[^0]A. HOLDERS

Holders are classified as small, portable, hand-held devices used to support other pieces of apparatus.
B. SUPPORTS AND STANDS

These devices are used to hold items stationery for relatively long periods of time.

A. HOLDERS

Al. Tweezers (Forceps)

a. Materials Required

$\frac{\text { Components }}{\text { (1) Tweezers }}$	Qu $\frac{\text { Items Required }}{\text { Forceps }}$	$\frac{\text { Dimensions }}{\text { BIOL/II/A4 }}$

b. Construction
(1) Tweezers See BIOL/II/A4 for construction details.
C. Notes
(i) Uses of forceps in chemistry operations include the handling of small items or radioactive materials.

a. Materials Required

Components	Qu	Items Required	Dimensions.
(1) Clamp	2	Metal Strapping (A)	B $\mathrm{cm} \times 1.5 \mathrm{~cm}$
(2) Handles	1	Wood Block (B)	2 cmx 4 cm x 15 cm
	4	Nails (C)	```0.5 cm thick x 1 cm long```
(3) Spring	1	Heavy Iron Wire (coat hanger) (D)	Approximately 30 cm long
(4) Guide	2	Metal Strapping (E)	$1.5 \mathrm{~cm} \times 3.5 \mathrm{~cm}$
	4	Nails (F)	$\begin{aligned} & 0.5 \mathrm{~cm} \text { thick } \times 1 \mathrm{~cm} \\ & \text { long } \end{aligned}$

b. Construction
(1) Clamp

Bend the two pieces of metal strapping (A) as indicated.
(2) Handles

With a pencil and ruler, section the wood block (B) as shown. Cut two wedges and discard the triangular portions as waste.

Nails (C)

Slide the second handle into place.

Nail (F)'

Top View

Trim excess wire to within 1.5 cm of the edge of the handle. Bend this remaining wire around handles to hold the spring in place.

Lay the holder on its side. Slide one small piece of strapping under the spring as shown. Secure the strapping in place on one handle with one nail. Nail a second guiding nail into the other handle just at the edge of the strapping. Turn the holder over and repeat with another small piece of strapping. These guides keep the handles from twisting out of alignment.

C.Notes

(i) This design is based on the spring-type clothespin. If one isavailable, it will be a helpful construction guide.
(ii) Squeezing the handles together will cause the clamp to open and close.
(iii) The sizes of the components used in this item will vary with the use to be made of the holder. The clamp and handle can be reduced in size for use with test tubes, or enlarged for use with large flasks.
(iv) For a simpler version of this design, three or four strong rubber bands provide the spring action. Cut the handles and attach the clamps as described. Then place the two handles together as indicated in the diagram. Wrap the rubber bands around the top part of the handles to draw them together. The chief problem with using rubber bands is that they will deteriorate and must be replaced from time to time.

A3. Test Tube Holder

a. Material Required
Components
(1) Clamp
(2) Handle

Qu
2
1 Thin Wire (B)

1
Wood Block
(C)
b. Construction
(1) Clamp

(2) Handle

Bend two loops in each piece of strapping (A) as shown. Fit the smaller loops to the test tubes to be used. Wrap a small piece of wire (B) around the two pieces of strapping at the point where they curve inward, just behind the front loops, to hold the pieces together.

Cut a slit about halfway down the center of the block (C). Insert the flat portions of the strapping clamps into the slit. Secure the clamp to the handle with two nails.

c, Notes

(i) To open this clamp, squeeze together the large loop between the handle and the wire. Release the loop to close the clamp.
(ii) This design is best suited for small, light-weight test tubes.
(iii) A quick and convenient holder for handling hot test tubes can be made with a piece of paper measuring approximately $15 \mathrm{~cm} x 8 \mathrm{~cm}$. The paper is folded into

thirds, lengthwise, to form a strip. This strip can be wrapped around a test tube near the top. then grasped tightly, next to the test tube.

A4. Wooden Pinch Clamp

(3) Band
a. Materials Required

Components
(1) Handles
(2) Fulcrum
(3) Band
b. Construction
$\sum_{2} \frac{\text { Items Required }}{\text { Wooden Strips (A) }}$
1 Metal Staple or Tack (B)
2 Rubber Bands (C)
Dimensions
$2 \mathrm{~cm} \times 8 \mathrm{~cm} \times 0.5 \mathrm{~cm}$
1 cm wide
$0.5 \mathrm{~cm} \times 9 \mathrm{~cm}$
(3) Band

Place the handles together with the fulcrum between them. Wrap the two rubber bands (C) tightly around the handles at a point just in front of the fulcrum.

C.Notes

(i) If the rubber bands are sufficiently tight, it should be possible to


```
completely close off the flow
of a liquid such as water through
1 cm wide rubber tubing,
```

(ii) To completely close off plastic tubing and heavier rubber tubing, it will
be necessary to bend the

tubing back upon itself and secure the clamp at the bend.
(iii) If pinch-typeclothespinsare available, they may be substituted for this clamp. However, it will be necessary to bend rubber tubing as well as plastic tubing back upon itself, as in the above illustration, in order to completely close the tubing with a clothespin clamp.

a. Materials Required

Components	Qu	Items Required	Dimensions
(1) Jaws	2	Wood (A)	$\begin{aligned} & 3.5 \mathrm{~cm} \times 3.5 \mathrm{~cm} \times \\ & 0.7 \mathrm{~cm} \end{aligned}$
(2) Bolt Assembly	1	Bolt (B)	0.5 cm diameter, approximately 4-5 cm long
	1	Wing Nut (C)	To fit bolt (B)

(1) Jaws
(2) Bolt Assembly

Sand the wood squares (A) to remove rough edges and splinters. Drill a hole 0.6 cm in diameter in the center of each square.

Insert the bolt (B) through the hole in each square and check to see that the holes are just large enough to permit the bolt to slide through easily. Screw the wing nut (C) in place on the bolt.
C.Notes
(i) To use this clamp with rubber tubing, a short (approximately 4 cm long) section of tubing of the same type as that in use is cut. The tubing in use is
passed through the jaws on one
 side, as close to the bolt as possible. The short section of tubing is passed through the jaws on the opposite side to balance the force of the clamp. By turning the wing nut to tighten the clamp, the flow of a liquid or gas through rubber tubing can be controlled or shut off completely.
(ii) The flow rate of a liquid or gas through plastic tubing can be controlled in the same way, but the stiffness of plastic tubing makes it difficult to close the tubing completely. To close plastic tubing, it is necessary to bend the tubing back on itself, passing each section of the tubing through the clamp and tightening the wing nut as much as possible.

a. Materials Required

Components	Qu	Items Required		
(1)Wire Gauze	1	Wire Mesh (A)	\quad	Dimensions
:---:				
Approximately 10 cm x				
10 cm of heavy guage				
wire				

b, Construction
(1) Wire Gauze Cut the wire mesh (A) to a
size approximately $10 \mathrm{~cm} x 10 \mathrm{~cm}$.
Trim off sharp ends.
c. Notes
(i) This item is generally used in conjunction with the tripods and ring stand described in the sections that follow. The wire screen is placed on the tripod, heating stand, or ring to support a flask or beaker. A burner may be placed beneath the stand to heat the contents of the container.

(1) Shelf
a. Materials Required

Components	Qu	$\frac{\text { Items Required }}{\text { (1) Shelf }}$
1	Tin Can Top or Bottom (A)	$\frac{\text { Dimensions }}{10 \mathrm{~cm} \mathrm{diameter} \mathrm{or}}$
larger		

b. Construction
(1) Shelf

Remove the top (A) or bottom
from a tin can. Punch many
holes in it with a large
nail.
C. Notes
(i) This item is used in the same way as the wire gauze (IV/Bl); that is, to support a flask, beaker, or other container upon a tripod or similar support.
(ii) This is also a useful item to keep hot glass from contacting the tabletop.

B3. (1) Tripod (Tin Can)

a. Material Required

Components	Qu
(1) Tin Can Tripod	1

b. Construction
(1) Tin Can Tripod

Dimensions
Approximately 8 cm diameter, 12 cm high

Cut a circle about 5 cm diameter from the bottom of the can (A). Mark the position for three legs, evenly spaced around the can. Allow a ring of about 1.5 cm at the top of the tripod before marking the legs. Allow approximately 2.5 cm for the width of each leg. Then cut along the marked lines to produce the three legs. With pliers, bend in the outside edge of each leg slightly to provide extra support.

C. Notes

(i) This tripod is simple to make, but it must be used with caution because of sharp edges and instability. It is suitable for supporting lightweight items, such as a funnel.

a. Materials Required

Components
(1) Top
(2) Legs
b. Construction
C. Notes
(i) The dimensions given produce a tripod that is useful for most applications, but this tripod can also be made larger or smaller by varying the length of the strapping used.

a. Materials Required

Components	Qu	Items Required	$\frac{\text { Dimensions }}{\text { (1) Wire Tripod }}$
	3	Heavy Wire	0.2 cm diameter,
40 cm long			

b. Construction

(1) Wire Tripod

C. Notes

(1) This size tripod is useful for most applications, but it may also be made larger or smaller by varying the length of the wire used.

a. Materials Required

Components	QuItems Required (1) Legs	2
(2) Frame	2	Metal Sheeting (B)
	2	Metal Strapping (C)

b. Construction
(1) Legs

> Bend the two pieces of heavy wire (A) to the shape indicated.

-89-

C. Notes
(i) Like the tripods, this stand is generally used with wire gauze (IV/Bl) or heating shelf (IV/B2).
(ii) When this stand is not in use, the legs may be removed for ease in storing.

*Adapted from C. S. Rao (Editor), Science Teachers' Handbook, (Hyderabad, India: American Peace Corps, 1968), pp 144-146.

a. Materials Required

(2) Burette Clamp	1	Metal Strapping (D)
	2	Metal Strapping (E)
	1	Heavy Wire (F)
(3) Large Clamp	1	Metal Strapping (G)
	2	Metal Strapping (H)
	1	Heavy Wire (I)
(4) Ring	1	Metal Strapping (J)
	2	Metal Strapping (K)
	1	Heavy Wire (L)
(5) Support Block	1	Wood Block (M)
		Nails (N)

b. Construction

(1) Ring and Burette Stand

$$
\begin{aligned}
& 1.5 \mathrm{~cm} \times 27 \mathrm{~cm} \\
& 1.5 \mathrm{~cm} \times 5 \mathrm{~cm} \\
& 0.2 \mathrm{~cm} \text { diameter, } \\
& 10-12 \mathrm{~cm} \text { long } \\
& 1.5 \mathrm{~cm} \times 35 \mathrm{~cm} \\
& 1.5 \mathrm{~cm} \times 5 \mathrm{~cm} \\
& 0.2 \mathrm{~cm} \text { diameter, } \\
& 10-12 \mathrm{~cm} \text { long } \\
& 1.5 \mathrm{~cm} \times 50-60 \mathrm{~cm} \\
& 1.5 \mathrm{~cm} \times 5 \mathrm{~cm} \\
& 0.2 \mathrm{~cm} \text { diameter, } \\
& 10 \mathrm{~cm} \text { long } \\
& 5 \mathrm{~cm} \times 2 \mathrm{~cm} \times 4 \mathrm{~cm} \\
& 0.35 \mathrm{~cm} \text { diameter, } \\
& 8 \mathrm{~cm} \text { long }
\end{aligned}
$$

Sand all the wood blocks to remove splinters and rough edges. Nail a small wood block (B) to each corner of the flat block (A) to make feet.

In the center of one of the short sides of the base (A) cut a rectangular notch 3 cm long x 2 cm wide.

Drill 0.6 - 0.7 cm holes at 1 cm intervals all the way through the long block (C) as shown.

Adjustment Pin (F)

-

C. Notes
(i) To loosen the burette clamp or large clamp, slide the tightening clips toward each other. To tighten, slide the clips away from each other.
(ii) Although the burette clamp and large clamp have adjustment pins to hold them in place, they are much more stable when the support block is pushed into theupright iammediately beneath the clamp. This prevents the burette clamp or large clamp from leaning forward.
(iii) The ring will safely support masses up to about 1 kilogram. It can support round-bottomed containers or flat-bottomed containers with a diameter slightly larger than that of the ring. To support smaller containers, a wire gauze (IV/Bl) or heating shelf (IV/B2) may be placed on the ring. For large conatiners, a more stable support, such as one of the tripods (IV/B3) or the collapsible heating stand (IV/B4) is recommended.

a. Materials Required

Components	Qu	Items Required		Dimensions
(1) Base	1	Wood (A)		$9 \mathrm{~cm} \times 4 \mathrm{~cm} \times 18 \mathrm{~cm}$
(2) Flask Support	1	Heavy Wire (coat hanger)	(B)	0.2 cm diameter, 35 cm long
	1	Heavy Wire (coat hanger)	(C)	0.2 cm diameter, 40 cm long
(3) Test Tube Support		Heavy Wire (coat hanger)	(D)	0.2 cm diameter, $15-20 \mathrm{~cm}$ long
(4) Heating Clamp	1	Heavy Wire (coat hanger)	(E)	0.2 cm diameter, 20 cm long

b. Construction
(1) Base

Drill seven holes approximately 0.2 cm in diameter into the wood block (A) as shown. If a larger block is used, or if more attachments are desired, drill more holes,

(3) Test Tube Support

(4) Heating Clamp

Use pliers to bend each of the pieces of heavy wire (D) around a wooden rod or test tube of the desired diameter (2 cm for example). Follow the steps illustrated.

Insert the supports into holes in the base.

Bend the piece of heavy wire (E) into loop just as for the test tube support shown above.
However, tilt the loop at an angle, rather than vertically as was done for the test tube supports. Insert the heating clamp into one of the holes in the base.

C. Notes

(i) Sizes and number of the supports constructed, as well as the size of the base, may be varied to suit individual needs.
(ii) The heating clamp is used to hold a test tube at an angle while its contents are heated. Supporting the test tube at an angle presents a greater area to be
 heated. As a safety measure, it allows the mouth of the test tube to be pointed away from everyone in the vicinity.

a. Materials Required

Components
(1) Base
(2) Spring Clamp

b. Construction

(2) Spring Clamp

Drill a hole approximately 0.5 cm diameter in the center of each of the pieces of metal strapping (D). Bend each piece of metal strapping into the shape shown. Center each clamp over each hole in the base. Secure each clamp to the top (horizontally) piece of the base with a screw.
C. Notes
(i) The spring clamp holds the neck of a light-bulb flask securely, while the hole in the base supports the round bottom of the flask.

(ii) This design may be modified to accommodate more flasks, or flasks of different sizes.

a. Materials Required

| Components | Qu $\quad \frac{\text { Items Required }}{(1) \text { Flask Stand }}$ | 1 Wood Block (A) |
| :--- | :--- | :--- |$\quad \frac{\text { Dimensions }}{9 \mathrm{~cm} \times 9 \mathrm{~cm} \times 4 \mathrm{~cm}}$

b. Construction

(1) Flask Stand

Drill or cut a circular hole through the center of the block
(A). Adjust the diameter of the hole to the size of the light-bulb flask used:

6 cm diameter hole for
bulbs from 60 to 200
watts. 7 cm diameter
hole for larger bulbs.
c. Notes
(i) Another stand for a single piece of light-bulb, or any round-bottomed glassware, can be made with a piece of heavy rope approximately 3 cm in diameter.

The rope is cut to a length slightly shorter than the maximum circumference of the flask, and the ends of the rope are taped or spliced together to form a ring.

a. Materials Required

Components
(1) Base
(2) Test Tube Holder

Qu $\frac{\text { Items Required }}{}$
Wood Block (A)
Bamboo Sections (B)

Dimensions
1 cmx 7 cmxl 8 cm
Approximately 2.5 cm outside diameter, 10 cm long
b. Construction
(1) Base
(2) Test Tube Holder

Sand the wood block (A) to remove splinters and rough edges.

Select bamboo sections (B)
with thick walls (at least
$0.2 \mathrm{~cm})$. Cut away approximately
half the length of each bamboo section, but leave one upright piece as shown. Cement these cylinders to the base.

C. Notes

(i) The upright section remaining on each bamboo cylinder is used to support test tubes upside down for drying.
(ii) The size of the base may be varied to accommodate a convenient number of bamboo cylinders. The diameter of the bamboo cylinders may be varied to suit the size of the test tubes used.

a. Materials Required

Components	Qu	Items Required	Dimensions
(1) Test Tube Rack	2	Wood (A)	8 cm x 20 cm x 1 cm
	2	Wood (B)	8 cm x 12 cm x 2 cm

b. Construction

(1) Test Tube Rack

Drill 12 holes, 2.2 cm in
diameter at evenly spaced
intervals in one of the
larger pieces of wood (A)
to form the top of the rack.

Secure the sides (B) to the
top (A) as shown, with nails
or cement. Secure the
bottom (A) in place with
nails or cement.
C.Notes
(i) For larger or smaller test tubes, the dimensions may be varied.

[^0]: IV. SUPPORTS, STANDS, AND HOLDERS

