M

3π

)3

×ρn+1
l−1/2

[
u

n+1/2
l−1 − u

n+1/2
l

]2
for u

n+1/2
l−1 > u

n+1/2
l ,

(8.3.14)

q
n+1/2
l−1/2 = 0 for u

n+1/2
l−1 ≤ u

n+1/2
l ,

pn+1
l−1/2 =

[
γ+1
γ−1ρ

n+1
l−1/2 − ρn

l−1/2

]
pn

l−1/2 + 2
(
ρn+1

l−1/2 − ρn
l−1/2

)
q
n+1/2
l−1/2

γ+1
γ−1ρ

n
l−1/2 − ρn+1

l−1/2

.

(8.3.15)

Two stability conditions are required by the above difference scheme. One
is the usual Courant-Friedrich-Lewy condition, namely,

∆τ ≤ ∆x/λ2(p/ρ)1/2
max, (8.3.16)

and the other arises from the parabolic nature of the equation in the shock
layer,

∆τ ≤ γ

4
(∆x)2

[
1

λ2q

∣∣∣∣
∂u

∂x

∣∣∣∣
]

min

. (8.3.17)

The space mesh sizes were chosen to be unequal—smaller in the shock layer
and larger outside. This resulted in a sharp shock at very little cost in
computing time. The time mesh size was doubled as soon as the stability
conditions would allow it. The artificial viscosity method was thus found to
be quite general in nature, easy to apply, and (asymptotically) reproduced
the Rankine-Hugoniot conditions. Brode (1955) attempted some other fi-
nite difference schemes such as that due to Du Fort and Frankel (1953) for
diffusion type of equations but found them less fruitful.

To check the veracity of results, Brode (1955) ran the computer pro-
gram with different zone spacing, different viscosity terms, different time
increments and, occasionally, different forms of differencing. This helped to
ensure that the results were reliable. The conservation of total energy of the
blast did not prove to be a sensitive test of the accuracy of the computations.

© 2004 by Chapman & Hall/CRC



8.3 Blast Wave Computations via Artificial Viscosity 237

0

Figure 8.1 Pressure in units of undisturbed pressure versus Lagrangian co-ordinate

R0 for point source solution at different times (Brode, 1955).

Figures 8.1–8.3 show pressure, particle velocity and density (in nondi-

mensional form) versus Lagrangian co-ordinate, R0 = r0
{
(Etot/p0)

1/3
}−1

,

at different times; the initial conditions were chosen from the point source
solution with γ = 1.4. The flow immediately behind the shock according to
this solution is given by the fitted curve us = 0.30(λs)

−3/2,
ρs = (6p + 1)/(p + 6) for this value of γ; here p is the pressure ratio at
the shock. It is curious that the strong shock behaviour is predicted to
quite low pressures. For example, the ratio of central pressure to shock
pressure remains 37 percent down to 20 atmospheres and decreases slowly
to 33 percent by 3 atmospheres. Beyond this value a negative phase ensues,
the pressure falling as low as 0.8 atmosphere near the center.

The variation of particle velocity and density with the Lagrangian co-
ordinate follows the strong shock form until the shock overpressure is as low
as 3 atmospheres. As the shock wave decays to become relatively weak, the
particle velocity profile transforms gradually from its almost linear form in
the early stages to much like the overpressure at large distances. The density
at the center remains zero for all times since there is no heat conduction or
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Figure 8.2 Particle velocity in units of undisturbed speed of sound versus La-

grangian co-ordinate R0 at different times (Brode, 1955).

radiation term in this model to remove the temperature singularity there.

In these figures, the first two sets correspond to strong shocks while
the latter ones refer to finite pressure ratio across the shock. Here,
(6p + 1)/(p + 6) = 5.83 for p = 200. This is different from the value 6 for
p → ∞. Curiously, in this case, the temperature at the shock is raised to
a higher value than that for the infinitely strong shock: “a finite shock is
hotter than would be predicted by the strong shock theory”.

Figure 8.4 shows overpressure, particle velocity, density and compression
in units of their peak values at the shock, versus the Eulerian co-ordinate at
different times. The strong shock form prevails in the first two figures at the
early times t = 0.00147, 0.0166. At later times the characteristic positive
phase is followed by a larger, weaker negative phase, and an eventual re-
turn to near pre-shock values at the origin. Brode (1955) gave approximate
expressions for the variation of overpressure and dynamic pressure at the
shock with time, which seem to agree with the numerical results within 10
percent. These expressions were obtained by suitably altering the analytic
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Figure 8.3 Density in units of undisturbed density versus Lagrangian co-ordinate

R0 for point source solution at different times (Brode, 1955).

solution for the point source model in the light of the numerical solution.

For the initial isothermal spheres of gas at rest, the main result is that
the flow, starting with these initial conditions, will assume the general shape
and value of the point source solution (to within 10 percent) after the shock
wave has engulfed a mass of air 10 times the initial mass of the sphere. At
the earlier times (before the inward travelling rarefaction reaches the center),
the shock strength is less than that predicted by the point source solution.

Comparing the solutions arising from different initial conditions, Brode
(1955) observed that a point source should leave a higher temperature and
therefore a longer percentage of energy near the origin. This energy, no
longer available to the shock wave, would therefore lead to a much faster
decay of the shock in comparison to that for the initially isothermal sphere.
Actually, no appreciable difference in the low end of the shock overpressure
radius relation is observed between the point source and isothermal sphere
solutions. For the latter, there is a multiple shocking of the inner regions.
The result is that there are nearly identical distributions of residual energies
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Figure 8.4 Overpressure, particle velocity, density and compression in units of

their peak values at the shock versus Eulerian co-ordinate at times indicated. ——,

(∆p/∆ps); − − −−, (u/us); −. − . − . − ., (ρ/ρs); ....., (ρ − 1)/(ρs − 1) (Brode,

1955).

per unit volume and pressures around the origin at a time when the shock has
progressed to 6 times the initial radius. Moreover, the average temperature
(or density) of the gas initially inside the isothermal sphere approaches, to
within 10 percent, the average temperature for a corresponding mass around
the point source.

This is in spite of the fact that the temperature at the center for the latter
model is infinitely large. We have discussed in some detail the analytic
solution describing the sudden expansion of a high pressure gas into the
ambient atmosphere in sections 7.2 and 7.3; flows with or without secondary
shocks were analytically examined.

Brode (1959) followed up his earlier study by a more realistic model for
a blast wave from a spherical charge. The initial conditions for this model
were approximately those of a centered detonation of a bare sphere of TNT
of loading density 1.5 g/cm3 as specified by the detonation wave descrip-
tions of Taylor (1950). The equation of state of this TNT was realistically
modeled after that of Jones and Miller (1948) while the equation of state
of air was obtained by a fit to computed data of several previous authors.
The problem was solved numerically, using the technique developed earlier,
Brode (1955). All the flow variables were depicted as functions of time and
distance. The main contribution of this numerical study is the detection of a
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secondary shock which originates as an imploding shock following the inward
rarefaction into the high pressure explosive gases (see section 7.3). A series
of subsequent minor shocks were also seen to appear between the origin and
the contact surface. The influence of the assumptions about equations of
state of the high explosive and of air was not found to be as great as might
be predicted on purely thermodynamic grounds. The pressures and veloc-
ities are found to be less sensitive to variations of equations of state than
are temperatures and densities. This is particularly true in the strong shock
high temperature regions; the secondary shock is significantly influenced by
the equation of state for the high explosive.

The work of Brode (1955) was extended by Plooster (1970) to cylindrical
symmetry. It was envisioned that a cylindrical pressure wave results from
instantaneous energy release along a line in a quiescent atmosphere. The
applications of this model include exploding wires, long explosive charges,
electric sparks, and supersonic aircraft or projectiles. The important natu-
ral phenomenon that this model describes is the lightning discharge. The
computations reported by Plooster (1970) cover a wide range of initial con-
ditions and use both the ideal gas equation of state and a more realistic
equation of state for air and, as in the earlier work of Brode (1955), extend
well into the weak shock region. The artificial viscosity term was used in
the manner of Brode (1955). Five different sets of initial conditions were
chosen:

1. Line source, ideal gas. This model simply extends the solution of Brode
(1955) for the point source initial conditions to cylindrical symmetry.
The initial conditions were chosen from the analytic solution of Lin
(1954) for this geometry.

2. Isothermal cylinder, constant density, ideal gas. Here the energy is
supplied to a cylinder of finite radius whose density is equal to the
ambient air density; this represents a very rapid heating of a column
of air in a time so short that it cannot expand appreciably during the
period of heating. This is analogous to Brode’s (1955) initial isother-
mal sphere.

3. Isothermal cylinder, constant density, real gas equation of state.

4. Isothermal cylinder, low density, ideal gas.

5. Isothermal cylinder, high density, ideal gas. This initial condition
simulates very roughly the flow field resulting from the detonation of
a line charge of high explosive.

The results were presented in different formats: shock wave overpressures
versus radius and gas pressure, density, and flow velocity versus time at
different radii. All variables were expressed in dimensionless form. It was
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shown that experimental measurements of shock strength from detonation
of long high explosive charges were in good agreeement with the numerical
solutions.

An investigation closely related to that of Brode (1955) was concurrently
published by Goldstine and Von Neumann (1955). Here, only the point
explosion model was studied. The governing system of gasdynamic equations
was again expressed in Lagrangian co-ordinates; the initial conditions were
obtained by solving numerically the system of ODEs resulting from self-
similar form of the solution rather than the analytic form of Von Neumann
(1941). The major departure from Brode’s (1955) work is in the choice of
the finite difference scheme and noninclusion of any artificial viscosity term.
The shocks that are fitted are sharp, requiring an iterative procedure to
satisfy the Rankine-Hugoniot conditions exactly. Since the computational
scheme is rather involved, we skip the details and refer the reader to the
original work of Goldstine and Von Neumann (1955). The results of their
computations were depicted in a large number of graphs. As in the work
of Brode (1955), the shock overpressure versus shock radius was shown to
follow the law p − 1 = AR−n, where n is a slowly varying function of R
and A is constant (see section 8.4). The pressure in the region behind the
shock was found both as a function of radial distance for fixed times and as
a function of time for fixed distances.

8.4 Converging Cylindrical Shock Waves

We have discussed in sections 6.2 and 6.3 the analytic character of the con-
verging shock wave solutions, referring to them as self-similar solutions of
the second kind. Their importance in the study of shock waves compares
that of Taylor-Sedov solution for the point explosion. The first numerical
investigation of these solutions was carried out by Payne (1957) and merits
a detailed discussion (cf. Brode (1955) for the explosion problem). The
numerical approach adopted by Payne (1957) is the so-called Lax scheme
(1954) which requires that the governing equations be expressible in a con-
servation form. It also has an artificial viscosity term built into the scheme
of differencing of the conservation laws (see Richtmyer and Morton (1967)).
Since for the converging shock waves it is not possible to write the system of
gasdynamic equations in a conservation form, Payne (1957) had to modify
Lax’s scheme to appropriately difference the pressure term in the momen-
tum equation (which is in a nonconservative form). The second difficulty
arises from the singular nature of equations at the axis of the cylindrical
flow. Here, again, special numerical treatment of the governing system of
equations in this neighbourhood had to be devised. Sod (1977) could elim-
inate both these difficulties by a judicious combination of Glimm’s method
and operator splitting as we shall discuss in some detail later in this section.
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The converging shock originates due to the sudden rupture of a cylindri-
cal diaphragm, separating two uniform regions of gas at rest with a higher
pressure in the outside region. We denote the ratios of pressures and den-
sities on two sides of the diaphragm by p∗ and ρ∗(p∗ > 1). The situation
here is again analogous to the shock tube problem (see sections 7.2 and 7.3).
Here, if p∗ = ρ∗, that is, if the uniform temperatures on two sides of the
diaphragm are the same, then a shock travels into the low pressure region,
followed by a contact surface and an expansion wave. The latter moves into
the high pressure region. By a suitable choice of p∗ and ρ∗ it is possible
to obtain a flow which has a shock wave and an expansion wave, but no
contact discontinuity. This is what was arranged by Payne (1957) for the
initial conditions in cylindrical flow; for this purpose he assumed that the
gas outside the cylindrical diaphragm was initially at a higher temperature
than that inside. It was found that the contact surface does not affect the
converging shock; the presence of the contact surface, however, leads to nu-
merical inaccuracy in the flow. Any inaccuracy in the expansion wave also
affects the region of the converging shock wave.

If r0, ρ0, p0, and a0 are the initial radius of the diaphragm, density,
pressure and sound speed in the undisturbed medium, respectively, we may
normalise the corresponding variables by these quantities. The time t may
be scaled by t0 = r0/a0. The total energy of the medium per unit volume
may be defined as

Ê =
p

γ − 1
+

1

2
ρu2, (8.4.1)

and may be rendered nondimensional by p0. We may thus write the equa-
tions of motion in normalised variables as

(rρ)t + (rρu)r = 0, (8.4.2)

(rρu)t + (rρu2)r + γ−1/2rpr = 0, (8.4.3)

(rE)t + (rEu+ rpu)r = 0. (8.4.4)

Payne (1957) found it convenient to introduce the variables

a = rρ, b = rρu, c = rE (8.4.5)

in (8.4.2)–(8.4.4) and rewrite this system as

at + br = 0, (8.4.6)

bt + (bu)r + γ−1/2rpr = 0, (8.4.7)

ct + (cu+ rpu)r = 0. (8.4.8)

The original (nondimensional) variables are therefore given by

ρ =
a

r
, u =

a

b
, p =

(γ − 1)c

r
− γ(γ − 1)

2
bu. (8.4.9)
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It may be observed that equation (8.4.7) is not in a conservation form and the
term γ−1/2rpr must be handled separately in the context of Lax’s scheme.

Consider the mesh points as rk = k∆r, t = tn, where k and n are
nonnegative integers and ∆r is such that K = (∆r)−1 is an integer. We
write ∆tn = tn+1 − tn. Denoting any function φ(r, t) at rk = k∆r, t = tn by
φk,n, Lax’s scheme replaces the derivatives as follows:

∂φ

∂t
=

φk,n+1 − 1
2(φk+1,n + φk−1,n)

∆tn
, (8.4.10)

∂φ

∂r
=

φk+1,n − φk−1,n

2∆r
. (8.4.11)

We may thus replace the derivatives in (8.4.6)–(8.4.8) via (8.4.10) and (8.4.11)
and solve for a, b, and c at time tn+1 in terms of the quantities at tn:

ak,n+1 =
1

2
(ak−1,n + ak+1,n) +

∆tn
2∆r

(bk−1,n − bk+1,n), (8.4.12)

bk,n+1 =
1

2
(bk−1,n + bk+1,n) +

∆tn
2∆r

{bk−1,nuk−1,n − bk+1,nuk+1,n

+γ−1/2rk(pk−1,n − pk+1,n)}, (8.4.13)

ck,n+1 =
1

2
(ck−1,n + ck+1,n) +

∆tn
2∆r

{ck−1,nuk−1,n − ck+1,nuk+1,n

+rk−1pk−1,nuk−1,n − rk+1pk+1,nuk+1,n}. (8.4.14)

The physical quantities u, ρ, and p may now be obtained with the help of
(8.4.9). It is clear that equations (8.4.12)–(8.4.14) do not apply at k = 0.
It is also observed that the values of the variables at points on the two
staggered lattices, k+n even and k+n odd, are independent of each other.

Payne (1957) replaced the pressure term in (8.4.7) by

∆tn
2∆r

γ−1/2

(
rk−1pk−1,n − rk+1pk+1,n +

∫ (k+1)∆r

(k−1)∆r
pdr

)
, (8.4.15)

where the integral in turn is replaced by

(pk−1,n + pk+1,n)∆r. (8.4.16)

This choice still retains the property of the two staggered lattices being
independent when k + n is even or when it is odd.

At the axis of the cylindrical flow, we have u = 0. Therefore, a = rρ = 0,
b = rρu = 0, c = rE = 0. The difference scheme (8.4.12)–(8.4.14) is not
applicable here. Payne (1957) derived an alternative form by applying basic
conservation laws of mass and energy in a cylinder of radius ∆r. Writing
the conservation of mass equation in this mesh, we have

∂

∂t

{∫ r=∆r

r=0
ρ(r, t)d(r2)

}
+ 2∆rρ(∆r, t)u(∆r, t) = 0. (8.4.17)
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We may now approximate the integral in (8.4.17) by 1
2{ρ(0, t)+ρ(∆r, t)}∆r2 ,

take the derivative of this expression with respect to t and use the difference
scheme (8.4.10) for ∂ρ/∂t etc. We then repeat this process for the interval
2∆r and obtain

ρ0,n+1 = ρ1,n +
∆tn
∆r

(
1

4
ρ3,nu3,n − 11

4
ρ1,nu1,n

)
. (8.4.18)

By a similar argument applied to the conservation of energy one may obtain

E0,n+1 = E1,n +
∆tn
∆r

(
1

4
E3,nu3,n +

1

4
p3,nu3,n

−11

4
E1,nu1,n − 11

4
p1,nu1,n

)
. (8.4.19)

Therefore, the pressure at the center is

p0,n+1 = (γ − 1)E0,n+1, (8.4.20)

(see (8.4.1) with u = 0). Equations (8.4.19)–(8.4.20) also use a staggered
mesh.

With the above difference scheme some oscillations in pressure and den-
sity were observed near the axis which grew in their amplitude. This was
remedied by using 1

3(pk−1,n + 4pk,n + pk+1,n)∆r instead of (8.4.16) at the
point k = 1. Thus, for k = 1 the difference scheme (8.4.13) was replaced by

b1,n+1 =
1

2
b2,n +

∆tn
2∆r

{
− b2,nu2,n

+γ−1/2∆r

(
1

3
p0,n +

4

3
p1,n − 5

3
p2,n

)}
. (8.4.21)

This, however, led to the nonindependence of the two staggered lattices since
the term p1,n appears in (8.4.21).

The initial conditions between the axis k = 0 and the diaphragm k = K
were chosen in the following way. At the diaphragm k = K, these were
chosen to be the average of the values of ak,0, bk,0 and ck,0 at k = K+1 and
k = K−1. This is due to the sensitivity of the data near the diaphragm. In
view of the special treatment of the flow near the axis, all the points of the
network corresponding to k = 0, 1, 2, ... at each time step had to be used.
Thus, the initial conditions are taken to be

uk,0 = 0 for all k,

ρk,0 = 1, pk,0 = 1 for k < K,

ρK,0 =
1

2
(ρ∗ + 1) +

∆r

2
(ρ∗ − 1),

pK,0 =
1

2
(p∗ + 1) +

∆r

2
(p∗ − 1), (8.4.22)

ρk,0 = ρ∗, pk,0 = p∗ for k < K,

where ρ∗ and p∗ are (dimensionless) constants.
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Payne (1957) carried out the calculations with a uniformly spaced set of
mesh points from the axis to twice the radius of the cylindrical diaphragm.
The mesh size was taken to be 1/64th of the radius. For 140 time steps of
the integration over these 128 points the time on the Manchester University
Mark 1 computer was 5 hours—very large compared to what the modern
computers would take. The computations were checked by repeating the
calculation with twice the mesh size or half the mesh size. The Courant-
Friedrichs-Lewy criterion for the stability of the numerical scheme was taken
in the form

∆tn/∆r ≤ A/(velocity of the shock), (8.4.23)

since the velocity of the shock is highest in the flow. The constant A was
varied between 0.75 and 0.85 to ensure stability; for stronger shocks, the
value of A was about 0.75, requiring shorter time intervals. The velocity
of the shock at the previous time was used to get ∆tn from (8.4.23). The
shock location was found by identifying the point where the pressure p is the
average of the pressure behind and in front of the shock. For the converging
shock, the pressure behind the shock was chosen to be the local maximum of
pk,n while that ahead was the undisturbed value p0,n at the axis. This agrees
roughly with the prescription of Lighthill (1956) for the shock location. For
diverging shocks, the pressure ahead was chosen in an ad hoc manner at the
point where p(r − ∆r, tn) − p(r, tn) = B; suitable values for the constant B
were found to be 0.1 for a weak shock of initial strength 2, 0.2 for a shock
of initial strength 4, and 0.4 for a strong shock of initial strength 8.

When the shock approached the axis, the time ∆tn was taken to be
constant, as obtained earlier in the calculations. For this (small) value of
∆tn, the reflected shock was so diffused that it was impossible to identify
it. Therefore, the time interval at this point could be chosen to be relatively
large and constant. It was possible to adjust its value with reference to
the velocity of the outgoing shock. A judicious choice helped to keep the
solution stable with a smooth shock which was not too diffused.

We discuss in some detail the numerical results for the initial conditions
p∗ = ρ∗ = 4. The initial distribution for the cylindrical diaphragm was
chosen to be the solution of the (plane) shock tube problem with these con-
ditions. They give rise to a converging shock of strength 1.93, a contact
surface, and an expansion wave. The mesh size ∆r was chosen to be 1/128.
The results are shown in Figures 8.5–8.8, which give pressure, particle ve-
locity, density and temperature at 0.2 time intervals. Figure 8.5 shows that
the shock strength increases with time leading to increase in pressure at any
point behind it.

The shock itself is about six mesh points wide. It reaches the center
at t = 0.66, attaining a high but finite value of the pressure there and is,
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Figure 8.5 Pressure versus radius at 0.2 time intervals for a flow initiated by a

cylindrical diaphragm with initial pressure and density ratios 4 (Payne, 1957).

Figure 8.6 Particle velocity versus radius at 0.2 time intervals for a flow initiated

by a cylindrical diaphragm with initial pressure and density ratios 4 (Payne, 1957).

then reflected. As the reflected shock engulfs the disturbed gas ahead of it,
the pressure behind it at any fixed point decreases with time. Figure 8.6
shows the velocity of the gas as it is overtaken by the converging shock. The
latter imparts it a negative (inward) value. The reflected shock subsequently
increases the gas velocity so that it becomes positive though small. At any
given point behind the converging shock the velocity increases with time;
after it has been passed by the diverging shock it decreases.

The behaviour of density at different times (Figure 8.7) is similar to that
for pressure, except that its rise across the shock is smaller, corresponding to
an increase in temperature. A contact surface—with a gradual change over
an increasing number of mesh points—appears in density and temperature
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Figure 8.7 Density versus radius at 0.2 time intervals for a flow initiated by a

cylindrical diaphragm with initial pressure and density ratios 4 (Payne, 1957).

Figure 8.8 Temperature versus radius at 0.2 time intervals for a flow initiated by

a cylindrical diaphragm with initial pressure and density ratios 4 (Payne, 1957).

(see Figures 8.7 and 8.8). The contact surface moves inward behind the
converging shock and is later traversed by the diverging shock. This traversal
is completed at t = 1.4 leaving behind a region of high temperature between
the axis and the contact surface.

Figure 8.9 shows variation of pressure, density and particle velocity with
time at r = 0 and r = 0.375. The solution qualitatively resembles that of
Guderley (1942) but is different in magnitude. This is because the shock
here is not assumed to be infinitely strong.

The initial conditions p∗ = ρ∗ = 4 gave rise to a strong contact dis-
continuity behind the shock which Lax’s scheme was unable to handle.
Payne (1957), therefore, assumed another set of initial conditions p∗ = 3.52,
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Figure 8.9 Variation of pressure, density and particle velocity with time at r = 0

and r = 0.375 (Payne, 1957).

ρ∗ = 2.44 which led to a shock of the same strength, namely, 1.93. In this
case the shock tube solution gives a contact surface of zero strength. The
converging cylindrical shocks in both these instances behave identically, but
the reflected divergent shocks behave differently as they move out. For the
case p∗ = ρ∗ = 4, the reflected shock propagates slower as it moves into
the colder region. The result of eliminating the contact surface for the case
with p∗ = 3.52 or ρ∗ = 2.44, is that it is possible now to obtain a stronger
converging shock. Such results were obtained for shocks of initial strengths
4 and 8.

Figure 8.10 shows the distribution of parameters for initial shock strength
8 at 0.1 time intervals. The general behaviour of various quantities is the
same as for the shock of initial strength 1.93, discussed earlier. The main dif-
ference is that the stronger shocks increase in their magnitude more rapidly
as they approach the axis. Moreover, the expansion fan significantly in-
creases the diffusion effect for the stronger shocks.

Figures 8.11 and 8.12 give shock strength, z = p−p0

p0
, versus radius for

converging shocks of initial strengths 1.93 and 8, respectively. The agree-
ment with the results by Chisnell’s method (which we have often referred
to as the Chester (1954), Chisnell (1957) and Whitham (1958) approach)
is found to be remarkable. Comparison with other analytic results may be
found in chapter 6. Payne (1957) also studied the effect of varying γ on the
propagation of converging shocks. There was no major qualitative change.
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Figure 8.10 Pressure, velocity, density and temperature versus radius at intervals

0.1 of time for a flow with a converging cylindrical shock of initial strength 8 (Payne,

1957).

However, when γ was changed from 1.4 to 5/3, there was a larger density
change across the contact surface. The production of entropy by the traver-
sal of the shocks (converging and diverging) was also briefly discussed by
Payne (1957).

It is clear from Payne’s application of the Lax (1954) scheme to the
converging shock problem that there are difficulties near the singular point
r = 0. Moreover, the momentum equation, not being in a conservation
form, must also be treated separately. The numerical results suggest that
the discontinuities—the contact surface and the shock—are not precisely
located; considerable manipulations are needed to get a reasonable shock.
The mesh sizes must be appropriately changed to avoid oscillations and
obtain somewhat sharp shocks.
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Figure 8.11 Shock strength versus radius for a converging cylindrical shock of

initial strength 1.93 (Payne, 1957).

Figure 8.12 Shock strength versus radius for a converging cylindrical shock of

initial strength 8 (Payne, 1957).

To get over these difficulties, Sod (1977) investigated converging spherical
and cylindrical shocks by using a judicious combination of Glimm’s (1965)
random choice method and operator splitting. The system of gasdynamic
equations in the vector form

Ut + F(U)r = −W(U), (8.4.24)

was treated by operator-splitting. It was written as the system

Ut + F(U)r = 0, (8.4.25)

which represents one-dimensional equations of gas dynamics in cartesian
co-ordinates, and

Ut = −W(U). (8.4.26)
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The conservation form (8.4.25) was solved by the random-choice method
introduced by Glimm (1965) and developed later for hydrodynamics by
Chorin (1976). Once the system (8.4.25) is solved, the system of ODEs
(8.4.26) is integrated by using Cauchy-Euler scheme at the interior points
for one time step. The solution of the system (8.4.25) is used to determine
the inhomogeneous term −W in (8.4.26). Thus, the singular nature of the
original system near the axis is eliminated. Besides, since the equations of
gas dynamics are solved in cartesian co-ordinates, the momentum equation
can be written in a conservation form.

Glimm’s method requires, approximating the solution by a piecewise
constant function at each time. One must then solve a sequence of Riemann
problems. The solution is advanced in time exactly and the new values are
sampled. The method depends on solving the Riemann problems exactly and
inexpensively. We refer the reader to Sod (1976, 1977) for further details.
Here we summarize the results of Sod (1977) for the converging cylindrical
shock.

The physical problem is exactly the same as that treated by Payne (1957)
and is solved with the same initial conditions. The (normalised) pressure
and density inside and outside the diaphragm are 1 and 4, respectively. This
gives rise to an initial shock of strength 1.93, a contact discontinuity, and a
rarefaction wave. The spatial mesh size was chosen to be ∆r = 0.01 while
∆t was chosen subject to the Courant-Friedrich-Lewy condition

max(|u| + c)∆t/∆r ≤ 1.

The general features of the flow are the same as in Payne (1957). The results
are shown in Figures 8.5–8.12. One major achievement of Sod’s study is that
the shock and the contact discontinuity are perfectly sharp. However, due

Figure 8.13 Density profile after interaction of diverging shock and contact dis-

continuity at time t = 0.6 (Sod, 1977).
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to the randomness of Glimm’s method, at a given time the position of the
shock or contact discontinuity may not be exact; on the average it is.

The interaction of the reflected shock with the contact discontinuity
results in a reflected (converging) shock A, and a contact discontinuity B
propagating towards the axis and a transmitted (diverging) shock C (see
Figure 8.13). This reflected shock was not perceived by earlier investigators
(Payne (1957), Abarbanel and Goldberg (1972), and Lapidus (1971)).

We conclude the discussion of converging shocks by summarizing recent
numerical results of Liu, Khoo and Yeo (1999). They used a modified total
variation (TVD) scheme due originally to Harten (1977, 1978) (see section
8.5). They chose the initial conditions the same as in the study of Sod (1977),
namely, pH = 4, ρH = 4, uH = 0, p0 = 1, ρ0 = 1, u0 = 0, where H denotes
conditions inside the high pressure isothermal cylinder. The cylindrical di-
aphragm was located initially at 0.25. The major physical features observed
were the same as in the study of Sod (1977). The converging shock with in-
creasing strength implodes at the axis at about t = 0.15, in agreement with
the figure obtained by Sod (1977). The temperature and density attain their
maximum values there at that time. The observed contact discontinuity was
always found to be sharp.

The results of Liu et al. (1999) show a good general agreement with those
of Sod (1976) except for a minor divergence of the locus of the main shock
after its divergence from the axis—the difference, however, never exceeding
10%. Sod’s (1976) results, being first order, are probably less accurate as
was pointed out by Liu et al. (1999). Unlike in some previous studies
such as Payne (1957), both the main shock, the secondary shock and the
contact discontinuity are successfully captured by the modified TVD scheme
employed by Liu et al. (1999). However, the third shock, generated by the
interaction of the reflected shock with the contact discontinuity, is too weak
and is not detected precisely even by the modified TVD scheme of Liu et al.
(1999). This shock did not attract much mention in earlier literature.

8.5 Numerical Simulation of Explosions Using

Total Variation Diminishing Scheme

In sections 8.3 and 8.4 we dealt with the early numerical investigations in
the context of explosion and implosion phenomena. These studies gave a
reasonable qualitative picture but were not sophisticated enough to yield
high accuracy or precise description of discontinuities. In this section we
describe a recent study due to Liu, Khoo and Yeo (1999), which uses the total
variation diminishing (TVD) scheme of Harten (1977). It was appropriately
modified to give a high resolution of contact discontinuities which, in the
scheme used by Payne (1957), were rather vaguely found. The model we

© 2004 by Chapman & Hall/CRC



254 Shock Waves and Explosions

discuss here is the release of a high pressure gas into a quiescent medium,
due originally to McFadden (1952) and Friedman (1961), which we have
discussed in much detail in sections 7.2 and 7.3. This release leads to a main
shock rushing out through the quiescent low pressure gas and to a rarefaction
wave moving inward into the high pressure gas. This flow also results in the
formation of a contact discontinuity and, subsequently, a secondary shock.
This shock is weak initially and propagates outwards with the expanding
gas. It grows in strength and becomes fairly strong in a short time. Soon
after, this secondary shock stops propagating outward, attains zero velocity,
and then begins to implode on the center.

The contact discontinuity also moves outward initially behind the main
shock. After a certain time it ceases its journey outward and begins to
move inwards to the origin. This is due to inward moving flow by the
converging secondary shock. After reflection from the center, the secondary
shock moves out, interacts with the inward moving contact surface and
continues to propagate outward. An inward rarefaction is produced as a
result of this interaction, leading to the formation of a third shock. This
shock wave is very weak and is not easy to detect. At the point of formation
of the third shock all the pre-existing discontinuities are rather weak and the
whole flow region is nearly uniform. These detailed features were numerically
observed by Liu et al. (1999) and make for a fascinating study.

In the present section we detail the work of Liu et al. (1999). The
scheme used by these investigators is a modified form of TVD, referred to as
the artificial compression method (ACM). It was found particularly useful
in increasing resolution of the contact discontinuities.

We write equations of motion for an inviscid, non-heat-conducting, ra-
dially symmetric flow in the form

Ut + (F (U))r = W (U), (8.5.1)

where

U =




ρ
ρu
E


 , F (U) =




ρu
ρu2 + p
(E + p)u


 ,

W (U) = −α− 1

r




ρu
ρu2

(E + p)u


 . (8.5.2)

The variables here are expressed in terms of ρ0 and a0, the undisturbed
density and speed of sound, respectively. The independent variables t and r
have been rendered nondimensional by 4r0/a0 and 4r0, where r0 is the initial
radius of the compressed gas. Here, α = 2, 3 for cylindrical and spherical
symmetry, respectively. The energy of the gas (in nondimensional variables)
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is given by

E =
p

γ − 1
+

1

2
ρu2, (8.5.3)

where γ = cp/cv . The system (8.5.1)–(8.5.2) is recast in nearly conservative
form as

∂Ũ

∂t
+
∂F (Ũ )

∂r
= S(Ũ ), (8.5.4)

where

Ũ = rα−1U, S(Ũ) =
α− 1

r





0
p̃
0




, p̃ = rα−1p. (8.5.5)

For spherical symmetry, we have

Ũ =





r2ρ
r2ρu
r2E




, F (U) =





r2ρu
r2(ρu2 + p)
r2(E + p)u




, S(Ũ) =

2

r





0
r2p
0




.

(8.5.6)
It may be observed that the RHS of (8.5.4) is always positive; there is
considerable evidence to suggest that this fact enhances numerical stability.
Besides, since S(Ũ) is continuous through the contact surface, this form may
be convenient for flows involving these discontinuities.

The system (8.5.4) is still singular at the origin; it is first written there
in the conservation form

ρt + α(ρu)r = 0, (8.5.7)

Et + α[(E + p)u]r = 0. (8.5.8)

The finite difference scheme applied to (8.5.7) and (8.5.8) would, therefore,
be compatible with the original system at the origin.

We must also have

u(0, t) = 0. (8.5.9)

We now discuss the total variation diminishing (TVD) (see (8.5.19) for
definition) scheme in some detail. When a hyperbolic equation is linear and
the numerical scheme simulating it is also linear, the convergence of the
numerical approximation is implied by the consistency and stability of the
scheme. This is not the case for nonlinear problems. Conventional shock-
capturing schemes such as Lax-Wendroff (see Richtmyer and Morton (1967))
for the solution of nonlinear hyperbolic conservation laws produce overshoots
and undershoots near the discontinuity; these schemes may also select a
nonphysical solution. To overcome these difficulties one may add a large
amount of dissipation but that results in the smearing of the discontinuity
on many grids.
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To obviate these difficulties a new class of schemes was introduced by
Harten (1983). These schemes must satisfy the following requirements :
(i) they must be total variation diminishing (see (8.5.19)); (ii) they must
be consistent with the conservation law and satisfy entropy inequality, (see
(8.5.13) below); and (iii) they must be second order accurate away from
shocks. The condition (i) guarantees that the scheme does not generate
spurious oscillations while (ii) ensures that the numerical solution converges
to the entropy solution.

Consider the scalar hyperbolic consevation law

∂u

∂t
+

∂

∂x
f(u) = 0, t > 0, (8.5.10)

with the initial condition

u(x, 0) = u0(x), (8.5.11)

where the flux function f is smooth. We now define the entropy condition for
the scalar equation (8.5.10). A solution of (8.5.10) with a shock propagating
with speed s and satisfying the Rankine-Hugoniot condition

f(ul) − f(ur) = s(ul − ur), (8.5.12)

is said to satisfy the entropy condition if

f(ul) − f(ur)

ul − ur
≥ s ≥ f(ur) − f(ul)

ur − ul
, (8.5.13)

for all u between ul and ur where ul and ur are values of u on the left and
right of the shock.

It is clear from (8.5.12) that f ′(u) is the characteristic speed. If the
function f is convex, that is, if f ′′(u) is positive, then (8.5.13) implies that
s must lie between f ′(ul) and f ′(ur) and ul > ur.

A conservative and consistent method will yield a unique weak solution
if it satisfies a discrete version of the entropy condition (LeVeque (1992),
p. 142).

We now define some terms required for the discussion of TVD schemes.
A difference scheme for (8.5.10) is said to be in conservation form if there
exists a continuous function F such that

un+1
i = un

i − λ(F n
i+1/2 − F n

i−1/2). (8.5.14)

where Fi+1/2 = F (u−k+1,···,uk
). F is thus the numerical flux function and λ

is the ratio of time step to space step.
The difference scheme (8.5.14) is consistent with the conservation law

(8.5.10) if

F (u, u, · · · , u) = f(u).
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The scheme (8.5.14) may be put in a viscous form if there exists a function
Q of 2k variables, called the coefficient of numerical viscosity, such that

Qi+1/2 = Q(ui−k+1, · · · , ui+k),

and (8.5.14) may hence be written as

un+1
i = un

i − λ

2
(f(un

i+1) − f(un
i−1))

+
1

2
{Qn

i+1/2(u
n
i+1 − un

i ) −Qn
i−1/2(u

n
i − un

i−1)}, (8.5.15)

The numerical flux therefore is

F n
i+1/2 =

1

2

{
f(un

i+1) − f(un
i ) −

Qn
i+1/2

λ
(un

i+1 − un
i )

}
. (8.5.16)

The numerical scheme (8.5.14) is said to be L∞-stable if there exists a
constant c > 0, independent of n and ∆t, such that ||U n+1||L∞ ≤ c||U0||L∞ ,
where ||Un||L∞ = supi |un

i |. The scheme (8.5.14) is said to be in incremental
form if there exist two functions C and D,

Cn
i+1/2 = C(un

i−k+1, · · · un
i+k), Dn

i+1/2 = D(un
i−k+1, · · · un

i+k), (8.5.17)

such that we may write

un+1
i = un

i +Dn
i+1/2(u

n
i+1 − un

i ) − Cn
i−1/2(u

n
i − un

i−1). (8.5.18)

A common feature of all TVD schemes is that second (or higher) order
accuracy is surrendered at the extrema since one cannot have both sec-
ond order accuracy everywhere and the TVD property. Second order TVD
schemes are second order accurate away from extrema. These schemes are
said to enjoy second order resolution (SOR).

The scheme (8.5.14) is called total variation diminishing (TVD) if

∞∑

i=−∞
|un+1

i − un+1
i−1 | ≤

∞∑

i=−∞
|un

i − un
i−1|. (8.5.19)

The scheme (8.5.18) is TVD if

Cn
i+1/2 ≥ 0, Dn

i+1/2 ≥ 0 and Cn
i+1/2 +Dn

i+1/2 ≤ 1 for all i, n;

(8.5.20)

Any numerical scheme which can be put in the viscous form (8.5.15) is TVD
if the coefficients in the viscous term satisfy

λ|an
i+1/2| ≤ Qn

i+1/2 ≤ 1, (8.5.21)
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where

an
i+1/2 =





f(un
i+1)−f(un

i )

un
i+1−un

i
if un

i+1 6= un
i

f ′(un
i ) otherwise.

(8.5.22)

For a three-point scheme to be TVD, the conditions (8.5.20) and (8.5.21)
are both necessary and sufficient.

We may mention that the Lax-Wendroff scheme is not TVD since the
coefficient of viscosity QLW

i+1/2 = (λai+1/2)
2 does not satisfy the condition

(8.5.21).

The construction of the SOR scheme changes the three-point first order
accurate TVD scheme into a five point second order accurate TVD scheme.
For this purpose we consider a three-point TVD scheme which is in a conser-
vative form and is consistent with the entropy condition (Lax-Friedrichs and
Godunov schemes, for example). The basic idea here is to use a modified
flux f + (1/λ)g in place of f where the function g is discretised as

gi =
si

2
min{(Q(λan

i+1/2) − (λai+1/2)
2)|un

i+1 − un
i |,

(Q(λan
i−1/2) − (λai+1/2)

2)|un
i − un

i−1|}. (8.5.23)

Here,

si =

{
sgn(un

i+1 − un
i ) if (un

i+1 − un
i )(un

i − un
i−1) > 0

0 otherwise,
(8.5.24)

and Q(λan
i+1/2) is the coefficient of numerical viscosity satisfying (8.5.21).

The numerical flux F̃ is now defined by

F̃i+1/2 =
1

2
{f(un

i+1) + f(un
i ) +

1

λ
(gi + gi+1)

− 1

λ
Q(λai+1/2 + νi+1/2)(u

n
i+1 − un

i )}

=
1

2
{f̃(un

i ) + f̃(un
i+1) −

1

λ
Q̃i+1/2(u

n
i+1 − un

i )}, (8.5.25)

where f̃(un
i ) = f(un

i ) + (1/λ)gi, Q̃
n
i+1/2 = Q(λai+1/2 + νi+1/2) and

νn
i+1/2 =

{
(gi+1 − gi)/(u

n
i+1 − un

i ) if un
i+1 6= un

i ,
0 otherwise.

The new difference scheme for (8.5.10) becomes

un+1
i = un

i − λ{F̃ n
i+1/2 − F̃ n

i−1/2}. (8.5.26)

The scheme (8.5.26) is five-point, is in conservation form, and is consistent
with the conservation law (8.5.10). This scheme is TVD. This follows from
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(8.5.21) if we replace f by f̃ , Q(λai+1/2) by Q(λai+1/2 +νi+1/2) and λai+1/2

by λai+1/2 + νi+1/2.

Harten (1983) extended the scalar TVD scheme to systems of nonlinear
hyperbolic equations to ensure the stability of the numerical scheme over a
long time as well as to enhance the resolution of contact discontinuity. The
main difficulty in extending the TVD scheme to nonlinear systems is that
the total variation of the solution may increase when there is a two-wave
interaction. To overcome this difficulty Harten (1983) extended the TVD
scheme to systems in such a manner that the resulting scheme is TVD for
the “locally frozen” constant coefficient systems.

Liu et al. (1999) modified Harten’s scheme by incorporating an artificial
compression in the so called artificial compression method (ACM) to increase
the resolution of contact discontinuities. In general, a numerical scheme
coupled with the use of an artificial compression will considerably increase
the resolution near a contact discontinuity and yet not change the main
features of the original scheme. With this end in view, Liu et al. (1999)
combined Harten’s TVD scheme with ACM for application to the explosion
problem. Let Ũn+1

i = rα−1
i+1/2U

n+1
i , ∆i+1/2U

n = Un
i+1 −Un

i . Furthermore, let

An
i+1/2 = A(Un

i , U
n
i+1) be the mean Jacobian matrix such that

F (Un
i+1) − F (Un

i ) = An
i+1/2(U

n
i+1 − Un

i ). (8.5.27)

Let al
i+1/2 and Rl

i+1/2 (l = 1, 2, 3) be the left eigenvalues and the correspond-

ing eigenvectors of An
i+1/2 and let (α1

i+1/2, α
2
i+1/2, α

3
i+1/2)

T = R−1
i+1/2∆i+1/2U

n,
where Ri+1/2 is a 3 × 3 matrix whose columns are the right eigenvectors of
An

i+1/2.

Corresponding to the function gi defined by (8.5.23) for the scalar case,

we write gH,l
i for the system (8.5.4) as

gH,l
i = min mod(σ(λra

l
i−1/2)α

l
i−1/2, σ(λra

l
i+1/2)α

l
i+1/2)), l = 1, 2, 3,

(8.5.28)
where

min mod(x, y) =

{
sgn(x)min(|x|, |y|) if xy > 0,
0 otherwise,

(8.5.29)

σ(x) =
1

2
φ(x) − 1

2
x2, (8.5.30)

and λr = ∆t/∆r. ∆t and ∆r are time and space step sizes. φ(x) is the
coefficient of viscosity (Roe (1981)), chosen to be

φ(x) =

{
|x| if |x| ≥ 2ε
x2+4ε2

4ε otherwise.
(8.5.31)
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Liu et al. (1999) modified the function gH,l
i in (8.5.28) and wrote

gl
i = (1 + ql

i+1/2)g
H,l
i , l = 1, 2, 3, (8.5.32)

where ql
i+1/2 is the artificial compression term added to ensure a sharp con-

tact discontinuity. It is defined as

ql
i+1/2 = s̃i+1/2

|αl
i+1/2 − αl

i−1/2|
|αl

i+1/2| + |αl
i+1/2|

φ(λra
l
i+1/2)

σ(λra
l
i+1/2)

, l = 1, 2, 3, (8.5.33)

where

s̃i+1/2 =
1

2
|sgn(a2

i+1/2 − a2
i−1/2) − sgn(a3

i+1/2 − a3
i−1/2)|. (8.5.34)

When ql
i+1/2 = 0, the numerical flux reduces to Harten’s flux for the

system (8.5.4).
Thus, the modified numerical scheme for (8.5.4) is

Ũn+1
i = Ũn

i − λr(H
n
i+1/2 −Hn

i−1/2) +
1

2
∆tS(Ũn+1

j ) +
1

2
∆tS(Ũn

j ). (8.5.35)

The numerical flux Hn
i+1/2 now is

Hn
i+1/2 =

1

2
{F (Ũn

i ) + F (Ũn
i+1) + rα−1

i+1/2G
n
i+1/2}, (8.5.36)

where

Gn
i+1/2 = Ri+1/2Φ

n
i+1/2,

Φn
i+1/2 = (φ1

i+1/2, φ
2
i+1/2, φ

3
i+1/2)

T ,

φl
i+1/2 =

1

λr
(gl

i + gl
i+1 − σ(λra

l
i+1/2 + νl

i+1/2)α
l
i+1/2), l = 1, 2, 3

νl
i+1/2 =





gl
i+1−gl

i

αl
i+1/2

if αl
i+1/2 6= 0

0 otherwise.
(8.5.37)

The present scheme is TVD under the CFL condition ∆t
∆r max(|u| + c) ≤

(5 −
√

17/2). This condition is more severe than that for the TVD scheme
of Harten (1983). For the actual computation Liu et al. (1999) required
that

∆t

∆r
max(|u| + c) ≤ 0.8, (8.5.38)

Liu et al. (1999) assumed the same initial conditions for the high pressure
gas as were first adopted by Brode (1957) and experimentally verified by
Boyer (1960). The initial sphere was taken to be of radius 2 in; it contained
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a gas at a pressure of 326 psi and temperature 299 K. The outside medium
is air at 15 psi and has the same temperature as inside, namely, 299 K. The
nondimensional values of these quantities are pH = 15.514, ρH = 21.7333,
uH = 0, p0 = 0.715, ρ0 = 1.0, u0 = 0. Observe that the pressure has been
rendered nondimensional by ρ0a

2
0 = γp0 = 1.4p0; hence p0 = 0.715. Since

the initial radius has been rendered nondimensional by 4r0, its value is 0.25;
the time is related by t′ = 293t(µs) or t = t′/293.

Liu et al. (1999) first solved the (plane) shock tube problem by Harten’s
TVD scheme to confirm its effectiveness. They chose the initial conditions
as pH = 4, ρH = 4, uH = 0. They used a modified form of Harten’s scheme
as well as Harten’s original scheme. The number of mesh points in each
scheme was chosen to be the same with mesh size ∆x = 0.01. Liu et al.
(1999) claim that the definition of contact surface improves while the general
results remain the same everywhere else. This improvement was brought
about by introducing the ACM technique. As we observe below, the same
effect is also brought about in the spherical explosion problem.

The temperature profiles at different times are shown in Figures 8.14(a)–
(c). As we have discussed in sections 7.2 and 7.3, the secondary shock is
first formed at the point on the tail of the rarefaction wave where pressure
and temperature attain their minima. This fact was used to identify the
inception of the secondary shock in the numerical solution. It was also
observed numerically that the rarefaction wave reaches the center at about
60 µs and brings about a rapid decrease in pressure there. At about 140 µs,
the pressure at the center is lower than that at the tail of the rarefaction
wave. From this point onwards, velocity, density and pressure between the
center and the secondary shock are almost constant, though they continue
to diminish with time. At t′ = 140 µs, the secondary shock ceases its
outward motion and begins to move inward with increasing strength. Now
the problem in this region corresponds to that of the collapse of a converging
spherical shock into a nonuniform region. The following features may be
observed from Figures 8.14(a)–(c). The maximum temperature is observed
at the contact discontinuity until about 100 µs. Thereafter, it occurs in the
immediate neighbourhood of the front shock. As time passes, the converging
shock becomes stronger and the maximum of temperature shifts until it is
attained at the center at t′ = 360 µs when it implodes there. Even as the
reflected shock moves out through the contact discontinuity, the maximum
temperature continues to occur at the center of the explosion.

The secondary shock, after formation, first moves away from the cen-
ter. At about t′ = 170 µs, it attains zero velocity and then moves inward
until it implodes at the center at about 360 µs. During this motion, the
particle velocity behind it is also inward. This affects the motion of the
contact discontinuity. The latter ceases its outward motion and begins to
move inward at about t′ = 240 µs. This inward contact discontinuity meets
the (outgoing) reflected secondary shock at about 550 µs, resulting in its
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Figure 8.14 (a)–(c) The temperature profiles at different times for the spherical

explosion centred at the origin (Liu et al., 1999).
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outward motion again. After the transmission of the reflected secondary
shock, the contact surface is relatively still. No reflection from the contact
discontinuity due to interaction with the secondary shock was observed by
Liu et al. (1999). The results of Liu et al. (1999) show close agreement
with the analysis of Brode (1959). The numerical solution of Liu et al.
(1999) shows good qualitative agreement with the experimental results of
Boyer (1960), though there is considerable quantitative divergence. For
example, the time of implosion of the secondary shock in the experiment
was about 180 µs later (a discrepancy of 50%) than that predicted by the
numerical solution. Moreover, the contact discontinuity in the experiment
did not indicate any inward radial movement before its interaction with the
reflected secondary shock. This divergence, Liu et al. (1999) attribute to
the inadequacy of the experiments and the energy losses due to thermal heat
conduction etc.

Qualitatively similar numerical results were obtained for the case of cylin-
drical explosion in air.
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