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Optimal Choice for Number of Strands in a
Litz-Wire Transformer Winding

Charles R. Sullivan,Member, IEEE

Abstract—The number and diameter of strands to minimize
loss in a litz-wire transformer winding is determined. With fine
stranding, the ac resistance factor can be decreased, but dc
resistance increases as a result of the space occupied by insulation.
A power law to model insulation thickness is combined with
standard analysis of proximity-effect losses to find the optimal
stranding. Suboptimal choices under other constraints are also
determined.

Index Terms—Eddy currents, litz wire, magnet wire, power
electronics, power transformers, proximity-effect losses, skin ef-
fect, transformer windings.

I. INTRODUCTION

A SALIENT difficulty in the design of high-frequency in-
ductors and transformers is eddy-current effects in wind-

ings. These effects include skin-effect losses and proximity-
effect losses. Both effects can be controlled by the use of litz
wire—conductors made up of multiple individually insulated
strands twisted or woven together. (Sometimes the termlitz
wire is reserved for conductors constructed according to a
carefully prescribed pattern, and strands simply twisted to-
gether are called bunched wire. We will use the termlitz wire
for any insulated grouped strands.)

This paper addresses the choice of the degree of stranding
in litz wire for a transformer winding. The number of turns
and the maximum winding cross-sectional area are assumed to
be fixed. Under constraints on maximum number of strands or
minimum wire diameter, the best solution may not fill the
allocated window space fully. However, as will be shown
in Section IV, with those constraints removed, the optimum
solution does fill the allocated space. In this case, the cross-
sectional area of each turn is fixed, and as the number of
strands is increased, the cross-sectional area of each strand
must be decreased. This typically leads to a reduction in eddy-
current losses. However, as the number of strands increases,
the fraction of the window area that is filled with copper
decreases and the fraction filled with insulation increases. This
results in an increase in dc resistance. Eventually, the eddy-
current losses are made small enough that the increasing dc
resistance offsets any further improvements in eddy-current
loss, and the total losses start to increase. Thus, there is
an optimal number of strands that results in minimum loss.
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This paper presents a method of finding that optimum, using
standard methods of estimating the eddy-current losses.

Optimizations on magnetics design may be done to min-
imize volume, loss, cost, weight, temperature rise, or some
combination of these factors. For example, in the design of
magnetic components for a solar-powered race vehicle [1]
(the original impetus for this work) an optimal compromise
between loss and weight is important. Although we will ex-
plicitly minimize only winding loss, the results are compatible
with and useful for any minimization of total loss (including
core loss), temperature rise, volume, or weight. This is because
the only design change considered is a change in the degree of
stranding, preserving the overall diameter per turn and overall
window area usage. This does not affect core loss or volume
and has only a negligible effect on weight. However, the
degree of stranding does significantly affect cost. Although
we have not attempted to quantify or optimize this, additional
results presented in Section V are useful for cost-constrained
designs.

The analysis of eddy-current losses used here does not
differ substantially from previous work [2]–[18] ([15] gives a
useful review). Although different descriptions can be used,
most calculations are fundamentally equivalent to one of
three analyzes. The most rigorous approach uses an exact
calculation of losses in a cylindrical conductor with a known
current, subjected to a uniform external field, combined with
an expression for the field as a function of one-dimensional
(1-D) position in the winding area [17]. Perhaps the most
commonly cited analysis [16] uses “equivalent” rectangular
conductors to approximate round wires and then proceeds with
an exact 1-D solution. Finally, one may use only the first terms
of a series expansion of these solutions, e.g., [14].

All of these methods give similar results for strands that
are small compared to the skin depth [17]. (See Appendix
B for a discussion of one minor discrepancy.) The solutions
for optimal stranding result in strand diameters much smaller
than a skin depth. In this region, the distinctions between
the various methods evaporate, and the simplest analysis is
adequate. More rigorous analysis (e.g., [17]) is important when
strands are not small compared to a skin depth. In this case,
losses are reduced relative to what is predicted by the analysis
used here, due to the self-shielding effect of the conductor.

Previous work, such as [2]–[9] has addressed optimal wire
diameter for single-strand windings. The approach in [2]–[9]
is also applicable for litz-wire windings in the case that the
number of strands is fixed, and the strand diameter for lowest
loss is desired [5], [9]. As discussed in Section V, this can be
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Fig. 1. Types of eddy-current effects in litz wire.

useful for cost-sensitive applications if the number of strands
is the determining factor in cost and the maximum cost is
constrained. However, this will, in general, lead to higher loss
designs than are possible using the optimal number of strands.

II. SKIN EFFECT AND PROXIMITY EFFECT IN LITZ WIRE

Skin effect is the tendency for high-frequency currents to
flow on the surface of a conductor. Proximity effect is the ten-
dency for current to flow in other undesirable patterns—loops
or concentrated distributions—due to the presence of magnetic
fields generated by nearby conductors. In litz-wire windings,
skin and proximity effects may be further divided into strand-
level and bundle-level effects, as illustrated in Fig. 1. Bundle-
level effects relate to current circulating in paths involving
multiple strands, whereas strand-level effects take place within
individual strands. Bundle-level effects are controlled by the
pattern of twisting or weaving—the construction of the litz
wire. Simple twisting is adequate to control bundle-level
proximity effect loss, whereas more complex constructions are
needed to control bundle-level skin effect. Bundle-level effects
are not directly affected by the number or diameter of strands;
they are determined by the overall diameter and the choice of
twisting pattern. Thus, they need not be considered further for
the analysis in this paper. At the strand level, proximity effect
dominates skin effect in a winding that has many layers. Since
a litz winding has a large effective number of layers as a result
of the many strands, strand-level skin effects are negligible.

Thus, we need only consider strand-level proximity effect
losses for the choice of number of strands. Strand-level prox-
imity effect may be still further divided into internal proximity
effect (the effect of other currents within the bundle) and
external proximity effect (the effect of current in other bundles)
[19], [20]. However, this distinction is useful only as a form of
bookkeeping. The actual losses in one strand of a litz bundle
are simply a result of the total external field, due to the currents
in all the other strands present.

To calculate the total strand-level proximity-effect loss in
a litz winding, one can view it as a single winding, made
up of turns of the strand wire, each with current
flowing in it, where is the number of strands, is the
number of turns of litz wire, and is current flowing in the
overall litz bundle. The loss in the litz winding will be the
same as in the equivalent single-strand winding as long as
the currents flowing in all the strands are equal [6], [21].
Other methods of calculating loss in litz wire also assume

equal current in all strands [17], [19], [22]. This assumption is
equivalent to assuming that the bundle-level construction has
been chosen properly to control bundle-level proximity and
skin effects. Note, however, that most of our results remain
valid even when there is significant skin-effect loss at the litz-
bundle level, for example in a simply twisted bundle. This is
because the bundle-level skin-effect loss is independent of the
number of strands, and is orthogonal [20] to the strand-level
eddy-current losses.

We represent winding losses by

(1)

where is a factor relating dc resistance to an ac resistance
which accounts for all winding losses, given a sinusoidal
current with rms amplitude As shown in Appendix A,
we can approximate by

(2)

where is the radian frequency of a sinusoidal current,is
the number of strands, is the number of turns, is the
diameter of the copper in each strand, is the resistivity
of the copper conductor, is the breadth of the window
area of the core, and is a factor accounting for field
distribution in multiwinding transformers, normally equal to
one (see Appendix A). For waveforms with a dc component,
and for some nonsinusoidal waveforms, it is possible to derive
a single equivalent frequency that may be used in this analysis
(Appendix C). In an inductor, the field in the winding area
depends on the gapping configuration, and this analysis is not
directly applicable [23].

The analysis described here considers the strands of all litz
bundles to be uniformly distributed in the window, as they
would be in a single winding using turns of wire the
diameter of the litz strands. In fact, the strands are arranged
in more or less circular bundles. In this sense, the analysis of
[20] may be more accurate, but this difference has very little
effect on the results. The most important difference between
the model used here and the model in [20] is the greater
accuracy of [20] for strands that are large compared to a
skin depth. The simpler model is used because it is accurate
for the small strand diameters that are found to be optimal,
and because its simplicity facilitates finding those optimal
diameters. Other models (such as [19] and the similar analysis
in [22]) also model large strand diameters and circular bundle
configurations accurately, but they fully calculate only internal
(not external) proximity effect, and so are not useful for the
present purposes.

III. DC RESISTANCE FACTORS

The fraction of the window area occupied by copper in a
litz-wire winding will be less than it could be with a solid-
wire winding. This leads to higher dc resistance than that of
a solid wire of the same outside diameter. A cross section of
litz wire is shown in Fig. 2, with the various contributions to
cross-sectional area marked. In addition to the factors shown
in this diagram, the twist of the litz wire also increases the
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Fig. 2. Cross-sectional area of a litz-wire winding showing how area is
allocated. Area allocated to anything other than copper increases the resistance
in a space-limited winding.

dc resistance. In order to find the optimal number of strands
for a litz winding, it is necessary to quantify how the factors
affecting dc resistance vary as a function of the number of
strands.

A. Serving

Typically, litz bundles are wrapped with textile to protect
the thin insulation of the individual strands. This serving adds
about 0.06 mm (2.5 mil) to the diameter of the bundle. For a
given number of turns filling a bobbin, or a section of a bobbin,
the outside diameter of the litz wire must be fixed. The area
devoted to serving will then also be fixed, independent of the
number of strands.

B. Strand Packing

Simply twisted litz wire comprises a group of strands
bunched and twisted into a bundle. More complex construc-
tions begin with this step, and then proceed with grouping and
twisting the subbundles into higher level bundles. Particular
numbers of strands (1, 7, 19, 37, etc.) pack neatly into con-
centric circular arrangements. However, with large numbers
of strands (e.g., 19), and/or very fine strands [e.g., 44–50
American Wire Gauge (AWG)], it is difficult to precisely
control the configuration, and the practical packing factor
becomes an average number approximately independent of
the number of strands. Since the optimal strand diameter is
typically much smaller than a skin depth, but the lowest level
bundle can be near a skin depth in diameter, in most cases
we can assume that there is a large number of strands in the
innermost bundle. Thus, this packing factor is independent of
the number of strands.

C. Bundle Packing and Filler

The way the strands are divided into bundles and subbundles
is chosen based on considerations including bundle-level skin-
effect losses, flexibility of the overall bundle, resistance to
unraveling, and packing density. In some cases, a noncon-
ducting filler material may be used in the center of a bundle
in place of a wire or wire bundle that would, in that position,
carry no current because of skin effect.

A typical configuration chosen to avoid significant bundle-
level skin-effect losses should have a carefully designed and

Fig. 3. The cross section of strands becomes elliptical when the bundle is
twisted. In this extreme case of lay (length per twist) equal to 4.7 times the
bundle diameter, a total of six strands fit where seven would have fit untwisted.

potentially complex construction at the large-scale level where
bundle diameters are large compared to a skin depth. However,
because the optimal strand diameter will be small compared
to a skin depth, a simple many-strand twisted bundle may
be used at the lowest level. If the overall number of strands
is increased, the number of strands in each of these low-level
bundles should be increased, but the diameter of each low-level
bundle should not be changed, nor should the way they are
combined into the higher level construction be affected. Thus,
for our purposes, the bundle packing factor is independent of
the number of strands.

D. Turn Packing

The way turns are packed into the overall winding is primar-
ily a function of winding technique, and it is assumed not to
vary as a function of the stranding. However, note that loosely
twisted litz wires can deform as the winding is constructed,
allowing tighter packing. Another option providing tight turn
packing is rectangular-cross-section litz wire. In addition to
its turn-packing advantage, it has tighter strand and bundle
packing, as a result of the mechanical compacting process that
forms it into a rectangular cross section.

E. Twist

The distance traveled by a strand is greater in a twisted
bundle than it would be if the strands simply went straight, and
so the resistance is greater. An additional effect arises from
the fact that a cross section perpendicular to the bundle cuts
slightly obliquely across each strand. Thus, the cross section
of each strand is slightly elliptical. This reduces the number of
strands that fit in a given area, and so effectively increases the
resistance. An extreme case of this is illustrated in Fig. 3. The
choice of the pitch of the twist (“lay” or length per twist) is
not ordinarily affected by the number of strands in the lowest
level bundle, and so for the purpose of finding the optimal
number of strands, we can again assume it is constant.

F. Strand Insulation Area

Thinner magnet wire has thinner insulation. However, the
thickness of the insulation is not in direct proportion to the
wire diameter. Thinner wire has copper in a smaller fraction
of the overall cross-sectional area and insulation in a larger
fraction.
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Fig. 4. Insulation build (twice the insulation thickness) for AWG single-build
magnet wire. The dashed curve is the minimum build according to the equation
provided by [24]. The lower “staircase” curve is the tabulated data provided by
[24] for minimum build. The points marked by “�” are nominal build from
a wire manufacturer’s catalog obtained by subtracting an exact theoretical
nominal wire diameter from the tabulated nominal overall diameter. The
approximation described by (4) comes closest to these points.

Of all of the dc-resistance factors considered, this is the
only one that varies with the size or number of strands used
at the lowest level of the construction. Thus, quantifying this
effect on dc resistance gives a good approximation of the total
variation in dc resistance as a function of the size or number
of strands. The other factors can be lumped into an overall
dc resistance multiplying factor which is a constant for the
present purposes.

One approach to quantifying the relationship between the
insulation area and strand diameter would be to store tables in
computers, and use them to find the optimal strand diameter
by calculating the losses for different strand diameters until the
optimum was found, similar to [11]. However, an analytical
description of the variation of insulation thickness with wire
size can facilitate an analytical solution for the optimal number
of strands.

An equation describing magnet wire insulation thickness is
provided by [24]

AWG
(3)

where is the minimum insulation build in mils ( in,
1 mil m), for single-build insulation
and for heavy (double) build, and AWG is the
American Wire Gauge number.1 However, this only applies
to wire sizes between 14 and about 30 AWG. For smaller
wire sizes, it does not correlate with the tabulated data in [24]
(Fig. 4). For wire in the range of 30–60 AWG, we find a
better fit to manufacturers’ tabulated nominal insulation build
by using

(4)

1The American wire gauge defines nominal wire diameter in inches as
d = 0:0050(92)(36�AWG)=39

:

where is the overall diameter, including the insulation
thickness, is the diameter of the copper only, and is
an arbitrarily defined reference diameter used to make the
constants and unitless. The parameters found for single-
build insulation wire are and for
chosen to be the diameter of AWG 40 wire (0.079 mm). For
heavy-build insulation, and Note that
although (4) provides an accurate approximation for wire in
the range of 30–60 AWG, its asymptotic behavior for large-
strand diameters is pathological. Insulation thickness goes to
zero around 6 AWG and is negative for larger strands.

IV. NUMBER OF STRANDS FOR MINIMUM LOSS

With no constraints on number of strands or strand diameter,
the minimum-loss design will be with a full bobbin. Any
design that does not fill the bobbin can be improved by
increasing the number of strands by a factorand decreasing
the strand diameter by This keeps the dc resistance
constant and decreases ac resistance, as shown by (2). This
improvement can be continued until insulation area increases
result in a full bobbin. Thus, the minimum-resistance solution
fills the bobbin, and we can find this solution by analyzing a
full bobbin.

For a full bobbin, the outside diameter of the complete litz
bundle is

(5)

where is the breadth of the bobbin, is the height allocated
for the particular winding under consideration, is the
number of turns in that winding, and is a turn-packing
factor for turns in the winding, expressed relative to perfect
square packing (for the litz bundle would occupy

of the window area).
Assuming a factor accounting for serving area, bundle

packing, any filler area, strand packing, and the effect of twist
on diameter, we can find the outside diameter of a single strand

(6)

where is the number of strands in the overall litz bundle.
The diameter of the copper in a single strand can then be

written using (4)

(7)

We now define a total resistance factor

ac resistance of litz-wire winding
dc resistance of single-strand winding

(8)

where is the ratio of dc resistance of the litz wire to the
dc resistance of a single strand winding, using wire with the
same diameter as the litz-wire bundle. Using (6) and (7), we
can show

(9)
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Fig. 5. Total resistance factorF 0

r
as a function of number of strands (solid

line) for the example discussed in the text at 375 kHz. Also shown are the ac
resistance factorFr (dashed) and the dc resistance factorFdc (dotted). The
minimum total resistance factor is at the point where increases inFdc balance
decreases inFr with an increasing number of strands.

Combining (2), (8), and (9) results in

(10)

where

(11)

Equation (10) can now be minimized with respect toto find
the optimal number of strands

(12)

This will give nonintegral numbers of strands; the nearest
integral number of strands can be chosen to minimize ac
resistance.

V. DESIGN EXAMPLES AND SUBOPTIMAL STRANDING

For a design example, we used a 14-turn winding on an
RM5-size ferrite core. The breadth of the bobbin is 4.93 mm,
and the breadth of the core window 6.3 mm. A height of 1.09
mm is allocated to this winding. Based on an experimental
hand-wound packing factor and litz packing factor

, unserved, plus a 32-m (1.25 mil) layer of
serving, the above calculation indicates that, for a frequency
of 375 kHz, 130 strands of number 48 wire gives minimum
ac resistance, with a total resistance factor of ,
ac resistance factor , and a dc resistance factor

Fig. 5 shows the total calculated resistance factor and its
components as a function of number of strands. The figure and
the numbers confirm the intuition that becauseis close to one
and the dc resistance increases only very slowly, the decrease
in resistance using finer strands outweighs the decreased cross-
sectional area until the ac resistance factor is brought very

Fig. 6. Total resistance factorF 0

r
as a function of number of strands for the

example discussed in the text at 1 MHz. The solid line indicates resistance
factor for a full bobbin. The dashed line shows the lower resistance that is
possible by choosing the strand diameter for minimum loss, with the number
of strands fixed. Where this optimal diameter results in a full bobbin, the two
curves are tangent. For larger numbers of strands, the optimal strand diameter,
shown as a dotted line, would overfill the bobbin and so is not possible.

close to one. Note that although the factor is large, only a
factor of 1.18 is due to the change in wire insulation thickness.
The remaining factor of 1.95 is due to the dc resistance factors
that do not vary with number of strands, such as serving area
and strand packing.

The optimization leads to choosing a large number of fine
strands, which will often mean a high cost, and will sometimes
require finer strands than are commercially available. From
Fig. 5, one can see that a decrease from the optimum of 130 to
about 50 strands entails only a small increase in ac resistance.
Consideration of the cost tradeoff for a particular application
becomes necessary.

Given a suboptimal number of strands, chosen to reduce
costs, a full bobbin may no longer be best. The problem of
choosing the optimal strand diameter for a fixed number of
strands has been addressed by many authors [2]–[5], [7]–[9],
[14]. Although this is typically only used for single strands, the
analysis also can be applied for more than one strand by simply
using the product of the number of turns and the number of
strands in place of the number of turns The result
[7]–[9], [14] that holds, and

(13)

In many practical cases, cost is a stronger function of the
number of strands than of the diameter of the strands. In the
range of about 42–46 AWG, the additional manufacturing cost
of smaller wire approximately offsets the reduced material
cost. Thus, designs using the diameter given by (13) often
approximate the minimum ac resistance for a given cost.

Fig. 6 shows total resistance factor as a function of the
number of strands for the same example design, but at 1 MHz,
where the optimal stranding is a difficult and expensive 792
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Fig. 7. Contour lines of total resistance factorF 0

r
as a function of number

of strands and diameter of strands for the example discussed in the text at
1 MHz. The diagonal dashed line indicates a full bobbin. The valley at the
upper right is the minimum loss. The minimum loss without overfilling the
bobbin is marked by an “�.” Contour lines are logarithmically spaced.

strands of AWG 56 wire, and so analysis of alternatives is
more important. The solid line is for a full bobbin, and the
dashed line is for the same number of strands, but with the
diameter chosen for minimum losses rather than to fill the
bobbin. Where the two lines meet, the optimal diameter just
fills the bobbin. Beyond that point it would not fit, and the
line is shown dotted.

The example can be understood more completely by exam-
ining contour lines of total resistance factor as a function
of both strand diameter and number of strands (Fig. 7). The
minimum resistance is in the valley at the upper right (a large
number of fine strands). To fit on the bobbin, designs must be
below the dashed diagonal line. Minimum loss designs for a
fixed number of strands can be found by drawing a horizontal
line for the desired number of strands, and finding the point
tangent to contour lines.

One could also consider a constraint for minimum wire
diameter. Many manufacturers cannot provide litz wire using
strands finer than 48 or 50 AWG. In Fig. 7, the minimum
resistance for 50 AWG stranding is with a full bobbin, but
for 40-AWG wire, the minimum ac resistance can be seen
to occur with fewer than the maximum number of strands.
This situation can be analyzed by considering (2) with all
parameters fixed except for the number of strands, such that

(14)

where is a constant obtained by equating (2) and (14). The
total resistance factor is then

(15)

where is the dc resistance factor with a full bobbin, for
the fixed strand diameter. The value ofthat minimizes this
expression is , such that This will be
the optimal number of strands, given a fixed minimum strand

diameter, unless this is too many strands to fit in the available
window area.

The above analysis shows how to find the optimal stranding,
given a constraint on either strand diameter or number of
strands, both of which are important in determining cost. More
explicit analysis of cost is addressed in [25].

VI. EXPERIMENTAL RESULTS

The designs specified in the preceding section were con-
structed with two types of litz wire: 130 strands of 48 AWG
and 50 strands of 44 AWG. The primary and secondary
windings were made from a single length of litz wire, wound
on the bobbin in opposite directions. This is magnetically
equivalent to having a shorted secondary, but it reduces
potential problems with interconnect resistance. In order to
evaluate skin effect in the absence of external proximity
effect, litz wire was also measured outside of a winding. The
resistance was measured with an HP 4284A LCR meter, using
a custom-built test jig for low-impedance measurements. The
measurements are shown in Fig. 8.

Although the overall litz-wire diameter was small enough
to limit bundle-level skin-effect losses to a few percent, the
fine strands in the optimal solution also limit proximity-effect
losses to similar levels, so it is necessary to separate the
two effects in order to judge the accuracy of the proximity-
effect calculations. Fortunately, the losses are orthogonal [20],
and the skin effect losses (for a litz wire outside of the
winding) can simply be subtracted from the measured losses
in the transformer in order to isolate proximity-effect losses.
Accurate prediction of the bundle-level skin effect was found
to be difficult, in part because the details of the bundle
constructions were not well known. However, if the experi-
mentally measured bundle-level skin effect is subtracted from
the total measured losses, the result matches the proximity-
effect losses predicted by (2) very closely, as can be seen in
Fig. 8. This confirms the validity of the model used in the
optimization.

VII. CONCLUSION

The number of strands for a minimum-loss litz-wire winding
may be found by evaluating the tradeoff between proximity-
effect losses and dc resistance. Of the factors leading to
increased dc resistance in a litz-wire winding, only the space
allocated to strand insulation varies significantly with the
number of strands in a well designed construction. A power
law can be used to model insulation thickness in the region of
interest. Combining this with standard models for eddy-current
loss results in an analytic solution for the optimal number of
strands. The simplest model for loss, using only the first terms
of a series expansion, can be used because good designs use
strands that are small compared to a skin depth. Experimental
results correlate well with the simple model.

Stranding for minimum loss may lead to many strands of
fine wire and thus excessive expense. Minimum loss designs
constrained by minimum strand size or maximum number of
strands have also been derived.
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(a)

(b)

Fig. 8. Experimental ac resistance factorFr as a function of frequency. (a)
Graph is for litz wire with 50 strands of 44 AWG wire. (b) Graph is 130
strands of 48 AWG wire. Both are in the example transformer described in
the text. Total measured resistance factor in the transformer is marked with
stars. Measured skin effect in a straight piece of litz wire is marked with “�.”
The difference, equal to proximity-effect losses, is marked with circles. These
correspond closely to the predicted proximity-effect losses (solid line).

APPENDIX A
LOSS CALCULATION

The expression for ac resistance factor used here may
be derived by first calculating loss in a conducting cylinder
in a uniform field, with the assumption that the field remains
constant inside the conductor, equivalent to the assumption that
the diameter is small compared to a skin depth. This results
in power dissipation in a wire of length

(16)

where is the peak flux density. This is equal to the first term
of an expansion of the exact Bessel-function solution [26].

Combining this with the assumption of a trapezoidal field
distribution results in (2). For configurations in which the

field is not zero at one edge of the winding, a factor
is used to account for the resulting change

in losses, where [14].

APPENDIX B
COMPARISON WITH EXPANSION OF DOWELL SOLUTION

Equation (2) is similar to the expression for the first terms
of a series expansion of the exact one-dimension solution

(17)

where is the number of layers and is the ratio of effective
conductor thickness to skin depth. For a large number of layers
(equivalent to the assumption, given above, of a trapezoidal
field distribution), this reduces to The
usual expression for is

(18)

where and are the height and breadth
of an “equivalent” rectangular conductor and is the number
of turns per layer. Based on equal cross-sectional area,

This results in

(19)

where is the height of the bobbin area allocated to this
winding. The number of layers is Substitut-
ing these expressions forand into the simplified version
of (17) and using , we obtain

(20)

the same as (2), except for the substitution offor and
the addition of a factor of This discrepancy, which was
first noted in [6], can be explained by comparing (16) to the
equivalent expression for a rectangular conductor

(21)

where is the side of a square conductor. Equating these
two, we obtain Thus, it appears that
using an equivalent square conductor with sides equal to

for proximity-effect loss calculations would
be a more accurate approximation than the equal area approx-
imation that is usually used [16].

APPENDIX C
NONSINUSOIDAL CURRENT WAVEFORMS

Nonsinusoidal current waveforms can be treated by Fourier
analysis. The current waveform is decomposed into Fourier
components, the loss for each component is calculated, and
the loss components are summed to get the total loss

(22)
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where is the rms amplitude of the Fourier component at
frequency From (2), it can be seen that

(23)

Defining - by - - leads to

-
-

(24)

This can also be written as

- (25)

where

(26)

One may calculate this effective frequency for a nonsinusoidal
current waveform and use it for analysis of litz-wire losses,
or for other eddy-current loss calculations. Note that this
applies to waveforms with dc plus sinusoidal or nonsinusoidal
ac components. The results will be accurate as long as the
skin depth for the highest important frequency is not small
compared to the strand diameter.

A triangular current waveform with zero dc component
results in an effective frequency of , where is the
fundamental frequency. Once the effective frequency of a pure
ac waveform has been calculated, the effective frequency with
a dc component can be calculated by a reapplication of (26)

- (27)

Finding Fourier coefficients and then summing the infinite
series in (26) can be tedious. A shortcut, suggested but not
fleshed out in [9], can be derived by noting that

rms (28)

so that

rms

-
(29)

The primary limitation of effective-frequency analysis is
that it does not work for waveforms with more substantial
harmonic content. For instance, the series in (26) does not
converge for a square wave. Similarly, the derivative of
a square wave in (29) results in an infinite rms value. A
Bessel-function-based description of loss may be necessary.
However, in practice leakage inductance prevents an inductive
component from having perfectly square current waveforms.

A square wave with finite-slope edges leads to a finite value
of , which can be found from (29) to be

(30)

where is the transition time as a fraction of the total period.
For , the waveform becomes triangular and (30) gives
the same value of as calculated above. This expression
(30) and the calculation and minimization of loss based on (2)
is valid as long as there is not significant harmonic current for
which the wire diameter is large compared to a skin depth.
Based on the rule thumb that the highest important harmonic
number is given by [27], a rough check on this
would be to calculate skin depth for a maximum frequency

and compare this to the wire diameter.
If there are significant harmonics for which the skin depth is
small compared to wire diameter, then the analysis in [27]
can facilitate 1-D analysis of nonsinusoidal waveforms, or for
more accuracy Bessel-function analysis [17] with a Fourier
decomposition of the waveform can be used.
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