A. DISSECTING APPARATUS

These items will permit the student to do many of the dissections normally done in elementary biology course work. If possible, each student should have each of the items in this section, but if cost and materials prohibit this, then enough items should be produced to permit students to work in groups of two or three.

a. Materials Required

Components	Qu	Items Required	Dimensions
(1) Handle	1	Wood Dowel (A)	10 cm long, 0.6 cm 0.8 cm diameter
(2) Needle	1	Steel Wire (B)	```5 cm long, #20 gauge wire (approx- imately 0.05 cm diameter)```
(3) Binding	1	Iron Wire (C)	About 10 cm of \#24 gauge wire (about 0.025 cm diameter)

b. Construction

(1) Handle

(2) Needle

The wood dowel (A) serves as the handle. Make a slit about 2 cm deep in one end to receive the needle. Sand the two ends to make them smooth.

Break the wire (B) by bending it back and forth instead of cutting it with wire cutters as hard steel can easily damage wire cutters. File one end to a point.
(3) Binding

At a point 0.3 cm from the unpointed end, grasp the wire with two pliers and slowly bend until a 90° angle has been reached. If a "bent tip" dissecting needle is desired, bend the needle to an angle of 130° approximately 1 cm from the pointed end.

Insert the end of the needle into the handle about 1 cm deep. Wrap several turns of binding wire (C) tightly around the handle and twist the ends together.
c. Notes
(i) Iron, rather than steel, wire may be used for the needle by first making the bends where needed. Then heat the wire until it becomes dull red and immerse it in cold water'to temper it. The iron wire will become hard enough so that it does not bend easily; however, it may be broken if pressed with too much force.

A2. Strapping Scalpel

(2) Blade
a. Materials Required

$\frac{\text { Components }}{\text { (1) Handle }}$	Qu	Items Required Wood Dowel (A)
(2) Blade	1	Steel Strapping (B)
(3) Binding	1	Iron Wire (C)

$$
\begin{aligned}
& \frac{\text { Dimensions }}{10 \mathrm{~cm} \text { long, } 1 \mathrm{~cm}} \\
& \text { diameter }
\end{aligned} \begin{aligned}
& 6 \mathrm{~cm} \text { long, } 1 \mathrm{~cm} \\
& \text { wide } \\
& \text { About } 12 \mathrm{~cm} \text { long, } \\
& \begin{array}{l}
\# 4 \text { gauge (approx- } \\
\text { imately } 0.025 \mathrm{~cm} \\
\text { diameter) }
\end{array}
\end{aligned}
$$

b. Construction
(1) Handle Make a slit in one end of

(2) Blade

the dowel (A) with a saw for the blade. Sand the ends to make them smooth.

Cut the piece of strapping (B)
into the shape of a scalpel blade (many shapes are useful for different purposes).

Taper one end so it will fit the handle. File the edges (as shown by the shaded areas) to make the cutting edge.
(3) Binding

Insert the blade into the slit in the end of the
handle. Wrap several turns of \#24 gauge wire (C)
tightly around the handle and twist the ends together. This should hold the blade firmly in place.
c. Notes
(i) The blade should be sharpened after the entire scalpel has been assembled in order to lessen the danger of being cut,
(ii) An equally good scalpel may be made from a piece of strapping about 15 cm long. Simply form a blade at one end as described above, and let the remainder act as the handle. This portion should be wrapped in tape to make it more comfortable to handle.

A3. Razor Scalpel

Components		Qu	Items	Required	Dimensions
(1)	Handle	2	Steel	Strapping (A)	15 cm long, about 1.25 cm wide
		1	Tape	(B)	About 50 cm long
(2)	Blade	1	Doubl Blade	e-Edged Razor (C)	2.5 cm x 3.5 cm
(3)	Fasteners	2	Bolts	(D)	1.0 cm long, 0.4 cm diameter
		2	Nuts	(E)	0.4 cm inside diameter

b. Construction
(1) Handle

Fasten the two pieces of
strapping (A) together with
tape (B). Drill two holes
$(0.5 \mathrm{~cm}$ diameter) in the
other end for the bolts (D)
to fit through. Locate
these holes so that the
razor blade (C) will be held
in the desired position.

(i) The razor blade can easily be replaced as it becomes dull.
(1)

a. Materials Required

Components
(1) Body
(2) Fastener

1 Bolt (B)

1 Nut (C)

Dimensions
$15 \mathrm{~cm} \times 1.25 \mathrm{~cm}$, at least 0.05 cm thick
0.5 cm long, 0.5 cm diameter
0.5 cm inside diameter
b. Construction
(1) Body

Hold the pieces of strapping
(A) tightly together and heat them at a point approximately 6.5 cm from the end until they both glow dull red. Then, twist them a
full quarter $\left(90^{\circ}\right)$ turn. Immediately plunge them into

cold water to restore their

 temper.

Drill a hole 0.6 cm in
diameter about 1 cm from the twist on the short (6.5 cm) end of both pieces.

Bend the long (8.5 cm) ends up to form the handles.

Trim the tips of the strapping to the shape of blades. Sharpen the shaded area of the blade. File this area on the outside edge only, not the inside edge where the blades meet, In sharpening, file upward at an angle of 30°.
(2) Fastener

Fasten the two halves of the scissors together with the short bolt (B) (a long bolt may be cut to length) and nut (C). When the proper tightness is obtained, burr the end of the bolt to prevent the nut from loosening and falling off.

c. Notes

(i) Scissors constructed of strapping of 0.05 cm in thickness work fairly well in cutting tissues as long as short cuts are made, and the material being cut is kept well back between the blades.
(ii) Scissors work better if the blades are slightly curved as shown below.

A5. Forceps

a. Materials Required

Components	Qu	Items Required	$\frac{\text { Dimensions }}{20 \mathrm{~cm} \text { long, about }}$
(1) Strapping	1	Steel Strapping (A)	1.25 cm wide

b. Construction
(1) Strapping
Cut each end of the steel
strapping (A) to a taper.

Bend the strapping a full

180° at the midpoint. Make certain the tops touch and are in good alignment. Heat the bent area to dull red and plunge immediately into cold water to temper the steel. Bow the blades of the forceps slightly

A6. Dropper

(2) Cap

a. Materials Required

b. Construction

(1) Tube

+

Hold the glass tubing (A)
over a hot flame, turning
it to heat it evenly. When
it begins to soften, draw
it out until the constriction
is the desired diameter, and
allow it to cool. When cool,
cut the tubing at the con-
striction with a small
triangular file.

C. Notes

(i) Droppers may be made in many shapes and sizes to fit the various uses for which they are needed.

A7. Dissecting Pan

(1) Pan
a. Materials Required

Components	$\frac{\text { Qu }}{1}$	$\frac{\text { Items Required }}{\text { (1) Pan Can (A) }}$
(2) Wax	$--\quad$ Paraffin Wax (B	

b. Construction

(1) Pan

Dimensions
Approximately
$17 \mathrm{~cm} \times 25 \mathrm{~cm} \times 3 \mathrm{~cm}$

Enough to partially fill the pan (about 1 liter)

Remove the handle from a
4 liter rectangular oil can
(A). Cut off the sides about 3 cm from the edge. It is best to put tape on the sharp edges of the pan to prevent students from cutting themselves.
(2) Wax
Fill the pan about two thirds
full of melted paraffin wax
(B), and allow the wax to
harden. Be careful in
heating the wax not to get
it too hot or it may ignite.
It is best to place the
paraffin block in a glass
jar, and put the glass jar in
hot water until the wax melts,
c, Notes
(i) Any container like an oil can (e.g., waxed cardboard milk containers) can be used as long as a suitable pan can be made from it. Alternatively, pans can be made from sheet metal if there is sufficient technical help available.
(ii) Cases for dissecting tools can be made from heavy cloth material if it is desirable to keep each student's kit separate from the others.

