## A. BASIC APPARATUS

Included here are improvised versions of the equipment necessary to perform elementary investigations in microbiology. Information on culturing microorganisms should be obtained from standard texts on the subject.

## A. BASIC APPARATUS

## Al. Culture Flask


a. Materials Required

Components
(1) Bottle

Qu
1 Medicine Bottle (A)

1 Cotton Plug (B)

Dimensions
About 100 ml or larger
--
b. Construction
(1) Bottle

Sterilize the bottle (A) and fill it 1/6 full of either liquid or gelatin culture medium. Stopper it with the cotton plug (B). Egelatin medium is used, lay the bottle on its side and allow the medium to set. Store the flask with the medium on the upper side of the flask so that no moisture film will form on the medium.

## c. Notes

(i) Consult a standard microbiological text or source book for deta il in work ing with bacteria and other microorganisms.
(ii) Use glass medicine bottles with flat sides if these are available.
(iii) Petri dishes are invaluable in working with microbes. See CHEM/V/A6 for instructions in making petri dishes.

## A2. Sterilizer


(3) Rack (Not visible)
a. Materials Required

b. Construction

## (1) Top



Cut the top from a circular piece of sheet metal (A). Leave three tabs to be bent down at right $\left(90^{\circ}\right)$ angles. The tabs are 1.0 cm long. Screw the small hinge ( $B$ ) to the top directly opposite the middle tab.
(2) Can

(3) Rack


Remove one end from the tin can (C). Attach the top to the can by means of the hinge. Most tin cans have a ridge around the edge so that when the top is closed, the three tabs should catch on this ridge and hold the top down rather firmly. Finally, screw the four screws (D) through the outside into the inside of the can, 9 cm from the bottom and spaced about 12 cm apart.

Punch a number of holes into the sheet metal disc (E). Set this disc inside the can so that it is supported by the four screws extending into the can.


Side View
(Cross-section)
C. Notes
(i) To use the sterilizer, simply put 3-4 cm of water in the can and place the items to be sterilized on the rack. After the water has begun to boil, leave

```
the items in the steam for about }90\mathrm{ minutes.
    (ii) If the can used is large enough, two or more racks can be made for it to
allow a larger number of articles to be sterilized at the same time.
    (iii) This sterilizer will kill most, but not all, common bacterial contaminants.
If pure sterility is desired , an autoclave or ordinary pressure cooker is needed.
Place the articles on a rack and autoclave or pressure cook them for about 20
minutes.
```

    (iv) An alternate rack can be made by fastening a circular piece of wire mesh
    to a frame of stiff wire.

(1) Needle
a. Materials Required

Components
(1) Needle
$\frac{\text { Qu }}{1} \frac{\text { Items Required }}{\text { Glass Tube (A) }}$

1 Nichrome Wire (B)

Dimensions
0.3 cm diameter, 12 cm long 10 cm long, \#24 gauge
b. Construction
(1) Needle


Use soft glass tubing (A) with a small diameter bore. Insert about 2 cm of the wire (B) in one end of the tube and heat this end in a hot flame until the end of the glass constricts and holds the wire fast.

## C. Notes

(i) The nichrome wire may be left straight or a 0.3 cm loop may be made in the end by twisting the wire around a 0.3 cm round object with pliers.
(ii) Use inoculating needles for transferring small amounts of bacterial cu lures from one medium to another.

a. Materials Required

| Components | Qu | Items Required | Dimensions |
| :---: | :---: | :---: | :---: |
| (1) Frame and Trays | 3 | Plywood (A) | $35 \mathrm{~cm} \times 32 \mathrm{~cm} \times 1.0 \mathrm{~cm}$ |
|  | 1 | Plywood (B) | $33 \mathrm{~cm} \times 32 \mathrm{~cm} \times 1.0 \mathrm{~cm}$ |
|  | 1 | Plywood (C) | $35 \mathrm{~cm} \times 36 \mathrm{~cm} \times 1.0 \mathrm{~cm}$ |
|  | 6 | Wood Strips (D) | $30 \mathrm{~cm} \times 1.5 \mathrm{~cm} \times 1.0 \mathrm{~cm}$ |
|  | 3 | Perforated <br> Hardboard <br> (E) | $\begin{aligned} & 32.5 \mathrm{~cm} \times 31 \mathrm{~cm} \\ & \times 0.3 \mathrm{~cm} \end{aligned}$ |
| (2) Heat Reflector | 1 | Plywood (F) | $33 \mathrm{~cm} \times 24 \mathrm{~cm} \times 0.5 \mathrm{~cm}$ |
|  | 1 | Aluminum Foil (G) | $37 \mathrm{~cm} \times 28 \mathrm{~cm}$ |


| (3) Heat Source | 1 | Egg Incubator, |
| :--- | :--- | :--- |
| Heat Source (H) |  |  |
| (4) Door | 1 | Plywood (I) |
|  | 2 | Hinges (J) |
|  | 8 | Screws (K) |
|  | 6 | Nails (L) |
|  | 3 | Rubber Bands (M) |

b. Construction
(1) Frame and Trays


Plywood (A)

VI/C2, Component (5)

$$
\begin{aligned}
& 35 \mathrm{~cm} \times 36 \mathrm{~cm} \times 1.0 \mathrm{~cm} \\
& \text { Approximately } 4 \mathrm{~cm} \text { long } \\
& 0.7 \mathrm{~cm} \text { long } \\
& \mathbf{1} \mathrm{cm} \text { long } \\
& \mathbf{- -}
\end{aligned}
$$

Nail three of the wood strips (D) to each of two of the pieces of plywood (A) as illustrated to make the two side pieces of the frame. Nail the bottom edges of the completed side pieces to the wood (B) used as the base. Nail the back piece (C) into position as well as the top piece (A). When the frame is finished, the pieces of perforated cardboard (E) which serve as the trays should slide easily into the frame on the wood strips (D).

(2) Heat Reflector

Cover one side of the plywood (F) with aluminum foil (G) to make the heat reflector. Nail the reflector into place 13 cm above the base (B) of the frame with a 4 cm gap between the rear edge of the reflector and the back (C) of the frame.

Use two light bulbs as the heat source (H) exactly as described for item VI/C2, Component (5).
(3) Heat Source

Front View

(4) Door


Fasten one edge of the plywood
(I) to the side of the frame with the hinges (J) and screws (K)
making certain the door shuts as closely to the frame as possible. Felt strips may be used as insulation between the door and frame if necessary, both to conserve heat loss and prevent the introduction of airborne contaminants. The door may be held closed by using rubber bands (M) which are stretched

## C. Notes

(i) Use the microorganism incubator to provide a proper environment for growing bacteria, mold, and other cultures. The dimensions of the incubator as given are to enable each tray to hold nine (three rows of three) standard petri dishes (9 cm diameter).
(ii) If the incubator is used in a constant temperature room, the temperature in the incubator can be held relatively constant. Using the correct combination of bulbs will yeild an internal temperature close to that desired. Rather than drilling ventilation holes to cool the incubator if it is too hot, it might be better to paint part of the light bulbs with black paint to cut down their heat, Ventilation holes would allow contaminants into the incubator. The following gives a few examples of temperatures which can be maintained in the incubator.

| Wattage | Incubator <br> Temperature <br> $\left({ }^{0} \mathrm{C}\right)$ | Room <br> Temperature <br> $\left.\mathbf{( 0}^{\circ} \mathrm{C}\right)$ |
| :---: | :---: | :---: |
| 40 | 35.0 | 23.5 |
| 60 | 40.5 | 22.0 |
| 80 | 48.0 | 23.5 |

(iii) The thermostat(VI/C3) should be used with the incubator to insure that the internal temperature maintains itself at the correct level. Mount it in the top of the incubator, protected by a wire screen which will prevent persons from touching the live wires, In fact, if the incubator is definitely to be used with the thermostat, increase the height of the top above the uppermost tray in order to insure that people placing cultures in the incubator have less chance of touching the thermostat,

## A5. Transfer Pipette



```
syringe plunger until the water
empties from the pipette. Note
the position of the syringe
plunger on the scale and rein-
ject water into the pipette 0.5
ml at a time until a total of
5 ml is reached. At each
injection, mark the position of
the water meniscus with a tri-
angular file to form a permanent
scale.
```


## C. Notes

(i) This pipette is used in transferring exact amounts of culture broth from one container to another. Draw broth into the pipette with mouth suction and force the liquid out by gently blowing through the tube.
(ii) If desired, numbers may be written by the filed marks to indicate the capacity at that point. These numbers will last longest if they are drawn with waxed crayons or other types of pencils designed for writing on glass.

A6. Transfer Chamber *


| Components | Qu | Items Required | Dimensions |
| :---: | :---: | :---: | :---: |
| (1) Body | 2 | Plywood (A) | $\begin{aligned} & 60 \mathrm{~cm} \times 40 \mathrm{~cm} \times \\ & 0.75 \mathrm{~cm} \end{aligned}$ |
|  | 1 | Plywood (B) | $\begin{aligned} & 60 \mathrm{~cm} \times 20 \mathrm{~cm} \times \\ & 0.75 \mathrm{~cm} \end{aligned}$ |
|  | 2 | Plywood (C) | $\begin{aligned} & 40.75 \mathrm{~cm} \times 40 \mathrm{~cm} \times \\ & 0.75 \mathrm{~cm} \end{aligned}$ |
|  | 1 | Plywood (D) | $\begin{aligned} & 61.5 \mathrm{~cm} \times 18 \mathrm{~cm} \mathrm{x} \\ & 0.75 \mathrm{~cm} \end{aligned}$ |
|  | 2 | Wood (E) | $60 \mathrm{~cm} \times 2 \mathrm{~cm} \times 2 \mathrm{~cm}$ |
|  | 2 | Wood (F) | $24 \mathrm{~cm} \times 2 \mathrm{~cm} \times 2 \mathrm{~cm}$ |
|  | 2 | Wood (G) | 36 cm x 2 cm x 2 cm |
|  | 2 | Wood (H) | $16 \mathrm{~cm} \times 2 \mathrm{~cm} \mathrm{x} 2 \mathrm{~cm}$ |
|  | 2 | Wood (I) | $\begin{aligned} & 37.25 \mathrm{~cm} \times 2 \mathrm{~cm} \times \\ & 2 \mathrm{~cm} \end{aligned}$ |
|  | 2 | Wood (J) | $28 \mathrm{~cm} \times 2 \mathrm{~cm} \times 2 \mathrm{~cm}$ |
|  | 2 | Wood (K) | $15 \mathrm{~cm} \times 2 \mathrm{~cm} \times 2 \mathrm{~cm}$ |
|  | 2 | Wood (L) | $6 \mathrm{~cm} \times 2 \mathrm{~cm} \times 2 \mathrm{~cm}$ |
|  | 1 | Wood (M) | $20 \mathrm{~cm} \times 2 \mathrm{~cm} \times 2 \mathrm{~cm}$ |
|  | 1 | Aluminum Sheet (N) | $\begin{aligned} & 25 \mathrm{cmxll} \quad \mathrm{cmx} \\ & 0.05 \mathrm{~cm} \end{aligned}$ |
|  | 1 | Aluminum Sheet (0) | $\begin{aligned} & 20 \mathrm{~cm} \times 14 \mathrm{~cm} \mathrm{x} \\ & 0.05 \mathrm{~cm} \end{aligned}$ |

[^0] for the Biology Teaching Laboratory, (Boston: D. C. Heath, 1964), pp 12-14.
(2) Glass
1 Window Glass (P)
$28.5 \mathrm{~cm} \times 58.5 \mathrm{~cm} \mathrm{x}$ 0.3 cm
b. Construction


Plywood (A)


Plywood (B)


Detail of Hole

Begin the transfer chamber by cutting two holes into one of the large pieces of plywood (A). These will serve as ventilating holes when the chamber is enclosed.

Cut two holes in the piece of plywood (B) to serve as armholes. The size and distance apart of these holes may be varied to suit personal preferences.


Cut the piece of aluminum sheeting (0) (other metal sheeting may be substituted) to the given pattern. Bend up the straight sides along the dotted lines to form two flanges, each 1.5 cm wide.

Poll the sheet metal (0) around a round object (e.g., a broom handle) until it takes the shape of a half cone.

Similarly, bend up the two
11 cm sides of the other piece of aluminum (N), and roll it into a half-cylinder shape.


Half Cylinder



Endpiece (C)
 overlap for the frontpiece to fit into.

Nail two strips (G), two strips
(I), and one strip (E) to the back and base. Then nail the two endpieces (C) into position. Nail the two strips (K) to the front edge of the end, being careful to leave a 0.75 cm
Cut the two pieces (C) as shown. Use these pieces as endpieces for the chamber.

[^1]

Next, nail the two strips (L), and the other strip (E) and strips (M) to the back of the frontpiece (B) as shown. Properly done, this piece can now be nailed into the front of the chamber. Be sure there is about a 1.0 cm overlap of the plywood over the 60 cm strip.

Cut one end of the wood strips (H) and wood strips (J) off at

Nail one each of strips (J) and
(H) to the endpieces (C) i nsuring they fit as shown in the drawing.

(2) Glass

Simply rest the glass (P) on the frame made of the three wood strips, one on the front (E) and one each (J) on each endpiece. There should be no gaps between the glass and frame.

## C. Notes

(i) Use the transfer chamber when transferring microbiological cultures from one container to another. With it, such techniques can be performed in adraftfree environment, thus reducing the possibility of airborne contamination. The students' or instructors' arms fit through the armholes in front while the glass permits all operations to be viewed easily.
(ii) The holes in the back serve for ventilation when the chamber is used with a bunsen burner.


[^0]:    *Adapted from Richard E. Barthelemy, et. al., Innovations in Equipment and Techniques

[^1]:    Frame

