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Inductance Calculation Techniques ---  
Part II: Approximations and Handbook Methods 

Marc T. Thompson, Ph.D.1  

INDEX OF SYMBOLS 
A Area enclosed by coil 
a Coil mean radius 
b Coil axial thickness 
c Coil radial thickness 
D Side length of square coil 
d Wire-to-wire spacing 
K Nagoaka coil constant 
l Coil length 
p Perimeter enclosed by coil 
P, F Grover disk coil constants 
R Circular wire radius 
s Side length of generic polygon 
w Trace width 
x, y Mean side lengths of rectangular coil 
µo Magnetic permeability of free space 4π×10-7 H/m 

I. INTRODUCTION 

 In the second part of this two part series on inductance calculation techniques, 
approximation techniques and handbook methods are shown for air-core structures that 
do not easily lend themselves to closed-form solutions.  A set of references is also given 
which is useful for finding the inductance of many different loop shapes.  Included are 
inductance calculations for polygons, disk coils, finite-length solenoids and flat planar 
spirals.  In some cases results are given without significant explanation, as the 
calculations are very complicated and the full calculations may be found in the references 
given.  Many of the older references work out inductance problems in English units; to 
ease design these results have been converted to MKS units with inductance in Henries 
and length scales in meters. 

II. REFERENCE REVIEW 

Inductance calculation references necessarily start with Maxwell's seminal work [1], 
first published in 1873.  Maxwell worked out some interesting inductance problems, 
including finding the mutual inductance between circular coaxial filaments [1, pp. 339], 
and finding the size and shape of a coil which maximizes inductance for a given length of 
wire [1, pp. 345].   

                                                           
1 The author is an independent consultant at 25 Commonwealth Road, Watertown Massachusetts, USA 
02472. Business phone: (617) 923-1392. Fax: (617) 923-8762. Website:  
http://members.aol.com/marctt/index.htm.  Email: marctt@aol.com and is Adjunct Associate Professor of 
Electrical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609 
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A seminal reference for inductance calculation (which, unfortunately is now out of 
print) is the Frederick Grover book [2].  Professor Grover spent most of his professional 
life calculating inductance of different kinds of wire loops, and many useful examples 
and tables are given for loops of interesting shapes and sizes.  The reference is especially 
useful as it gives correction factors to account for high frequency operation and other 
effects such as the insulation thickness of wires.  He was also a consultant for the U.S. 
Bureau of Standards, and the results of some of his work are found in [3]. 

The Wheeler references [4,5] give simple results for circular coils, and are particularly 
useful where analytic expressions are needed.  The empirically-derived analytic 
expressions in [5] are remarkably accurate for multiple-turn, circular coils. 

Another good reference is the Radio Engineers' Handbook, edited by Terman [6]. This 
reference shows the inductance of many different coil shapes such as single-turn loops, 
rectangles, multiple-layer coils, and solenoids of various lengths.  The Dwight reference 
[7] is very useful for calculating high-frequency effects in inductors, and covers skin and 
proximity effects.  The Roters reference [8] shows a useful method by which leakage 
inductance in transformers can be estimated.  The Smythe reference [9] is a great work 
covering classical field and inductance calculations.  Solenoid Magnet Design [10] by D. 
Bruce Montgomery, covers design aspects of solenoid-shaped coils from a 
superconducting magnet point of view.  Thermal aspects of inductor design are well 
covered here. 

Other references, as needed, are given in the text.  A more comprehensive 
bibliography of inductance calculation references is given on the author's business 
website, given in the REFERENCES section. 

III. APPROXIMATE AND CLOSED-FORM RESULTS  FOR COMMON STRUCTURES 

1. Circular Wire Loop 
The self-inductance of a straight conductor of length l and radius R, neglecting the 

effects of nearby conductors (i.e. assuming that the return current is far away) is given by 
[2, pp. 35]: 
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Many other magnetic structures can be modeled as simpler structure, since inductance is 
in general a weak function of loop shape for loops with loop radius much larger than wire 
cross section. 

Surprisingly, there is no closed-form solution for the inductance of a filamentary loop 
(since the expression for inductance blows up if the wire radius goes to zero).  A circular 
loop of round wire (Figure 1) with loop radius a and wire radius R has the approximate 
low frequency inductance [2, pp. 143], [4]: 
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Using this formula, the inductance of a 1 meter circumference loop of 14 gauge wire is 

1.12 µH; for 16 gauge wire it's 1.17 µH; and for 18 gauge wire it's 1.21 µH.  Note the 
weak dependence of inductance on wire diameter, due to the natural log in the expression.  
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A crude approximation for circular loops is L ≈ µoπa [11, pp. 56] which predicts an 
inductance of 0.63 µH for a 1 meter circumference wire loop. 
 

a
2R

 

Figure 1.  Circular wire loop 

2. Parallel-wire line 
For two parallel wires whose length l is great compared to their distance d apart, 

(Figure 2) the inductance of the loop is [2, pp. 39]: 
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For l = 0.5 meter and a wire-wire spacing d = 1 cm, results are: L = 0.505 µH for 14 
gauge; L = 0.551 µH for 16 gauge and L = 0.598 µH for 18 gauge.  Therefore, for the 
parallel-wire line with closely-spaced conductors, the inductance is approximately 0.5 
microHenries per meter of total wire length. 
 

R

d
 

Figure 2.  Parallel-wire line 

3. Square loop 
 The self inductance of a square coil made of rectangular wire (Figure 3), with depth b 
(into the paper) small compared to side length D and trace width 2w is a complicated 
expression found in the Zahn reference [12, pp. 343].  However, for w << D a relatively 
nasty expression can be approximated by: 
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For instance, a square PC board trace 1cm ×1cm with trace width 1 millimeter has an 
inductance of approximately 16 nanoHenries (assuming that the ground plane is far away, 
of course). 
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Figure 3. Square coil with rectangular cross section 

4. Rectangle of round wire 
 The inductance of a rectangle of round wire with rectangle side lengths x and y is [2, 
pp. 60]: 
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5. Polygon of round wire 

These results suggest an interesting result for a polygon of wire.  The inductance of a 
generic polygon of wire with perimeter p and area A may be approximated by:  
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Note that this function is strongly dependent on the perimeter and weakly dependent on 
loop area and wire radius.  For this reason, the inductance of complicated shapes can 
often be well approximated by a simpler shape with the same perimeter and/or area. 

No closed-form exists to calculate the inductance of a generic polygon of wire.  Grover 
[2, pp. 60] has worked out a variety of cases for polygons with side length s and wire 
radius R: 
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However, it is found in practice [2, pp. 61], [15] that the inductance of a multi-faced 

polygon may be approximated by replacing a polygon by a simpler plane figure of either 
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equal area of equal perimeter.  If the perimeter of the coil is p and the area enclosed is A 
then the inductance takes the general form: 
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This result is approximate, and an empirical fit to the closed-form calculations for 
polygons above.  In general, coils enclosing the same perimeter with similar shapes will 
have approximately the same inductance.  This is a very useful result for strange-shaped 
coils. 
 
6. Use of filaments 

Conductors can be replaced by filaments in order to calculate inductances, often with 
very accurate results.  For straight filaments made of parallel conductors, with length l 
and filament-filament spacing d (Figure 4a), the mutual inductance is [2, pp. 31]: 
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Figure 4. Mutual inductance between filaments.  (a) Straight conductors (b) Loops 

For the coaxial loops, the mutual inductance between loops as found by Maxwell is: 
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where K(k) and E(k) are elliptic integrals.  Mutual inductance is a very important 
parameter to calculate, as if the mutual inductance M12 is found the force between loops 
can be found as 

122112 MIIf ∇−=  [15] 

IV. HANDBOOK METHODS 

1. Disk coil 
A useful geometry for which tabulated results exist is the round loop with rectangular 

cross section, with mean radius a, axial thickness b, and trace width c (Figure 5).  The 
self-inductance of this single loop is calculated using techniques outlined in Grover [2, 
pp. 94], where the inductance is shown to be: 
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L aPFo=
µ
π4

 
[16] 

 This result is in MKS units, with a in meters and L in Henries. P and F are unitless 
constants; P is a function of the coil normalized radial thickness c/2a (Figure 5c) and 
applies to a coil of zero axial thickness (b = 0), and F accounts for the finite axial length 
of the coil.  For b << c and c <<a (coils resembling thin disks) the factor F ≈ 1, an 
important limiting case.  Therefore, for a thin disk coil with double the mean radius, there 
is a corresponding doubling of the inductance.  If the coil is made of multiple turns of 
wire, and if c << a the inductance can be approximated by multiplying the above 
expression by N2.   

b
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(a) Cross sectional view        (b) Top view 

 

(c) Function P, for disk coils 
Figure 5. Circular coil with rectangular cross section 
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An interesting result pops out here .... magnetic scaling laws [13] show that large 
magnetic elements are more efficient in energy conversion than smaller ones. For this 
disk coil geometry, this effect can be quantified by considering the ratio of inductance to 
resistance.  The inductance L is approximately proportional to a as shown above. The 
resistance of the coil is proportional to a/bc, the ratio of current path length to coil cross-
sectional area.  Therefore, the ratio of inductance to resistance is proportional to bc, or the 
cross-sectional area of the coil.  If all coil lengths are scaled up by the same factor l, this 
ratio increases  by the factor l 2, or the length squared. 

 
2. "Brooks" Coil 
 An interesting problem is to maximize the inductance with a given length of wire.  
Maxwell [1, pp. 345] found that the optimal coil has a square cross section with mean 
diameter 3.7 times the dimension of the square cross section, or 2a = 3.7c.  Brooks and 
others [14] later refined this estimate and recommend 2a/c = 3 as the optimum shape, 
with b = c.  The result for the Brooks coil is: 
  

L aNo= 1353 2. µ  [17] 
 

The inductance is a rather weak function of 2a/c so the exact geometry isn't so important.  
 

3. Finite-length solenoid 
The inductance of a thin-wall finite-length solenoid of radius a and length l made of 

round wire can be calculated with good accuracy by using one of the Wheeler formulas 
[4, 11].  If the length l of the solenoid is larger 0.8a, the accuracy is better than 1%: 
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[18] 

 
For the short solenoid with l < a, a handbook method may be applied by using the 
Nagoaka formula [2, pp. 143], [6, pp. 53] where (in MKS units):  
 

L a lN Ko= πµ 2 2  [19] 

 
K is a constant (Figure 6) depending on the ratio of the diameter to the length of the coil.  
This calculation shows that a 1 meter long coil, with radius 1 meter and a single turn has 
an inductance of 2.075 microHenries, which is in good agreement with the Wheeler 
formula above.  For very short coils interpolation of the factor K from the graph becomes 
difficult and a series formula is available, in Grover [2, pp. 143]. 
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Figure 6. Correction factor for finite-length solenoid 

 
4. Round Planar Spirals 
 Planar spiral coils have increasing application in miniature power electronics and in 
PC-board RF inductors.  A number of methods are available for the calculation of the 
inductance of a round spiral coil.  Using the Grover method [2, pp. 110] we find  
     

L aPNo=
25 2µ

π
 

[20] 

 

where a is the mean coil diameter in meters and P is the factor depending on c/2a, as 
stated before.  This equation is applicable if the inner and outer radii of the coil are not 
too different.  For a circular coil with outer radius Ro and number of turns N, Schieber 
[16] calculates:   

L R No o= × −1748 10 5 2. µ π  [21] 

 
where Ro is in meters and L is in Henries. This equation is suitable if windings are used 
over the entire area.  Wheeler gives [5]: 
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where a is the coil mean radius, and c is the thickness of the winding.  Wheeler states that 
the formula is correct to within 5% for coils with c > 2a.  Other workers have reported 
errors using Wheeler�s equation of < 20% [17].  Errors occur when there are few turns, or 
if the spacing between the turns is too great.  For a spiral coil with outer radius Ro =   
0.125� and inner radius Ri = 0, with N=5 calculation from the Grover method gives L ≈ 
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55 nH, the Schieber method gives L ≈ 55 nH and the Wheeler formula gives L ≈ 67 nH.  
It appears that the Wheeler formula is more accurate. 
 
5. Planar Square Coil 
  For the square coil, the effects of mutual coupling are not as simple to calculate as 
for the spiral case and the inductance is more difficult to calculate analytically.  An 
empirical approximation for an N-turn square spiral (Figure 7) is given in [18].  It is 
reported in the same paper that a ratio of D/Di of 5 optimizes the Q of the coil. 
 

D

Di

 

Figure 7.  Planar Square Coil 

In the case when the winding area is completely filled, or Di = 0, the inductance is: 
 

L DN≈ × −85 10 10 5
3.  [23] 

 

The exponent of 5/3 is thought to be due to end effects in the square coils.  Note that this 
simplified expression doesn't take into account the trace width.  More detailed inductance 
calculations for square planar spirals are given in references by Bryan [19], Greenhouse 
[20], Corkhill [21] and Saleh [22].  The Greenhouse reference is of special use as it 
compares various methods of calculation of planar spiral coils (both round and square) 
with experimental results. 

V. CONCLUSIONS 

Part II of this work has shown a variety of handbook and approximate inductance 
calculation results for different shaped conductors.  A comprehensive set of references is 
listed if the reader wishes to delve into the topic in more detail.  A bibliography covering 
inductance calculation techniques may be found at the author's business website [23] at: 

 
http://members.aol.com/marctt/Technical/Inductance_References.htm 

 
The author welcomes comments on this article and additions to the references at 
marctt@aol.com. 
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