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Inductance Calculation Techniques --- Part I: Classical Methods 
Marc T. Thompson, Ph.D.1  

INDEX OF SYMBOLS 
B Magnetic flux density (Tesla) 
c Speed of light ≈ 3×108 m/s 
Co Capacitance per unit length (F/m) 
Em Magnetic energy storage (Joules) 
H Magnetic field intensity (A/m) 
I Current (A) 
J Current density (A/m2) 
K Surface current density (A/m) 
Lo Inductance per unit length (H/m) 
L Inductance (H) 
N Coil turns 
ℜ  Reluctance (A-turns/Wb) 
Φ Flux (Weber) 
λ Flux linkage (Weber-turns) 
εo Permittivity of free space = 8.854×10-12 F/m 
µo Magnetic permeability of free space 4π×10-7 H/m 

1. INTRODUCTION 

 In the first part of this two part series on inductance calculation techniques, classical 
methods are developed for solving for the inductance of structures in closed-form.  The 
"magnetoquasistatic" limit of Maxwell�s equations  are described, boundary conditions 
are shown and other useful tools such as use of the speed of light and magnetic circuit 
analogies are explained.  Using these techniques, the inductance of simple magnetic 
structures can often be approximated, and several practical applications of the techniques 
are shown.  In Part II of this series, methods are shown for calculating inductance of 
structures where a closed-form solution is not easily obtained. 

2. REVIEW OF MQS LAWS AND BOUNDARY CONDITIONS 

1. MQS Laws  
Maxwell�s equations couple electric fields to magnetic fields, and explain how 

electromagnetic waves are created.  There are four Maxwell�s equations, but in magnetic 
design we only need three:  Ampere�s Law, Gauss� Magnetic Law and Faraday's Law. 

In the magnetoquasistatic regime (MQS), we are concerned with Ampere�s Law and 
Gauss� law2, which determine the magnetic field and magnetic flux density.    In the MQS 
region of operation,  magnetic energy storage is dominant (as compared to energy stored 
                                                           
1 The author is an independent consultant at 25 Commonwealth Road, Watertown Massachusetts, USA 
02472. Business phone: (617) 923-1392. Fax: (617) 923-8762. Website:  
http://members.aol.com/marctt/index.htm.  Email: marctt@aol.com and is Adjunct Associate Professor of 
Electrical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609 
2 A third law, Faraday�s law, described how eddy currents are created.  Since we�re only concerned with 
low-frequency inductance here, we won�t worry about the effects of eddy currents. 
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in the electric field) and the operating frequency is low enough so that wave phenomena 
are small enough to be ignored [1, pp. 70].  The MQS limit of Ampere�s law shows that a 
flowing current creates a magnetic field, (Figure 1a), or: 

� � � �

H dl J dA
C S

⋅ ≈ ⋅� �  [1] 

 

where 
�

H  is the magnetic field (Amps/meter) and 
�

J  is current density (Amps/meter2). 
Gauss' Magnetic Law says that the flux density integrated over any closed surface 

equals zero, or: 
� �

B dA
S

⋅ =� 0  
[2] 

 

Faraday's law shows the mechanisms by which a changing magnetic flux generates 
eddy currents in a conducting material. The relationship in a conducting (or "Ohmic") 
material relating the current density and electric field is 

� �

J E= σ  and we can derive (Figure 
1b): 
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[3] 

The term on the right of this equation is the negative of the time rate of change of the 
magnetic flux passing through the surface.  This is how induced currents are created in 
conductors. 
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Figure 1. Figures illustrating use of Maxwell's equations.  (a) Ampere's law. (b) Faraday's 
law. 

 
 The use of these Maxwell's equations are best illustrated by example, as shown in a 
later section.  Before we get there, we need to consider the topic of  boundary conditions. 

2. Boundary Conditions 
Often, application of simple boundary conditions eases the computational complexity 

of magnetic structures.  For instance, consider the case of a thin current sheet, as shown in 
Figure 2 where the current flow is out of the page.  If we assume that the thickness of the 
sheet ∆ is negligible, use of Ampere�s law around the closed contour as shown results in: 

( )H H Ii o− =�  [4] 

where I is the current enclosed by the contour, Hi is the field inside and Ho is the field 
outside the current winding. (Note that we ignore the ∆ portion of the contour as we 
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assume it is of infinitesimal thickness and hence the integral over the thickness is zero).  
We can model the winding as a current sheet, of value K = I/l Amps/meter, resulting in 
the boundary condition for a thin current sheet: 

H H Ki o− =  [5] 

This boundary condition tells us how much the magnetic field H increases from one side 
of the current sheet to another.  This boundary condition is of particular use in calculating 
the field inside a solenoid (more on this later). 

l

∆

 

Figure 2.  Boundary condition for current sheet 

 Another important boundary condition can be derived by considering Gauss� magnetic 
law.  This law says that the magnetic flux leaving any closed surface sums to zero.  A 
simple model illustrating this boundary condition is shown in Figure 3.  What this 
drawing attempts to illustrate are flux-carrying "pipes", made of high-µ material, with 
areas A and flux densities B with the directions shown. 

B1, A1 B2, A2

B3, A3  

Figure 3.  Boundary condition for Gauss' magnetic law 

Given these definitions of the direction of the magnetic flux density B, and assuming that 
B1, B2 and B3 are constant spatially, Gauss' law results in: 
 

B A B A B A3 3 1 1 2 2= +  [6] 
 
Use of these boundary conditions can often greatly simplify calculation of some magnetic 
structures. 

3. ANALYTIC TOOLS FOR SOLVING INDUCTANCE PROBLEMS  

1. The "Brute Force" Method 
The brute force method is the easiest to understand, and often the most difficult to 

implement.  The procedure is as follows: 
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• Calculate the magnetic flux density B everywhere 
• Use this value to calculate the flux Φ 
• Once the flux is known, multiply by N to get flux linkage λ = NΦ. 
• The inductance is the flux linkage divided by the coil current, or L = λ/I. 
There are several other indirect methods to calculate the inductance. 
2. The Energy Method 

Everyone knows the lumped-circuit result for energy stored in an inductor: 

E LIm = 1

2
2  

[7] 

In many structures, the magnetic field over all space is easily found and the energy stored  
in the magnetic field can be directly calculated.  The energy is found indirectly by 
integrating the magnetic flux density over all volume, as: 

 

E B dVm
o

= ���
1

2
2

µ
 

[8] 

Once the magnetic stored energy is know, it�s easy to find the inductance. We apply this 
method in a later section to a solenoid and to the microstrip line. 
 
3. The Speed of Light 

Another technique that is potentially useful is using the speed of light.  If the 
capacitance per unit length (Co) of your structure is known, the inductance per unit length 
(Lo) is easily found by using the relationship [5, pp. 459]: 

c
L Co o

2 1=  
[9] 

where c is the speed of light. Furthermore, the speed of light in a medium is given by 
[Haus, pp. 69]: 

c = 1

µε
 

[10] 

where µ and ε are the magnetic permeability and dieletric permittivity of the material, 
respectively.  This technique is useful, as the capacitance of many common structures is 
known, and by knowing the capacitance by extension you can easily find the inductance. 
 
4. Magnetic Circuit Analogies  
 The structure of the MQS laws suggests a possible electrical circuit analogy [2], [5, pp. 
409].  In a magnetic circuit, flux (Φ) is forced to flow by the total Ampere-turns (NI) 
driving the circuit.  Using this analogy between electrical and magnetic circuits, we can 
write: 

V NI

I

R

⇔
⇔
⇔ ℜ

Φ  

[11] 

In this case, current is proportional to flux, with the  proportionality constant being the 
reluctance of the magnetic.  The analogous relationship between electrical resistance and 
reluctance is shown below: 
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R
l

A

l

A
= ⇔ ℜ =

σ µ
 

[12] 

The magnetic circuit method is particularly useful for gapped magnetic circuits, and for 
circuits with multiple paths (where the simple analogy to resistances in parallel is easily 
seen).  The use of magnetic circuit analogies is shown in the next section, where it's 
applied to a toroid and a C-core magnet. 

4. METHODS APPLIED TO COMMON MAGNETIC STRUCTURES 

The key to solving for the inductance of magnetic structures is to recognize which of 
the tools to use: the "brute force" method using Ampere's law, energy methods, the speed 
of light, or magnetic circuit analogies.  If these techniques aren't useful, other 
computational methods (such as the Biot-Savart law, use of the magnetic vector potential 
[5] or the use of finite-element analysis) may be employed.  Other structures lend 
themselves to handbook techniques, which is the subject of Part II of this article. 

 
1. Toroid 

It's easy enough to find the inductance of a toroid (Figure 4) by using the "brute force" 
method and directly applying Ampere�s law and finding the resulting flux in the core.  
First, we assume that the flux density is uniform inside the core and circulates around the 
coil axis.  Second, we assume that the high-µ material guides all the flux, and that there is 
no leakage.  Using Ampere�s law, we can find the flux density in the core by: 

B
NI

c
p

φ µ=
�

 
[13] 

The total flux in the core is: 

Φ = =B A NI
A

c c
c

p
φ µ

�
 

[14] 

and total flux linkage is: 

λ µ= =N N I
A

c
c

p

Φ 2

�
 

[15] 

The inductance is the flux linkage divided by the applied current, or: 

L
I

N
A

c
c

p

= =λ µ 2

�
 

[16] 

Toroids are often used in low cost, off-the-shelf power inductors.  For example, the 
inductance of a toroidal core with µc = 1000 µo, N = 100, Ac = 0.25 cm2 and lp = 5 cm is 
6.3 milliHenries.   

The same result can be derived by using a circuit model.  The reluctance of the core is 
given by: 

ℜ =
� p

c cAµ
 

[17] 

The resultant flux in the core is: 
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Φ =
ℜ

=NI
NI

A
c

c

p

µ
�

 
[18] 

 

N turns

Average magnetic path length lp,
cross-sectional core area A c

 

Figure 4.  Toroid 

2. C-Core with Gap 
The gapped-core inductor (Figure 5) is also a common structure for power electronics 

circuits.  Using the circuit analogy (Figure 5b), the flux in the core is easily found by: 

Φ =
ℜ + ℜ

=
+

NI NI
l

A

g

A
core gap p

c c o cµ µ

 
[19] 

 
Now, note what happens if g/µo >> lp/µc:  The flux in the core is now approximately 

independent of the core permeability, as: 

Φ ≈
ℜ

≈NI NI
g

A
gap

o cµ

 
[20] 

This is the main reason why it's often useful to use a gapped core:  permeability varies 
with flux level and temperature, and if you don't want your inductance to change you use 
a gap.  The resultant inductance is approximately independent of core properties, as: 

L
N

I

N N
g

A
gap

o c

= ≈
ℜ

≈Φ 2 2

µ

 
[21] 
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N turns

Average magnetic path length lp
inside core,

cross-sectional area A

Airgap, g

 
(a) 

+
-NI

Φ

ℜ core

ℜ gap

 
(b) 

Figure 5.  C-core with gap.  (a) Structure.  (b) Magnetic circuit analogy 

 
3. "Infinitely long" solenoid 
 We can solve for the inductance of a solenoid of length l (Figure 6) if the radius a is 
much smaller than the length by using assumptions based on an infinitely long solenoid.  
For an infinitely-long solenoid the magnetic field inside is uniform and axially-directed.  
If the winding is thin compared to the radius of the solenoid, we can approximate the 
winding by a current sheet (of value Amps/meter), where the current density is: 

K
NI

l
=  

[22] 

The field outside the solenoid is ideally zero, and by the MQS boundary condition the H 
field inside the solenoid equals K.   The magnetic flux density B inside is: 

 

B
NI

lo= µ  
[23] 

The energy stored in the inductor can be used to find the inductance by: 

E
B

V LIm
o

= =1

2

1

2

2
2

µ
 

[24] 

where V is the area of the solenoid bore, resulting in: 

L N
A

lo= µ 2  
[25] 

In this case, A = πa2, the area of the solenoid bore.  Note that this is the same answer 
obtained if we use a magnetic circuit analogy with reluctance l/µoA.  Therefore, we can 
guess that the inductance of a finite length solenoid, with the ends of the solenoid 
connected together with a high-µ path will have the same inductance as shown above.  In 
Part II of this series, we find the inductance of a finite length solenoid. 
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Figure 6.  Solenoid 

4. Microstrip Line 
The microstrip line (Figure 7) is amenable to using the speed of light relationship, as 

the capacitance per unit length of a parallel-plate capacitor is well known: 

. C
w

do = ε
 

[26] 

where ε is the dielectric permittivity of the material inside the capacitor plates.  The 
resulting inductance per unit length is: 

L
d

wo = µ  
[27] 

Therefore, the inductance of the microstrip line is approximately: 

L
dl

wo = µ  
[28] 

This is a pretty good approximation if fringing is negligible (or if d << w).   If more 
accuracy is needed, closed-form solutions based on conformal mapping or other 
computational techniques can be used [3].  

l

w

d
 

Figure 7.  Microstrip line 

The microstrip is a useful structure for low-inductance connections on a PC board (for 
instance, for MOSFET gate drive traces).  We can use this relationship to find the 
inductance of a PC board trace above a ground plane.  For instance, a PC board trace 1 
centimeter long,  0.5 centimeter wide and 0.04 centimeters above an unbroken ground 
plane has an inductance of approximately 1 nanoHenry.  This inductance can be made 
arbitrarily small by increasing the trace width (with a resultant increase in the lumped 
capacitance, of course).  This microstrip technique also has application in forming low 
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inductance paths for high speed current switching, in such applications as semiconductor 
diode laser driving [4]. 
 
5. Coaxial line 
 For the coaxial line (Figure 8), the capacitance per unit length is [5, pp. 177]: 
             

C
b ao

o= 2πε
ln( / )

 
[29] 

Using the speed-of-light relationship, the resulting inductance per unit length is: 

L b ao =
µ
π2

ln( / )  
[30] 

l

b
a

 

Figure 8.  Coaxial line 

5. CONCLUSIONS 

This paper has shown a variety of classical techniques for direct calculation of the 
inductance of magnetic structures.  The key to quick calculation is to know which of 
these techniques to use in a particular situation.  By example, the techniques are 
illustrated for several common magnetic structures. 

A detailed bibliography covering inductance calculation techniques may be found at 
the author's business website at: 

 
http://members.aol.com/marctt/Technical/Inductance_References.htm 

 
The author welcomes comments on this article and additions to the references at 
marctt@aol.com. 
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