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Computationally Efficient Winding Loss Calculation
with Multiple Windings, Arbitrary Waveforms,

and Two-Dimensional or Three-Dimensional Field
Geometry

Charles R. Sullivan, Member, IEEE

Abstract—The squared-field-derivative method for calcu-
lating eddy-current (proximity-effect) losses in round-wire or
litz-wire transformer and inductor windings is derived. The
method is capable of analyzing losses due to two-dimensional
and three-dimensional field effects in multiple windings with
arbitrary waveforms in each winding. It uses a simple set of
numerical magnetostatic field calculations, which require orders
of magnitude less computation time than numerical eddy-current
solutions, to derive a frequency-independent matrix describing
the transformer or inductor. This is combined with a second,
independently calculated matrix, based on derivatives of winding
currents, to compute total ac loss. Experiments confirm the
accuracy of the method.

Index Terms—Eddy currents, finite-element methods, inductors,
magnetic devices, numerical field computation, power conversion,
power transformers, proximity effect, skin effect.

I. INTRODUCTION

EDDY-CURRENT losses, including skin-effect and
proximity-effect losses, seriously impair performance of

transformers and inductors in high-frequency power conversion
applications. Avoiding or mitigating these high-frequency
winding losses is one of the most important considerations in
designing such components. Unfortunately, standard methods
of analyzing winding loss have significant limitations. In
particular, standard analytical methods [1]–[18] ([16] gives
a useful review) assume a one-dimensional (1-D) field for
analyzing eddy-current effects in windings. But two-dimen-
sional (2-D) effects are important in magnetic components that
include discrete air gaps, in short windings where end effects
are significant, or in non layer-based windings. Finite-element
or other numerical field-calculation methods can account for
2-D effects, but their direct use to calculate eddy-current effects
in windings is computationally expensive. In this paper, we
introduce a method that includes the effects of 2-D or three-di-
mensional (3-D) fields with a much lower computational cost.
The new method, which we term thesquared-field-derivative
(SFD) method, can easily take into account multiple windings
and nonsinusoidal waveforms that may be different in each
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winding. For frequencies in a range where the method is valid,
it produces a frequency-independent model that may be used
to calculate losses for any set of waveforms. The method
applies to round-wire windings, including litz-wire windings,
but is not intended to address foil windings. For multi-filar or
“ -in-hand” windings, in which the interleaving of different
windings occurs at the level of individual turns, the method
could be applied, but its advantages are less significant than
they are for windings in which more turns of a particular
winding are grouped together.

A. Review of Previous Analytical Approaches

Although different descriptions can be used, most existing
analytical calculations of high-frequency wire-winding loss are
fundamentally equivalent to one of three analyses. The most rig-
orous approach uses an exact calculation of losses in a cylin-
drical conductor with a known current, subjected to a uniform
external field, combined with an expression for the field as a
function of 1-D position in the winding area [6], [18]. Perhaps
the most commonly cited analysis [7] uses “equivalent” rectan-
gular conductors to approximate round wires, and then proceeds
with an exact 1-D solution. Finally, there is the option of using
only the first terms of a series expansion of these solutions, e.g.,
[15], [19], [20].

For designs in which 1-D field analysis is accurate, and
where wire strands are not large compared to a skin-depth,
these various methods are approximately equivalent [6], despite
one small discrepancy explained in [21]. Although the basic
analysis is usually based on sinusoidal waveforms, a number
of authors have developed methods of extending this analysis
to nonsinusoidal waveforms through Fourier analysis or other
methods [11], [13], [19], [20]–[23].

A major limitation of all of this work is that it only applies to
components in which the field geometry is 1-D. This excludes
nearly all inductors and gapped transformers, in which the 2-D
field geometry due to the gap significantly affects losses [24].
Standard 1-D analysis is also unable to analyze transformers
with 2-D winding layout, such as the one shown in Fig. 1. In
[25] an analytical approach is developed for 2-D fields in gapped
single-winding inductors. Unlike the SFD method, it applies to
only one particular geometry. Nonetheless, the geometry ana-
lyzed is widely used, and it is a valuable method that can be
considered complimentary to the SFD method, in that it applies
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Fig. 1. Example of an ungapped three-winding transformer (w1–w3) in which
2-D field geometry can be important.

primarily to foil windings, whereas the SFD method is for wire
windings.

B. Limitations of General-Purpose Electromagnetic Analysis

Work in computational electromagnetics has produced gen-
eral-purpose field analysis methods, and commercial software
is available for 2-D and 3-D solutions of arbitrary problems, in-
cluding analysis of eddy currents. However, there are two major
limitations of this approach for high-frequency magnetics in
power electronics applications.

Scale Problems:Transformers and inductors often require
many turns of fine wire, or may use stranded wire such as litz
wire to reduce eddy-current losses. The wire strands may be
as small as 30–50m in diameter (44–48 AWG), while the
overall dimensions may be tens of centimeters. Thus, the length
scales involved can vary over two to four orders of magnitude,
and there are often thousands, or even over a hundred thou-
sand strands of wire in a winding window (e.g., see [26]). Even
when larger wire is used, the skin depth in the wire can be
small, for example 100 m at 400 kHz, creating a similar dis-
parity of length scales. In either case a large number of ele-
ments are needed to perform finite-element analysis, and this
leads to slow simulations and large memory requirements. To
circumvent this problem, software vendors recommend mod-
eling a stranded winding as a region of uniform current density.
While this is helpful for analyzing field distributions, it provides
no information on losses in the stranded winding.

Optimization: With existing field analysis, optimization
must be done by trial and error. Particularly when each iter-
ation takes hours to analyze via finite-element analysis, true
optimization is not practical, except in a few academic exper-
iments, which typically then provide information only about
one particular design. In some work [27], [28], systematic
numerical simulations have been used to develop models with
more general application. The results in [27], [28] apply to
foil windings, and thus are complimentary to the SFD method,
which applies only to wire windings.

II. THE SQUARED-FIELD-DERIVATIVE METHOD

In order to circumvent both the limitations of 1-D analyt-
ical methods, and the limitations of existing numerical methods,
we use a combination of numerical calculation of the overall
field geometry with analytical calculation of its interaction with
the winding strands. This avoids the scale problem, but allows

applying the power of modern computers to quickly obtain a
much more accurate solution than would be available through
1-D analysis. A similar approach was described in [17] and was
also used in [29] for gapped single-winding inductors with si-
nusoidal waveforms.

We start with the calculation of loss in a conducting cylinder
in a uniform field, perpendicular to the axis of the cylinder,
with the assumption that the field remains constant inside the
conductor, equivalent to the assumption that the diameter is not
large compared to a skin depth. This restriction might seem to
limit applicability to situations in which ac loss is negligible.
However, it is well known that ac losses can become severe even
with this restriction, particularly for multi-layer windings (see,
for example, [15]). As shown in Appendix A, a calculation of
eddy current based on a uniform field within the cylinder results
in instantaneous power dissipation in a wire of length

(1)

where
flux density, assumed perpendicular to the axis of the
cylinder;
resistivity of the wire;
diameter.

The average loss depends on the time average of the
squared derivative of the field, (Hence the term
squared-field-derivative, or SFD). The squared field derivative,
or corresponding squared winding current derivatives, have
been used by many authors, including [19]–[21], [23]. The
“K-factor” used in rating low-frequency power transformers
for nonsinusoidal currents can also be understood on the same
basis [30]. In this paper, the squared field derivative is used
to develop a method that extends the domain to which this
approach can be applied.

To calculate the time average of total ac loss in all the conduc-
tors of a winding, we can use the spatial average of the time-av-
eraged squared field derivative

(2)

where
time average ac (eddy-current) loss in winding;
number of turns in winding;
average length of a turn;
spatial average over the region of winding;
time average.

For a litz-wire winding, should represent the product of
the number of turns and the number of strands in each turn
(i.e., is the total number of strands in the winding), and
is the diameter of the individual strands. The length of a turn
may also need to be adjusted to account for the increased dis-
tance that a strand travels on account of twisting. This calcu-
lation of ac loss in litz wire neglects eddy currents circulating
between strands (bundle-level effects), and considers only eddy
currents circulating within individual strands (strand-level ef-
fects), which is usually valid because with proper bundle con-
struction, bundle-level effects can be made negligible [21].
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In a given winding, the field, may be expressed as the su-
perposition of fields due to currents in each winding. We can
then express the loss in windingof a two-winding transformer
as

(3)

where is a loss constant defined as

(4)

and is the field due to current in winding. In a typical sit-
uation of interest, the field due to the current in a given winding
may be considered to be instantaneously proportional to that
current, equal to the field that would be obtained with a dc cur-
rent the same as the instantaneous value of the time-varying cur-
rent. As will be discussed in more detail in Section IV, this ap-
proximation is valid given the assumption, introduced above,
that the wire diameter is not large compared to a skin depth.
With the fields proportional to the currents, it is possible to ex-
press the loss in terms of the currents as

(5)

where is a constant relating current and loss, to be cal-
culated in the next section. Note that the loss in one winding
results from the total field in that winding, which may be af-
fected by currents in any winding. Thus, the expression for ac
loss in a given winding (5) involves all winding currents. The
total ac loss in all windings is the sum of such terms for each
winding, and can be expressed as

(6)

where is the sum of the matrices for each winding

(7)

can be termed a dynamic resistance matrix, and carries units
of -s . The meaning of the different elements of can be
understood with reference to the idea of self and mutual ac re-
sistance [31]. The diagonal elements ofreflect the eddy-cur-
rent-loss contribution to the self resistance of the windings, and
the off-diagonal elements reflect the mutual resistance.

An advantage of this formulation is that the matrixmay
be calculated from a set of magnetostatic field calculations for

the transformer geometry (see the following section), without
specifying the waveforms or frequency of operation. The matrix

(8)

may be independently calculated for the particular set of wave-
forms of interest. Then the inner product of these two matrices
yields the total ac loss. To calculate total transformer loss, one
must combine this figure with core loss and winding loss due
to dc winding resistance ( ). This formulation illustrates
the contribution of the high slopes often used in power elec-
tronics to winding loss, and the importance of measuring or pre-
dicting these slopes, and then representing them accurately.

This analysis may be extended in the obvious way to an arbi-
trary number of windings, and is shown above for two windings
only to simplify the presentation.

III. FIELD CALCULATIONS

The matrix needed for the above loss calculation can be
shown to be

(9)

where is the field everywhere due to a unit current in winding
, and is the spatial average over the region of winding.

In order to find this we may calculate the fields due to current in
each winding individually. Then the quantities
and may be calculated from these fields.

The field calculations, which are the same calculations
needed to determine an inductance matrix for the transformer,
may be done using any magnetostatic finite-element analysis
program, or by specialized methods that are more efficient for
a particular problem, such as those discussed in [17] and [29].
Depending on the geometry involved and the accuracy required,
the calculation may be 2-D (in Cartesian or cylindrical coor-
dinates) or 3-D. In the 3-D case, the field may not always be
perpendicular to the axis of the wire, resulting in slightly lower
loss in practice than the calculations presented here would
predict. Although a correction for this could be made, few
practical geometries have significant field components parallel
to the path of the wire. In most cases, the field calculation can
be simplified because it is not necessary to model the individual
turns of the windings. It suffices to model the overall region
of the winding as a region of constant current density. The
computational requirements are thus greatly reduced compared
to a full eddy-current simulation: The geometry modeled is
simpler, the simulation need not include eddy currents, and
the simulation does not need to be repeated for different
frequencies.
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TABLE I
CONSIDERATIONSLIMITING SCOPE OFAPPLICATION

Irrespective of the field calculation method, the approach we
have described for finding the value ofentails calculating and

storing the complete field information and , and
then finding the winding-region spatial averages of the square
terms and of the cross products. An alternative that requires less
data storage and may be more convenient with the user inter-
faces of some commercial finite-element packages is to calcu-
late the field with current in each winding individually, perform
the necessary averages, and then calculate the field with current
in both windings, repeat the averaging, and subtract to find the
cross terms.

IV. A SSUMPTIONS ANDSCOPE OFAPPLICATION

The SFD method allows analysis of a wider range of winding
types than do previous methods; it allows both arbitrary wave-
forms and 2-D or 3-D field geometries. However, there are a
number of assumptions that have been made in the analysis.
Most of these were noted in the derivation; we repeat them here
for clarification of how they limit the scope of the SFD method,
and to discuss prospects for extending the scope. The consider-
ations discussed here are summarized in Table I.

The analysis is based on round wires. Other shapes could
be analyzed by similar methods, as long as all the dimensions
were small compared to the winding window. However, the loss
would then depend on the orientation of the field, somewhat
complicating calculations. In the case of litz wire, we have as-
sumed that bundle-level effects are negligible, a valid assump-
tion for well-designed litz constructions [21]. We have also as-
sumed that the wire (or strand, in the case of litz wire) is small
compared to a skin depth. If it is not, a similar approach could be
used, combining magnetostatic field calculations with Bessel-
function analysis of the loss in the winding [6], [17], [18]. Un-
fortunately, this results in a frequency-dependent matrix, so
it is preferable to use (1) when possible. It is also important to
note that if the wire is large compared to a skin depth, the eddy
currents are significantly affecting the field within the wire, and
may also significantly affect the overall field distribution. Thus,
it may also be necessary to modify the magnetostatic analysis
to account for the effect the eddy currents have on the field dis-
tribution, unless the winding packing factor is very small, or the

winding window region of the core is completely filled by wind-
ings of uniform strand size and packing factor.

The use of 2-D field calculations entails a degree of approx-
imation that depends on the importance of 3-D effects in the
particular geometry under study. If necessary, 3-D calculations
may be used. This still entails a minor approximation: The loss
induced by a field parallel to the axis of the wire is less than the
loss we calculate assuming a perpendicular field. In most ge-
ometries of interest, the parallel component of the field is small.
If it were significant, the loss prediction would be slightly high,
leading to a conservative design.

In order for the magnetostatic field analysis to be valid,
the current distribution between different conductors must be
constant, independent of frequency. In the case of litz wire,
construction can guarantee current sharing between strands
independent of frequency [21]. Paralleled windings in different
physical positions may not share ac current equally, so unless
symmetry guarantees equal sharing, they should be modeled
as separate windings for accurate evaluation with the SFD
method. In a single winding, capacitive currents between layers
may become significant at high frequencies, such that the
current is different in each turn. This can alter the field, and
a new field calculation based on the current distribution with
capacitive effects included would be needed to evaluate loss
with the SFD method. However, this is rarely needed, as high
capacitive currents would cause other circuit problems such as
EMI and switching losses, and so designs are limited to lower
capacitance by other considerations.

Finally, we also note that the use of a magnetostatic field cal-
culation is based on the assumption that hysteresis in the core
does not significantly affect the field in the window area. Such
an effect would only happen with extremely high hysteresis loss,
and so is not likely to be a problem in any power applications.
(The hysteresis loss would need to be significant compared to
the VA handled by the inductor or transformer, not just com-
pared to other losses.)

In summary, most of the assumptions discussed above are
nearly always valid for round wire windings and properly-con-
structed litz wire, up to a maximum frequency which is the lower
of two limits: where the skin depth becomes small compared
to the conductor size, or where capacitive currents become a
significant fraction of the winding current. In an inductor, or a
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TABLE II
TRANSFORMER USED FORVERIFICATION

transformer with a two-terminal excitation, the latter frequency
limit is equivalent to requiring operation well below the resonant
frequency (e.g., at or below one-third the resonant frequency,
where capacitive current is an order of magnitude below the in-
ductive current). It is also important to note that parallel wind-
ings must be treated separately unless symmetry guarantees cur-
rent sharing between them.

V. VERIFICATION

Initial experiments for verification of the squared-field-
derivative method, reported in [32], used a two-winding
litz-wire transformer. Simulations and experiments were per-
formed with and without a gapped core. Although the air-core
results very closely matched the predictions made by the SFD
method, the results with the gapped core began to deviate at
frequencies as low as 60 kHz. The deviation was attributed to
winding capacitance which both complicates the extraction of
winding resistance (see Section V-B), and changes the current
distribution in the winding window as discussed in Section IV.
In order to confirm this explanation for the discrepancies,
a transformer with a similar geometry and similar potential
for eddy-current losses, but with a much higher resonant
frequency, was simulated, constructed and tested. As detailed
below, predicted and experimental results match very closely
for this transformer, confirming the validity of the SFD method,
and confirming the diagnosis of the problems observed in [32].

Parameters of the new transformer are listed in Table II. It
would be very difficult to predict winding losses in this trans-
former without the SFD method, because, as in the original
transformer tested in [32], there are significant 2-D effects
produced by the gap and the winding design (shown in Fig. 2),
and because the large number of strands in the winding window
(over 1500 total) would make direct simulation prohibitive.
Large gaps (3 mm gaps in the centerpost and outer core legs)
were used to minimize core loss relative to winding loss.
Although long gaps might intuitively seem to magnify the
effect of gap fringing fields on ac resistance, longer gaps
actually slightly decrease the effect [27], [29]. Thus, in the
configuration we measured, the effect of gap fringing field on

Fig. 2. Configuration of experimental transformer, showing the core, a cross
section of each winding in the left window, and an outline of the bobbin area.
The magnetostatic simulation used a constant current density in the winding
regions shown (rotated around the centerpost to make a solid volume). Neither
the 33 individual turns in each winding nor the 24 strands within each turn need
to be represented explicitly. The figure is approximately twice actual size.

loss is slightly milder than in a typical practical design, but is
still quite significant, as shown below.

A. Field Calculations

Three 3-D magnetostatic simulations with a commercial fi-
nite-element package [33] were used to find the field values with
current in each winding individually, and with current in both si-
multaneously. Each winding was modeling by a region of con-
stant current density, as shown in Fig. 2. The individual turns
within this region were not represented in the simulation. Au-
tomatic mesh refinement was used with a target error of under
1%. The software’s postprocessor was used to find the average
values of in each winding region, so that could be calcu-
lated as described in Section III. The average turn length was
calculated geometrically, and then adjusted upward by 5% to
account for the strand length increase due to twisting in the litz
bundle, based on measurements of the dc resistance of a length
of the litz wire used. The resulting dynamic resistance matrix is

(10)

The significant off-diagonal elements in this matrix illustrate the
importance of the relationships between the different winding
currents in determining ac winding loss. Even for sinusoidal
waveforms, the common practice of calculating ac loss in a
given winding as is not adequate for a transformer;
mutual resistance effects must be included [31].
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Fig. 3. Four winding connections measured.

Fig. 4. Circuit representing winding impedance, used to interpret experimental
measurements.

B. Measurements and Winding Resistance Extraction

With the matrix , the loss could be predicted for any
waveforms. However, accurate measurements could be most
easily obtained for sinusoidal waveforms, using an HP 4284A
impedance analyzer. Verifying the effect of each term in the
matrix was possible by using different combinations of
current in different windings, as shown in Fig. 3. The four
combinations are as follows: each winding driven individually,
and both driven in series with the same or opposite polarities
(exciting the magnetizing or leakage inductance, respectively).

In order to determine the winding resistance from the mea-
sured impedance, the model shown in Fig. 4 was used. Here,

represents winding capacitance and represents dielec-
tric loss in this capacitance and core loss. The real part of the
impedance of this network, is what is measured. However,

is what is predicted by the analysis. To extract from the
measured data, we found values forand and used the re-
lationship

(11)

where indicates the real part, to solve for . Values
for were calculated from the self-resonant frequency of
each winding or winding combination (Table III). Values for

TABLE III
WINDING RESONANT FREQUENCIES

Fig. 5. Measured ac resistance of individual windings for the tested
gapped-ferrite-core transformer, as corrected using (11), compared to the ac
resistance predicted by the SFD method. Also shown as dotted lines are the ac
resistances for the individual windings predicted by 1-D analysis, as described
in Appendix II.

were obtained by measuring impedance with a closed core
and with the actual winding driven with the same voltage as in
the winding resistance test. The value of obtained from this
measurement represents both core loss and dielectric or other
loss in the winding capacitance.

C. Results

The experimental results are compared with the SFD predic-
tion in Figs. 5 and 6, for the frequency range of 10 kHz to 1
MHz. The results correspond very well over most of the fre-
quency range. Two sets of data are shown, corresponding to two
trials of the measurement, with independent calibration of the
meter on each trial. (Calibration nulls the impedance of the leads
used to connect the transformer.) At 1 MHz, several effects are
expected to degrade the accuracy of the SFD method. The di-
ameter of AWG 36 strands is larger than the skin depth, and,
for the series magnetizing winding connection, a test frequency
of 1 MHz is above one third the 2 MHz resonant frequency of
the winding. At 1 MHz, the magnetizing connection does in fact
show more significant deviation than the other connections do,
consistent with the fact that 1 MHz is not as close to the other
connections’ resonant frequencies.

Figs. 5 and 6 also include loss predictions from simple 1-D
analysis [15], [21], as detailed in Appendix II. In the plot of in-
dividual winding loss (Fig. 5), we see that the ac resistance with
the gap fringing field is a factor of four higher than predicted
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Fig. 6. Measured ac resistance of two series winding configurations for the
tested gapped-ferrite-core transformer, as corrected using (11), compared to the
ac resistance predicted by the SFD method. Also shown as a dotted line is the ac
resistance factor predicted by 1-D analysis, which is the same for either polarity
of series winding connection, as described in Appendix II.

by the 1-D analysis, and that this is correctly predicted by the
SFD method. In Fig. 6 we see that the 1-D calculation is closer
to correct for the leakage connection, because gap fringing is
not significant for this excitation. However, it still has error of
about 50% because of the 2-D winding configuration with each
winding using one-and-a-half layers (Fig. 2). For the magne-
tizing connection, the 1-D analysis predicts the same resistance
as for the leakage connection (for a transformer with gaps in the
outer legs as well as the centerpost). But in practice, as correctly
predicted by the SFD method, the ac resistance for the magne-
tizing connection is about a factor of six higher than the 1-D
prediction.

The results illustrate that the SFD method is accurate in the
frequency range where it is applicable (below one-third the
winding resonant frequency and below the frequency where
the skin depth becomes small compared to the conductor size).
The SFD method has been experimentally demonstrated to
have greatly improved accuracy in comparison to 1-D methods
when gap fringing fields are significant, or when the winding
geometry has significant 2-D aspects.

D. Computational Costs

The predictions were obtained with modest computational
costs—the set of three 3-D simulations used took a total of 43
min with adaptive mesh refinement to a 1% error criterion. A
comparison with a direct simulation was not possible, as the
computational cost to perform a 3-D simulation with 1500 wire
strands would have been prohibitive. However, a comparison
was performed with a simpler design. The 2-D magnetostatic
simulation required for the SFD method was compared to a
full 2-D simulation of strand eddy currents in a 250 kHz in-
ductor with 110 turns of 0.4 mm diameter wire. The magneto-
static analysis required for the SFD method took 6 s, whereas
the full eddy-current analysis took over 18 min. Using a device
with only 110 strands, as opposed to the 1500 strands in our

experimental device, made this experiment possible, but also
minimized the difference in simulation time.1 The difference
would be even more dramatic for more complex structures, for
more strands, or for 3-D simulations. The test was based on the
assumption of a sinusoidal current waveform. Non-sinusoidal
waveforms would require no additional magnetostatic simula-
tion time for the SFD method, but, for the full finite-element
analysis of eddy currents, would require an additional, similar
simulation for each harmonic.

VI. CONCLUSION

The SFD method allows calculating losses in multi-winding
transformers with 2-D and 3-D field effects and arbitrary wave-
forms in each winding. It uses a simple set of magnetostatic field
calculations to derive a matrix describing the transformer, in-
dependent of the excitation applied to the transformer. This is
combined with a second matrix calculated from derivatives of
winding currents to calculate total ac loss. Experiments show
the method is highly accurate within the limits described in Sec-
tion IV.

The dramatic decrease in computational expense made pos-
sible by using only simplified magnetostatic field calculations
makes it possible to accurately predict loss in transformers or
inductors that were previously beyond the capabilities of prac-
tical analysis. The increase in speed not only can make it easier
to predict loss for a given design, but also can make numerical
optimization practical. In addition, the way many parameters
affect loss is made explicit. These explicit relationships are ex-
pected to be useful in analytical optimizations of winding and
component design.

APPENDIX I
LOSS IN A CONDUCTION CYLINDER

This derivation of (1), the loss in a conducting cylinder with
a changing flux perpendicular to the axis of the cylinder, is sim-
ilar to that in [1], except that [1] expresses it in the frequency
domain rather than the time domain. It is based on the geometry
shown in Fig. 7. Consider an eddy-current loop down a section
of the cylinder at position and of thickness , returning in the
corresponding section on the other side of the cylinder at,
as shown. Assuming uniform flux density,, perpendicular to
the cylinder axis, the derivative of flux in this section, which is
equal to the EMF induced around the loop, is

(12)

where is the length of the cylinder (into the page in Fig. 7).
The resistance of this path is

(13)

1Both simulations used the same 2-D finite-element simulation package (An-
soft Maxwell) with adaptive mesh refinement and a 1% energy error criterion,
running on a 300 MHz Pentium machine. The magnetostatic simulation was
completed in 6 s, using less than 1 s of CPU time, whereas the full simulation
took over 18 m of CPU time. Memory requirements were 1 MB and 16 MB,
respectively.
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Fig. 7. Calculation of loss in a conducting cylinder with uniform flux density.

The power dissipated in these differential elements
may be integrated to find the instantaneous total

power loss in the cylinder,

(14)

(15)

APPENDIX II
ONE-DIMENSIONAL ANALYSIS USED FORCOMPARISON

For the purpose of a comparison in Figs. 5 and 6, a 1-D model
was used. While no application of a 1-D model to this 2-D con-
figuration is defensible, the following represents an attempt to
apply one dimensional modeling as rigorously as possible. AC
resistance factor is modeled by [15], [21]

(16)

where
radian frequency of a sinusoidal current;
number of strands;
number of turns;
diameter of the copper in each strand;
resistivity of the copper conductor;
breadth of the window area of the core;
factor accounting for field distribution in multiwinding
transformers, equal to one for windings that have zero
MMF on one side [15].

For the experimental transformer discussed in Section V, with
excitation of a single winding, half the MMF is dropped across
the centerpost gap, and half the MMF is dropped across the outer
gaps. Each half of the winding then has zero MMF on one side,
and for the half-winding, , and is half the total number
of turns. Thus for each half-winding

(17)

and with equal values of in each half-winding, the whole
winding also has the same value of. The result is shown in
Fig. 5, where it can be seen that this one dimensional model does
not accurately predict ac resistance for the transformer tested,
because of its significant 2-D effects.

With magnetizing excitation, equal MMF is dropped across
the centerpost and the outer legs, and the MMF between the
windings is, according to a 1-D model, zero. With leakage exci-
tation, the MMF’s of the windings oppose each other, resulting
in zero flux in the gaps, and so zero MMF at the outsides of
the windings. In either case, one side of each winding has zero
MMF, and . Thus, the one dimensional model predicts
equal ac resistance for either leakage or magnetizing excita-
tion. As shown in Fig. 6, the winding resistance in fact depends
greatly on which connection is used, indicating once again that
the 1-D model is not adequate for this geometry.
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