Pageiii

Mastering Algorithms with Per|

Jon Orwant, Jarkko Hietaniemi,
and John Macdonald

O’REILLY"

Betfing - Cambridge - Farnbam - Kdln - Paris - Sebastopol - Taipei - Tokyo

Pageiv

Mastering Algorithms with Per|
by Jon Orwant, Jarkko Hietaniemi. and John Macdonald

Copyright © 1999 O'Reilly & Associates, Inc. All rights reserved.
Printed in the United States of America.
Cover illustration by Lorrie LeJeune, Copyright © 1999 O'Reilly & Associates, Inc.

Published by O'Reilly & Associates, Inc., 101 Morris Street, Sebastopol, CA 95472.
Editors: Andy Oram and Jon Orwant

Production Editor: Melanie Wang

Printing History:

August 1999: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered
trademarks of O'Reilly & Associates, Inc. Many of the designations used by manufacturers and

sellersto distinguish their products are claimed as trademarks. Where those designations
appear in thisbook, and O'Reilly & Associates, Inc. was aware of atrademark claim, the
designations have been printed in caps or initial caps. The association between the image of a
wolf and the topic of Perl algorithmsis atrademark of O'Rellly & Associates, Inc.

While every precaution has been taken in the preparation of this book, the publisher assumes no
responsibility for errors or omissions, or for damages resulting from the use of the information
contained herein.

ISBN: 1-56592-398-7 [1/00]
[M]]break

Pagev

Table of Contents

Preface Xi
1. Introduction 1
What Is an Algorithm? 1
Efficiency 8
Recurrent Themesin Algorithms 20
2. Basic Data Structures 24
Perl's Built-in Data Structures 25
Build Y our Own Data Structure 26
A Simple Example 27
Perl Arrays: Many Data Structures in One 37
3. Advanced Data Structures 46
Linked Lists 47
Circular Linked Lists 60
Garbage Collection in Perl 62

Daoiihlv-l inked | igs AR

Infinite Lists 71

The Cost of Traversal 12
Binary Trees 73
Heaps 91
Binary Heaps 92
Janus Heap 9
Page i
The Heaps Module 99
Future CPAN Modules 101
4. Sorting 102
An Introduction to Sorting 102
All Sorts of Sorts 119
Sorting Algorithms Summary 151
5. Searching 157
Hash Search and Other Non-Searches 158
Lookup Searches 159
Generative Searches 175
6. Sets 203
Venn Diagrams 204
Creating Sets 205
Set Union and Intersection 209

St Differences 217

e a8 [l

Counting Set Elements 222

Set Relations 223
The Set Modules of CPAN 227
Sets of Sets 233
Multivalued Sets 240
Sets Summary 242
7. Matrices 244
Creating Matrices 246
Manipulating Individual Elements 246
Finding the Dimensions of a Matrix 247
Displaying Matrices 247
Adding or Multiplying Constants 248
Transposing a Matrix 254
Multiplying Matrices 256
Extracting a Submatrix 259
Combining Matrices 260
Inverting a Matrix 261
Computing the Determinant 262
Gaussian Elimination 263
Eigenvalues and Eigenvectors 266
Page vii

The Matrix Chain Pradiict 2RO

Delving Deeper

8. Graphs
Vertices and Edges
Derived Graphs

Graph Attributes

Graph Representation in Computers

Graph Traversa

Paths and Bridges

Graph Biology: Trees, Forests, DAGS, Ancestors, and Descendants

Edge and Graph Classes
CPAN Graph Modules

9. Strings

Perl Builtins

String-Matching Algorithms

Phonetic Algorithms
Stemming and Inflection
Parsing

Compression

10. Geometric Algorithms

Distance

Area, Perimeter, and Volume

Direction

Intersectinn

=\JJ

272
273
276
281
286
287
301
310
312
316
351

353

357
388
389
3A
411
425
426

429

AR

5

Inclusion
Boundaries 449
Closest Pair of Points 457
Geometric Algorithms Summary 464
CPAN Graphics Modules 464
11. Number Systems 469
Integers and Reals 469
Strange Systems 480
Trigonometry 491
Significant Series 492
Page viii
12. Number Theory 499
Basic Number Theory 499
Prime Numbers 504
Unsolved Problems 522
13. Cryptography 526
Legal Issues 527
Authorizing People with Passwords 528
Authorization of Data: Checksums and More 533
Obscuring Data: Encryption 538
Hiding Data: Steganography 555

Winnowinn and Chaffinn RRQ

P EErs iy ww s s am ey NI

Encrypted Perl Code 562

Other Issues 564
14. Probability 566
Random Numbers 567
Events 569
Permutations and Combinations 571
Probability Distributions 574
Rolling Dice: Uniform Distributions 576
Loaded Dice and Candy Colors. Nonuniform Discrete Distributions 582
If the Blue Jays Score Six Runs. Conditional Probability 589
Flipping Coins over and Over: Infinite Discrete Distributions 590
How Much Snow? Continuous Distributions 591
Many More Distributions 592
15. Statistics 599
Statistical Measures 600
Significance Tests 608
Correlation 620
16. Numerical Analysis 626
Computing Derivatives and Integrals 627
Solving Equations 634
Interpolation, Extrapolation, and Curve Fitting 642

Pageix

A. Further Reading 649

B. ASCII Character Set 652
Index 657

Page xi
Preface

Perl's popularity has soared in recent years. It owes its appeal first to itstechnical superiority:
Perl's unparalleled portability, speed, and expressiveness have made it the language of choice
for amillion programmers worldwide.

Those programmers have extended Perl in ways unimaginable with languages controlled by
committees or companies. Of all languages, Perl has the largest base of free utilities, thanksto
the Comprehensive Perl Archive Network (abbreviated CPAN; see

http: //mwww.per|.conVCPAN/). The modules and scripts you'll find there have made Perl the
most popular language for web; text, and database programming.

But Perl can do more than that. Y ou can solve complex problemsin Perl more quickly, and in
fewer lines, than in any other language.

This ease of use makes Perl an excellent tool for exploring agorithms. Computer science
embraces complexity; the essence of programming is the clean dissection of a seemingly
insurmountable problem into a series of smple, computable steps. Perl isideal for tackling the
tougher nuggets of computer science becauseiits libera syntax lets the programmer express his
or her solution in the manner best suited to the task. (After al, Perl's motto is There's More
Than One Way To Do It.) Algorithms are complex enough; we don't need a computer language
making it any tougher.

Most books about computer algorithms don't include working programs. They express their
ideas in quasi-English pseudocode instead, which allows the discussion to focus on concepts
without getting bogged down in implementation details. But sometimes the details are what
matter—the inefficiencies of a bad implementation sometimes cancel the speedup that a good
algorithm provides. The devil isin the details.break

Page xii

And while converting ideas to programs is often a good exercise, it'salso just plain
time-consuming. So, in this book we've supplied you with not just explanations, but
implementations as well. If you read this book carefully, you'll learn more about both
algorithms and Perl.

About This Book

This book iswritten for two kinds of people: those who want cut and paste solutions and those
who want to hone their programming skills. You'll see how we solve some of the classic
problems of computer science and why we solved them the way we did.

Theory or Practice?

Like the wolf featured on the cover, this book is sometimes fierce and sometimes playful. The
fierce part is the computer science: we'll often talk like computer scientists talk and discuss
problems that matter little to the practical Perl programmer. Other times, we'll playfully
explain the problem and ssimply tell you about ready-made solutions you can find on the Internet
(almost aways on CPAN).

Deciding when to be fierce and when to be playful hasn't been easy for us. For instance, every
algorithms textbook has a chapter on all of the different waysto sort a collection of items. So
do we, even though Perl providesitsown sort () function that might be all you ever need.
We do this for four reasons. First, we don't want you thinking you've Mastered Algorithms
without understanding the algorithms covered in every college course on the subject. Second,
the concepts, processes, and strategies underlying those algorithms will come in handy for
more than just sorting. Third, it helps to know how Perl'ssor t () works under the hood, why
its particular agorithm (quicksort) was used, and how to avoid some of the inefficiencies that
even experienced Perl programmersfal prey to. Finally, sort () isn't awaysthe best
solution! Someday, you might need another of the techniques we provide.

When it comes to the inevitable tradeoffs between theory and practice, programmers tastes
vary. We have chosen amiddle course, swiftly pouncing from one to the other with feral
abandon. If your tastes are exclusively theoretical or practical, we hope you'll still appreciate
the balanced diet you'll find here.

Organization of This Book

The chapters in this book can be read in isolation; they typically don't require knowledge from
previous chapters. However, we do recommend that you read at least Chapter 1, Introduction,
and Chapter 2, Basic Data Structures, which provide the basic material necessary for
understanding the rest of the book.break

Page xiii
Chapter 1 describes the basics of Perl and algorithms, with an emphasis on speed and general
problem-solving techniques.

Chapter 2 explains how to use Perl to create simple and very genera representations, like
gueues and lists of lists.

Chapter 3, Advanced Data Structures, shows how to build the classic computer science data
structures.

Chapter 4, Sorting, looks at techniques for ordering data and compares the advantages of each
technique.

Chapter 5, Searching, investigates ways to extract individual pieces of information from a
larger collection.

Chapter 6, Sets, discusses the basics of set theory and Perl implementations of set operations.

Chapter 7, Matrices, examines techniques for manipulating large arrays of data and solving
problems in linear algebra.

Chapter 8, Graphs, describes tools for solving problems that are best represented as a graph:
acollection of nodes connected by edges.

Chapter 9, Srings, explains how to implement algorithms for searching, filtering, and parsing
strings of text.

Chapter 10, Geometric Algorithms, looks at techniques for computing with two-and
three-dimensional constructs.

Chapter 11, Number Systems, investigates methods for generating important constants,
functions, and number series, as well as manipulating numbersin alternate coordinate systems.

Chapter 12, Number Theory, examines agorithms for factoring numbers, modular arithmetic,
and other techniques for computing with integers.

Chapter 13, Cryptography, demonstrates Per| utilities to concea your data from prying eyes.
Chapter 14, Probability, discusses how to use Perl for problems involving chance.

Chapter 15, Statistics, describes methods for analyzing the accuracy of hypotheses and
characterizing the distribution of data.

Chapter 16, Numerical Analysis, looks at afew of the more common problemsin scientific
computing.

Appendix A, Further Reading, contains an annotated bibliography.break

Page xiv

Appendix B, ASCII Character Set, lists the seven-bit ASCII character set used by default when
Perl sorts strings.

Conventions Used in This Book

Italic
Used for filenames, directory names, URLS, and occasional emphasis.

Constant wi dth
Used for elements of programming languages, text manipulated by programs, code
examples, and output.

Constant wi dth bold
Used for user input and for emphasisin code.

Constant width italic
Used for replaceable values.

What You Should Know before Reading This Book

Algorithms are typically the subject of an entire upper-level undergraduate course in computer
science departments. Obviously, we cannot hope to provide all of the mathematical and
programming background you'll need to get the most out of this book. We believe that the best
way to teach is never to coddle, but to explain complex concepts in an entertaining fashion and
thoroughly ground them in applications whenever possible. Y ou don't need to be a computer
scientist to read this book, but once you've read it you might fedl justified calling yourself one.

That said, if you don't know Perl, you don't want to start here. We recommend you begin with
either of these books published by O'Reilly & Associates: Randal L. Schwartz and Tom
Christiansen's Learning Perl if you're new to programming, and Larry Wall, Torr Christiansen,
and Randal L. Schwartz's Programming Perl| if you're not.

If you want more rigorous explanations of the algorithms discussed in this book, we
recommend either Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest's
Introduction to Algorithms, published by MIT Press, or Donald Knuth's The Art of Computer
Programming, Volume 1 (Fundamenta Algorithms) in particular. See Appendix A for full
bibliographic information.

What You Should Have before Reading This Book

This book assumes you have Perl 5.004 or better. If you don't, you can download it for free
from http://mww.perl.com/CPAN/src.

This book often refers to CPAN modules, which are packages of Perl code you can download
for free from http://www.per|.comV CPAN/modules/by-module/. In partic-soft

Page xv

ular, the CPAN.pm module (http: //mwww.per|.com/ CPAN/modul es/by-modul e/ CPAN) can
automatically download, build, and install CPAN modules for you.

Typicaly, the modules in CPAN are usually quite robust because they're tested and used by
large user populations. Y ou can check the Modules List (reachable by alink from

http: //mww.perl.cor CPAN/CPAN.html) to see how authors rate their modules; as a module
rating moves through "idea," "under construction,” "apha,” "beta," and finaly to "Released,”
thereisan increasing likelihood that it will behave properly.

Online Information about This Book

All of the programsin this book are available online from ftp://ftp.oreilly.con/, in the
directory /pub/examples/perl/algorithms/examples.tar.gz. If we learn of any errorsin this
book, you'll be able to find them at /pub/examples/perl/algorithms/errata.txt.

Acknowledgments

Jon Orwant: | would like to thank al of the biological and computational entities that have
made this book possible. At the Media Laboratory, Walter Bender has somehow managed to
look the other way for twelve years while my distractions got the better of me. Various past
and present Media Labbers helped shape this book, knowingly or not: Nathan Abramson, Amy

Bruckman, Bill Butera, Pascal Chesnais, Judith Donath, Klee Dienes, Roger Kermode, Doug
Koen, Michelle Mcdonald, Chris Metcalfe, Warren Sack, Sunil Vemuri, and Chris Verplaetse.
The Miracle Crew helped in ways intangible, so thanks to Alan Blount, Richard Christie,
Diego Garcia, Carolyn Grantham, and Kyle Pope.

When Media Lab research didn't steal time from algorithms, The Perl Journal did, and so I'd
like to thank the people who helped ease the burden of running the magazine: Graham Barr,
David Blank-Edelman, Alan Blount, Sean M. Burke, Mark-Jason Dominus, Brian D. Foy,
Jeffrey Friedl, Felix Gallo, Kevin Lenzo, Steve Lidie, Tuomas J. Lukka, Chris Nandor, Sara
Ontiveros, Tim O'Reilly, Randy Ray, John Redford, Chip Salzenberg, Gurusamy Sarathy,
Lincoln D. Stein, Mike Stok, and all of the other contributors. Fellow philologist Tom
Christiansen helped birth the magazine, fellow sushi-lover Sara Ontiveros helped make
operations bearable, and fellow propagandist Nathan Torkington soon became indispensable.

Sandy Aronson, Francesca Pardo, Kim Scearce, and my parents, Jack and Carol, have all
tolerated and occasionally even encouraged my addiction to the computational arts. Finally,
Alan Blount and Nathan Torkington remain strikingly kindred spirits, and Robin Lucas has been
a continuous source of comfort and joy.break

Page xvi

Jarkko, John, and | would like to thank our team of technical reviewers: Tom Christiansen,
Damian Conway, Mark-Jason Dominus, Daniel Dreilinger, Dan Gruhl, Andi Karrer, Mike
Stok, Jeff Sumler, Sekhar Tatikonda, Nathan Torkington, and the enigmatic Abigail. Their
boundless expertise made this book substantially better. Abigail, Mark-Jason, Nathan, Tom,
and Damian went above and beyond the call of duty.

We would aso like to thank the talented staff at O'Rellly for making this book possible, and for
their support of Perl in general. Andy Oram prodded us just the right amount, and his acute
editorial eye helped the book in countless ways. Melanie Wang, our production editor, paid
unbelievably exquisite attention to the tiniest details; Rhon Porter and Rob Romano made our
illustrations crisp and clean; and Lenny Muellner coped with our SGML.

As an editor and publisher, I've learned (usually the hard way) about the difficulties of editing
and disseminating Perl content. Having written a Perl book with another publisher, I've learned
how badly some of the publishing roles can be performed. And | quite smply cannot envision a
better collection of talent than the folks at O'Reilly. So in addition to the people who worked
on our book, I'd personaly like to thank Gina Blaber, Mark Brokering, Mark Jacobsen, Lisa
Mann, Linda Mui, Tim O'Reilly, Madeleine Schnapp, Ellen Silver, Lisa Sloan, LindaWalsh,
Frank Willison, and all the other people I've had the pleasure of working with at O'Rellly &
Associates. Keep up the good work. Finally, we would al like to thank Larry Wall and the rest
of the Perl community for making the language asfun asit is.

Jarkko Hietaniemi: | want to thank my parents for their guidance, which led me to become so
hopelessly interested in so many things, including agorithms and Perl. My little sister | want to
thank for being hersalf. Nokia Research Center | need to thank for allowing me to write this
book even though it took much longer than originally planned. My friends and colleagues | must
thank for goading me on by constantly asking how the book was doing.

John Macdonald: First and foremost, | want to thank my wife, Chris. Her love, support, and

assistance was unflagging, even when the "one year offline” to write the book continued to
extend through the entirety of her "one year offline" to pursue further studies a university. An
additional special mention goesto Ailsafor many weekends of child-sitting while both parents
were offline. Much thanks to Elegant Communications for providing access to significant
amounts of computer resources, many dead trees, and much general assistance. Thanksto Bill
Mustard for the two-year loan of a portion of hislibrary and for acting as a sounding board on
numerous occasions. |'ve also received agreat deal of support and encouragement from many
other family members, friends, and co-workers (these groups overlap).break

Page xvii

Comments and Questions
Please address comments and questions concerning this book to the publisher:

O'Reilly & Associates, Inc.

101 Morris Street

Sebastopol, CA 95472

800-998-9938 (in the U.S. or Canada)
707-829-0515 (international/local)
707-829-0104 (FAX)

Y ou can aso send us messages electronically. To be put on our mailing list or to request a
catalog, send email to:

info@oreilly.com
To ask technica questions or comment on the book, send email to:

bookquestions@or eilly.combreak

Page 1

1_
I ntr oduction

Computer Science isno more about computers than astronomy is about
telescopes.
—E. W. Dijkstra

In this chapter, well discuss how to "think algorithms'—how to design and analyze programs
that solve problems. We'll start with a gentle introduction to algorithms and a not-so-gentle
introduction to Perl, then consider some of the tradeoffs involved in choosing the right
implementation for your needs, and finally introduce some themes pervading the field:
recursion, divide-and-conguer, and dynamic programming.

What Isan Algorithm?

An algorithm is ssmply a technique—not necessarily computational—for solving a problem

step by step. Of course, al programs solve problems (except for the ones that create
problems). What el evates some techniques to the hallowed status of agorithm is that they
embody a general, reusable method that solves an entire class of problems. Programs are
created; algorithms are invented. Programs eventually become obsolete; algorithms are
permanent.

Of course, some agorithms are better than others. Consider the task of finding aword in a
dictionary. Whether it's a physical book or an online file containing one word per line, there
are different ways to locate the word you're looking for. Y ou could look up a definition with a
linear search, by reading the dictionary from front to back until you happen across your word.
That's dlow, unless your word happens to be at the very beginning of the aphabet. Or, you
could pick pages at random and scan them for your word. Y ou might get lucky. Still, there's
obviously a better way. That better way is the binary search algorithm, which you'll
learncontinue

Page 2

about in Chapter 5, Searching. In fact, the binary search is provably the best algorithm for this
task.

A Sample Algorithm:
Binary Search

WEe'll use binary search to explore what an algorithm is, how we implement one in Perl, and
what it means for an algorithm to be general and efficient. In what follows, we'll assume that
we have an a phabetically ordered list of words, and we want to deterrrine where our chosen
word appearsin thelist, if it even appears at all. In our program, each word is represented in
Perl as ascalar, which can be an integer, afloating-point number, or (asin this case) astring
of characters. Our list of wordsis stored in a Perl array: an ordered list of scalars. In Perl, all
scalars begin with an $ sign, and al arrays begin with an € sign. The other common datatype in
Perl is the hash, denoted with a% sign. Hashes "map" one set of scalars (the "keys") to other
scalars (the "values').

Here's how our binary search works. At all times, there is arange of words, called a window,
that the algorithm is considering. If the word isin thelist, it must be inside the window.
Initialy, the window is the entire list: no surprise there. As the algorithm operates, it shrinks
the window. Sometimes it moves the top of the window down, and sometimes it moves the
bottom of the window up. Eventually, the window contains only the target word, or it contains
nothing at al and we know that the word must not bein thelist.

The window is defined with two numbers: the lowest and highest |ocations (which well call
indices, since we're searching through an array) where the word might be found. Initialy, the
window is the entire array, since the word could be anywhere. The lower bound of the window
is $l ow, and the higher bound is $hi gh.

We then look at the word in the middle of the window; that is, the element with index ($1 ow

+ $high) / 2.However, that expression might have afractional value, so wewrap it in an
i nt () toensurethat we have an integer, yielding i nt (($l ow + $high) / 2).If that
word comes after our word al phabetically, we can decrease $hi gh to thisindex. Likewise, if
the word istoo low, we increase $| ow to thisindex.

Eventually, we'll end up with our word—or an empty window, in which case our subroutine

returns

undef to signa that the word isn't present.

Before we show you the Perl program for binary search, let'sfirst look at how this might be

written

in other algorithm books. Here's a pseudocode "implementation” of binary search:break

Bl NARY- SEARCH(A, W)

1.
2.

3
4
5.
6
7
8

9.

10.
11.
12.
13.

low - O
hi gh = 1 ength[A]

Page 3

while | ow < high
do try = int ((low+ high) / 2)
i f Atryl] >w
then high = try
else if Atry] <w
then low - try + 1
else return try
end if
end if
end do
return NO _ELEMENT

And now the Perl program. Not only isit shorter, it's an honest-to-goodness working

subrout

#$

oW oW R

sub

}

ine.

i ndex = binary_search(\@rray, $word)

@rray is alist of lowercase strings in al phabetical order.
$word is the target word that might be in the |list.

bi nary_search() returns the array index such that $array[$i ndex]
is $word.

bi nary_search {
my ($array, $word)
ny ($low, $high) =

:@;
(0, @array - 1);

while ($low <= $high) { # Wil e the wi ndow i s open
my $try = int(($l owt$high) /2); # Try the middle el enment
$low = $try+l, next if $array->[$try] It $word; # Raise bottom
$high = $try-1, next if $array->[$try] gt $word; # Lower top

return $try; # W' ve found the word!
}

return; # The word isn't there.

Depending on how much Perl you know, this might seem crystal clear or hopelessly opaque. As
the preface said, if you don't know Perl, you probably don't want to learn it with this book.
Nevertheless, here's abrief description of the Perl syntax used inthe bi nary_sear ch()

subrout

ine.

What Do All Those Funny Symbols Mean?

What you've just seen is the definition of a subroutine, which by itself won't do anything. Y ou
useit by including the subroutine in your program and then providing it with the two
parametersit needs: \ @r r ay and $wor d.\ @r r ay isareference to the array named
@rray.

Thefirst line, sub bi nary_sear ch {, beginsthe definition of the subroutine named
"binary_search". That definition ends with the closing brace} at the very end of the code.break

Page 4

Next,ny ($array, $word) = @;,assgnsthefirst two subroutine argumentsto the
scalars $ar r ay and $wor d. You know they're scalars because they begin with dollar signs.
The ny statement declares the scope of the variables—they're lexical variables, private to this
subroutine, and will vanish when the subroutine finishes. Use ny whenever you can.

Thefollowing ling, ny ($l ow, $high) = (0, @array - 1); declaresand
initializes two more lexical scalars. $| ow isinitialized to O—actually unnecessary, but good
form. $hi gh isinitiadizedto @array - 1, which dereferencesthe scalar variable

$ar r ay to get a the array underneath. In this context, the statement computes the length
(@array) and subtracts 1 to get the index of the last element.

Hopefully, the first argument passed to bi nary_sear ch() wasareferenceto an array.
Thanksto the first my line of the subroutine, that reference is now accessible as $ar r ay, and
the array pointed to by that value can be accessed as @ar r ay.

Then the subroutine entersawhi | e loop, which executesaslong as $| ow <= $hi gh; that
is, aslong as our window is still open. Inside the loop, the word to be checked (more
precisely, the index of the word to be checked) isassigned to $t r y. If that word precedes our
target word,” weassign $try + 1 to $l ow, which shrinks the window to include only the
elementsfollowing $t r y, and we jump back to the beginning of the whi | e loop viathe

next . If our target word precedes the current word, we adjust $hi gh instead. If neither word
precedes the other, we have amatch, and we return $t r y. If our whi | e loop exits, we know
that the word isn't present, and so undef isreturned.

Refer ences

The most significant addition to the Perl language in Perl 5 is references, their use is described
in the per|lref documentation bundled with Perl. A referenceisascaar value (thus, all
references begin with a$) whose value is the location (more or less) of another variable. That
variable might be another scalar, or an array, a hash, or even a snippet of Perl code. The
advantage of referencesisthat they provide alevel of indirection. Whenever you invoke a
subroutine, Perl needs to copy the subroutine arguments. If you pass an array of ten thousand
elements, those all have to be copied. But if you pass areference to those elements as we've
doneinbi nary_sear ch(), only the reference needsto be copied. As aresult, the
subroutine runs faster and scales up to larger inputs better.

More important, references are essential for constructing complex data structures, as you'll see
in Chapter 2, Basic Data Structures.break

* Precedesin ASCI| order, not dictionary order! See the section "ASCII Order" in Chapter 4, Sorting.

Page 5

Y ou can create references by prefixing a variable with a backdash. For instance, if you have
anarray @rray = (5, "six", 7),then\ @urray isareferenceto @urray.Youcan
assign that referenceto ascalar, say $arrayref = \ @rray, andnow $arrayref isa
referenceto that same (5, "si x", 7).Youcanasocreate referencesto scalars

($scal arref = \$scal ar), hashes($hashref = \ %hash), Perl code
($coderef = \&bi nary_sear ch), and other references ($arrayrefref =

\ $arrayr ef). You can aso construct references to anonymous variables that have no
explicit name: @ubs = (' Wnken', 'Blinken', 'Nod') isaregular array, witha
name, cubs, whereas ['Wnken', 'Blinken', 'Nod'] referstoananonymous
array. The syntax for both is shownin Table 1-1.

Table 1-1. Items to Which References Can Point

Type Assigning a Reference | Assigning a Reference
toaVariable to an Anonymous Variable
scalar $ref = \S$scal ar $ref =\1
list $ref =\@rr $ref =1 1, 2, 3]
hash $ref = \%ash $ref = { a=>1, b=>2, c¢=>3 }
subroutine | $ref = \ &subr $ref = sub { print "hello, world\n" }

Once you've "hidden" something behind areference, how can you access the hidden value?
That's called dereferencing, and it's done by prefixing the reference with the symbol for the
hidden value. For instance, we can extract the array from an array reference by saying @ar r ay
= @ar r ayr ef , ahash from ahash reference with %hash = %$hashr ef , and soon.

Noticethat bi nary_sear ch() never explicitly extracts the array hidden behind $ar r ay
(which more properly should have been called $ar r ayr ef). Instead, it uses a special
notation to accessindividual elements of the referenced array. The expression

$ar r ayr ef - >[8] isanother notation for ${ $ar r ayr ef } [8] , which evauatesto the
samevaue as $ar r ay|[8] : the ninth value of the array. (Perl arrays are zero-indexed; that's
why it's the ninth and not the eighth.)

Adapting Algorithms

Perhaps this subroutine isn't exactly what you need. For instance, maybe your dataisn't an
array, but afile on disk. The beauty of algorithms is that once you understand how one works,
you can apply it to avariety of situations. For instance, here's a complete program that readsin
alist of words and usesthe same bi nary_sear ch() subroutine you've just seen. Well
speed it up later.break

#! [usr/ bi n/ perl
#
bsearch - search for a word in a |list of al phabetically ordered words

Page 6

Usage: bsearch word fil ename

$word = shift; # Assign first argunment to $word
chomp(@rray = <>); # Read in new ine-delimted words,
truncating the new ines

($word, @rray) = map lc, ($word, @rray); # Convert all to | owercase
$i ndex = binary_search(\ @rray, $word); # I nvoke our al gorithm

if (defined $index) { print "$word occurs at position $index.\n" }
el se { print "$word doesn't occur.\n" }

sub binary_search {
ny ($array, $word) = @;
ny $low = 0;
ny $high = @array - 1;

while ($low <= $high) {
ny $try = int(($lowt$Shigh) / 2);
$low = $try+1l, next if Sarray->[$try] It $Sword;
$high = $try-1, next if $array->[$try] gt $word;
return $try;

}

return;

}

Thisis aperfectly good program; if you have the /usr/dict/words file found on many Unix
systems, you can call thisprogramasbsear ch bi nary /usr/di ct/words, andit'll
tell you that "binary” isthe 2,514th word.

Generality

The smplicity of our solution might make you think that you can drop this code into any of your
programs and it'll Just Work. After all, algorithms are supposed to be general: abstract
solutions to families of problems. But our solution is merely an implementation of an
algorithm, and whenever you implement an algorithm, you lose a little generdity.

Casein point: Our bsear ch program reads the entire input file into memory. It hasto so that
it can pass acomplete array into thebi nary_sear ch() subroutine. Thisworks fine for
lists of afew hundred thousand words, but it doesn't scale well—if the file to be searched is
gigabytesin length, our solution is no longer the most efficient and may abruptly fail on
machines with small amounts of real memory. Y ou still want to use the binary search
algorithm—you just want it to act on adisk file instead of an array. Here's how you might do
that for alist of words stored one per line, asin the /usr/dict/words file found on most Unix
systems.break

#!/usr/bin/perl -w
Derived fromcode by Nat han Torki ngt on
use strict;

Page 7

use integer;

ny ($word, $file) = @RGY,
open (FILE, $file) or die "Can't open $file: $!"
ny $position = binary_search file(*FILE, $word);

if (defined $position) { print "$word occurs at position $position\n" }
el se { print "$word does not occur in $file.\n" }

sub binary_search_file {
ny ($file, $word) = @;
ny ($high, $low, $md, $nmd2, $line);

$low = 0; # Quaranteed to be the start of a line.
$high = (stat($file))[7]; # M ght not be the start of a line
$word =~ s/\W/qg; # Renove punctuation from $word

$word = | c(Sword); # Convert $word to | ower case

while ($high I'= $low {
$md = ($hi gh+$l ow) /2
seek($file, $md, 0) || die "Couldn't seek : $!'\n";

$md is probably in the niddle of a line, so read the rest
and set $m d2 to that new position

$line = <$fil e>;

Smd2 = tell ($file);

if ($md2 < $high) { # We're not near file's end, so read on
$md = $mdz;
$line = <$fil e>;

} else { # $md plunked us in the last line, so linear search
seek($file, $low, 0) || die "Couldn't seek: $!'\n";
while (defined($line = <$file>)) {
last if conpare($line, $word) >= 0;
$low = tell ($file)
}

| ast;

if (conpare($line, $word) < 0) { $low
el se { $high

return if conpare($line, $word);
return $l ow

sub conpare { # $wordl needs to be | owercased; $word2 doesn't.
ny ($wordl, $word2) = @;

$wordl == s/\W/g; $wordl = I c($wordl);
return $wordl cnp $word2
}

Our once-elegant program is now amess. It's not as bad asit would be if it were implemented
in C++ or Java, but it's still a mess. The problems we have to solvecontinue

Page 8

in the Real World aren't always as clean as the study of algorithms would have us believe. And
yet there are still two problems the program hasn't addressed.

First of al, thewordsin /usr/dict/words are of mixed case. For instance, it has both abbot
and Abbot t . Unfortunately, asyou'll learn in Chapter 4, thel t and gt operators use ASCII
order, which meansthat abbot follows Abbot t eventhough abbot precedes Abbott in
the dictionary and in /usr/dict/words. Furthermore, some wordsin /usr/dict/words contain
punctuation characters, such as A&P and aren't. Wecantusel t and gt aswe did before;
instead we need to define a more sophisticated subroutine, conpar e() , that strips out the
punctuation characters (s/ \ W / g, which removes anything that's not a letter, number, or
underscore), and lowercases the first word (because the second word will already have been
lowercased). The idiosyncracies of our particular situation prevent us from using our

bi nary_sear ch() out of the box.

Second, the words in /usr/dict/words are delimited by newlines. That is, there's anewline
character (ASCII 10) separating each pair of words. However, our program can't know their
precise locations without opening the file. Nor can it know how many words are in thefile
without explicitly counting them. All it knows is the number of bytesin thefile, so that's how
the window will have to be defined: the lowest and highest byte offsets at which the word
might occur. Unfortunately, when we seek () to an arbitrary position in the file, chances are
well find ourselvesin the middle of aword. Thefirst $l i ne = <$fi | e> grabs what
remains of the line so that the subsequent $I i ne = <$f i | e> grabs an entire word. And of
course, al of this backfiresif we happen to be near the end of the file, so we need to adopt a
quick-and-dirty linear search in that event.

These modifications will make the program more useful for many, but less useful for some.
You'll want to modify our code if your search requires differentiation between case or
punctuation, if you're searching through alist of words with definitions rather than alist of
mere words, if the words are separated by commas instead of newlines, or if the data to be
searched spans many files. We have no hope of giving you a generic program that will solve
every need for every reader; al we can do is show you the essence of the solution. This book
is no subgtitute for a thorough analysis of the task at hand.

Efficiency

Central to the study of algorithmsisthe notion of efficiency—how well an implementation of
the algorithm makes use of its resources.” There are two resourcescontinue

* We won't consider "design efficiency"—how long it takes the programmer to create the program.
But the fastest program in the world is no good if it was due three weeks ago. Y ou can sometimes
write faster programsin C, but you can always write programsfaster in Perl.

Page 9

that every programmer cares about: space and time. Most books about algorithms focus on time
(how long it takes your program to execute), because the space used by an algorithm (the
amount of memory or disk required) depends on your language, compiler and computer
architecture.

Space Versus Time

There's often a tradeoff between space and time. Consider a program that determines how
bright an RGB vaueis; that is, a color expressed in terms of the red, green, and blue phosphors
on your computer's monitor or your TV. The formulais smple: to convert an (R,G,B) triplet
(three integers ranging from O to 255) to a brightness between 0 and 100, we need only this
Statement:

$brightness = $red * 0.118 + $green * 0.231 + $blue * 0.043;

Three floating-point multiplications and two additions; thiswill take any modern computer no
longer than afew milliseconds. But even more speed might be necessary, say, for high-speed
Internet video. If you could trim the time from, say, three milliseconds to one, you can spend the
time savings on other enhancements, like making the picture bigger or increasing the frame rate.
So can we calculate $br i ght ness any faster? Surprisingly, yes.

In fact, you can write a program that will perform the conversion without any arithmetic at all.
All you haveto do is precompute all the values and store them in alookup table—alarge array
containing al the answers. There are only 256 x 256 x 256 = 16,777,216 possible color
triplets, and if you go to the trouble of computing al of them once, there's nothing stopping you
from mashing the results into an array. Then, later, you just ook up the appropriate value from
the array.

This approach takes 16 megabytes (at least) of your computer's memory. That's memory that
other processes won't be able to use. Y ou could store the array on disk, so that it needn't be
stored in memory, at acost of 16 megabytes of disk space. We've saved time at the expense of
Space.

Or have we? The time needed to load the 16,777,216-element array from disk into memory is
likely to far exceed the time needed for the multiplications and additions. It's not part of the
algorithm, but it is time spent by your program. On the other hand, if you're going to be
performing millions of conversions, it's probably worthwhile. (Of course, you need to be sure
that the required memory is available to your program. If it isn't, your program will spend extra
time swapping the lookup table out to disk. Sometimes lifeisjust too complex.)

While time and space are often at odds, you needn't favor one to the exclusion of the other. Y ou

can sacrifice alot of spaceto save alittle time, and vice versa. For instance, you could save a
lot of space by creating one lookup table with for eachconti nue

Page 10

color, with 256 values each. Y ou still have to add the results together, so it takes alittle more
time than the bigger lookup table. The relative costs of coding for time, coding for space, and
this middle-of-the-road approach are shown in Table 1-2. nis the number of computationsto
be performed; cost (X) isthe amount of time needed to perform x.

Table 1-2. Three Tradeoffs Between Time and Space

Approach Time Space

no lookup table n * (2*cost(add) + 3*cost(nult)) 0

one lookup table per color n * (2*cost(add) + 3*cost (| ookup)) 768 floats
complete lookup table n * cost (| ookup) 16,777,216 floats

Again, you'll have to analyze your particular needs to determine the best solution. We can only
show you the possible paths; we can't tell you which one to take.

As another example, let's say you want to convert any character to its uppercase equivalent: a
should become A. (Perl hasuc() , which does thisfor you, but the point we're about to make is
valid for any character transformation.) Here, we present three waysto do this. The

conput e() subroutine performs simple arithmetic on the ASCII value of the character: a
lowercase |etter can be converted to uppercase simply by subtracting 32. The

| ookup_array() subroutine relies upon a precomputed array in which every character is
indexed by ASCII value and mapped to its uppercase equivalent. Finaly, the

| ookup_hash() subroutine uses a precomputed hash that maps every character directly to
its uppercase equivalent. Before you look at the results, guess which one will be fastest.break

#! [usr/ bi n/ perl
use i nteger; # W don't need floating-point conputation

@ippers = map { uc chr } (0..127); # Qur | ookup array

Qur | ookup hash
Yuppers = (' b

>zl
>zl
Z Vv '
oV
o~

pd
o
®)
°
T
Q

~

sub conpute { # Approach 1: direct conputation
ny $c = ord $ [0];

$c -= 32 if $c >= 97 and $c <= 122;
return chr(%c);

}
Page 11
sub | ookup_array { # Approach 2: the | ookup array
return $uppers[ord($[0])];
}
sub | ookup_hash { # Approach 3: the | ookup hash
return $uppers{ $ [0] };
}

Y ou might expect that the array lookup would be fastest; after al, under the hood, it's looking
up amemory address directly, while the hash approach needs to trandate each key into its
internal representation. But hashing isfast, and the ord adds time to the array approach.

The results were computed on a 255-MHz DEC Alphawith 96 megabytes of RAM running Perl
5.004_01. Each printable character was fed to the subroutines 5,000 times:

Benchmark: timng 5000 iterations of conpute, |ookup_array, |ookup_hash

conpute: 24 secs (19.28 usr 0.08 sys = 19.37 cpu)
| ookup_array: 16 secs (15.98 usr 0.03 sys = 16.02 cpu)
| ookup_hash: 16 secs (15.70 usr 0.02 sys = 15.72 cpu)

The lookup hash is dightly faster than the lookup array, and 19% faster than direct
computation. When in doubt, Benchmark.

Benchmarking

Y ou can compare the speeds of different implementations with the Benchmark module bundled
with the Perl distribution. Y ou could just use a stopwatch instead, but that only tells you how
long the program took to execute—on a multitasking operating system, a heavily loaded
machine will take longer to finish al of itstasks, so your results might vary from one run to the
next. Your program shouldn't be punished if something else computationally intensiveis
running.

What you redlly want is the amount of CPU time used by your program, and then you want to
average that over alarge number of runs. That's what the Benchmark module does for you. For
instance, let's say you want to compute this strange-looking infinite fraction:

At first, this might seem hard to compute because the denominator never ends, just like the
fraction itself. But that's the trick: the denominator is equivalent to the fraction. Let's call the
answer x.break

Page 12

That's equivaent to the familiar quadratic form:
et —1=10

The solution to this equation is approximately 0.618034, by the way. It's the Golden Ratio—the
ratio of successive Fibonacci numbers, believed by the Greeks to be the most pleasing ratio of
height to width for architecture. The exact value of x isthe square root of five, minus one,
divided by two.

We can solve our equation using the familiar quadratic formulato find the largest root.
However, suppose we only need the first three digits. From eyeballing the fraction, we know
that x must be between 0 and 1; perhapsaf or loop that begins at O and increases by .001 will
find x faster. Here's how we'd use the Benchmark module to verify that it won't:

#! /[usr/ bi n/ perl
use Benchnark;

sub quadratic { # Conpute the larger root of a quadratic pol ynon a
ny ($a, $b, $c) = @;
return (-$b + sqrt($b*$b - 4*$a * $c)) / 2*$a;

}
sub bruteforce { # Search linearly until we find a good-enough choice
ny ($low, $high) = @;
my $x;
for ($x = $low, $x <= $high; $x += .001) {
return $x if abs($x * ($x+1) - .999) < .001
}
}

ti met hese(10000, { quadratic => 'quadratic(1, 1, -1)',
bruteforce => 'bruteforce(0, 1)' });

After including the Benchmark module with use Benchmar k, this program defines two
subroutines. The first computes the larger root of any quadratic equation given its coefficients,
the second iterates through a range of numbers looking for one that's close enough. The
Benchmark functiont i net hese(') istheninvoked. The first argument, 10000, isthe
number of times to run each code snippet. Thecontinue

Page 13

second argument is an anonymous hash with two key-value pairs. Each key-value pair maps
your name for each code snippet (here, we've just used the names of the subroutines) to the
snippet. After thisline is reached, the following statistics are printed about a minute later (on
our computer):

Benchmark: timng 10000 iterations of bruteforce, quadratic
bruteforce: 53 secs (12.07 usr 0.05 sys 12.12 cpu)
gquadratic: 5 secs (1.17 usr 0.00 sys 1.17 cpu)

Thistells us that computing the quadratic formulaisn't just more elegant, it's aso 10 times
faster, using only 1.17 CPU seconds compared to the for loop's sluggish 12.12 CPU seconds.

Sometips for using the Benchmark module:

» Any test that takes less than one second is useless because startup latencies and caching
complications will create misleading results. If atest takes |less than one second, the
Benchmark module might warn you:

(warning: too fewiterations for a reliable count)
If your benchmarks execute too quickly, increase the number of repetitions.

* Be more interested in the CPU time (cpu = user + system, abbreviated usr andsys inthe
Benchmark module results) than in the first number, the real (wall clock) time spent. Measuring
CPU timeis more meaningful. In a multitasking operating system where multiple processes
compete for the same CPU cycles, the time alocated to your process (the CPU time) will be
less than the "wall clock” time (the 53 and 5 seconds in this example).

* If you're testing a ssimple Perl expression, you might need to modify your code somewhat to
benchmark it. Otherwise, Perl might evaluate your expression at compile time and report
unrealistically high speeds as aresult. (One sign of this optimization isthewarning Usel ess
use of . . . in void context.Tha meansthat the operation doesn't do anything,
so Perl won't bother executing it.) For areal-world example, see Chapter 6, Sets.

* The speed of your Perl program depends on just about everything: CPU clock speed, bus
speed, cache size, amount of RAM, and your version of Perl.

Y our mileage will vary.

Could you write a"meta-algorithm” that identifies the tradeoffs for your computer and chooses
among several implementations accordingly? It might identify how long it takes to load your
program (or the Perl interpreter) into memory, how long it takes to read or write data on disk,
and so on. It would weigh the results and pick the fastest implementation for the problem. If you
write this, let us know.break

Page 14

Floating-Point Numbers

Like most computer languages, Perl uses floating-point numbers for its calculations. Y ou
probably know what makes them different from integers—they have stuff after the decimal

point. Computers can sometimes manipulate integers faster than floating-point numbers, so if
your programs don't need anything after the decimal point, you should placeuse i nt eger at
the top of your program:

#!/ usr/ bi n/ perl
use integer; # Performall arithmetic with integer-only operations.

$c =71 3; # $c is now 2

Keep in mind that floating-point numbers are not the same as the real numbers you learned
about in math class. There are infinitely many real numbers between, say 0 and 1, but Perl
doesn't have an infinite number of bitsto store those real numbers. Corners must be cut.

Don't believe us? In April 1997, someone submitted this to the perlbug mailing list:

Hi,
I'd appreciate if this is a known bug and if a patch is avail able.

int of (2.4/0.2) returns 11 instead of the expected 12.

It would seem that this poor fellow iscorrect: perl -e "print int(2.4/0.2)'
indeed prints 11. Y ou might expect it to print 12, because two-point-four divided by
oh-point-two is twelve, and the integer part of 12 is 12. Must be a bug in Perl, right?

Wrong. Floating-point numbers are not real numbers. When you divide 2.4 by 0.2, what you're
really doing is dividing Perl's binary floating-point representation of 2.4 by Perl's binary
floating-point representation of 0.2. In al computer languages that use | EEE floating-point
representations (not just Perl!) the result will be a smidgen less than 12, which iswhy
int(2.4/0.2) isll. Beware.

Temporary Variables

Suppose you want to convert an array of numbers from one logarithmic base to another. You'll
need the change of base law: log, x = log, x/log, b. Perl provides the| og function, which

computes the natural (base €) logarithm, so we can use that. Question: are we better off storing
log, b in avariable and using that over and over again, or would be it better to compute it anew

each time? Armed with the Benchmark module, we can find out: break

Page 15

#! [/ usr/ bi n/ perl
use Benchnark;

sub | oghasel { # Conpute the val ue each tine.
nmy ($base, $nunbers) = @;

ny @esult;
for (ny $i = 0; $i < @nunbers; $i++) {
push @esult, log ($nunbers->[$i]) / log ($base);

}
return @esult;
}
sub | oghase2 { # Store log $base in a tenporary vari abl e.
ny ($base, $nunbers) = @;
ny @esult;
ny $l ogbase = | og $hase
for (nmy $i = 0; $i < @nunbers; $i++) {
push @esult, log ($nunbers->[$i]) / $l ogbase
}
return @esult;
}

@wunbers = (1..1000);

ti met hese (1000, { no_tenp => 'l ogbasel(10, \ @wunbers)',
tenp => 'l ogbase2(10, \ @unbers)' });

Here, we compute the logs of all the numbers between 1 and 1000. | ogbasel() and
| ogbase2() arenearly identical, except that | ogbase2() storesthelogof 10in
$l ogbase sothat it doesn't need to compute it each time. The result:

Benchmark: timng 1000 iterations of no_tenp, tenp .
tenp: 84 secs (63.77 usr 0.57 sys = 64.33 cpu)
no _tenp: 98 secs (84.92 usr 0.42 sys = 85.33 cpu)

The temporary variable results in a 25% speed increase—on my machine and with my
particular Perl configuration. But temporary variables aren't always efficient; consider two
nearly identical subroutines that compute the volume of an n-dimensiona sphere. The formula
n H":!
is " G2 Computing the factoria of afractional integer isalittle tricky and requires some
extracode—thei f ($n % 2) block in both subroutines that follow. (For more about
factorials, see the section "Very Big, Very Small, and Very Precise Numbers' in Chapter 11,
Number Systems.) Thevol une_var () subroutine assigns (n/2)! to atemporary variable,

$denorr; thevol unme_novar () subroutine returns the result directly.break

use constant pi => 3.14159265358979;

sub vol une_var {
ny ($r, $n) = @;

Page 16

ny $denom
if ($n %2) {
$denom = sqgrt(pi) * factorial (2 * (int($n/ 2)) + 2) /
factorial (int($n/ 2) + 1) / (4 ** (int($n/ 2) + 1));

} else {
$denom = factorial ($n / 2);
}

return ($r ** $n) * (pi ** ($n / 2)) / $denom

sub vol ume_novar {
ny ($r, $n) = @;
if ($n %2) {
return ($r ** $n) * (pi ** ($n/ 2)) /
(sqgrt(pi) * factorial (2 * (int($n/ 2)) + 2) /
factorial (int($n / 2) + 1) / (4 ** (int($n/ 2) + 1)));
} else {
return ($r ** $n) * (pi ** ($n/ 2)) / factorial($n / 2);

}
}
The results
vol une_novar: 58 secs (29.62 usr 0.00 sys = 29.62 cpu)
vol une_var: 64 secs (31.87 usr 0.02 sys = 31.88 cpu)

Here, the temporary variable $denon slows down the code instead: 7.6% on the same
computer that saw the 25% speed increase earlier. A second computer showed a larger
decrease in speed: a 10% speed increase for changing bases, and a 12% slowdown for
computing hypervolumes. Y our results will be different.

Caching

Storing something in atemporary variable is a specific example of agenera technique:
caching. It means simply that data likely to be used in the future is kept "nearby.” Caching is
used by your computer's CPU, by your web browser, and by your brain; for instance, when you
visit aweb page, your web browser storesit on alocal disk. That way, when you visit the page
again, it doesn't have to ferry the data over the Internet.

One caching principle that's easy to build into your program is never compute the same thing
twice. Save resultsin variables while your program is running, or on disk when it's not.
There's even a CPAN module that optimizes subroutinesin just this way: Memoize.pm. Here's
an example:break

use Menoi ze;
nenoi ze ' bi nary_search'; # Turn on caching for binary_search()

bi nary_search("wol verine"); # This executes nornally .
bi nary_search("wolverine"); # . . . but this returns inmediately

Page 17

Themenoi ze ' bi nary_search' ;lineturnsbi nary_sear ch() (which we defined
earlier) into amemoizing subroutine. Whenever you invoke bi nary_sear ch() witha
particular argument, it remembers the result. If you cal it with that same argument later, it will
use the stored result and return immediately instead of performing the binary search al over

again.

Y ou can find a nonmemoizing example of caching in the section "Caching: Another Examplée” in
Chapter 12, Number Theory.

Evaluating Algorithms:
O (N) Notation

The Benchmark module shown earlier tells you the speed of your program, not the speed of
your agorithm. Remember our two approaches for searching through alist of words:
proceeding through the entire list (dictionary) sequentially, and binary search. Obvioudly,
binary search is more efficient, but how can we speak about efficiency if everything depends
on the implementation?

In computer science, the speed (and occasionaly, the space) of an algorithm is expressed with
amathematical symbolism informally referred to as O (N) notation. N typically refersto the
number of data items to be processed, although it might be some other quantity. If an algorithm
runsin O (log N) time, then it has order of growth log N—the number of operationsis
proportional to the logarithm of the number of elements fed to the agorithm. If you triple the
number of elements, the algorithm will require approximately log 3 more operations, give or
take a constant multiplier. Binary search isan O (log N) agorithm. If we double the size of the
list of words, the effect is insignificant—a single extraiteration through the whi | e loop.

In contrast, our linear search that cycles through the word list item by itemisan O (N)
algorithm. If we double the size of thelist, the number of operations doubles. Of course, the O
(N) incremental search won't always take longer than the O (log N) binary search; if the target
word occurs near the very beginning of the aphabet, the linear search will be faster. The order
of growth is a statement about the overall behavior of the algorithm; individua runswill vary.

Furthermore, the O (N) notation (and similar notations we'll see shortly) measure the
asymptotic behavior of an algorithm. What we care about is not how long the algorithm takes
for ainput of a certain size, merely how it changes as the input grows without bound. The
difference is subtle but important.

O (N) notation is often used casually to mean the empirical running time of an agorithm. In the
formal study of algorithms, there are five "proper" measurements of running time, shown in
Table 1-3.break

Page 18

Table 1-3. Classes of Orders of Growth
Function | Meaning

0 (X) "The algorithm won't take longer than X"

O (X) "The algorithm won't take longer than X, give or take a constant multiplier"
Q (X) "The algorithm will take aslong as X, give or take a constant multiplier"
W (X) "The algorithm will take longer than X, give or take a constant multiplier"

w (X) "The agorithm will take longer than X"

If we say that an algorithm is W (N 2), we mean that its best-case running time is proportional
to the square of the number of inputs, give or take a constant multiplier.

These are smplified descriptions; for more rigorous definitions, see Introduction to
Algorithms, published by MIT Press. For instance, our binary search algorithm is Q (log N)
and O (log N), but it'salso O (N)—any O (log N) algorithm isaso O (N) because,
asymptotically, log N islessthan N. However, it'snot Q (N), because N isn't an asymptotically
tight bound for log N.

These notations are sometimes used to describe the average-case or the best-case behavior, but
only rarely. Best-case analysisis usually pointless, and average-case anaysisistypically
difficult. The famous counterexample to thisis quicksort, one of the most popular agorithms
for sorting a collection of elements. Quicksort is O (N 2) worst case and O (N log N) average
case. You'll learn about quicksort in Chapter 4.

In case this al seems pedantic, consider how growth functions compare. Table 1-4 lists eight
growth functions and their values given amillion data points.

Table 1-4. An Order of Growth Sampler

Growth Valuefor N = 1,000,000
Function

1 1

log N 13.8

e 1000

N 1,000,000

NlogN 13,815,510

N2 1,000,000,000,000

N3 1,000,000,000,000,000,000
2N A number with 693,148 digits.

Figure 1-1 shows how these functions compare when N varies from 1 to 2.break

Page 19

i fog n
] 1.2 L4 I.é L& 2z

Figure 1-1.
Orders of growth between 1 and 2

In Figure 1-1, al these orders of growth seem comparable. But see how they diverge as we
extend N to 15 in Figure 1-2.

35000
30000 ¢
25000
20000 |
15000 } A
10000 ¢ 4
L .
5000 "
) 1 iag o mn £
] 3 5 7 y I I3 15

Figure 1-2.
Orders of growth between 1 and 15

If you consider sorting N = 1000 records, you'll see why the choice of algorithm is
important. break

Page 20
Don't Cheat

We had to jump through some hoops when we modified our binary search to work with a
newline-delimited list of wordsin afile. We could have smplified the code somewhat if our
program had scanned through the file first, identifying where the newlines are. Then we
wouldn't have to worry about moving around in the file and ending up in the middie of a

word—we'd redefine our window so that it referred to lines instead of bytes. Our program
would be smaller and possibly even faster (but not likely).

That's cheating. Even though thisinitialization step is performed before entering the

bi nary_sear ch() subroutine, it still needs to go through the file line by line, and since
there are as many lines aswords, our implementation is now only O (N) instead of the much
more desirable O (log N). The difference might only be afraction of a second for afew
hundred thousand words, but the cardina rule battered into every computer scientist is that we
should always design for scalability. The program used for a quarter-million words today
might be called upon for a quarter-trillion words tomorrow.

Recurrent Themesin Algorithms

Each agorithm in this book is a strategy—a particular trick for solving some problem. The
remainder of this chapter looks at three intertwined ideas, recursion, divide and conquer, and
dynamic programming, and concludes with an observation about representing data.

Recursion
re-cur-sion \ri-'ker-zhen\ n See RECURSION

Something that is defined in terms of itself is said to be recursive. A function that callsitsef is
recursive; so is an algorithm defined in terms of itself. Recursion is afundamental concept in
computer science; it enables elegant solutionsto certain problems. Consider the task of
computing the factorial of n, denoted n! and defined as the product of al the numbersfrom 1 to
n. You could defineaf act ori al () subroutine without recursion: break

factorial ($n) conputes the factorial of $n,
using an iterative algorithm
sub factorial {

ny ($n) = shift;

ny ($result, $i) = (1, 2);

for (; $i <= $n; $i++) {

$result *= $i
}

return $result;

Page 21
It's much cleaner to use recursion:

factorial _recursive($n) conputes the factorial of $n,
using a recursive algorithm
sub factorial _recursive {

ny ($n) = shift;

return $n if $n <= 2;

return $n * factorial _recursive($n - 1);

}

Both of these subroutines are O (N), since computing the factorial of nrequiresn
multiplications. The recursive implementation is cleaner, and you might suspect faster.
However, it takes four times as long on our computers, because there's overhead involved
whenever you call a subroutine. The nonrecursive (or iterative) subroutine just amasses the

factorial in an integer, while the recursive subroutine has to invoke itself repeatedly—and
subroutine invocations take alot of time.

Asit turnsout, thereisan O (1) algorithm to approximate the factorial. That speed comes at a
price: it's not exact.

sub factorial _approx {
return sqrt (1.5707963267949 * $ [0]) *
(($_[0] / 2.71828182845905) ** $ [0]);

}

We could have implemented binary search recursively also, with bi nary_sear ch()
accepting $1 ow and $hi gh as arguments, checking the current word, adjusting $I ow and
$hi gh, and calling itself with the new window. The slowdown would have been comparable.

Many interesting algorithms are best conveyed as recursions and often most easily implemented
that way aswell. However, recursion is never necessary: any algorithm that can be expressed
recursively can also be written iteratively. Some compilers are able to convert a particular
class of recursion called tail recursion into iteration, with the corresponding increasein
speed. Perl's compiler can't. Yet.

Divide and Conquer

Many agorithms use a strategy called divide and conquer to make problems tractable. Divide
and conquer means that you break a tough problem into smaller, more solvable subproblems,
solve them, and then combine their solutions to "conquer” the origina problem.”

Divide and conquer is nothing more than a particular flavor of recursion. Consider the
mergesort algorithm, which you'll learn about in Chapter 4. It sortsalist of N.continue

* The tactic should more properly be called divide, conquer, and combine, but that weakens the
programmer-as-warrior militaristic metaphor somewhat.

Page 22

items by immediately breaking the list in half and mergesorting each half. Thus, thelist is
divided into halves, quarters, eighths, and so on, until N/2 "littl€" invocations of mergesort are
fed asimple pair of numbers. These are conquered—that is, compared—and then the newly
sorted sublists are merged into progressively larger sorted lists, culminating in a complete sort
of the original list.

Dynamic Programming

Dynamic programming is sometimes used to describe any algorithm that cachesits
intermediate results so that it never needs to compute the same subproblem twice. Memoizing
isan example of this sense of dynamic programming.

There is another, broader definition of dynamic programming. The divide-and-conquer strategy
discussed in the last section is top-down: you take a big problem and break it into smaller,
independent subproblems. When the subproblems depend on each other, you may need to think
about the solution from the bottom up: solving more subproblems than you need to, and after
some thought, deciding how to combine them. In other words, your algorithm performs alittle

pregame analysis—examining the datain order to deduce how best to proceed. Thus, it's
"dynamic" in the sense that the algorithm doesn't know how it will tackle the data until after it
starts. In the matrix chain problem, described in Chapter 7, Matrices, a set of matrices must be
multiplied together. The number of individual (scalar) multiplications varies widely depending
on the order in which you multiply the matrices, so the agorithm smply computes the optimal
order beforehand.

Choosing the Right Representation

The study of algorithmsis lofty and academic—a subset of computer science concerned with
mathematical elegance, abstract tricks, and the refinement of ingenious strategies devel oped
over decades. The perspective suggested in many algorithms textbooks and university courses
isthat an algorithmis like a magic incantation, a spell created by awizardly sage and passed
down through us humble chroniclers to you, the willing apprentice.

However, the dirty truth is that algorithms get more credit than they deserve. The metaphor of
an algorithm as a spell or battle strategy falls flat on close inspection; the most important
problem-solving ability is the capacity to reformulate the problemr—to choose an alternative
representation that facilitates a solution. Y ou can look at logarithms this way: by replacing
numbers with their logarithms, you turn a multiplication problem into an addition problem.
(That's how slide rules work.) Or, by representing shapes in terms of angle and radius instead
of by the more familiar Cartesian coordinates, it becomes easy to represent acircle (but hard to
represent a square).break

Page 23

Data structures—the representations for your data—don't have the status of algorithms. They
aren't typically named after their inventors: the phrase "well-designed” isfar more likely to
precede "algorithm™ than "data structure.” Nevertheless, they are just as important as the
algorithms themselves, and any book about algorithms must discuss how to design, choose, and
use data structures. That's the subject of the next two chapters.break

Page 24

2_
Basic Data Structures

What is the sound of Perl? Isit not the sound of a wall that people have
stopped banging their heads against?
—Larry Wall

There are calendars that hang on awall, and onesthat fit in your pocket. There are calendars
that have a separate row for each hour of the day, and ones that squeeze a year or two onto a
page. Each hasits use; you don't use afive year calendar to check whether you have timefor a
meeting after lunch tomorrow, nor do you use a day-at-a-time planner to schedule a series of
month-long projects. Every calendar provides a different way to organize time—and each has
its own strengths and weaknesses. Each is a data structure for time.

In this chapter and the next, we describe awide variety of data structures and show you how to
choose the ones that best suit your task. All computer programs manipulate data, usually
representing some phenomenon in the real world. Data structures help you organize your data
and minimize complexity; a proper data structure is the foundation of any algorithm. No matter
how fast an algorithm is, at bottom it will be limited by how efficiently it can access your data.

Aswe explore the data structures fundamental to any study of algorithms, well see that many of
them are already provided by Perl, and others can be easily implemented using the building
blocks that Perl provides. Some data structures, such as sets and graphs, merit a chapter of
their own; others are discussed in the chapter that makes use of them, such as B-treesin
Chapter 5, Searching. In this chapter, we explore the data structures that Perl provides: arrays,
hashes, and the smple data structures that result naturally from their use. In Chapter 3,
Advanced Data Structures, we'll use those building blocks to create the old standbys of
computer science, including linked lists, heaps, and binary trees.break

Page 25

There are many kinds of data structures, and while it's important for a programming language to
provide built-in data structures, it's even more important to provide convenient and powerful
ways to develop new structures that meet the particular needs of the task at hand. Just as
computer languages let you write subroutines that enhance how you process data, they should
also let you create new structures that give you new ways to store data.

Perl's Built-in Data Structures

Let'slook at Perl's data structures and investigate how they can be combined to create more
complex data structures tailored for a particular task. Then, we'll demonstrate how to
implement the favorite data structures of computer science: queues and stacks. They'll all be
used in agorithmsin later chapters.

Many Perl programs never need any data structures other than those provided by the language
itself, shown in Table 2-1.

Table 2-1. Basic Per| Datatypes

Typeand Meaning
Designating Symbol
$scal ar
number integer or float
string arbitrary length sequence of characters
reference "pointer” to another Perl data structure
object aPerl data structure that has been blessed into a class (accessed

through areference)
@rray an ordered sequence of scalarsindexed by integers, arrays are
sometimes called lists, but the two are not quite idential €

Yhash an unorderedt collection of scalars selected by strings (also
known asassociative arrays, and in some languages as

Al Adl Am Al AR

I uicuuiiar 1es)

8 An array isan actual variable; alist need not be.

b A hash isnot really unordered. Rather, the order is determined internally by Perl and has
little useful meaning to the programmer.

Every scalar contains asingle value of any of the subtypes. Perl automatically converts
between numbers and strings as necessary: break

start with a string
$date = "98/07/22";

extract the substrings containing the nuneric val ues
($year, $nonth, $day) = ($date == nf (\d\d)/(\d\d)/(\d\d)]);

Page 26

but they can just be used as nunbers
$year += 1900; # Y2K bug!
$nmont h = $nont h_nane[$nont h- 1] ;

and then again as strings
$printabl e_date = "$nonth day, Syear";

Arrays and hashes are collections of scalars. The key to building more advanced data
structures is understanding how to use arrays and hashes whose scalars also happen to be
references.

Selecting an element from an array is quicker than selecting an element from ahash.* The array
subscript or index (the 4 in $ar r ay[4]) tells Perl exactly where to find the value in memory,
while a hash must first convert itskey (theci t y in $hash{ ci t y}) into ahash value. (The
hash value is a number used to index alist of entries, one of which contains the selected data
value.) Why use hashes? A hash key can be any string value. Y ou can use meaningful namesin
your programs instead of the unintuitive integers mandated by arrays. Hashes are slower than
arrays, but not by much.

Build Your Own Data Structure

The big trick for constructing elaborate data structures is to store references in arrays and
hashes. Since areference can refer to any type of variable you wish, and since arrays and
hashes can contain multiple scalars (any of which can be references), you can create arbitrarily
complicated structures.

One convenient way to manage complex structures is to augment them into objects. An object is
acollection of datatied internally to a collection of subroutines called methods that provide
customized access to the data structure.™*

If you adopt an object-oriented approach, your programs can just call methods instead of
plodding through the data structure directly. A Poi nt object might contain explicit values for
x- and y-coordinates, while the corresponding Poi nt class might have methods to synthesize

r and q coordinates from them. This approach isolates the rest of the code from the internal
representation; indeed, as long as the methods behave, the underlying structure can be changed
without requiring any change to the rest of the program. Y ou could change Poi nt to use
angular coordinates internally instead of Cartesian coordinates, andthex () ,y(),rho(),
andt het a() methods would still return the correct values.break

* Efficiency Tip: Hashes, Versus Arrays. It's about 30% faster to store datain an array than in a hash.
It's about 20% faster to retrieve datafrom an array than from a hash.

** Y ou may find it useful to think of an object and its methods asdata with an attitude.

Page 27

The main disadvantage of objects is speed. Invoking a method requires a subroutine cal, while
adirect implementation of a data structure can often use inline code, avoiding the overhead of
subroutines. If you're using inheritance, which allows one class to use the methods of another,
the situation becomes even more grim. Perl has to search through a hierarchy of classesto find
the method. While Perl caches the result of that search, that first search takes time.

A Simple Example

Consider an address—you know, what your grandparents used to write on paper envelopes for
delivery by someonein auniform. There are many components of an address. apartment or
suite number, street number (perhaps with afraction or letter), street name, rura route,
municipality, state or province, postal code, and country. An individual location uses a subset
of those components for its address. In asmall village, you might use only the recipient's name.

Addresses seem simple only because we use them every day. Like many realworld phenomena,
there are complicated rel ationships between the components. To deal with addresses, computer
programs need an understanding of the disparate components and the relationships between
them. They also need to store the components so that necessary manipulations can be made
easily: whatever structure we use to store our addresses, it had better be easy to retrieve or
changeindividual fields. You'd rather be ableto say $addr ess{ ci t y} than haveto parse
theci t y out of the middle of an address string with something like

get _address(line=>4,/"[\s,]+/).Therearemany different data structures that
could do the job. WE€'ll now consider afew alternatives, starting with simple arrays and
hashes. We could use one array per address:

@\t son_Address = (@am Address = (
"Dr. Watson", "Sam Gangee",
"221b Baker St.", "Bagshot Row',
"London", " Hobbi t on",
"NWL", "The Shire",
"Engl and",);

)
Or, we could use a hash: break

oMt son_Address = (%Gam Address = (
nanme = "Dr. Watson", name => "Sam Gangee",
street => "221b Baker St.", street => "Bagshot Row',

city => "London", city => "Hobbi t on",

zone => "NW", country => "The Shire"
country => "Engl and",);

Page 28

Which is better? They each have their advantages. To print an address from
@\at son_Addr ess, you just have to add newlines after each element:*

foreach (@atson_Address) ({
print $_, "\n";
}

To print the fields from our hash in order, we have to specify what that order is. Otherwise,
we'll end up with Perl'sinternal ordering (which happensto beci ty, name, country,
zone, street).

foreach (g nane street city zone country)) {
print $Watson_Address{$ }, "\n";
}

foreach (g nane street city country)) {
print $Sam Address{$_}, "\n";
}

When we printed Sam's address, we had to remember that it has no zone. To deal correctly
with either address we'd use code like this:

foreach (g nane street city zone country)) {
print $address{$_}, "\n" if defined $address{$ };
}

Do we conclude that the array technique is better because it prints addresses more easily?
Suppose you wanted to see whether an address was in Finland:

array form

if ($Watson_Address[4] eq 'Finland) {
yes

}

if ($Sam Address[3] eq 'Finland) {
yes
}

Compare that to hashes:break
hash fornm

if ($watson_Address{country} eq 'Finland) {
yes
}

if ($Sam Address{country} eq 'Finland) {
yes
}

* Efficiency Tip: Printing. Why doweuseprint $_, "\n" instead of the simpler pri nt
"$_\n" orevenprint $_. "\n"? Speed."$_\n" isabout 1.5% slowerthan$_. "\ n" (even
though the latter iswhat they both compileinto) and 21% sower than$_, "\ n".

Page 29

Now the array technique is more awkward because we have to use a different index to look up
the countries for Watson and Sam. The hashes let us say smply count r y. When Hobbiton
gets bigger and adopts postal districts, we'll have the tiresome task of changing every [3] to

[4].

One way to make the array technique more consistent is aways to use the same index into the
array for the same meaning, and to give avalue of undef to any unused entry as shown in the
following table:

ndex | Meaning

Name

Building code (e.g., suite number, apartment number, mail drop)
Street number

Street name

Postal region (e.g., Postal Station A, Rural Route 2)
Municipality

City zone

State or province

Country

Postal code (Zip)

© 0 N o o~ W N P O

With this arrangement, the code to print an address from an array resembles the code for
hashes; it tests each field and prints only the defined fields:

foreach (@ddr) {
print $, "\n" if defined $_;
}

Both of the data structures we've described so far are awkward in another way: there'sa
different variable for each address. That doesn't scale very well; a program with thousands or
millions of these variablesisn't aprogram at all. It's a database, and you should be using a
database system and the DBI framework (by Tim Bunce) instead of the approaches discussed
here. And if Sam has two addresses, what do you call that second variable? A more
complicated structure is required.

Lols and Lohs and Hols and Hohs

So far, we have seen a single address stored as either an array (list) or a hash. We can build
another level by keeping a bunch of addressesin either alist or a hash. The possible
combinations of the two are alist of lists, alist of hashes, a hash of lists, or a hash of
hashes.break

Page 30

Each structure provides a different way to access elements. For example, the name of Sam's

city:

$samcity
$samcity
$samcity
$samcity

$lol[1]1]5];
$loh[1] {city};
$hol {' Sam Gangee' }[4];

$hoh{' Sam Gangee' }{city};

list of
list of
hash of
hash of

lists
hashes
lists
hashes

Here are samples of the four structures. For the list of lists and the hash of lists below, well
need to identify fields with no value; we'll use undef .break

list of lists
@ol = (
["Dr. Watson', undef,
' Baker St.', undef,
"NWL' undef,
undef
1.
[' Sam Gangee', undef,
' Bagshot Row , undef,
undef, undef,
undef
1.
)
list of hashes
@oh = (
{
name => 'Dr. Watson',
street =>"'221b Baker St.',
city => ' London',
zone = 'NW',
country => ' Engl and',
H
{
name => ' Sam Gangee' ,
street => 'Bagshot Row ,
city => ' Hobbi ton',
country => 'The Shire'
H
)
hash of lists
%ol = (
"Dr. Vatson' =>
[undef,
' Baker St.', undef,
"NWL', undef,

'221b',
' London'
" Engl and'

undef ,
' Hobbi ton',
'"The Shire'

'221b',
' London'
" Engl and'

undef

Page 31
' Sam Gangee' =>
[undef, undef,
' Bagshot Row , undef, ' Hobbi ton',
undef, undef, 'The Shire',
undef

hash of hashes
%oh = (
"Dr. Watson' =>
{

street => '221b Baker St.',
district ' Chel sea’',
city => ' London',
country => 'England',

Il
\%

' Sam Gangee' =>

{
street => ' Bagshot Row ,

city => ' Hobbi ton',
country => 'The Shire',

)

Y ou can decide which structure to use stratum-by-stratum, choosing alist or a hash at each
"level" of the data structure. Here, we can choose a list or a hash to represent an address
without worrying about what we'll use for the entire collection.

So you would surely use a hash for the top-level mapping of a person to an address. For the
addressitself, the situation isless clear. If you're willing to limit your address book to ssmple
cases or to place undef in al of the unused fields, an array warks fine. But if your address
book has alot of variation in its fields, hashes are a better choice. Hashes are best used when
there is no obvious order to the e ements; lists are best used when you will be using a
particular order to access the e ements.

Objects

We could aso use two types of objects to maintain our addresses: an Addr ess object to
manage asingle address, and an Addr ess_Book object to manage a collection of addresses.
Users wouldn't need to know whether an address was an array or a hash. When you rewrite the
Addr ess object to use an array instead of a hash for the extra speed, you wouldn't need to
changethe Addr ess_Book code at al. Rather than examining an Addr ess object with an
array index or ahash key, the Addr ess_Book would use methods to get at the fields, and
those methods would be responsible for dealing with the underlying data layout. While
objectscontinue

Page 32

have overhead that causes them to run more slowly than direct data structures composed of
arrays and hashes, the ability to manage the format of the two objects independently might offer
large savings in programming and maintenance time.

Let's see how objects would perform the tasks we compared earlier. Creating one of these
objectsislike creating a hash:

$Wat son_Addr ess = Address- >new(

nane => "Dr. Watson",
street => "221b Baker St.",
city => "London",

zone => "NW"

country => "Engl and",

)

If we provide methods for named access to the contents (such methods are called accessors),
extracting afield is easy:

if ($Watson_Address->country eq 'Finland') {

}
Printing the address is much simpler than the loops we needed earlier:

print $Wat son_Address->as_string;
print $Sam Address->as_stri ng;

How can this be so much easier? With the array and hash implementations, we had to write
loops to extract the contents and perform extra maintenance like suppressing the empty fields.
Here, amethod concesal s the extra work.

Aswelll see shortly, theas_st ri ng() method uses code that resembles the snippet used
earlier for printing the address from a hash. But now the programmer only has to encode that
snippet once, in the method itself; wherever an address is printed, a ssmple method invocation
suffices. Someone using those methods needn't know what that snippet looks like, or even if
$Wat son_addr ess and $Sam addr ess use the same technique under the hood.

Here is one possible implementation of our Addr ess class:break

Package Address;

Oreate a new address. Extra argunents are stored in the object:
$address = new Address(nane => "Wl f Blass", country => "Australia" .

#
sub new {
ny $package = shift;
ny $self ={ @ };
return bless $self, $package;

Page 33

The country nethod gets and sets the country field.
#
sub country {
ny $self = shift;
return @ ? ($self->{country} = shift) : $self->{country};

The nmethods for zone, city, street, and nane (not shown here)
will resenble country().

The as_string() nethod
sub as_string {

ny $self = shift;

ny $string;

foreach (gw(name street city zone country)) {
$string .= "$self->{$ }\n" if defined $self->{$ };
}

return $string;

}

Our Addr ess_Book might have methods to add a new address, search for a particular
address, scan through all of the addresses, or create a new book. That last method is called a
constructor in object-oriented terminology and is often named new. Unlike in other languages,
that name is not required in Perl—Perl permits you to name constructors whatever you like and
lets you specify as many different ways of constructing objects as you need.

How does this compare with ether the hash or the list structures? The major advantage has
already been mentioned—when a method changes, the code calling it doesn't have to. For
example, when Hobbiton starts using postal codes, thecount r y() method will continue to
work without any change. For that matter, sowill as_st ri ng() . (The subroutine
implementingas_stri ng() will need to be changed, but the places in the program that
invoked it will not change at al.) If adatastructureislikely to be changed in the future, you
should choose an object implementation so that programs using your code are protected from
those changes.

However, there are two disadvantages to this approach. First, the definition of the data
structure itself is more complicated; don't bother with the abstraction of objectsin a short
program. Second, there is that dual speed pendty in calling a method: the method hasto be
located by Perl, and thereis afunction call overhead. Compare that to just having the right
code directly in the place of the method call. When timeis critical, use "direct" structures
instead of objects. Table 2-2 compares arrays, hashes, and objects.break

Page 34

TAllAa N A Navfavimnanman ~Af Navl MNaAatab onAn

lauie £Z-Z. Fef vl il ite Ul Fell Ddlalypes

Datatype | Speed | Advantages Disadvantages

array best speed remembering element order; key must be
asmall positive integer

hash OK named access no order

object slow hides implementation slow speed

The Perl documentation includes perllol (lists of lists), perldsc (data structures cookbook),
perlobj (object oriented), and perltoot (Tom's object oriented tutorial). They provide plenty of
detail about how to use these basic data structures.

Using a Constructed Datatype

Suppose you were building a database of country information for authors of Perl books. Hereis
aportion of such a database:

@ountries = (
{ nanme => 'Finland |,
area => 130119,
| anguage => ['Finnish', 'Swedish'],
governnent => 'constitutional republic' },

{ nanme => ' Canada',
area => 3849000,
| anguage => ['English', 'French'],

governnent => 'confederation with parlianmentary denocracy' },

{ nanme => ' USA',
area => 3618770,
| anguage => ['"English'],
governnent => 'federal republic with denocracy' },
);
Let'sfind al of the English-speaking countries:
foreach $country (@ountries) {
if (grep ($_ eq "English", @$($Scountry}{language}})) {

foreach $l anguage (@ ${$country}{l anguage}}) {
print $ {$country} {nane}, " speaks $l anguage.\n";
}

}
This produces the following output: break

Canada speaks Engli sh.
Canada speaks French.
USA speaks Engli sh.

Page 35

Shortcuts

If reading @ ${ $count ry}{I anguage}} gaveyou pause, consider having to write it
over and over again throughout your program. Fortunately, there are other ways to write this.
WEe'll see one way of writing it a bit more ssmply, and two waysto avoid writing it more than
once.

We wrote that expression in its long and excruciatingly correct form, but Perl provides
shortcuts for many common cases. In the long form, you refer to avalue as @ expr} or
${expr} or % expr},whereexpr isareferenceto the desired type.

@ ${ $country}{I anguage}} isan array; we know that because it beginswith an €. The
expression within the outermost braces, ${ $count r y} { | anguage} specifies how to find
areference to the array. The reference is found with a hash lookup. The{ $count r y}
provides an expression that is areference to ahash. That'sinside

${ . . . }{language}, whichlooksupthel anguage key in that hash.
Breaking this apart into the order of Perl's processing:
@ ${ $count ry}{I anguage}} the expression is processed as:
$country the variable $country
${ } i s dereferenced
{ } as a hash,
| anguage subscripted by the word 'l anguage';
@ } result is dereferenced as an array.

@ ${ $count ry} {l anguage}}

As shorthand, Perl provides the - > operator. It takes a scalar on the left, which must be a
reference. On the right there must be either a subscript operator, such as[0] or

{I anguage}, anargument list, suchas(1, 2), oramethod name. The- > operator
dereferences the scalar as allist reference, a hash reference, afunction reference, or an object,
and uses it appropriately. So we can write ${ $count ry} {I anguage} as

$count ry->{| anguage} . You can read that as"$count r y pointsto a hash, and we're
looking up thel anguage key insde that hash."

We can a'so save some keystrokes by making a copy. Let'sfind al of the multilingual
countries:break
foreach $country (@ountries) {
ny @anguages = @ S$country->{l anguage} };
if (@anguages > 1) {
foreach $l anguage (@ anguages) {
print $country->{nane}, " speaks $l anguage.\n";
}

Page 36
This produces the following output:

Fi nl and speaks Fi nni sh.

Fi nl and speaks Swedi sh.
Canada speaks Engli sh.
Canada speaks French.

Copying the list has two disadvantages. Firt, it takes alot of time and memory if thelistis
long. Second, if something modifies@ $count ry->{| anguage} }, theaready copied
@ anguages won't be changed. That'sfine if you wanted to save a snapshot of the original
value. However, it'sahazard if you expected @ anguages to continue to be a shortcut to the
currentvaueof @ $country->{| anguage} }.

Gurusamy Sarathy's Alias module, available from CPAN, fixes both those problems. It lets you
create smple local names that reach into the middle of an existing data structure. Y ou don't
need to copy the parts, and the references are to the actual data, so modifying the easy-to-type
name changes the underlying data.

use Alias (alias); # Retrieve fromww. perl.com CPAN nodul es

foreach $country (@ountries) {
| ocal @anguage, $nane;
al i as | anguage => $country->{| anguage};
al i as nane => $count ry->{ nane};
if (@anguage > 1) {
foreach $l anguage (@ anguage) {
print $nane, " speaks $l anguage.\n";
}

}
This produces the same output as before, without the cost of copying the list of languages:

Fi nl and speaks Fi nni sh.
Fi nl and speaks Swedi sh.
Canada speaks Engli sh.
Canada speaks French.

There are two caveats about the Alias module. First, only dynamic variables can be set to an
aliased target (although the target can be accessed with alexical value, like $count ry inthe
previous example). Y ou declare dynamic variableswith al ocal staterrent. That meansthey
will be shared by any subroutines you call, whether you want that or not.* Additionally, it is
the underlying data—the array or the string—that gets dliased. If achange is made to the list of
languages by push, pop, or other list operators, the changes will be visible through the dlias.
But suppose you replace the entire language structure:break

* For more details about dynamic versus lexical scoping and how they work, look at O'Reilly's
Advanced Perl Programming, by Sriram Srinivasan (O'Reilly, 1997).

Page 37
$country->{ language} = ['Esperanto'];

Here, the aliased list till refersto the old value, even though $count ry- > {| anguage}
no longer does. The dliasis not directly tied to that reference variable, only to its value at the
time the aliasis established.

An additional concern might be the cost of loading the Alias module and the various modules it
uses. One measurement shows that overhead to be just under athird of a second, raising the
running time of those last two examples from 0.19 seconds to 0.48. The difference is significant
only for very frequently used programs.

Perl Arrays.
Many Data Structuresin One

Perl's arrays are more powerful than the arrays provided by C and many other languages. The
built-in operators for manipulating arrays allows Perl programsto provide all of the
capabilities for which other languages must resort to a multitude of different data structures.

Algorithm analysis often assumes that changing the length of an array is expensive, making it
important to determine the exact size of arrays before the program starts. For this reason, many
data structures are designed to restrict the way that they are accessed so that it is easier to
implement them efficiently in such languages.

But in Perl, arrays can vary in length dynamically. Extending, contracting, and reordering
mechanisms are built into the language. The traditional costs of reorganizing arrays are swept
under the rug, but Perl provides a very plush rug indeed and the sweepings are rarely large
enough to be detectable.

When an array must be grown, Perl allocates multiple additional elements at one time,
choosing a number proportiona to the current size of the array. That way, most array
operations won't require individual allocation, but instead use one of the extra entries that was
allocated the last time an allocation was required.

Traditional algorithms also take pains to ensure that structures that are no longer needed are
carefully tracked so that their memory can be freed and reused for other purposes. Perl
provides automatic garbage collection: detecting when datais no longer accessible and freeing
it. Few Perl algorithms need to manage their own garbage (we'll discuss an exception in the
section "Linked Lists' in Chapter 3.)

The Perl programmer usually needn't worry about these issues. The result is code that's easier
to understand and modify, making it possible to implement magor improvements that more than
make up for any minor inefficiencies that might occur from Perl's hel pfulness.break

Page 38

If you are concerned that some of the costs hidden by Perl are too high, you can investigate as
follows:

1. Mesasure your program to see whether it is too slow—if it's not, stop worrying. Thereisa
great danger that an attempt to speed up a program will make it harder to understand, harder to
adapt to future needs, more likely to have bugs, and finally, not noticeably faster anyhow.

2. If itistoo dow, profileit. There are anumber of profilers available through CPAN. Use
them to isolate the time-consuming parts. Consider alternative choices of agorithm to replace
the worst parts. If thereis no better algorithm, then you can exarrine the code to seeiif it can be
changed to implement the algorithm more efficiently.

3. Asyou make changes, benchmark. Is the "better" algorithm really better? Except where the
speedup is obvious, you should use the Benchmark to quantify the actua improvement. Don't

forget to remeasure the entire program, as well as the part that has been changed—sometimes
an improvement in one area leads to an unexpected cost in another, negating the original gain.

For awell-written description of optimizing, and not optimizing, we recommend reading
Programming Pearls, More Programming Pearls, and Writing Efficient Programs, by Jon
Bentley. (Despite the title, he doesn't use Perl, but many of the lessons apply to all

programming.)
Queues

A gueue storesitemsin FIFO (first-in first-out) order. It returns them in the order that they
entered, like aline of people at a cashier. New items are added to the end of the queue. The
oldest is removed from the front. Queues work well to allow two different portions of the code
to work at different speeds while still interacting smoothly. They permit you to use one chunk
of code to collect (or generate) items to be processed and a separate chunk of code to do the
processing. An exampleis buffered input. When your program reads a line from disk (e.g.,

whi | e (<FI LE>)), Perl doesn't read just one line. Instead, it reads an entire block of bytes:
typically several kilobytes. Perl returns only the first line back to the program, storing
("queueing") the rest of the dataiin a buffer. The next time alineis requested, it is ssimply taken
from the buffer without having to wait. When the buffer runs out of data, Perl reads another disk
block into the buffer (to the end of the queue) and continues.

A significant effort to implement in traditional languages, the queue is a perfect example of
how much Perl's arrays do for you. Use an array for the structure, add new items to the end
with the push operator, and remove the oldest from the frontcontinue

Page 39

of the array withtheshi f t operator. You can also use pop andunshi f t , but thisisless
common. It's also dower.*

Hereis an example of how we might send a sequence of commands to a robot. The robot
command processor must wait until one command completes before it issues the next, so well
store the commands in a queue.

Initialize robot control queue
@ontrol _commands = ();

We have a glass in the robot hand, place it on the table

(These commands might be typed by the user or read from

afile).

push (@ontrol _commands, "rotate shoul der until above table");
push (@ontrol _commands, "open el bow until hand at table level");
push (@ontrol _commands, "open fingers");

Get the hand cl ear wi thout knocking over the gl ass

push (@ontrol _comands, "close el bow 45 degrees");

in the robot processing portion of the program

Central |oop - process a queue of commands.

while ($command = shift(@ontrol _commands)) {
. . . execute $conmmand

}

Computer scientists have investigated many queue implementations; they differ only in how
they dedl with changing array sizes and reindexing when the first element is removed from an
array. Perl deals with these issues internally, so the solution shown hereis all you need.

Stacks

A stack is much like a queue except that you remove the most recently added element rather
than the | east recently added. The FIFO order has been changed to LIFO (last-in first-out). A
typical example (the one giving rise to the name) is a stack of platesin a cafeteria: dinerstake
the top plate from the stack, but when a new plate has been washed, it is put on top of the stack
and will be used next.

Stacks are frequently used when operations need to be broken down into suboperations to be
executed in sequence. When such a compound operation is encountered, the operation is
popped off, and the suboperations are pushed ontocontinue

* Efficiency Tip: push-shift Versus unshift-pop. push and shi f t can be 100 times faster than
unshi ft andpop. Perl grows an array by ever larger amounts when it is extended at the end but
growsit only by small amounts when it is extended at the front.

Page 40

the stack inits place. Well see an example of thisin a moment, when those robot operations
that were queued turn out to be high-level operations, each involving a series of more detailed
steps that must be carried out in order before the robot can proceed to the next high-level
operation.

Aswith queues, astack can be implemented in Perl using an array. Y ou can add new items to
the stack with the push operator and remove items with the pop operator.

Deques

A deque is a double-ended queue—a queue that can add and remove items either at the
beginning or at the end. (They have also been called "dequeues.") A deque can be implemented
in Perl with (you guessed it) an array, using the four array operators: shi ft, unshift,
push, and pop. A deque can be used for a number of purposes, such as for a queue that
permits high priority items to be stacked at the front. (That uses the capabilities of both a queue
and astack at the sametime.)

Let's go back to the robot controller loop. The commands that it accepts might be in many

different forms. The example commands used earlier were in pseudonatural language; each
command will have to be parsed and turned into alow-level operation (or a sequence of
low-level operations). We won't show the parsing here, but we'll switch how we use the
@ont rol _comands array. Instead of only using it as a queue, we'll now use it asa
deque. That permits us to easily dea with both parsing and multistage commands by replacing
the item at the front of the "queue" with one or more aternatives that will accomplish the
desired task. For example, the high-level command open fi nger s will require separate
low-level commands to the multiple motors in each finger. Operating a motor might require
specia subcommands to deal with speeding up and sowing down. When a multistep command
is performed, al of the substeps must be performed before the whole command can be
considered complete. Here's a new variation on the main loop of the controller, which aso
adds the code to collect new user commands when they are available (e.g., typed by the user)
and to delay as needed for commands in progress):break

Initialize:
ny @ontrol _comands = (); # no previous conmmands
ny $delay_until = ting; # no command in progress

Central |oop - process robot conmands in detail
while (1) { # only termnate on an EXIT comrand
Check for new command i nput.
if (command_available()) {
push(@ontrol _comrands, get_conmand());

if ($delay_until <=time & & $command = shift(@ontrol _commands)) {

Page 41

if (! ref $command) {
Parse the high-level text comrand.

Wien the conmand has been parsed into internal form

it will be put at the front of the deque for inmediate

processing (since it is the details of the current

command that have been determ ned).

unshift (@ontrol _commands, [$intcnd, $argl, $arg2])
} else {

$op = $conmmand->[0] ;

Process an internal comrand.

PROCESS_COMVAND() ;

}

Processing a command is a matter of determining which command has been requested and
deding with it. Note that this next command has already been removed from the front of the
deque; usudly, that is what we want. (While we've shown this as a subroutine call earlier, the
following piece of code would be inserted in place of the PROCESS COVIVAND() line.)

The command MULTI _ COVIVAND causes a sequence of one or more commands to be executed
inturn. Aslong as two or more commands in the sequence have not yet been executed,

MULTI _ COMVAND prepends two commands to the front of the deque: the next subcommand in
the sequence and itself. After the subcommand has been processed, the MULTI _ COMVAND

will again be executed to invoke the subsequence subcommands. When there is only one
subcommand remaining to be executed, MULTI _ COVMAND prepends only that command

without a <o placing itself back on the deque. After that final subcommand completes, the

MULTI _ COMVAND has finished and need not be reinvoked.break

if ($op == MITI _COWAND) {
The first argunent of MJLTI_COVMAND is an array.
Each elenment of the array is a lowlevel conmand array
conplete with its own private argunents.

Get the next command to be processed.
$thisop = shift ($command->[1]);

Schedul e this conmand to rerun after $thisop

if (@ $comand->[1] }) {
$thisop is not the |last subcommand,
the MULTI _COMWAND will need to run again after $thisop
unshift (@ontrol _commands, $command);

Schedul e $t hi sop
unshift (@ontrol _commands, $thisop);

There will be one or more motor commands that actually cause the robot to take action:

elsif ($op == MOTOR_COWAND) {
The argunents specify which notor and what comrand

| ssue notor control command
$command- >[1] - >do_conmmand($conmand->[2]);

}
A delay command causes a delay without changing a motor:
el sif ($op == DELAY_COMVAND) {
Stop issuing commands for a while
$delay_until = $comand->[1] + tinme;

}

Additional commands could be added easily as required:
}oelsif (.. .){

O her commands: flip switches, read sensors,

}
Still More Perl Arrays

Page 42

Sometimes you have to move an item or agroup of itemsinto (or out of) the middle of an array,
rather than just adjust at the ends. This operation, too, can be applied to Perl arrays. In addition
topush, pop, shi ft,andunshi f t, thereisthe Swissarmy knife of array operators:
splice. spli ce cando anything the other operators can do, and a good deal more: it can
replace a part of an array with another array (not necessarily the same length). (Any decent
Swiss army knife can replace a number of other tools—while it might not be quite as good as
as each one for its specific job, it is good enough to function effectively for all of the jobs,
including some jobs for which you might not have a special-purpose tool in your toolbox.)
There is one hazard: when you usespl i ce to modify the middle of an array so that you
change the size of the array, Perl must copy all the elements of the array from the splice point to
the closer end. So, unlike the other array operators, spl i ce can have acost proportiona to
the length of the array, which is O (N) instead of O (1). Doing thisin aloop can significantly
degrade an algorithm's performance.

If you were building alist to represent a sandwich, you might say this:
@andwi ch = gw bread bol ogna bread);

Later, when you decide that you would prefer a club sandwich: break

Page 43

splice (@andwi ch,
renove the bol ogna
1, 1,
replace with club innards
gw chi cken | ettuce bread bacon nayo)

Hey, you forgot to butter that bread. And hold the mayo.
splice (@andwich, 1, 0, "butter");
splice (@andwi ch, -2, 1, "butter");

Enj oy!
@mouth = splice (@andwi ch, 0);

Thefirst argument to spl i ce isthe array to be modified. The next two specify the section of
the array to be removed and returned by the operator. They give the start position and length,
respectively. A negative position counts backward from the end of the list. Any additional
arguments are used to replace the removed elements. If the length of the selected sublist is zero,
no arguments are deleted and the replacement elements are inserted in front of the element
selected by the offset. Figure 2-1 shows how this sequence of operations progresses.

Table 2-3 shows how spl i ce can mimic al the other array operators.

Table 2-3. Equivalent Splice Call for Common Array Operators
Expression | spl i ce Equivalent

push (@rr, @ew; splice (@rr, scalar(@rr), 0, @ew;
$item= pop (@rr); $item= splice (@rr, -1);

A~ £ 4 A~ A PN PN A~ N la} a\ .

SHre (el), Sprice (i, v, 1),
$item= unshift (@rr, @ew); $item= splice (@rr, 0, 0, @ew;
Sarr[$i] = $x; splice (@rr, $i, 1, $x);

If you wanted to take the middle 5 elements of a 15-element list and put them in the middie of a
20-element list, you could write:

splice (@est, 10, O, splice(@rc, 5, 5));

Some expenseis involved because a Perl array is one block of memory that contains all of the
elements. When those middle five elements are removed, the remaining two groups of five
become a single ten element array, so one of the groups has to be copied next to the other. (The
space that is no longer used may be freed up, or Perl may keep it available in casethe array is
later grown again.) Similarly, in the target list, inserting the new elements into the middle
requires yet more copying.

It's cheaper to work at the ends of arrays; Perl remembers when an allocated chunk at the
beginning or end is unused. By increasing or reducing the size of thiscontinue

Page 44

" ¥
i 1]
i bread !
1 o
1 L]
1]
o] bologos
1]
i]
P 1
4]
i breod)
4]
[} L
LY '

O vice(@sandiich, 1,1, qutchicken lefuce breod bocon moyol);

PR L LR E LR

'@ sondwich, 1, 0, “butler”);
aﬁ@ sendwich, -2, 1, “butter”);

L R

4

bread]

buter E

chitken]

e 5
-\'\'.""" ; m . E
'1.._ :"1 m E

Figure 2-1.
Splicing an array that represents a sandwich

Page 45

Space, most operations at the ends of the array can be performed very quickly. Every oncein a

while, Perl will have to allocate more space, or free up some of the unused space if there's too
much waste. (If you know how big your array must end up, you can force al the alocation to
occur in one step using:

$#array = $size;
but that is rarely worth doing.)

However, when a splice takes a chunk out of the middle of alist, or inserts a chunk into the
middle, at |east some portion of the list has to be copied to fill in or free up the affected space.
In asmall array the cost isinsignificant, but if the list getsto be large or if splicing is
performed frequently, it can get expensive.break

Page 46

3_
Advanced Data Structures

Much more often, strategic breakthrough will come from redoing the
representation of the data or tables. Thisiswherethe heart of a
programlies. Show me your flowcharts and conceal your tables, and |
shall continue to be mystified. Show me your tables, and | won't usually
need your flowcharts; they'll be obvious.

—Frederick P. Brooks, Jr., The Mythical Man-Month

Thereisadynamic interplay between data structures and agorithms. Just as the right data
structure is necessary to make some algorithms possible, the right algorithms are necessary to
maintain certain data structures. In this chapter, we'll explore advanced data
structures—structures that are extraordinarily useful, but complex enough to require algorithms
of their own to keep them organized.

Despite the versatility of Perl's hashes and arrays, there are traditional data structures that they
cannot emulate so easily. These structures contain interrelated elements that need to be
manipulated in carefully prescribed ways. They can be encapsulated in objects for ease of
programming, but often only at a high performance cost.

In later chapters, algorithms will take center stage, and the data structures in those chapters
will be chosen to fit the algorithm. In this chapter, however, the data structures take center
stage. We'll describe the following advanced data structures:

Linked list
A chain of elements linked together.

Binary tree
A pyramid of elements linked together, each with two child e ements.break

Page 47

Heap

A collection of elements linked together in atree-like order so that the smallest is easily
available.

Wel'll leave some other structures for later in the book:

B-tree
A pyramid of elements where each element can have references to many others (in Chapter
5, Searching).

Set
An unstructured collection in which the only important information is who belongs and who
doesn't in Chapter 6, Sets.

Graph
A collection of nodes and edges connecting them in Chapter 8, Graphs.

Linked Lists

Likeasimple array, alinked list contains elementsin afixed order. In the discussion in the
previous chapter of the spl i ce operator used for Perl lists, we described how splicing
elementsinto or out of the middle of alarge array can be expensive. To cut down the expense
of copying large chunks of an array you can use alinked list. Instead of using memory as
compactly as possible, placing one element right after the previous one as an array does, a
linked list uses a separate structure for each element. Each of these structures has two fields:
the value of the element and areference to the next element in the list.

Linked lists are useful for ordering el ements where you have to insert or delete them often,
because you can just change areference instead of copying the entire list. Nearly all word
processors store text as alinked list. That's why cutting and pasting large amounts of text is so
quick. Figure 3-1 shows the memory layout of the two types of lists.

One difference between the array and the linked list is obvious: the linked list uses more space.
Instead of 5 valuesin 1 structure, there are 10 valuesin 5 structures. In addition to the visible
extra space for the 5 links, extra space is needed for the internal Perl overhead for each

separate array.

Since the linked list contains 5 separate el ements, it cannot be created as simply as an array.
Often, you will find it easiest to add el ementsto the front of alist, which means that you must
create it backwards. For instance, the following code creates a linked list of the first 5
squares:.break

$list = undef;
foreach (reverse 1..5) {

$list = $list, $ * $];
}

Page 48

Linked List

““‘EI—“'EI—'EI‘—'D—'I
“ LoE EI)| (Do}

Figure 3-1.
Perl array and linked list

If you are not used to dealing with references, or links, Figure 3-2 will he helpful in
understanding how the list grows with each iteration of that loop.

Each element of the linked list isalist containing two scalars. Thefirst scalar, [0] , isa
reference that points to the next element of the linked list. The second scalar, [1] , holds a
value: 1, 4, 9, 16, or 25. By following the reference in each element, you can work your way to
theend of thelist. So, $l i st - >[0] [0] [1] hasthe value 9—we followed two links to get
to the third element, and then looked at the element. By changing the value of the reference
fields, you can totally reorganize the order of the list without having to copy any of the element
valuesto new locations.

Now we'll make code acting on such link elements more readable by providing named indices.
WEIl useuse const ant to definetheindices. This hasavery smal compile-time cost, but
there is no runtime penalty. The following code switches the order of the third and fourth
elements. To make it easier to understand, as well as to write, we create some extra scalar
variables that refer to some of the elements within the linked list. Figure 3-3 shows what
happens as the switch occurs. Figure 3-4 shows what really changed in the list. (The elements
themselves haven't moved to different memory locations; only the order in which they will be
reached viathe link fields has changed.)break

use constant NEXT => 0;
use constant VAL => 1;

Page 49

Inifiglization : & fst= undef:
(3]
After first fteration : & list= [5list, 25]
{5}
=
25} |
After second Heration : 4 list= [$ st 18]

T
O T & G E

PRI A |

‘ :
F

Figure 3-2.
Creating and adding links to alist

$f our = $list->[NEXT];

$ni ne = $f our - >[NEXT] ;

$si xt een = $ni ne- >[NEXT] ;

$ni ne- >[NEXT] = $si xt een- >[NEXT] ;

$si xt een- >[NEXT] = $ni ne;

$f our - >[NEXT] = $si xt een;

Other operations on linked lists include inserting an el ement into the middle, removing an
element from the middle, and scanning for a particular element. We'll show those operations
shortly. First, let'slook at how you can implement alinked list.break

Page 50

Before changing links

Pt
et

slist

e
FiEne

s fist

After seffing Ssixteen->[NEXT]

Fm TR
Fon s

i

final order

T
R

E S
i = -.E:

SR

Figure 3-3.
Reordering links within alinked list

Page 51

Final arder: 1 4 169 25

Figure 3-4.
Final actual list order

Linked List | mplementations

The previous examples show linked lists as the principle data structure, containing asingle
datafield in each element. It is often advantageous to turn that inside out. Many kinds of data
structure can be augmented ssimply by adding an extrafield (or fields) to contain the "link"
value(s). Then, in addition to any other operations the data structure would otherwise support,
you can use link list operations to organize multiple instances of the data structure. As shown in
Figure 3-5, here are some ways to add alink field:

For an array
Y ou can add an extra element for the link, possibly at the front but more likely after the last
field of information. This addition can be done only if the normal use of the array remains
unaffected by the extrafield. For example, there's nowhere to safely add alink field to a
deque array because the top and the bottom must both be real elements of the array. (Well
see an alternate way to deal with such arraysin a moment.)

For a hash
Y ou can add an extra element, perhaps with the key next , usualy without any effect on the
rest of your code. (If your code needsto usekeys, val ues, or each to iterate over all
of the elements of the hash, it may require a specia check to skip the next key.)

For an object
You can add an extra method to both get or set alink value; again, next () might bea
good name for such a method. Inside the class, you would manage the value of the link by
storing it within the internal structure of the object.

Sometimes, you cannot change an existing structure by ssmply inserting alink field. Perhaps the
extrafield would interfere with the other routines that must deal with the structure. A deque, for
example, needs to allow elementsto be extracted from either end, so any place you put the
extrafield will bein danger of beingcontinue

Page 52

Structure hppeoronce olone s pont of linked list
Arroy e
Hosh

Separate

Structure

Figure 3-5.
Turning data structures into linked lists

treated as an element of the deque. If the structure is a scalar, thereis no room for alink field.

In such cases, you must use a separate structure for the linked list, as we used for our list of
squares at the beginning of the chapter. To make alist of scalars, your structure must have two
elements: one for the link and one for the scalar value. For a list to accommodate alarger data
structure, you till need two elements, but in addition to the link you need a reference to your
embedded data structure (the last example in Figure 3-5).

Tracking Both Ends of Linked Lists

Now let'slook at some of the ways that the components of alinked list can be joined together.
We aready saw the basic linked list in which each element points to the next and a head scalar
pointsto thefirgt. It is not always easy to generate elementsin reverse order—why did we do
it that way? Well, it is essential to remember the current first element of thelist, aswe did with
thevariable $I i st . While you can follow the link from any element (repeatedly if necessary)
to dis-soft

Page 53

cover thetail of thelist, there is no corresponding way to find the head if you haven't explicitly
remembered it. Since we needed to remember the head anyway, that provided a convenient
placeto insert new elements.

We can generate the list front-to-back by keeping a second scalar pointing to the end. Here's the
method that is simplest to understand:

$list = $tail = undef;

foreach (1..5) {
my $node = [undef, $_ * $_1];
if ($tail eq undef) {

first one is special - it becones both the head and the tai
$list = $tail = $node;
} else {

subsequent el enents are added after the previous tai
$tai | - >[NEXT] = $node

and advance the tail pointer to the new tai

$tail = $node;

}

$t ai | pointsto thelast element (if thereis one). Inserting the first element is a special case
sinceit hasto changethe vaue of $I i st ; subsequent additions change the link field of the
final element instead. (Both cases must update the value of $t ai | .)

We can make the previous code faster and shorter by replacing thei f statement with asingle

sequence that works for both cases. We can do that by making $t ai | areference to the scalar
that containsthe undef that terminatesthelist. Initialy, that isthe variable $I i st itsalf, but
after elements have been added, it isthe link field of the last e ement:

$list = undef;

$tail = \$list;

foreach (1..5) {
ny $node = [undef, $ * $_ 1];
$$tail = $node;
$tail = \$node- >[NEXT];

}

Whether or not thelist is empty, $t ai | refersto the value that must be changed to add a new
element to the end of the linked list, sonoi f statement isrequired. Note that |ast assignment: it
sets$t ai | to point to the link field of the (just added) last element of the list. On the next
iteration of the loop, the preceding statement uses that reference to link this element to the next
one created. (This method of writing the code requires more careful examination to convince
yourself that you've written it correctly. The longer code in the previous example is more

easily verified.) Figure 3-6 shows how this proceeds.break

Page 54

Aftar initinlization

Affer second Heration

5:::;]‘[;
sl 3 - (2]

-
-
*

After fifth ieration

srm'r[:
miyoy a 2]

Figure 3-6.
Creating and adding linksto alist, head first

One hazard of using atail pointer (of either form) isthat it can lead to additional work for other
list operations. If you add a new element at the front of the list, you have to check whether the
list isempty to determine whether it is necessary to update the tail pointer. If you delete an
element that happens to be the last onecontinue

Page 55

on thelist, you have to update the tail pointer. So use atail pointer only if you really need it. In
fact, you might use the tail pointer only during an initialization phase and abandon it once you
start operating on the list. The overhead of maintaining the head and the tail through every

operation makes it more tempting to put al of the operations into subroutines instead of putting
them inline into your code.

Here's code to create alinked list of linesfrom afile. (It is hard enough to read the lines of a
filein reverse order that it is worth using the tail pointer method to create this linked list.)

$head
$tail

undef ;
\ $head;

while (<>) {
ny $line = [undef, $_ 1];
$$tail = $line;
$tail = \3$line->[NEXT];

}

Additional Linked List Operations

Adding anew element to the middle is amost the same as adding one to the beginning. You
must have a reference to the element that you want the new element to follow; well cal it
$pr ed:

$pred points to an elenent in the nmiddle of a linked list.
Add an element with value 49 after it

$pred->[NEXT] = [$pred->[NEXT], 49];

We created a new element and made $pr ed- >[NEXT] point to it. The data that
$pr ed- >[NEXT] originaly pointed to still exists, but now we point to it with the link field
of the new element.

Thisoperation is O (1); it takes constant time. Thisisin contrast to the same operation done on
an array, which is O (N) (it can take time proportiona to the number of elementsin the array
when you splice avalueinto the middle).

Deleting an element of the linked list isalso very smplein two cases. Thefirst iswhen you
know that the element to deleteis at the head of the linked list:break

$list points to the first elenent of a list. Renove that elenent.
1t must exist or else this code will fail.
$list = $list-> NEXT];

Sane operation, but renenber the value field of the deleted el ement.
$val = $list->[VAL];
$list = $list-> NEXT];

Page 56

The other simple case occurs when you know the predecessor to the element you wish to delete
(which can be anywhere except at the head of the linked list):

$pred points to an element. The elenent following it is to be
deleted fromthe list. A runtine error occurs if there is
no el enent foll ow ng.

$pred- >[NEXT] = $pred- >[NEXT] [NEXT] ;

Same operation, but renenber the value field fromthe del eted el enent.
$val = $pred->[NEXT] [VAL];
$pred- >[NEXT] = $pred- >[NEXT] [NEXT] ;

In all cases, the code requires that the element to be deleted must exist. If $1 i st were empty
or if $pr ed had no successor, the code would attempt to index into an undef value,
expecting it to be areference to an array. The code can be changed to work in all situations by
testing for existence and avoid updating:

Renove the first elenent froma list, renenber its val ue
(or undef if the list is enpty).
$val = $list and do {
$val = $list->[VAL];
$list = $list->]NEXT];
}

Often, the context provided by the surrounding code ensures that there is an element to be
deleted. For example, aloop that always processes the first element (removing it) separates the
test for an empty list from the remova and use of an existing element:

while ($list) {
There are still elenents on the |ist.
Get the value of the first one and renove it fromthe |ist.
ny $val = $list->[VAL];
$list = $list->] NEXT];

. . . process $val

}

Another common operation is searching the list to find a particular element. Before you do this,
you have to consider why you are looking for the element. If you intend to remove it from the
list or insert new elements in front of it, you really have to search for its predecessor so that
you can change the predecessor's link. If you don't need the predecessor, the search is
simple:break
for ($elem= $list; $elem $elem = $el em >[NEXT]) {
Determine if this is the desired el ement, for exanple.
if ($elem>[VAL] == $target) {
found it
. . . use it .

| ast;

Page 57
}
}
unless ($elem) {

Didn't find it, deal with the failure.
.

}

If you need to find the predecessor, there are two special cases. Asin the preceding code, the

element might not be on thelist. But, in addition, the eement might be the first element on the
list, and so it might not have a predecessor.

There are anumber of ways to deal with this. One uses two variables during the loop: one to
track the node being tested and the other to track its predecessor. Often, you want to use the
node you searched for, as well as the predecessor, so two variables can be a convenience.
Here, welll call them $el en and $pr ed. Asin the previous case, after the loop, $el enis
undef if the dement was not found.

Much as before, when we used $t ai | to track the last element so that we could add to the
end, there are two ways to deal with $pr ed. It can be areference to the preceding element of
thelist, in which case it needs to have a special value, such asundef , when the node being
examined isthefirst one and has no predecessor. Alternatively, it can be areference to the
scalar that links to the element being examined, just aswe did with $t ai | earlier. We use the
second alternative which again leads to shorter code. Since there are different reasons for
searching, we show alternative ways of dealing with the node once it's found.break

Search for an elenment and its predecessor scalar |ink (which
wll either be \$list or a reference to the link field of the
preceeding el enent of the list).
for ($pred = \$list; $elem= $$pred; $pred = \$el em >[NEXT]) {
if ($elem>[VAL] == $target) {
Found it. $elemis the elenment, $pred is the link
that points to it.

. . . use it

Choose one of the follow ng term nations:

HHARHBHHBH AR HBH AR HBHHRBH AR HRH AR AR HBH AR R AR

1 Ret ai n $el em and conti nue sear chi ng.

next ;

HHHHHHHHHHHHH TR
2 Del ete $el em and conti nue sear chi ng.

Since we're deleting $elem we don't want $pred
to advance, so we use redo to begin this |oop

iteration again.

redo if $elem = $$pred = $el em >[NEXT];

| ast ;
BB R H
3: Retain $el em and term nate search

| ast ;

Page 58

HHHHHBHHBH R H AR H R R R R
4. Del ete $el em and term nate search

$$pred = $el em >[NEXT] ;

| ast;

HHHHHBHHBH R H AR H R R R R

A third alternative is to ensure there is always a predecessor for every element by initializing
the list with an extra"dummy" element at the front. The dummy element is not considered to be
part of the list but isaheader to thereal list. It hasalink field, but its value field is never used.
(Sinceit is conveniently available, it might be used for list administration tasks. For instance, it
could be used to store atail pointer instead of using asecond $t ai | variable.) Thisform lets
us use areference to an entire element instead of the more confusing reference to alink field,
while removing the specia cases for both the tail tracking and for the search for a predecessor
operations.break

Initialize an enpty list with a dummy header that keeps a

tail pointer.

$list = [undef, undef];

$list->[VAL] = $list; # initially the dummy is also the tai

Add elenents to the end of the list - the list of squares.
for (($i =1, $i <=5, ++%i) {

$list->[VAL] = $list->[VAL][NEXT] = [undef, $i * $i];
}

Search for an elenment on a list that has a dummy header
for ($pred = $list; $elem = $pred->[NEXT]; Spred = Selen {
if ($elem>[VAL] == $target) {
Found it: $elemis the elenent, $pred is the previous el enent.

. . . use it .
possibly deleting it wth:
$pred- >[NEXT] = $el em >[NEXT] ;

Choose one of the followi ng termninations:
(Simlar choices as before)
HHBHSH SRR R AT R R R R R R A R R

1. Ret ai n $el em and conti nue sear chi ng.

next ;

HHHBHH B AT HH AU AT AT A A A A A AR R R R
2: Del ete $el em and conti nue sear chi ng.

(Because of the deletion, $pred should not advance, and

$elemno longer is in the list. W change $el em back to
$pred so it can advance to the new successor. That

neans we don't have to check whether $elemis the tail.)
$pred- >[NEXT] = $el em >[NEXT];

$el em = $pred;

next ;

Page 59

HHHHHHHHHH B HHHHHH SRR SRR SRR SRR
3: Retain $el em and term nate search

| ast;

HHHHHHHHHH B HHHHHH SRR SRR SRR SRR
4: Del ete $el em and term nate search

$pred- >[NEXT] = $el em >[NEXT];

| ast;
HHBHBHHH BB BB A AR

}
Onefinal operation that can occasionally be useful is reversing the elements of alist:

$list = list _reverse($list)
Reverse the order of the elenents of a list.
sub list _reverse {

ny $old = shift;

ny $new = undef;

while (nmy $cur = $old) {
$ol d = $ol d- >[NEXT] ;
$cur - >[NEXT] = $new;
$new = S$cur;

return $new;

}

We could have used the previous routine instead of atail pointer when reading lines from a
file:

Alternate way to build list of Iines from STDI N

ny $list;
while (<>) {
$list = $list, $_1;
}
$list = 1list_reverse($list);

However, the extra pass through the list to reverse it is slower than building the list correctly
(with the tail pointer). Additionally, if you often need to traverse alist backward, you'll
probably instead prefer to use doubly-linked lists as described a bit |ater.

The previous material on linked lists has been fairly slow-moving and detailed. Now, we're
going to pick up the pace. (If you absorbed the previous part, you should be able to apply the
same principlesto the following variants. However, you are more likely to be using a
packaged module for them, so precise understanding of all of the implementation details is not
so important as understanding their costs and benefits.)break

Page 60

Circular Linked Lists

One common variation of the linked list isthe circular linked list, which has no beginning and
no end. Here, instead of using undef to denote the end of thelist, the last element points back
to the first. Because of the circular link, the idea of the head and tail of the list gets fuzzier. The
list pointer (e.g., $1 i st) isnolonger the only way to access the element at the head of the
linked list—you can get to it from any e ement by following the right number of links. This
means that you can Ssmply reassign the list pointer to point to adifferent element to change

which element isto be considered the head.

Y ou can use circular listswhen alist of items to be processed can require more than one
processing pass for each item. A server process might be an example, since it would try to give
each of its requests some time in turn rather than permit one possibly large request from
delaying al of the others excessively.

A circular linked list gives you most of the capabilities of a degue. Y ou can easily add
elements to the end or beginning. (Just keep the list pointer always pointing at the tail, whose
successor is by definition the head. Add new elements after the tail, either leaving the list
pointer unchanged or changing it to point to the new element. The first option leaves the new
element at the head of the list, while the second |eaves the new element at the tail.)

Removing elements from the head is equally easy. Deleting the element after the tail removes
the head element. However, you can't delete the last element of the list without scanning the
entire list to find its predecessor. Thisisthe one way that a circular linked list is less capable
than a deque.

Thecircular linked list aso has one capability that a deque lacks: you can inexpensively rotate
the circle smply by reassigning the list pointer. A deque implemented as an array requires two
splice operations to accomplish arotation, which might be expensiveif the array islong.

In practice, however, the most common change to the list pointer isto move it to the next
element, which is an inexpensive operation for either acircular linked list or a deque (just
shi f t the head off the deque and then push it back onto the tail).

With acircular linked list, as with the standard linked list, you must handle the possibility that
the list isempty. Using a dummy element is no longer a good solution, because it becomes more
awkward to move the list pointer. (The dummy element would have to be unlinked from its
position between the tail and the head and then relinked between the new tail and head).
Instead, just make the code that removes an element check whether it isthe only element in the
list and, if so, set the list pointer to undef .break

Page 61

Here'sthe code for a very ssimple operating system that uses acircular linked list for its
runnable processes. Each processisrun for alittle while. It stops when it has used up itstime
dice, blocks for an 1/0O operation, or terminates. It can aso stop momentarily when some I/O
operation being conducted for another process completes—which re-enables that other
process. We avoid the empty list problem here by having an | dl e processthat is aways
ready to run.break

{

process
Thi s package defines a process object.

package process;

new - create a process object
sub new {

ny ($class, $nane, $state) = @;
ny $self = { nane=>%nane, state=>$state };
return bless $self, $class;

}

link method - get or set the link to the next process
Usage:

$next = $proc->link

O

$proc- >l i nk($ot her _proc);

sub link {

ny $process = shift;
return @ ? ($process->{link} = shift) : $process->{link};

}
. . . and a few other routines .
}
Create the idle process. |Its state contains a programthat

|l oops forever, giving up its slice imedi ately each tine.
$idle = new process("ldle", $idle state);

Create the "Boot" process, which | oads sone programin from
disk, initializes and queues the process state for that

program and then exits.

$boot = new process("Boot", $boot state);

Set up the circular link
$i dl e- >l i nk($boot) ;
$boot - >l i nk($idle);

and get ready to run, as if we just finished a slice for $idle.
$pred = $boot;

$current _process = $idl e;

$qui t _cause = $SLI CE_OVER;

Here's the scheduler - it never exits.
while (1) {

Page 62

if ($quit_cause == $SLICE OVER) {
Move to the next process.
$pred = $current _process;
$current _process = $current_process->link;
} elsif ($quit_cause == $I O BLOCK) {
The current process has issued sone |/Q
Remove it fromthe list, and nmove on to the next
$next _process = $pred->link($current _process->link);
Add $current_process to a list for the I/O device

| O wait($current process);
$current _process = $next_process;

} elsif ($quit_cause == $I O COWLETE) {
Sonme |/ 0O has conpleted - add the process

waiting for it back into the list.

If the current process is ldle, progress to

the new process i medi ately.

QG herwi se, continue the current process unti
the end of its slice.
$i o_process->link($current_process);
$pred = $pred->link($io _process);

} elsif ($quit_cause = SQUT) {
This process has conpleted - renove it fromthe Ilist.
$next _process = $pred->link($current _process->link);
$current _process = $next_process;

} elsif ($quit_cause = SFORK) {
Fork a new process. Put it at the end of the list.
$new process = new process($current process->process_info);
$new process->link($current_ process);
$pred = $pred->link($new process);

#
#
#
#

run the current process
$quit _cause = $current _process->run

}

There are afew gapsin this code. Turning it into a complete operating system is left as an
exercise for the reader.

Garbage Collection in Perl

Normally, Perl determines when avalueis still needed using a technique called reference
counting, which is ssmple and quick and creates no unpredictable delays in operation. The Perl
interpreter keeps a reference counter for each value. When avalueis created and assigned to a
variable, the counter is set to one. If an additional reference is created to point to it, the count is
incremented. A reference can go away for two reasons. First, when ablock is exited, any
variables that were defined in that scope are destroyed. The reference counts for their valuesis
decremented. Second, if anew value is assigned that replaces areference value, the count of
the value that was previoudly referenced is decremented. Whenever areference count goes to
zero, there are no more variables referring to that value, so itcontinue

Page 63

can be destroyed. (If the deleted value is areference, deletion causes a cascading effect for a
while, since destroying the reference can reduce the reference count of the value that it refers
to.)

?y $p;

ny $x = "abc";

ny $y = "def";

$p = \ $x; # the val ue "abc" now has a count of two
}

"def" is freed

"abc" remains in use

$p = 1,
"abc" is freed

At the end of the block, $y has gone out of scope. Itsvalue, " def ", had a count of 1 so it can
be freed. $x has also gone out of scope, but itsvalue" abc" had acount of 2. The count is
decremented to 1 and the value is not freed—it is still accessible through $p. Later, $p is
reassigned, overwriting the referenceto " abc” . This means that the count for " abc” is
decremented. Sinceits count is now zero, it isfreed.

Reference counting is usually quite effective, but it breaks down when you have acircle of
reference values. When the last outside variable that points to any of them is destroyed or
changed, they al still have a nonzero count. Here's an example (shown in Figure 3-7):

start a new scope

{

two vari abl es

ny $pl = 1;
ny $p2 = 2;

point themat each other
$pl = \ $p2;
$p2 = \ $p1

}

end scope

After the block was exited, the two values still have anonzero count, but $p1 and $p2 no
longer exist, so there is no way that the program can ever access them.

Y ou know the old joke: "Doctor, it hurts when | do this." "So, don't do that." That's Perl's
answer to this problem. (For now, at |east—this situation may change in future releases.) Perl
leavesit to the programmer to solve this. Here are some possible solutions:

* Ignore the problem and it will go away when your program terminates.break

Page 64

After 5pl=1 !'I’$F3=f

sp!D fcoumt 1)

$p2|:| feount 1)
After 5pl=\5pZ ond § p2= 5 pl
spl feount 2}
$p2} (eount 2)
After the progeam axits the back
feount 1)
{eownt 1)

Figure 3-7.
Memory leak caused by deleting circular references

» Make sure that you break the circle while you still have access to the values.
» Don't make any circular loops of referencesin thefirst place.

Circular lists have this problem since each of the elementsis pointed at by another. Keeping a
tail pointer in the value field of adummy header can have the same problem: it pointsto its
own element when the list is empty.

What do you do about this? If your program runs for along time, and has lots of cyclic data
structures coming and going, it may slow to acrawl asit develops huge memory requirements.
It might eventually crash, or get swapped out and never swapped back in. These are not
normally considered good operational characteristics for along-running program! In this case,
you can't just ignore the problem but must help Perl's garbage collector.

Suppose our process scheduler had the ability to halt and that it was used many times. The
chain of processes each time would never be reclaimed (because of the circular link) unless
the halt operation provided some assi stance:break

. . . inthe list of opcodes for the earlier schedul er exanple
el sif ($quit_cause == $HALT) {
we're quitting - first break the process chain

Page 65

$pred- >l i nk(undef);
return;

}

This need to break reference loopsis areason to use a packaged set of routines. If you are

using a data structure format that has loops, you should not be managing it with inline colde,
but with subroutines or a package that checks every operation for any changein list consistency
information and that provides a means for cleaning up afterwards.

A package can have a DESTROY() method that will be called whenever an object of the
package goes out of scope. A method with that name has a special meaning to Perl: the routine
gets called automatically when Perl determines that an object should be freed (because its
reference count has gone to zero). So for a structure with cyclical references, the DESTROY()
method can be used to run cycle-breaking code such asthat just shown.

Doubly-Linked Lists

A prime candidate for the cleanup mechanism just described is the doubly-linked list. Instead
of onelink field in each element, there are two. One points to the next element, asin the
previous linked lists; the other points back to the previous element. It is also common for the
ends of a doubly-linked list to be joined in acircle. Note that this data structure creates cycles
from the circular linking of the ends, aswell as a cycle from the forward and backward links
between every adjacent pair of elements.

The link to the previous element means that it is not necessary to search through the entire list
to find anode's predecessor. It is aso possible to move back multiple positions on the list,
which you can't do by keeping only a predecessor pointer. Of course, thisflexibility comes at a
cost: whenever alink is changed, the back link must also be changed, so every linking
operation is twice as expensive. Sometimes it'sworth it.

When using circular doubly-linked lists, it is useful to keep an element linked to itself when it
isnot on any list. That bit of hygiene makes it possible to have many of the operations work
consistently for either asingle element or alist of multiple elements. Consider, for example,
theappend() and pr epend() functions about to be described, which insert one or many
elements before or after a specific element. These functions work on alist that has only asingle
element so long asit pointsto itself. They fail if you have removed that element from another
list without relinking the standalone element to point to itself. (The code for asinglylinked list
earlier in this chapter overwrites the link field whenever it inserts an element into alist, so the
code will work fine whatever old value wasin the link field.)break

Page 66

Here's apackage doubl e that can carry out doubly-linked list operations. Parts of it are
designed to coexist with the package doubl e _head shown later in this chapter. The new
method is atypica object creation function. The | i nk_t o method isonly for internal use; it
connects two elements as neighbors within alist:

package doubl e;

$node = doubl e->new($val);
#
Create a new doubl e el enent with value $val.
sub new {
ny $class = shift;
$class = ref($class) || $class;

ny $self = { val=>shift };
bl ess $sel f, $cl ass;
return $self-> link_to($self);

}

$eleml-> link_to($elent)

#

Join this node to another, return self.

(This is for internal use only, it doesn't not care whether
the elenents linked are linked into any sort of correct

list order.)

sub link_ to {

ny ($node, $next) = @;

$node- >next ($next);
return $next->prev($node);

}

Thedest r oy method can be used to bresk all of thelinksin alist (seedoubl e_head later
in this chapter):

sub destroy {
ny $node = shift;
whil e($node) {
ny $next = $node- >next;
$node- >pr ev(undef);
$node- >next (undef) ;
$node = $next;

}

Thenext and pr ev methods provide access to the links, to either follow or change
them: break

$cur = $node- >next

$new = $node- >next ($new)

#

Get next link, or set (and return) a new value in next I|ink.
sub next {

ny $node = shift;

Page 67
return @ ? ($node->{next} = shift) : $node->{next};
}
$cur = $node->prev
$new = $node->prev($new)
#
Get prev link, or set (and return) a new value in prev link
sub prev {

ny $node = shift;
return @ ? ($node->{prev} = shift) : $node->{prev};

Theappend and pr epend methods insert an entire second list after or before an element.
Theinterna cont ent method will be overridden later in doubl e _head to accommodate
the difference between alist denoted by itsfirst element and a list denoted by a header:

$el eml- >append($el en?)
$el em >append($head)
#
Insert the |ist headed by another node (or by a list) after
this node, return self.
sub append {
ny ($node, $add) = @;
if ($add = $add->content) {
$add- >prev-> link_to($node->next);
$node-> link _to($add);
}

return $node;

Insert before this node, return self.
sub prepend {
ny ($node, $add) = @;
if ($add = $add->content) {
$node- >prev-> |ink_to($add->next);
$add-> link_to($node);
}

return $node;

}
Ther enpove method can extract a sublist out of alist.break

Content of a node is itself unchanged
(needed because for a |list head, content nust renove all of
the elenents fromthe list and return them |eaving the head
containing an enpty list).
sub content {

return shift;
}

Renove one or nore nodes fromtheir current list and return the
first of them
The caller nust ensure that there is still sonme reference

Page 68

to the remaining other elenents.
sub renmove {

ny $first = shift;

ny $last = shift || $first;

Renmove it fromthe old list.
$first->prev-> link to($last->next);

Make the extracted nodes a closed circle.
$last-> link to($first);
return $first;

}

Notethedest r oy() routine. It walksthrough all of the elementsin alist and breaks their
links. We use amanual destruction technique instead of the specia routine DESTROY() (all
uppercase) because of the subtleties of reference counting. DESTROY() runswhen an object's
reference count fallsto zero. But unfortunately, that will never happen spontaneously for
doubl e objects because they always have two references pointing at them from their two
neighbors, even if al the named variables that point to them go out of scope.

If your code were to manually invoke thedest r oy() routine for one element on each of your
doubl e listsjust as you were finished with them, they would be freed up correctly. But that is
a bother. What you can do instead is use a separate object for the header of each of your lists:

package doubl e_head;

sub new {
ny $class = shift;
ny $info = shift;
ny $dummy = doubl e- >new;

bless [$dumy, $info], $class;
}

The new method createsadoubl e _head object that refersto adummy doubl e element
(which is not considered to be a part of the list):

sub DESTROY {
ny $self = shift;
ny $dummy = $sel f->[0];

$dummy- >dest r oy;
}

The DESTROY method is automatically called when the doubl e _head object goes out of
scope. Sincethedoubl e _head object has no looped references, this actually happens, and
when it does, the entirelist isfreed with itsdest r oy method:break

Page 69

Prepend to the dummy header to append to the |ist.
sub append {

ny $self = shift;

$sel f->[0] ->prepend(shift);

return $self;

Append to the dunmy header to prepend to the |ist.
sub prepend {
ny $self = shift;

$sel f->[0] - >append(shift);
return $self;

}
Theappend and pr epend methodsinsert an entire second list at the end or beginning of the
headed list:
Return a reference to the first el enent.
sub first {
ny $self = shift;
ny $dummy = $sel f->[0];
ny $first = $dumy- >next;

return $first == $dunmmy ? undef : $first;

Return a reference to the |last el enent.
sub last {

ny $self = shift;

ny $dummy = $sel f->[0];

ny $last = $dummy- >prev;

return $l ast == $dunmmy ? undef : $last;
}

Thefirst and|l ast methods return the corresponding e ement of the list:

When an append or prepend operation uses this list,
give it all of the elenents (and renmove themfromthis |ist
since they are going to be added to the other list).
sub content {
ny $self = shift;
ny $dummy = $sel f->[0];
ny $first $dunmy- >next ;
return undef if $first eq $dunmmy;
$dumy- >r enove
return $first;

}

The cont ent method gets called internally by theappend and pr epend methods. They

remove al of the e ements from the headed list and return them. So,

$headl - >append($head2) will remove dl of the elements from the second listcontinue

(excluding the dummy node) and append them to the first, leaving the second list empty:

sub | dunmp {
ny $self = shift;
my $start = $sel f->[0];
my $cur = $start->next;
print "list($self->[1]) [";
my $sep "";

}

whil e($cur ne $start) {
print $sep, $cur->{val};

$sep = ", ";

$cur = S$cur->next;
}
print "]\n";

Here how these packages might be used:

{

ny $sq = doubl e_head: : ->new("squares");
ny $cu = doubl e_head: : - >new("cubes");
ny $three

for($i = 0; $i <5 ++$i) {
nmy $new = doubl e- >new($i*S$i);
$sq- >append($new) ;

$sqg- >l dunp
$new = doubl e->new($i*$i*$i);
$three = $new if $i == 3;
$cu- >append($new) ;
$cu- >l dunp
}
$sq is a list of squares fromO0*0 .. 5*5
$cu is a list of cubes fromO0*0*0 .. 5*5*5

Move the first cube to the end of the squares list.
$sq- >append($cu- >first->renove);

Move 3*3*3 fromthe cubes list to the front of the squares |ist.
$sq- >prepend($cu->first->renove($three));

$sqg- >l dunp
$cu- >l dunp

$cu and $sq and all of the double el enents have been freed when
the program gets here.

Each time through the loop, we append the square and the cube of the current value to the

appropriate list. Note that we didn't have to go to any special effort to add elements to the end
of the list in the same order we generated them. After thecontinue

Page 71

loop, we removed the first element (with value 0) from the cube list and appended it to the end
of the square list. Then we removed the elements starting with the first remaining element of the

cube list up to the element that we had remembered as $t hr ee (i.e,, the elements 1, 8, and
27), and we prepended them to the front of the square list.

Thereis still apotential problem with the garbage collection performed by the DESTROY()
method. Supposethat $t hr ee did not leave scope at the end of its block. It would still be
pointing at adoubl e element (with avalue of 27), but that element has had its links broken.
Not only isthelist of elementsthat held it gone, but it's no longer even circularly linked to
itself, so you can't safely insert the element into another list. The mora is, don't expect
references to elements to remain valid. Instead, move items you want to keep onto a

doubl e_head list that is not going to go out of scope.

The sample code just shown produces the following output. The last two lines show the resullt.

list(squares) [0]
list(cubes) [0]
list(squares) [0, 1]
list(cubes) [0,1]
list(squares) [0,1,4]
list(cubes) [0,1,8]
list(squares) [0,1,4,9]
list(cubes) [0,1,8,27]
list(squares) [0,1,4,9,16]
list(cubes) [0,1,8,27, 64]
list(squares) [1,8,27,0,1,4,9,16, 0]
list(cubes) [64]

Infinite Lists

Aninteresting variation on listsisthe infinite list, described by Mark-Jason Dominusin The
Perl Journal, Issue #7. (The module is available from http://tpj.com/tpj/programs.) Infinite
lists are helpful for casesin which you'll never be able to look at all of your elements. Maybe
the elements are tough to compute, or maybe there are smply too many of them. For example, if
your program had an occasional need to test whether a particular number belongs to an infinite
series (prime numbers or Fibonacci numbers, perhaps), you could keep an infinite list around
and search through it until you find a number that is the same or larger. Asthe list expands, the
infinite list would cache al of the values that you've already computed, and would compute
more only if the newly requested number was "deeper” into the list.

Ininfinite lists, the element'slink field is always accessed with anext () method. Internally,
the link value can have two forms. When it isanormal referencecontinue

Page 72

pointing to the next element, the next () method just returnsit immediately. But whenitisa
code reference, the next () method invokes the code. The code actually creates the next node
and returns areference to it. Then, the next () method changesthelink field of the old
element from the code reference to anormal reference pointing to the newly found value.
Finally, next () returnsthat new reference for use by the calling program. Thus, the new node
isremembered and will be returned immediately on subsequent callsto the next () method.
The new node's link field will usually be a code reference again—ready to be invoked inits
turn, if you choose to continue advancing through the list when you've dealt with the current
(freshly created) element.

Dominus describes the code reference instances as a promise to compute the next and
subsequent elements whenever the user actually needs them.

If you ever reach a point in your program when you will never again need some of the early
elements of the infinite list, you can just forget them by reassigning the list pointer to refer to
the first element that you might still need and letting Perl's garbage collection deal with the
predecessors. In thisway, you can use a potentially huge number of elements of the list without
requiring that they al fit in memory at the same time. Thisis similar to processing afile by
reading it aline at atime, forgetting previous lines as you go along.

The Cost of Traversal

Finding an element that is somewhere on alinked list can be a problem. All you can doisto
scan through the list until you find the element you want: an O (N) process.

Y ou can avoid the long search if you keep the list in order so that the item you will next useis
always at the front of the list. Sometimes that works very well, but sometimesiit just shifts the

problem. To keep thelist in order, new items must be inserted into their proper place. Finding
that proper place, unlessit is always near an end of the list, requires along search through the
list—just what we were trying to avoid by ordering entries.

If you break the list into smaller lists, the smaller lists will be faster to search. For example, a
personal pocket address book provides a phabetic index tabs that separate your list of
addresses into 26 shorter lists.” break

* Hashes are implemented with aform of index tab. The key string is hashed to an index in an attempt
to evenly distribute the keys. Internally, an array of linked listsis provided, theindex is used to select
aparticular linked list. Often, that linked list will only have asingle element, but even when there are

more, it isfar faster than searching through all of the hash keys.

Page 73

Dividing the list into pieces only postpones the problem. An unorganized address list becomes
hard to use after afew dozen entries. The addition of tabbed pages will allow easy handling of
afew hundred entries, about ten times as many. (Twenty-six tabbed pages does not
automatically mean you are 26 times as efficient. The book becomes hard to use when the
popular pageslike Sor T become long, while many of the less heavily used pages would still
be relatively empty.) But there is another data structure that remains neat and extensible: a
binary tree.

Binary Trees

A binary tree has elements with pointers, just like alinked list. However, instead of one link
to the next element, it has two, called left and right.

In the address book, turning to a page with an index tab reduces the number of elementsto be
examined by asignificant factor. But after that, subsequent decisions ssmply eiminate one
element from consideration; they don't divide the remaining number of elements to search.
Binary trees offer a huge speed-up in retrieving elements because the program makes a choice
asit examines every element. With binary trees, every decision removes an entire subtree of

el ements from consideration.

To proceed to the next element, the program has to decide which of these two links to use.
Usually, the decision is made by comparing the value in the e ement with the value that you are
searching for. If the desired value is less, take the left link; if it ismore, take theright link. Of
course, if itisequal, you are already at the desired element. Figure 3-8 shows how our list of
sguare numbers might be arranged in a binary tree. A word of caution: computer scientists like
to draw their trees upside down, with the root at the top and the tree growing downwards. Y ou
can spot budding computer scientists by the fact that when other kids climb trees, they reach for
ashovel.

Suppose you were trying to find Macdonal d in an address book that contained amillion
names. After choosing the M "page" you have only 100,000 names to search. But, after that, it
might take you 100,000 examinations to find the right element.

If the address book were kept in abinary tree, it would take at most four checksto get to a
branch containing less than 100,000 elements. That seems slower than jumping directly to the
M "page", but you continue to halve the search space with each check, finding the desired
element with at most 20 additional checks. The reductions combine so that you only need to do
log, N checks.

In the 2,000-page Toronto phone book (with about 1,000,000 names), four branches take you to
the page "Lee" through "Marshall." After another six checks, you're searching only
Macdonalds. Ten more checks are required to find the rightcontinue

Page 74

Figure 3-8.
Binary tree

entry—there are alot of those Macdonalds out there, and the Toronto phone book does not
segregate those myriad MacDonalds (capital D). Still, all in al, it takes only 20 checksto find

the name.

A local phone book might contain only 98 pages (about 50,000 names); it would still take a
16-level search to find the name. In a single phone book for all of Canada (about 35,000,000
names), you would be able to find the right name in about 25 levels—as long as you were able
to distinguish which "J Macdonad" of many was the right one and in which manner it was
sorted amongst the others.)

The binary tree does a much better job of scaling than an address book. As you move from a 98
page book for 50,000 people, to a 2,000 page book for over 1 million people, to a hypothetical
40,000 page book for 35 million people, the number of comparisons needed to examine a
binary tree has only gone from 16 to 20 to 25. It will still become unwieldy at some point, but
the order of growth isslower: O (log N).

Thereisatrap with binary trees. The advantage of dividing the problem in half works only if
the tree is balanced: if, for each element, there are roughly as many elements to be found
beneath the left link as there are beneath the right link. Ifcontinue

Page 75

your tree manipulation routines do not take special care or if your data does not arrivein a
fortunate order, your tree could become as unbalanced as Figure 3-9, in which every element
has one child.

Figure 3-9.
Unbalanced binary tree

Figure 3-9isjust alinked list with awasted extralink field. If you search through an element in
this tree, you eliminate only one element, not one half of the remaining elements. Thelog, N

speedup has been lost.

Let's examine the basic operations for abinary tree. Later, we will discuss how to keep the tree
balanced.

First, we need abasic building block, basi ¢c_tree_fi nd(), whichisaroutine that
searches through atree for avaue. It returns not only the value, but aso the link that points to
the node containing the value. The link is useful if you are about tocontinue

Page 76

remove the element. If the element doesn't already exist, the link permits you to insert it without
searching the tree again.

Usage:
($link, $node) = basic_tree find(\$tree, $target, $cnmp)

Search the tree \$tree for $target. The optional $cnp
argument specifies an alternative conparison routine
(called as $cnp->(S$iteml, $itenk) to be used instead
of the default numeric conparison. It should return a
val ue consistent with the <=> or cnp operators.

Return two itemns:
1. areference to the link that points to the node

(if it was found) or to the place where it should
go (if it was not found)

T R L E E R

2. the node itself (or undef if it doesn't exist)

sub basic_tree_find {
ny ($tree_link, $target, $cnp) = @;
ny $node;

$tree_link is the next pointer to be foll owed.
1t will be undef if we reach the bottomof the tree.
while ($node = $$tree_link) {
| ocal $"W= 0; # no warni ngs, we expect undef val ues

ny $relation = (defined $cnp
? $cnmp->($target, $node->{val})
$target <=> $node->{val});

1f we found it, return the answer.
return ($tree_link, $node) if $relation == 0;

}

Nope - prepare to descend further - decide which way we go
$tree link = $relation > 0 ? \$node->{left} : \$node->{right};

We fell off the bottom so the elenent isn't there, but we
tell caller where to create a new elenment (if desired).
return ($tree_link, undef);

Here's aroutine to add a new element (if necessary) to the tree. It uses

basi

HoHHHHHH

c_tree_find() todeterminewhether the element is already present.break

$node = basic_tree_add(\$tree, S$target, $cnp);

If there is not already a node in the tree \$tree that
has the value $target, create one. Return the new or
previously existing node. The third argunent is an
opti onal comparison routine and is sinply passed on to
basi c_tree_find.

Page 77

sub basic_tree_add {

}

ny ($tree_link, $target, $cnp) = @;
ny $f ound;

($tree_link, $found) = basic tree find($tree_link, $target, $cnp);

unl ess ($f ound) {
$f ound = {
| eft => undef,
ri ght => undef,
val => $t ar get
1
$$tree_link = $f ound;

return $found;

Removing an element from atree is a bit trickier because the element might have children that
need to be retained on the tree. This next routine deals with the easy cases but assumes a
function MERGE_SOVEHOW() to show where the hard case is.break

HHH R

$val = basic_tree_del (\$tree, S$target[, $cnp]);

Find the elenent of \$tree that has the val ue $val
and renove it fromthe tree. Return the value, or
return undef if there was no appropriate el enent
on the tree

sub basic_tree_del {
ny ($tree_link, $target, $cnp) = @;
ny $f ound;

($tree_link, $found) = basic tree find ($tree_link, $target, $cnp);

return undef unless $found;

$tree link has to be nmade to point to any children of $found:
if there are no children, make it nul
if there is only one child, it can just take the place
of $found
But, if there are two children, they have to be nmerged sonehow
to fit in the one reference.

TR HHHHHR

if (! defined $found->{left}) {
$$tree_link = $found->{right};

} elsif (! defined $found->{right}) {
$$tree |link = $found->{left};

} else {
MERGE SOMEHON $tree link, $found);

}

return $found->{val}

Page 78

Unfortunately, Perl doesn't have a MERGE_SOMEHOW operator. To see why you need to do
something here, refer back to Figure 3-8. If you delete node 49, al you need to do to keep the
rest of the tree intact would be to have the right link of node 36 point to node 64. But |ook at
what happensif you need to remove node 36 instead. Y ou have to make the right link of node
16 point to something else (since node 36 is being removed), but there are two nodes, 25 and
49, that will need to have links pointing at therr (since only 36 does that now). To decide what
to do is not easy. Most simple choices will work poorly at least some of the time. Here'sa
simple choice:

MERGE_SQOVEHOW
#
Make $tree_link point to both $found->{left} and $found->{right}.

Attach $found->{left} to the leftnost child of $found->{right}
and then attach $found->{right} to $$tree_link
sub MERGE_SOVEHOW {

ny ($tree_link, $found) = @;

ny $left_of _right = $found->{right};

ny $next left;

$left _of right = $next |eft
while $next _left = $left_of _right->{left};

$left_of _right->{left} = $found->{left};

$$tree_link = $found->{right};
}

That code inserts the left subtree at the leftmost edge of the right subtree and links to the resuilt.
When would this method work poorly? Well, the resulting subtree can have many more levels
to the left than it has to the right. Putting the right subtree under the left instead would simply
lead to long rightward chains.

Keeping Trees Balanced

If your treeis going to get large, you should keep it relatively well balanced. It is not so
important to achieve perfect balance asit is to avoid significant imbalance. In some cases, you
can generate your tree in balanced order, but you will generally need to use tree building and
modification algorithms that take explicit steps to maintain balance.

There are avariety of tree techniques that maintain a degree of balance. They affect both the
addition of new elements and the deletion of existing elements. Some techniques, used by
low-level languages like C, make use of single bits scavenged out of existing fields. For
example, often al nodes are aligned on even byte boundaries, so the bottom bit of every
pointer is aways zero. By clearing that bit whenever the pointer is dereferenced, you can store
aflag in the bit. We are notcontinue

Page 79

going to play such gamesin Perl; the bit-twiddling that such an approach requiresistoo
expensive to do with an interpreter.

The oldest tree balancing technique isthe AVL tree. It is named for the originators, G. M.
Adedson-Veskii and E. M. Landis. A one-bit flag is used with each of the two links from a
node to specify whether the subtree it pointsto istaller (1) or equal in height or shorter (0) than
the subtree pointed to by the other link. The tree modification operations use these bits to
determine when the heights of the two subtrees will differ by a value of more than one; the
operations can then take steps to balance the subtrees. Figure 3-10 showswhat an AVL tree
looks like.

B e
& i sbives 5 faller
qv © 1 subroe s shorter o equel in height

Figure 3-10.
AnAVL tree

2-3 trees have all leaves at the same height, so it is completely balanced. Internal nodes may
have either 2 or 3 subnodes: that reduces the number of multilevel rebalancing steps. The one
disadvantage is that actions that traverse a node are more complicated since there are two
kinds of nodes. Figure 3-11 shows a 2-3 tree.

Red-black trees map 2-3 trees into binary trees. Each binary node is colored either red or
black. Internal nodes that were 2-nodes in the 2-3 tree are colored black. Leaves are aso
colored black. A 3-node is split into two binary nodes with a blackcontinue

Page 80

Figure 3-11.
A 2-3tree

node above ared node. Because the 2-3 tree was balanced, each leaf of the resulting red-black
tree has an equal number of black nodes aboveit. A red node is a point of imbaance in the
binary tree. A red node aways has a black parent (since they were created together from a
3-node). It also always has black children (since each child is the black node from a 2-node or
asplit 3-node). So, the amount of imbalance is limited; the red nodes can at most double the
height of aleaf. Figure 3-12 shows ared-black tree.

The following is a set of operations that add and delete nodes from a binary tree but keep it
balanced. Our implementation ensures that for each node in the tree, the height of its two
subnodes never differs by more than 1. It uses an extrafield in each node that providesits
height, which is defined as the longest number of nodes that can be reached by going down. A
null pointer has a height of 0. A leaf node has a height of 1. A nonleaf node has a height that is
1 greater than the taller of its two children. Thisagorithm isthe same as AVL, but instead of
maintaining two one-bit height difference flags, the actual height of each subtree is used. Figure
3-13 shows the same datain this form.

There are two different approaches to this sort of task. Y ou can keep areference to every
parent node in case any of them need to be changed. In the earlier basic tree routines, we only
had to keep track of the parent node's pointer; there were never any changes higher up. But
when we are maintaining balance, one change at the bottom can force the entire tree to be
changed all the way up to the top. So, this implementation takes advantage of the recursive form
of the data structure.break

Page 81

20 O
A Q tetnie (&) odmie

Figure 3-12.
A binary tree with red-black markings

Each routine returns a reference to the top of the tree that it has processed (whether that tree
changed or not), and the caller must assign that value back to the appropriate link field (in case
it did change). Some routines a so return an additional value. These routines operate

recursively, and much of the link fixing (removing elements or balancing the tree, for example)
is done using those returned results to fix parent links higher in the tree.

User-Visible Routines

One useful routine demonstrates how simpleit isto use recursion on atree. The routine

traver se() goesthrough the entire tree in order and calls a user-provided function for each
element: break

traverse($tree, $func)

#
Traverse $tree in order, calling $func() for each el enent.
in turn

sub traverse {
ny $tree
ny $func

shift or return; # skip undef pointers
shift;

traverse($tree->{left}, $func);
&$func(Stree);
traverse($tree->{right}, $func);

Page 82

Figure 3-13.
A binary tree with the height of each node

Simply searching for a node never changes the balance of the tree; add and delete operations
do. So, bal _tree_find() will not be used asacomponent for the other operations. This
simplifiesbal _tree_find() comparedtobasi c_tree_find().Becauseit never

changesthetree bal tree fi nd() isnotwritten recursively.break

$node = bal _tree find($tree, $val[, $cnp])

Search $tree | ooking for a node that has the val ue $val.
If provided, $cnp conpares val ues instead of <=>

the return val ue:
$node points to the node that has val ue $val
or undef if no node has that val ue

g T

sub bal tree find {

ny ($tree, $val, $cnp) = @;
ny $result;

while ($tree) {
ny $relation = defined $cnp
? $crmp->($tree->{val}, $val)
$tree->{val} <=> $val;

Page 83

Stop when the desired node is found.
return $tree if $relation == 0;

CGo down to the correct subtree
$tree = $relation < 0 ? $tree->{left} : S$tree-{right};

The desired node doesn't exist.
return undef;

}

Theadd routine, bal _tree_add() must create anew node for the specified value if none
yet exists. Each node above the new node must be checked for any imbalance.break

(Stree, $node) = bal tree_add($tree, $val, $cnp)

Search $tree | ooking for a node that has the val ue $val;
add it if it does not already exist.
If provided, $cnp conpares val ues instead of <=>

the return val ues:
$tree points to the (possibly new or changed) subtree that
has resulted fromthe add operation
$node points to the (possibly new) node that contains $val

T T

sub bal _tree_add {

ny ($tree, $val, $cnp) = @;
ny $result;

}

Return a new leaf if we fell off the bottom
unless ($tree) {
$result = {

| eft => undef,
right => undef,
val => $val
hei ght => 1

}s

return($result, Sresult);

ny $relation = defined $cnp
? $crmp->($tree->{val}, $val)
$tree->{val} <=> $val;

Stop when the desired node is found.
return ($tree, $tree) if $relation ==

Add to the correct subtree.
if ($relation <0) {
($tree->{left}, $result) =
bal tree_add ($tree->{left}, $val, $cnp);
} else {
($tree->{right}, $result) =

Page 84

bal tree_add ($tree->{right}, $val, $cnp);

Make sure that this level is balanced, return the
(possi bly changed) top and the (possibly new) sel ected node.
return (balance_tree ($tree), $result);

The deleteroutine, bal _tree_del (), deletesanode for aspecified value if found. This
can cause the tree to be unbalanced.break

($tree, $node) = bal tree_del ($tree, $val, $cnp)

HHHHHFHHFH R

Search $tree | ooking for a node that has the val ue $val,

and delete it if it exists.

I f provided, $cnp conpares val ues instead of <=>,

the return val ues:

$tree points to the (possibly enpty or changed) subtree that
has resulted fromthe del ete operation

if found, $node points to the node that contains $val

if not found, $node is undef

sub bal tree del {

An enpty (sub)tree does not contain the target.

ny $tree = shift or return (undef, undef);

ny ($val, $cnp) = @;
ny $node;

ny $relation = defined $cnp
? $cnp->($val, Stree->{val})
: $val <=> $tree->{val };

if ($relation !=0) {
Not this node, go down the tree
if ($relation <0) {
($tree->{left}, $node) =
bal tree _del ($tree->{left}, $val, $cnp);
} else {
($tree->{right}, $node) =
bal tree_del ($tree->{right}, $val, $cnp);

No balancing required if it wasn't found.
return ($tree,undef) unless $node;
} else {
Must delete this node. Remenber it to return it
$node = S$tree;

but splice the rest of the tree back together first
$tree = bal _tree_join($tree->{left}, $tree->{right});

Page 85

and nmake the del eted node forget its children (precaution
in case the caller tries to use the node).
$node->{l eft} = $node->{right} = undef;

Make sure that this level is balanced, return the
(possi bly changed) top and (possi bly undef) sel ected node.
return (balance_tree($tree), $node);

}
Merging

The previous section held the user-visible interface routines (there are still some internal
routines to be shown later). Let's use those routines to create our old friend in Figure 3-8, the
tree of squares, and then to delete 72:

The tree starts out enpty.

ny $tree = undef;
ny $node;

foreach (1..8) {
($tree, $node) = bal tree_add($tree, $_ * $_);
}

($tree, $node) = bal tree_del ($tree, 7*7);

There are two loose ends to tie up. First, when we delete a node, we turn its children into a
single subtree to replaceit. That jobisleft for bal _tree_j oi n() , which hasto join the
two children into asingle node. That's easy to do if one or both is empty, but it gets harder if
they both exist. (Recall that thebasi c¢_t ree_del () routine had afunction
MERGE_SOMEHOW that had a bit of trouble dealing with this same situation.) The height
information allows us to make a sensible choice; we merge the shorter one into the taller:break

$tree = bal _tree_join($left, $right);
#
Join two trees together into a single tree.

sub bal tree join {
ny ($I, $r) = @;

Sinple case - one or both is null
return $I unl ess defined $r;
return $r unl ess defined $I;

Nope - we've got two real trees to nerge
my $top;

if ($l->{height} > $r->{height}) {

$top = 9$I;
$top->{right} = bal _tree_join($top->{right}, $r);
} else {
Page 86
$top = %r;

$top->{left} = bal _tree join($I, $top->{left});
}

return bal ance tree($top);

}
The Actual Balancing

Once again, we've used bal ance_t r ee() toensurethat the subtree we return is balanced.
That's the other internal loose end remaining to be tied up. It isimportant to note that when we
call bal ance_tree(), weareexamining atree that cannot be badly unbalanced. Before
bal tree_add() orbal tree_del () wasinvoked, the tree was balanced. All nodes
had children whose heights differed by at most 1. So, whenever bal ance_t ree() iscalled,
the subtree it looks at can have children that differ by at most 2 (the original imbalance of 1
incremented because of the add or delete that has occurred). We'll handle the imbalance of 2 by
rearranging the layout of the node and its children, but first let's deal with the easy cases:

$tree = balance_tree($tree)

sub bal ance_tree {
An enpty tree is bal anced al ready.
ny $tree = shift or return undef;

An enpty link is height O.
ny $lh = defined $tree->{left} && $tree->{left}{height};
ny $rh = defined $tree->{right} & $tree->{right}{height};

Rebal ance if needed, return the (possibly changed) root.
if ($lh > 1+%rh) {
return swing right($tree);
} elsif ($lh+l < $rh) {
return swing left($tree);
} else (
Tree is either perfectly bal anced or off by one.
Just fix its height.
set _height($tree);
return $tree

}

This function balances atree. An empty node, undef , isinherently balanced. For anything
else, we find the height of the two children and compare them. We get the height using code of
the form:

ny $lh = defined $tree->{left} && $tree->{left}{height};

This ensures that anull pointer is treated as height O and that we try to look up a node's height
only if the node actually exists. If the subheights differ by no more than 1, the treeis considered
bal anced.break

Page 87

Becausethebal ance_tree() function is called whenever something might have changed
the height of the current node, we must recompute its height even when it is still balanced:

set _height($tree)

sub set _hei ght {
ny $tree = shift;
ny $p;
get heights, an undef node is height O
ny $lh = defined ($p = $tree->{left}) && $p->{height};
ny $rh = defined ($p = $tree->{right}) && $p->{height};
$tree->{height} = $lh < $rh ? $rh+1 : $l h+1

}

Now let's ook at trees that are really unbalanced. Since we always make sure the heights of all
branches differ at most by one, and since we rebalance after every insertion or deletion, well
never have to correct an imbalance of more than two.

We will look at the various cases where the height of the right subtreeis 2 higher than the
height of the left subtree. (There are mirror image forms where the left subtree is 2 higher than
the right one.)

Figure 3-14(a) shows the significant top-level nodes of such atree. The tools for fixing
imbalance are two tree-rotating operations called move-left and move-right. Figure 3-14(b) is
the result of applying a move-left operation to Figure 3-14(a). The right child is made the new
top of the tree, and the original top node is moved under it, with one grandchild moved from
under the right node to under the old top node. (The mirror image form is that Figure 3-14(a) is
the result of applying move-right to Figure 3-14(b).)break

Figure 3-14.
Grandchildren of equa height

Page 88

There are three cases in which the right subtree is 2 higher than the left. The weights shown in
Figure 3-14(a) indicate that the two granchildren under node R, RL and RR, are equal in height.
Rearranging this tree with amove-left operation, resulting in Figure 3-14(b), restores balance.
L and RL become siblings and their heights differ by only 1. T and RR aso become siblings
whose heights differ by 1 The change from Figure 3-14(a) to Figure 3-14(b) is the move-left
operation.

The second case is shown in Figure 3-15(a), which differs from Figure 3-14 only in that the
children of R have different heights. Fortunately, since the right node RR is higher than the | eft
node RL, the same move-l€eft operation once again solves the problem. This leads to Figure
3-15(b).

Figure 3-15.
Right grandchild is higher

The remaining case we have to worry about is Figure 3-16(a), which is harder to solve. This
time amove-left would just shift the imbalance to the left instead of the right without solving
the problem. To solve the imbalance we need two operations. a move-right applied to the
subtree under R, leading to Figure 3-16(b), followed by a move-l€ft at the top level node T,
leading to Figure 3-16(c) and a happy balance.

Theswi ng_| eft () andswi ng_ri ght () routines determine which of the three
possibilitiesisin effect and carry out the correct set of moves to deal with the situation: break

Stree - swing left(Stree)
#

I ebenge c sl r o ¥l

FERY FRY ! i

1 r t Ir t o

¥ LA LER Y P
2 rl rr 1 rl 1 rll rlxr rx
& LAY LAY

¥ rll rlr rll rlr

¥

Page 89

Figure 3-16.
Left grandchild is higher

t and r nust both exist.

The second formis used if height of rl is greater than height of
(since the first formwould then lead to the height of t at

nmore than the height of rr).
#

Changing to the second formis done in two steps,
move_right(r) and then a nove left(t), so it goes:

#

change L to t and then to rl

PN FERY ! b
1 r 1 rl [r
fh P LY Y
rl rr rll ¢ 1 rll rlr rr
[Y I

rll rlr rlr rr

sub swing_left {
ny $tree = shift;

ny $r = $tree->{right}; # nust exi st
ny $ri = $r->{left}; # m ght exist
ny $rr = $r->{right}; # m ght exist

with first a

rr

| east 2

Page 90

ny $I = $tree->{left}; # mght exist

get heights, an undef node has height 0O
ny $lh = $I && $I->{height};

ny $rih = $rl && $rl->{height};

ny $rrh = $rr && $rr->{height};

if ($rlh > %$rrh) {
$tree->{right} = nove_right($r);
}

return nove_left($tree);
and the opposite sw ng

sub swi ng_right {
ny $tree = shift;

ny $I = $tree->{left}; # must exi st
nmy $lr = $l->{right}; # mght exist
my Sl = $l->{left}; # mght exist
ny $r = $tree->{right}; # mght exist

get heights, an undef node has height O
ny $rh = $r && $r->{height};

ny $lrh = $lr & $lr->{height};

ny $I1h =8Il & $II->{height};

if ($lrh>3$1h) {
$tree->{left} = nove left($l);
}

return nove right($tree);

}
Thenmove | eft () andnove_ri ght () routines arefairly straightforward:break

B Sbres = move lelft] Shooe)

caller nas Setecmined that t and ¥ Doth exdist
(1 can e wdef, so can one of rl oand rr)

sub nmove_left {
ny $tree = shift;
my $r = $tree->{right};

ny $rl = $r->{left};

Page 91

$tree->{right} = $rl;
$r->{left} = $tree;
set _height($tree);
set _height($r);
return $r;

$tree = nove right($tree)
#
opposite change from nove_| eft

sub nmove right {
ny $tree = shift;
ny $I = $tree->{left};
my $lr = $l->{right};

$tree->{left} = $lr;
$l->{right} = $tree;
set _height($tree);
set _height($I);
return $l;

}
Heaps

A binary heap is an interesting variation on abinary tree. It is used when the only important
operations are (1) finding (and removing) the smallest item in a collection and (2) adding
additional elementsto the collection. In particular, it does not support accessing itemsin
random order. Focusing on doing asingle task well allows a heap to be more efficient at
finding the smallest element.

A heap differs from a standard binary tree in one crucial way: the ordering principle. Instead of
completely ordering the entire tree, a heap requires only that each node is less than either of its
subnodes.* A heap imposes no particular order on the subnodes. It is sorted from the leaves
toward the root, and a parent is always smaller than a child, but there is no order specified
between siblings. This means you are not able to find a particular node without searching the
entire tree; if anodeis not the root, you have no way to decide whether to go left or right.

So use a heap only if you won't be using it to look for specific nodes (though you might tolerate
rare searches, or maintain externa info for finding e ements). So why would you use a heap? If
you are aways interested only in the smallest value, it is obtained in O (1) time and it can be
removed and the heap updated incontinue

* 'You can a'so have heaps that are ordered with the largest nodes at the top. We'll ignore that
possibility here, although the routines described later from CPAN let you provide your own compare
function. Just as you can provide a comparison functionto Perl'ssor t sothat it sortsin reverse

order, so can you specify acompare function for your heap to give either order. And likethesor t
operator, the default if you do not provide your own compare function isto return the smallest
element first.

Page 92

O (log N) time. Since you don't keep the heap's tree fully ordered, operations on the heap can
be carried out faster. We will see heaps used as a component of many algorithms through the
rest of this book.

One example of hegpsisthelist of tasks to be executed by an operating system. The OS will
have many processes, some of which are ready to be run. When the OS is able to run a process,
it would like to quickly choose the highest priority processthat is ready. Keeping the available
processes fully sorted would accomplish this, of course, but much of that sorting effort would
be wasted. The first two or three processes are likely to be run in order, but as they are
running, external events will make additional processes ready to run and those processes could
easly be higher in priority than any of the processes that are aready waiting to run. Perhaps
one process will kill other processes; they then will have to be removed from their position in
the middle of the queue.

This application is perfect for a heap. The highest priority items bubble up to the top, but the
lower priority items are only partly sorted, so lesswork islost if elements are added or
removed. On most Unix systems, higher priority is denoted by asmaller integer (priority 1is
more urgent than priority 50), which matches our default heap order, where the smallest
number comes to the top of the heap.”

Binary Heaps

WE!l show arelatively simple heap implementation algorithm first: binary heap. There are
faster algorithms, but the ssimple heap algorithm will actually be more useful if you want to
include some heap characteristics within another data structure. The faster agorithms—the
binomia heap and the Fibonacci heap—are more complicated. We have coded them into
modules that are available from CPAN. Their interface is described alittle later. The
following table (taken from Cormen et a.) compares the performance of the three forms of
heap:break

Binary Heap | Binomial Heap | Fibonacci
(wor st case) (wor st case) Heap
(amortized)
create empty heap q (1) q (1) q(l)
insert new element q (log N) q (log N) q(l)
view minimum q (1 g (logN) q (1
extract minimum g (logN) g (logN) g (log N)
union two hesps q (N) g (logN) q (1

(table continued on next page)

* Operating systems often use different values to compute priority, such as abase priority level for
the process along with other values that change over time. They might be used to boost the priority of
aprocess that hasn't been allowed to run for along time, or one that was blocking the progress of a
higher priority process. Such modifications to the priority would be made by some other part of the
operating system, and then the process would be moved to its new proper position in the heap.

Page 93

(table continued from previous page)

Binary Heap | Binomial Heap | Fibonacci
(wor st case) (wor st case) Heap
(amortized)
decrease key g (logN) g (logN) q (1
delete element g (logN) g (logN) g (log N)

Note that the amortized bounds for Fibonacci heap are not worst-case bounds. Some of the q
(1) operations can take q (log N) time, but that happens rarely enough that the average timeis
guaranteed to be q (1) even for those operations.

If you have an array that you are aready using for some other purpose, you may want to apply
the heap mechanism to it to access the smallest element. While the routines in this section are
not as fast for extremely large collections as the ones in the CPAN modules, they can be
applied to existing arrays without having to create a separate heap structure on the side to point
to your elementsin order. Unless your datais especially large, the convenience of these
routines outweighs the speed advantage of the CPAN modules described in the preceding table.
The code in this section implements the binary heap.

A glance at the internal data structure shows the essential difference between a binary heap and
abinary tree: the binary heap keeps all of its elementsin asingle array! Thisisnot really an
essentia part of the definition of a heap, but binary heaps are more popular than other heap
algorithms because of that representation.

Keeping all of itsvaluesin asingle array means that a binary heap cannot use explicit pointers.
Instead, the index of an element is used to compute the index of its parent or its two children.
The two children of an element are at the two locations whose indices are about double its
index; the exact values depend upon the origin used for the first element in the array, as shown
in the table that follows. Similarly, the parent node index can be found by dividing the node's
index by 2 (again, see the precise formulain the table). If you use origin 1 indexing for the
array, the relationships are a bit smoother, but using origin O is quite workable. Thistable
shows how to compute the index for parent and children nodes, counting the first element of the
heep as either O or 1.

Node Origin 0 Origin1
parent int(($n-1)/2) int($n/2)
left child 2*$n+1 2*$n

right child 2*$n+2 2*$n+1

With origin O, the top is element O. Its children are lways 1 and 2. The children of 1 are 3 and
4. The children of 2 are always 5 and 6. (Notice that every element is being used, even though
each level of the structure has twice as many elements as the previous one.) For origin 1, every
element is il used, but the top element is element 1.break

Page 94

Since thefirst element of a Perl array is element number zero (unless you change that with $ [,
but please don't), we'll use the origin O formulae.

Figure 3-17 shows a heap and the tree form that it represents. The only valuesthat are actually
stored in Perl scalars are the six strings, which arein asingle array.

Actun! orray i memuory:
o R N SR
vﬁmi‘mlhﬁlmﬂ []ﬂm]m]

tmplied tree form:

Figure 3-17.
A heap and the tree it implies

What makes it possible to use the array as a heap isitsinternal organization: the heap
structure with itsimplicit links and carefully established ordering. (It is, we presume, merely
serendipitous happenstance that the capitalization of Twas makes this phrase be properly
ordered as a heap, and that Reverend Dodgson would have been amused.)

The disadvantage of the array isthat it is hard to move entire branches of the tree around. That
means that this layout is not attractive for regular binary trees where balancing can cause
significant rearrangement of the layout of the tree. The advantage is that the single array takes
up far less space. In addition to dispensing with link fields, the array doesn't have the overhead
that Perl requires for each separate structure (like the reference count discussed the section
"Garbage Collection in Perl").

Since we managed to find a phrase that was in correct heap order, this particular heap could
have been created easily enough like this:

@eap = gM Twas brillig and the slithy toves);
but usually you'll need the algorithms shown in this section to get the order of the heap right,

and you won't always have predefined constant values to put in order.break

Page 95

The process of establishing and maintaining the heap order condition uses two suboperations.
Each accepts a heap that has been perturbed dlightly and repairs the heap order that may have
been broken by the perturbation.

If anew element is added after the end of a heap, or if an element in the middie of aheap has
had its sort key decreased (e.g., an OS might increase a process's priority after it has been
waiting along time without having been given a chance to run), the new/changed node might
have to be exchanged upward with its parent node and perhaps higher ancestors.

Alternately, if anew element has replaced the top element (we'll see aneed for this shortly), or
if an interna element has had its sort key increased (but we don't normally provide that
operation), it might need to exchange places downward with its smallest child and perhaps
continue exchanging with further descendants.

The following routines provide those heap operations on an existing array. They are written for
arrays of strings. You'll have to modify them to use different comparison operators if your
arrays contain numbers, objects, or references.

Thisfirst routine, heapup() , carries out the upward adjustment just described: you passit an
array that isamost in proper heap order and the index of the one e ement that might need to be
raised. (Subsequent elementsin the array need not be in proper heap order for this routine to
work, but if they are in heap order, this routine will not disturb that property).

sub heapup {
ny ($array, $index) = @;
ny $val ue = $array->[$i ndex] ;

while ($index) {
ny $parent = int(($index-1)/2);
ny $pv = $array->[$parent];
last if $pv It $val ue;
$array->[$i ndex] = $pv;
$i ndex = $parent;

}

$array->[$i ndex] = $val ue;

}

The routine operates by comparing the new element with its parent and exchanging them if the
new element is smaller. We optimize by storing the value of the element in question only after
we have determined where it will finally reside, instead of each tirre we exchange it with a
parent element.

The converse routine, heapdown() , takes a heap and the index of an element that may need
adjusting downward. It aso can be passed a third argument that gives the index of the last
element in the heap. (Thisis useful if you have elements on the end of the array that are not part
of the heap.)break

Page 96

sub heapdown {
ny ($array, $index, $last) = @;
defined($l ast) or $last = $#3array;

Short-circuit if heap is now enpty, or only one el enent
(if there is only one elenent in position O, it

can't be out of order).

return if $last <= 0;

my $iv = $array->[$i ndex];

while ($index < $last) {
ny $child = 2*$i ndex + 1;
last if $child > $last;
ny $cv = S$array->[$child];
if ($child < $last) {
ny $cv2 = $array->[$chil d+1];
if ($cv2 It $cv) {
$cv = $cv2;
++$chi | d;

}
}
last if $iv le $cv;
$array->[$i ndex] = $cv;
$i ndex = $chil d;

}
$array- >[$i ndex] = $iv;

}

Thisroutineis similar to heapup() . It compares the starting element with the smaller of its
children (or with its only child if thereisonly one) and moves that child up into its position if
the child is smaller. It continues down from that child's position until it reaches aposition in
which there are no larger children, where it gets stored. The same optimization asheapup()
isused: storing the value only when itsfinal location has been determined.

Y ou could use either of these routines to convert an unsorted array into a heap. With
heapup() , just gpply it to each element in turn:

sub heapify_array_up {
ny $array = shift;
ny $i;

for ($i =1, $i < @array;, ++$i) {
heapup($array, $i);
}

}

Initialy, the first element (element 0) isavalid heap. After heapup($array, 1) is
executed, the first two elements form avalid heap. After each subsequent iteration, alarger
portion of the array isavalid heap until finally the entire array has been properly
ordered.break

Page 97

Using heapdown() looks slightly more complicated. Y ou use it on each parent nodein
reverse order:

sub heapify_array_down {
ny $array = shift;
ny $last = $#Jarray;
ny $i;

for ($i =int(($last-1)/2); $i >=0; --$i) {
heapdown($array, $i, $last);
}

}

It might seem that both routines would work equally well. Both heapup() and

heapdown() havethe potentia of traveling the entire height of the tree for each element, so
this appearsto be an O (N log N) process. But that is somewhat deceiving. Half of the nodes
are on the bottom level of the heap, so heapdown() cannot move them at al; in fact, the loop
index starts by bypassing them completely. However, heapup() might move any or al of
them dll the way to the top of the heap. The level one above the bottom has half the remaining
nodes, which heapdown() can move at most one level down but which heapup() could
move up almost the full height of the heap. So the cost of using heapup() to order al the
elementsisindeed O (Nlog N), but usng heapdown() costsonly O (N), asignificant
saving.

So that you remember this, let'srenameheapi fy_array_down() tosmply heapi fy(),
sinceit isthe best choice. Well also permit the caller to restrict it to operating only on a
portion of the array as was possible for heapdown() , though we won't be using this feature
in this book for heapi f y() Warning: In Introduction to Algorithms, Cormen et a. use the
name heapi f y() for thefunction we are calling heapdown() . Weuse heapi fy() to
describe the action that is being applied to the entire array, not to just a single element:

sub heapify {
ny ($array, $last) = @;

defined($last) or $last = $#3$array;

for (my $i =int(($last-1)/2); $i >=0; --$i) {
heapdown($array, $i, $last);
}

}

You could useheapi f y() toinitiaize our earlier example heap without having to manually
arrange the elements in heap order:

@weap = gwm toves slithy the and brillig Twas);
heapi fy(\ @eap);

Thefinal valuesin @eap would not necessarily be in the same order as we defined it earlier,

but it will be a valid heap order.break

Page 98

That heapup() functionisstill useful, even though heapdown() does a better job of
heapifying an entire array. If you have a properly heapified array, you can add a new element
asfollows:

push (@rray, $newal ue);
heapup(\@rray, $#array);

An OS process scheduler could use it to raise the priority of a process:

$proc_queue[$process_i ndex] += $priority boost;
heapup(\ @roc_queue, $process_index);

When an array is heapified, the smallest valuein the array isin element 0. When you are done
with that element, you want to remove it while still keeping the heap properly ordered.
(Remember that OS ready queue? When the current process stops being runnable, it has to be
removed from the heap.)

Y ou want to replace the top element with the smaller of its children. Then you have to replace
that child with the smaller of its children, and so on. But that leaves ahole in the array at the
bottom level (unless things worked out exactly right). Y ou could fill that hole by moving the
final element into it—but then that element might be out of order, so next you would have to
bubbleit back up.

It turns out that you can combine the elements of this process together almost magically. Simply
pop that final element off the end of the array, put it into the (empty) top position, and call
heapdown() . heapdown() will bubble up children asjust described. However, it
automatically stops at the right spot on the way down without pushing a hole to the rest of the
way down to the bottom and then pushing the end e ement back up.

Hereisaroutine to extract the smallest value and maintain the heap:break

sub extract {
ny $array = shift;
ny $last = shift || $#$array;

It had better not be enpty to start.
return undef if $last < 0;

No heap cleanup required if there is only one el enent.
return pop(@array) unless $last;

More than one, get the snallest.
ny $val = $array->[0];

Replace it with the tail elenent and bubble it down.
$array->[0] = pop(@array);
heapdown($array, 0);

return $val

Page 99

Since it pops an element from the heap, that ext r act () routine can't be used if the heap is
the front portion of alonger array. We can work around that (for example, to convert a heap
into an array sorted in reverse) by bypassing theext r act () function, instead using the
bounded form of the heapdown() function:

sub revsortheap {
ny $array = shift;

for (ny $i = $#%array; $i;) {
Swap the snallest remaining elenent to the end.
@array[0, $i] = @array[$i,0];
Maintain the heap, w thout touching the extracted el ement.
heapdown($array, 0, --3$i);

}

Janus Heap

We came up with an interesting augmentation of the binary heap. It was prompted by
considering how to provide a heap that limited the maximum number of elements that would
ever be stored in the heap. When an attempt to add a new element was made to afull heap, the
largest element would be discarded to make room (if it was larger than the provided element).
But the heap is organized to provide easy accessto the smallest element, not the largest! Our
solution was to heap-order the array toward itstail end, using the inverse comparison, to find
the largest element. Since the heap has two heads, we called it Janus heap. While it does solve
the original desire for a bounded heap, an attempt to use it to sort the entire array failed—it is
quite easy to find arrays that are heap-ordered from both ends but not fully sorted, e.g., the
aray (1, 3, 2, 4).Thereareunexplored posshilitiesfor further development
here—applying bidirectiona heap ordering to dlices of the full array seems to be worth
examining, for example.

The Heap Modules

The CPAN has three different implementations of heaps, written by John Macdonald. The first,
Heap::Binary, uses the array and computed links described earlier. The other two,
Heap::Binomial and Heap::Fibonacci, use separate nodes with links of varying complexities.
Both of them use a separate structure for each element in the heap instead of sharing acommon
array asis done with binary heaps and use an asymmetric hierarchy instead of afully balanced
binary tree. Thisis advantageous because merging multiple heaps is much faster, and Fibonacci
heaps delay many of the O (Ilog N) operations and perform a number of them together, making
the amortized cost O (1) instead. The actual agorithmsimplemented are described in detail in
the book Introduction to Algorithms, by Cormen, Leiserson, and Rivest.break

Page 100

All three modules use a common interface, so you can switch from one to another smply by
changing which package you load with use and specify for thenew() function. In practice, if
you need to use one of these modules (rather than managing existing arrays as described
earlier) you will be best off using Heap::Fibonacci. There are two possible exceptions. Oneis
if your problem is small enough that the time required to load the larger Fibonacci package is
significant. The other isif your problem is precisely the wrong size for the memory
management of your operating system: the extra memory requirements of the Heap::Fibonacci
causes significant degradation, but Heap::Binary is small enough that no degradation occurs.
Neither caseis especialy likely, so use Heap::Fibonacci.

Theinterface used is as follows;

use Heap: : Fi bonacci
or Heap::Binary or Heap::Bi nom al

$heap = new Heap: : Fi bonacci
or Heap::Binary or Heap::Bi nom al

Add a val ue (defined below) into the heap
$heap- >add($val) ;

Look at the small est val ue.
$val = $heap- >ni ni num

Renove the snall est val ue.
$val = $heap- >extract_mi ni num

Merge two heaps - $heap2 will end up enpty; all of its
elenments will be nerged into $heap
$heap- >absor b($heap2) ;

Two operations on an el enent:
1. Decrease an itenls value
$val - >val ($new val ue);

$heap- >decr ease_key($val) ;

2. Renove an elenent fromthe heap
$heap- >del et e($val) ;

These routines al expect the value to be in a particular format. It must be an object that
provides the following methods:

cm
A comparison routine that returns -1, O, 1. It is needed to order valuesin the heap. Itis
called as:break

$val - >cnp($val 2);

Page 101
An example might be:

sub cnp {
ny ($self, $other) = @;
return $sel f->val ue <=> $ot her - >val ue;

}

heap
A method that stores or returns a scalar. The heap package uses this method to map from the
element provided by the caller into the internal structure that represents that element in the
heap so that thedecr ease_key() anddel et e() operations can be applied to an
item. For Heap::Binary, it stores the index into the array that currently contains the value;
for the other two it stores areference to the data structure that currently contains this value.
Itiscalled as:

set heap position
$val - >heap($heap_i ndex) ;

get heap position
$heap_i ndex = $val - >heap

For debugging, two additional routines are provided in the Heap modules:

val i dat e()
A debugging method to validate the heap, used as.

$heap- >val i dat e;

heapdunp()
A debugging method to dump a heap to stdout, used as.

$heap- >heapdunp;

If youusetheheapdunp() method, your value object requires one additional method of its
own:

provide a displayable string for the val ue
$val - >val

Y ou will seethis heap interface being used in the next chapters on searching and sorting, and
later in the chapter on graph agorithms.

Future CPAN Modules

A future release of the Heaps module will provide the ability to inherit the heap formsin an
|SA arrangement. That will allow user-provided elements to be put directly onto the heap
instead of having to use the heap method to connect the user data structure to a separate Elem
structure used to determine its heap order. Additionally, the routines to apply binary heap
ordering to a user-provided array will be put in a separate module called Array::Heap.break

Page 102

4—
Sorting

The Librarian had seen many weird thingsin histime, but that had to be
the 57th strangest.

[footnote: he had a tidy mind]

—Terry Pratchett, Moving Pictures

Sorting—the act of comparing and rearranging a collection of items—is one of the most
important tasks computers perform. Sorting crops up everywhere; whenever you have a
collection of items that need to be processed in a particular order, sorting helpsyou do it
quickly.

In this chapter, we will explain what sorting is, how to do it efficiently using Perl'sown sor t
function, what comparing actually means, and how you can code your own sort algorithms with
Perl.

An Introduction to Sorting

Sorting seems so simple. Novices don't see why it should be difficult, and experts know that
there are canned solutions that work very well. Nevertheless, there are tips that will speed up
your sorts, and traps that will slow them down. We'll explore them in this section. But first, the
basics.

Asin the two previous chapters, we'll use addresses for our demonstrations. Addresses are an
ideal choice, familiar to everyone while complex enough to demonstrate the most sophisticated
attributes of data structures and algorithms.

On to sorting terminology. The items to be sorted are called records; the parts of those items
used to determine the order are called keys or sometimesfields. The differenceis subtle.
Sometimes the keys are the records themselves, but sometimes they are just pieces of the
records. Sometimes there is more than one key.break

Page 103

Consider three records from a tel ephone book:

Munro, Alice 15 Bri gham Road 6232448
Munro, Alice 48 Hammersl ey Pl ace 48941073
Muinro, Alicia 62 Evergreen Terrace 623—6099

The last names ae the primary keys because they are the first criterion for ordering entries.
When two people have the same last name, the first names must be considered; those are the
secondary keys. In the example above, even that isn't enough, so we need tertiary keys: the
street addresses. Therest of the dataisirrelevant to our sort and is often called satellite data:
here, the phone numbers. The index of this book contains primary and secondary keys, and an
occasional tertiary key. The page numbers are satellite data.

We will explore severa different sorting techniquesin this chapter. Some are worse (usually
O (N 2) time) than others (usualy O (N log N) time). Some perform much better on certain
input; others work well regardless of the input.

However, you may never need any of them, because Perl supplies you with a very fast built-in
function: sor t () . Wewill exploreit first because we can use it to demonstrate what you
need to think about when orchestrating a sort operation. The important thing to remember is that
sort isoften—but not always—the best possible solution.

Perl's Sort Function

Under the hood, Perl'ssor t () function usesthe quicksort algorithm, which we'll describe
later in the chapter. Thisis a standard sorting algorithm, provided by most operating systems as
gsort (3)." InVersions5.004 05 and higher, Perl uses its own quicksort implementation
instead of the one provided by the operating system. Two primary motivations were behind this
change. First, the implementation has been highly optimized for Perl's particular uses. Second,
some vendors implementations are buggy and cause errant behavior, sometimes even causing
programs to crash.

sort accepts two parameters. a sorting routine and the list of items to sort. The sorting routine
can be expressed as a block of code or the name of a subroutine defined elsewhere in the
program, or you can omit it altogether. I1f you do provide a sorting routine, it's faster to provide
it as a block than as a subroutine. Here's how to provide a subroutine:break

* The (3) is Unix-speak and means documentation section 3, the libraries. On aUnix system, man
gsort will display the documentation.

Page 104

@orted = sort ny_conparison @urray;

sub ny_conpari son {
if ($a>3%b) { return 1}
elsif ($b > %a) { return -1}
el se { return 0}

}
Here's the same operation, but with the sorting routine expressed as a block:

@orted = sort { if ($a>3%b) { return 1}
elsif ($b > $a) { return -1}
el se { return 0} } @rray;

Each of these code snippets places acopy of @r r ay in @or t ed, sorted by the criterion we
expressed in the sorting routine. The original @r r ay isunchanged. Every sorting routine,
whether it's a subroutine or an actua block, isimplicitly given two special variables: $a and
$b. These are the items to be compared. Don't modify them, ever. They are passed by
reference, so changing them changes the actual list e ements. Changing $a and $b midsort
works about as well as changing your tires mid-drive.

The sorting routine must return a number meeting these criteria:

* If $a islessthan $b the return value should be less than zero.
« If $a isgreater than than $b, the return value should be greater than zero.
« If $a isequal to $b, the return value should be exactly zero.
Aswe hinted at before, the sorting routine is optional:
@orted = sort @rray,;

Thissorts @r r ay in ASCII order, which is sometimes what you want—not aways.
ASCI| Order

Perl's default comparison rule is ASCII ordering.” Briefly, this means:

control characters <
nost punctuation <
nunbers <
uppercase letters <
| onercase letters

The complete ASCII tableisavailable in Appendix B, ASCII Character Set.break

* Actually, thereis at least one port of Perl, to the IBM System/390, which uses another ordering,
EBCDIC.

Page 105
Numeric Order

ASCII order won't help you to sort numbers. You'll be unpleasantly surprised if you attempt the
following:

@rray = gwm 1234 +12 5 -3);
@orted = sort @rray,;
print "sorted = @orted\n";

This produces the strange result:

sorted = +12 -3 1234 5

Thisisacorrect ASCII ordering. ASCII order is very methodical: it always |ooks at the keys
one character at atime, starting from the beginning. As soon as differing ASCII vaues for those
characters are found, the comparison rule is applied. For example when comparing 1234 to 5,
1234 issmaller because 1 islessthan 5. That's one of the three reasons why ASCI| is bad for
comparing numbers:

1. Numbers can start with a+ or - . They can aso have an e followed by another + or -, or
nothing at al, and then some digits. Perl numbers can even have underscores in them to
facilitate legibility: one million can be written as 1000000 or 1e6 or +1e+6 or
1_000_00o0.

2. If you're going to look at numbers character-by-character, then you need to look at all of the

digits. Quick, whichisbigger, 1345978066354223549678 or
9265342165748352467837

3. Length isn't good either: 4 isbigger than 3. 14, which isbigger than 5e—100.

Fortunately, it's easy to have Perl sort thingsin numeric order. Y ou can just subtract $b from
$a, or use the more efficient Perl operator designed specifically for comparing numbers:. the
so-called spaceship operator, <=>.

Y ou can sort numbers as follows:
@orted_nuns = sort { $a <=> $b } @nsorted;
We can use the <=> operator in our example, asfollows:
@rray = gw 1234 +12 5 -3);
@orted_nums = sort { $a <=> $b } @rray;
print "sorted nuns = @orted _nuns\n";

This produces the result we want: break

sorted nuns = -3 5 +12 1234

Page 106

Reverse Order:
From Highest to Lowest

To sort an array from highest to lowest, just flip $a and $b. To order an array of words from
highest ASCII value to lowest, you can say:

@words = sort { $b cnp $a } @words;

cnp isPerl's string comparison operator, the counterpart of the numerical comparison
operator, <=>. To sort an array of numbers from highest to lowest:

@unbers = sort { $b <=> $a } @unbers;

These examples also demonstrate something we haven't yet seen: replacing an array with a
sorted copy of itself. We've done away with the @ or t ed variable and simply stored the
resultsin the original array.

Sort::Fields

If you don't want to concoct your own sorting routines, you might be able to use Joseph N.
Hall's Sort: :Fields module, available from CPAN. With it you can say convoluted things like
"alphabetic sort on column 4, a numeric sort on column 1, and finally a reverse numeric sort on
column 3." You'd express this as follows:

use Sort:: Fields;
print fieldsort [4, "1n', '-3n'], @ata;

The aphabetic sort isan ASCII sort—unlessyou includetheuse | ocal e statement, which
we'll discuss shortly. fi el dsort () isjust awrapper for the module's
make_fiel dsort () function, which returns a subroutine:

use Sort::Fields;
ny $sort = nmake_fieldsort [4, '1n', '-3n'];
print $sort->(@ata);

If you are going to perform severa Sort::Fields operations using the same sorting rules, use
make fi el dsort () directly becausefi el dsort () will cal it each time. It'sfaster to
create the sorting subroutine once and reuse it later than to create it anew each time you call
fieldsort (). Themoduleaso has stable versions of these functions:

stable fieldsort() ardmake _stabl e fiel dsort ().WEell discussstabilityin
the section "All Sorts of Sorts."

Sort::Versions

Software version numbers don't sort like regular numbers. There can be several fields,
separated by dots. The fields might also have letters. For example:break

a

B

1
2

Page 107

e
gNNNN
T o

.03
The module Sort::Versions, by Kenneth Albanowski, provides two subroutines:

ver si ons() andver si oncnp() . Theformer isused as a sorting routine, the latter asa
general function for comparing two Perl scalars as version numbers:

use Sort:: Versions;
@el eases = sort versions gqw 2.3 2.4 2.3.1 2.3.0 2.4b);

print "earlier" if versioncnp("3.4", "3.4a") == -1;

Note: if you use underscores to enhance the readability of your "numbers’, like5. 004_05,
you need to remove the underscores before attempting a numeric comparison. An aside about
underscores: Perl recognizes and removes them only from literal numbers at compiletime. If
yousay perl -e "print 1_000_ 000", Perl prints1000000. However, Perl won't do
the same for strings: The underscoresin $ver si on = " 5. 004_05" stay put. So for
sorting version numbers, you'll want to remove them:

@el eases = sort versions map { tr/_//d; $) @rray;

Thisisanuisance, but it's necessary for backward compatibility: if Perl suddenly started
parsing numbers after the underscore, thousands of existing scripts would break.

Dictionary Order

Dictionary order is another commonly used ordering. The strings are first transformed by
removing everything except letters and numbers. Uppercase and lowercase variants are

considered equal. These rules make words like re-evaluate, reeval uating, and Reeval uator
sort close together. In ASCII order, they would be widely separated:

Reevaluator
Rembrandt

Zorro
chthonic
re-evaluate
rectangle

reeval uatingbreak

Page 108

The difficulties don't end here. In telephone books, finding people with names like De Lorean
istroublesome. Isthat under D or L? Similarly for abbreviations. should they be sorted
according to the abbreviation itself or by the full name? Does IBM go between IAA and ICA or
between Immigration and lonization?

Further confusion arises from variations in spelling: Munro/Monroe, MacTavish/McTavish,
Krysztof/Christoph, Peking/Beijing. In principle it would be nice to be able to find each pair at
the same place when searching; away to do thisis shown in the section "Text::Soundex" in
Chapter 9, Srings. Accommodating such a complicated criterion might introduce extrakeys
into the records—the primary key might even not be part of the original record at all!

Y et more fun occurs when the elements contain multibyte characters. In the world of ASCI|,
this never happens. every character takes up one byte. But in, say, Spanish, chisaletter of its
own, to be sorted between ¢ and d: so chocolate follows color.” The international Unicode
standard and Asian legacy standards define several different multibyte encodings. Especialy
nasty from the sorting viewpoint are those that have variable widths. For more information
about different character encodings, see http://www.unicode.org/ and

http: //mwww.czyborra.cony.

A simple version (that doesn't handle quirky names, abbreviations, or |etters) for dictionary
order sorting follows. Remember, $a and $b must never ever be modified, so we make
"dictionary versions' of the items to be compared: $da and $db.

@i ctionary_sorted =
sort {

ny $da = I c $a; # Convert to | owercase
ny $db = I c $b;
$da =" s/\WH//qg; # Renove all nonal phanuneri cs.
$db =~ s/\ W/ /g;
$da cnp $db; # Conpar e
} @rray;

There are at least two problems with the preceding code, however. They aren't bugs, since the
above sorting routine works correctly—sometimes.

Sorting Efficiency

The preceding program runs very slowly on long lists. Unnecessarily owly. The problem is
that the sorting routine is called every time two elements need to be compared. The same
elements will enter the sorting routine several times, sometimes as $a and sometimes as $b.
Thisin turn meansthat the transformation to the dictionary version will be performed again
and again for each word, even though we should only need to do it once. Let'sillustrate this
with a sort routine:break

* The Royal Academy at Madrid recently gave in a it thanks to the stupidity of computers: handling
the letter ch asc and h is now acceptable.

Page 109
ny @orted =
sort { ny $cnp = $a cnp $b;
$sawf{ $a }++;
$saw{ $b }++;
print "a = $a, b = $b, cnmp = $cnp, ",
"ais ",
$cnp < 0 ?
"smaller" : ($cnp > 0 ? "bigger" : "equal"),
$cnp ? "than" : "to", " b",
"\'n";
return $cnp
} gw(you can watch what happens);

foreach (sort keys %aw) ({
print "$_ $saw{ $_} times \n";
}

This displays the following:

a =you, b=-can, cnp =1, ais bigger than b

a =you, b =watch, cnp =1, ais bigger than b

a =can, b =watch, cnp =-1, ais smaller than b

a =you, b =what, cnp =1, ais bigger than b

a = watch, b = what, cnp = -1, ais smaller than b
a = you, b = happens, cnp =1, ais bigger than b

a = what, b = happens, cnp =1, a is bigger than b
a = watch, b = happens, cnp =1, ais bigger than b
a = can, b = happens, cnp = -1, ais snaller than b

can 3 tinmes
happens 4 tines
watch 4 tinmes
what 3 tines
you 4 tines

Every word is compared three or four times. If our list were larger, there would have been
even more comparisons per word. For large lists or acomputationally expensive sorting
routine, the performance degradation is substantial.

ThereisaPerl trick for avoiding the unnecessary work: the Schwartzian Transforr, named
after Randal Schwartz. The basic idea of the Schwartzian Transform is this: take the list to be
sorted and create a second list combining both the original value and a transformed value to be
used for the actua sorting. After the sort, the new value is thrown away, leaving only the
elements of the original list.”

The Schwartzian Transform is described in more detail later in this chapter, but here is some
dictionary sorting code that uses it. Thanks to the transform, the dictionary order transformation
is performed only once for each word.break

* Y ou LISP hackers will recognize the trick.

Page 110

use | ocal €;

Fill @rray here.

@li ctionary_sorted =
map { $_->[0] }
sort { $a->[1] cnp $b->[1] }

map {
ny $d = Ic; # Convert into | owercase
$d == s/[\W]+//g; # Renove nonal phanuneri cs.
[$, $d] # [original, transforned]
}
@array;

In this particular case we can do even better and eliminate the anonymous lists. Creating and
accessing them is dow compared to handling strings, so thiswill speed up our code further:

use | ocal e;

@i ctionary_sorted =
map { /™Mw (.*)] }

sort
map {
ny $d = Ic; # Convert into | owercase
$d == s/[\W]+//qg; # Renopve nonal phanuneri cs.
"$d $_" # Concat enate new and ori gi nal words.
}
@irray,;

We transform the original strings into new strings containing both the transformed version and
the original version. Then we sort on those transformed strings, and finally snip off the sorting
keys and the space in between them, leaving only the original strings. How ever, this technique
only works under these conditions:

* You haveto be able to produce sort keys that sort correctly with string comparison. Integers

work only if you add leading spaces or zeros to align them on the right.

* You have to ableto stringify and later destringify the data—the stringification must be exactly
reversible. Floating point numbers and objects need not apply.

* You have to able to decouple the transformed sort key from the original data: in our sort we
did this by first destroying al [\ W] characters and then using such a character, the space, as
a separator.

Now our dictionary sort is robust, accurate, and fast.break

Page 111

The Schwartzian Transform

The Schwartzian Transform is a cache technique that |ets you perform the timeconsuming
preprocessing stage of a sort only once. Y ou can think of the Transform as a nested series of
operations, modeled in Figure 4-1.

Figure 4-1.
The structure of the Schwartzian Transform

The map function transforms one list into another, element by element. We'll use
@rray = gw (opal -shaped opal escent Opal i ni dae);

asthelist and the dictionary transformation from the previous section:

ny $d = Ic; # Convert into | owercase.
$d =~ s/[\W]+//g;
[$_, $d]

so that the Schwartzian Transform in our case looks like Figure 4-2.break

Easorted=

map { 5. ->[0] }

Figure 4-2.
The Schwartzian Transform for our example

Page 112
Asthefirst step in the operation, the list to be sorted:

is transformed into another list by the innermost (rightmost) map:

The old words are on the | eft; the new list is on the right. The actual sort is then performed
using the new transformed list, on the right:*

el | ’ﬂpaleééent’. }upaleacent' i
[‘Opalinidae’, ‘opalinidae’],
["cpal-shaped’, ‘cpalshaped’ 1);

However, the desired sort results are the plain old elements, not these intermediate lists. These
elements are retrieved by peeling away the now-usel ess transformed words with the outermost
(leftmost) map:

{ ‘opalescent’,
‘Opalinidae’,
‘opal-shaped’) ;
Thisiswhat endsupin @ort ed.
Long Duration Caching

The Schwartzian Transform caches only for the duration of onesor t . If you're going to sort
the same elements several times but with different orderings or with different subsel ections of

the elements, you can use a different strategy for even greater savings. the sort keys can be
precomputed and stored in a separate data structure, such as an array or hash: break

Initialize the conparison cache.

%sort_by = ();

foreach $word (@ull _list) {
$sort_by{ $word } =

* Strictly speaking, the "left" and "right" are misnomers: left means "the first elements of the
anonymous lists' and right means "the second el ements of the anonymous lists."

Page 113

sone_conpl ex_ti nme_consum ng_functi on($word);

}
The%sort _by hash can then be used likethis:

@orted list =
sort
{ $sort_by{ $a } <=> $sort_by{ $b } }
@artial _I|ist;

This technique, computing derived values and storing them for later use, is called memoizng.
The Memoize module, by Mark-Jason Dominus, described briefly in the section "Caching” in
Chapter 1, Introduction, is available on CPAN.

Deficiency:
Missing Inter nationalization (L ocales)

ASCII contains the 26 letters familiar to U.S. readers, but not their exotic relatives:

déja vu

facade

nal ve

Schr 6di nger
Y ou can largely blame computers for why you don't often see the T of naive: for along time,
support for "funny characters’ was nonexistent. However, writing foreign words and names
correctly isasimple matter of courtesy. The graphical differences might seem insignificant but
then again, so are the differences between 0 and O, or 1 and I. When spoken, a and & may have
completely different sounds, and the meanings of words can change when |etters are replaced
with an ASCII substitute. For example, stripping the diaereses from Finnish séastaa ('to save")
leaves saastaa ("filth").

These multicultural hardships are dleviated in part by locales. A localeisaset of rules
represented by language-country-encoding triplet. Locales are encoded as strings, for example
fr CA. 1 S08859- 1 for French-Canadian-1SO Latin 1. The rules specify things like which
characters are letters and how they should be sorted.

Earlier, we mentioned how multibyte characters can impact naive sorting. Even single byte
characters can present obstacles; for example, in Swedish a is sorted after z, and nowhere near
a.

One way to refer to an arbitrary aphanumeric character regardless of locale is with the Perl
regular expression metacharacter \ w. And even that isn't quite right because\ wincludes .
The reason for thisis historical: _ isoften used in computers asif it were atrue letter, as parts
of namesthat arerealy phrases, | i ke_t hi s. Acontinue

* 1S0 Latin 1 isacharacter encoding like ASCII. In fact ASCII and the first half of 1SO Latin 1 are
identical. The second half of SO Latin 1 contains many of the accented characters of several Western
European languages.

Page 114

rule of thumb isthat \ w matches Perl identifiers; [A~Z] matches only arange of 26 ASCII
letters.

Evenif weuse\ w, Perl still won't treat the funny letters as true characters. The actual way of
telling Perl to understand such lettersis along and system-dependent story. Please see the
perllocale documentation bundled with Perl for details. For now, we'll assume your operating
system has locale support installed and that your own personal locale setup is correct. If so, all
Perl needsis the locale pragma placed near the beginning of your script:

use | ocal €;

Thistells Perl to use your locale environment to decide which characters are | etters and how to
order them, among other things. We can update our sorting program to handle locales as
follows:

use | ocal €;

Fill @rray here .

@li ctionary_sorted =

sort {
ny $da = I ¢ $a; # Translate into | owercase.
ny $db = I c $b;
$da =~ s/[\W]+//g; # Renove all nonal phanuneri cs.
$db =~ s/[\W]+//q;
$da cnp $db; # Conpare
} @rray;

print "@lictionary_sorted";
Sort::ArbBiLex

Often, vendor-supplied locales are lacking, broken, or completely missing. In this case, the
Sort::ArbBiLex module by Sean M. Burke comesin handy. It lets you construct arbitrary

bi-level lexicographic sort routines that specify in great detail how characters and character

groups should be sorted. For example:break

use Sort:: ArbBiLex;

*

)

*German_sort = Sort:: ArbBiLex: : maker (

)

di sh_sort = Sort:: ArbBiLex:: maker (

o ®o W
>0 >

a A
aA
o O

@words = g Ml | er Martz Morot Mayer Mortenson Mattson);

foreach (Swedish_sort(@wrds)) { print "pa svenska:

$\n" }

foreach (German_sort (@wrds)) { print "auf Deutsch: $ \n" }

This prints:

T T T T T O
Do Do Do Do Do Do

auf
auf
auf
auf
auf
auf

Notice how Méartz and Mdller are sorted differently.

Seefor Yoursdaf:

svenska:
svenska:
svenska:
svenska:
svenska:
svenska:

Deut sch:
Deut sch:
Deut sch:
Deut sch:
Deut sch:
Deut sch:

Mayer

Mat t son

Mor ot

Mort enson

Mart z

Mol | er
Mayer
Mat t son
Mart z
Mor ot
Mort enson
Mol | er

Usethe Benchmark Module

Page 115

How substantial are the savings of the Schwartzian Transform? Y ou can measure phenomena
like this yourself with the Benchmark module (see the section "Benchmarking” in Chapter 1 for
more information). We will useBenchmar k: : ti met hese() to benchmark with and

without the Schwartzian Transform: break

use Benchnark;

srand; # Randoni ze
NOTE: for Perls < 5.004

use srand(time + $$ + ($$ << 15)) for better results

Generate a nice randominput array.
@rray = reverse 'aaa'..'zaz';

Mitate the @rray.

for (@rray) {
if (rand() < 0.5) { # Randomy capitalize.
$ = ucfirst;
}

if (rand() < 0.25) { # Randomy insert underscores.
substr($_, rand(length), 0)="_";
}

if (rand() < 0.333) { # Randonly doubl e.
$.= 8% ;
}

if (rand() < 0.333) { # Randomy mirror double.
$.=reverse $;

}

if (rand() > 1/length) { # Randomy del ete characters.
substr($_, rand(length), rand(length)) ="'

}

tinethese() cones from Benchnark.

ti met hese(10, {
'STT =>
'@orted =
map { $_->[0] }
sort { $a->[1] cnp $b->[1] }
map { # The dictionarization

ny $d = lc;
$d =~ s/[\W]+//g;
[$_, &d]
}
@rray',
"nonST" =>
'@orted =

sort { ny ($da, $db) = (lc($a), lc($b));
$da =~ s/[\W]+//g;
$db =~ s/[\W]+//g;
$da cnp $db;

}
@rray'

Page 116

1)

We generate a reasonably random input array for our test. In one particular machine,* this code
produces the following:

Benchmark: timng 10 iterations of ST, nonST
ST: 22 secs (19.86 usr 0.55 sys = 20.41 cpu)
nonST: 44 secs (43.08 usr 0.15 sys = 43.23 cpu)

The Schwartzian Transform is more than twice as fast.

The Schwartzian Transform can transform more than strings. For instance, here's how you'd
sort files based on when they were last modified:break

@modi fied =
map { $_->[0] }
sort { $a->[1] <=> $b->[1] }
-Mis when $_ was |last nodified
mp { [$_, -M] }
@il enanes;

* 200-MHz Pentium Pro, 64 MB memory NetBSD 1.2G

Page 117
Sorting Hashes Is Not What You Might Think

Thereis no such thing as a sorted hash. To be more precise: sorting asimple hashis
unthinkable. However, you can create a complex hash that allows for sortingwith t i e.

In Perl, itispossibletot i e arrays and hashes so that operations like storing and retrieving
can trigger specia operations, such as maintaining order within a hash. One exampleisthe
BTREE method for sorted, balanced binary trees, available in the DB_File module bundled
with the Per| distribution and maintained by Paul Marquess, or the Tie::IxHash module by
Gurusamy Sarathy available from CPAN.

But back to smple hashes: Asyou know, ahash isalist of key-value pairs. You can find a
value by knowing its key—but not vice versa. The keys are unique; the values need not be.
Let'slook at the bookshelf of a science fiction buff. Here are the number of books (the values)
for each author (the keys):

%ooks = ("d arke" => 20, "Asinov" => 25, "Leni => 20);

Y ou can walk through this hash in "hash order" with Perl's built-in keys, val ues, andeach
operators, but that's not really a sorted hash. As was mentioned in Chapter 2, Basic Data
Structures, the internal hash ordering is determined by Perl so that it can optimize retrieval.
This order changes dynamically as elements are added and del eted.

foreach $author (sort keys %books) {

print "author = $author, books = $books{$aut hor}\n";
}

Y ou can aso wak through the hash in the order of the values. But be careful, since the values
aren't guaranteed to be unique:

foreach $author (sort { $books{ $a } <=> $books{ $b } } keys %books) ({
print "author = $author, ";
print "books = $books{$aut hor}\n";

}

Asyou can see, the keys aren't sorted at all:

aut hor = Lem books = 20
aut hor = Asi nov, books = 20
aut hor = d arke, books = 25

Wecan makesort adjudicateties (that is, when <=> yields 0). When that happens, well
resort to an alphabetical ordering (cnp) of the author names:break

foreach $author (sort {
nmy $nuncnp = $books{ $a } <=> $books{ $b };
return $nurmcnp i f $nuncnp;
return $a cnp $b

Page 118

} keys 9%) {
print "author = $author, ";
print "books = $books{$aut hor}\n";

}

This outputs:
aut hor = Asi nov, books = 20
aut hor = Lem books = 20
aut hor = d arke, books = 25

Note that we didn't do this: sort { $a <=> $b } val ues %ooks—and for agood
reason: it would make no sense, because there's no way to retrieve the key given the value.

Itispossible to "reverse" a hash, yielding a new hash where the keys become values and the
values become keys. Y ou can do that with hashes of lists or, more precisely, a hash of
referencesto lists. We need lists because a given hash might not be a one-to-one mapping. If
two different keys have the same value, it's a one-to-many mapping.

%ooks = ("d arke" => 20, "Asinov" => 25, "Leni' => 20);
%ooks_ by nunber = ();

while (($key, $value) = each %ooks) {
push @ $books by nunber{ $value } }, $key;
}

foreach $nunmber (sort { $a <=> $b } keys %books_by_nunber) {
print "nunber = $nunber, “;
print "authors = @ $books_by nunber{ $nunber } }\n";

}

Thisdisplays:

nunber = 20, authors = d arke Lem

nunber = 25, authors = Asinov

After al thistalk about the trickiness involved in sorting hashes, prepare yourself for the
horror that occursif you mistakenly try to sort a hash directly. Had we tried % or n_books
= sort %books; weend upwiththis:

d arke => ' Leni,
20 => 20,
25 => ' Asi nov'

Clarke has written "Lem" books, and 25 has written "Asimov" books?

So don't do that.break

Page 119

All Sorts of Sorts

Perl'sown sort isvery fast, and it's useful to know why it's fast—and when it's not.
Eventualy, you'll stumble upon situations in which you can improve performance by using
some of the algorithmsin this section. Here, we compare severa families of sorting agorithms
and describe the situations in which you'll want to use them. The guiding light for choosing an
algorithm is this: the more you know about your data, the better.

Sorting agorithms can scale well or poorly. An agorithm scales well when the running time of
the sort doesn't increase much as the number of elementsincreases. A poorly scaling agorithm
istypicaly O (N 2): when the number of elements doubles, the running time quadruples. For
sorting, "scaling well" usually means O (N log N); we'll call thislog-linear.

In addition to their running times, sorting algorithms can be categorized by their stability and
sensitivity. Stability refersto the fate of records with identical keys: a stable agorithm
preservestheir origina order, while an unstable algorithm might not. Stability is agood thing,
but it's not vital; often we'll want to sacrifice it for speed.

Sensitive algorithms are volatile.” They react strongly (either very well or very poorly) to
certain kinds of input data. Sensitive sorting algorithms that normally perform well might
perform unexpectedly poorly on some hard-to-predict random order or a nearly sorted order or
areversed order. For some algorithms, the order of input does not matter as much asthe
distribution of the input. Insensitive algorithris are better because they behave more
predictably.

In the remainder of this chapter al the agorithms sort strings. If you want numeric sorting,
change the string operators to their numeric equivalents: gt should become >, eq should
become ==, and so on. Alternatively, the subroutines could be implemented in a more general
(but slower) way to accept a sorting routine as a parameter.

Unlike Perl'ssor t , most of these algorithms sort arraysin place (also known asin situ),
operating directly on their arguments instead of making copies. Thisisamajor benefit if the
arrays are large because there's no need to store both the original array and the sorted one; you
get an instant 50% savings in memory consumption. This aso means you should provide your
list as an array reference, not as aregular array. Passing references to subroutines avoids
copying the array and is therefore faster.break

* AsinRigoletto: La donna & mobile.

Page 120

We show graphs that compare the performance of these sorting techniques at the end of the
chapter.

Quadratic Sorting Algorithms

Here we present the three most basic sorting algorithms. They also happen to be the three worst
techniques for the typical use: sorting random data. The first of these three algorithms, selection
sort, fares quite poorly as a general sorting algorithm but is good for finding the minimum and
maximum of unordered data.

The next two quadratic sorts, bubble sort and insertion sort, are also poor choices for random
data, but in certain situations they are the fastest of all.

If there are constraints in how data can be moved around, these two sorts might be the best
choices. An analogy of this would be moving heavy boxes around or moving the armature of a
Jukebox to select the appropriate CD. In these cases, the cost of moving elementsis very high.

Selection Sort

The selection sort isthe smplest sorting algorithm. Find the smallest element and put it in the
appropriate place. Lather. Rinse. Repest.

Figure 4-3 illustrates selection sort. The unsorted part of the array is scanned (as shown by the
horizontal line), and the smallest element is swapped with the lowest element in that part of the
array (as shown by the curved lines.) Here's how it's implenrented for sorting strings:break

sub sel ection_sort {
ny $array = shift;

ny $i; # The starting index of a mninmmfinding scan.
ny $j; # The running index of a mninmmfinding scan.

for ($i = 0; $i < $#%array ; $i++) {
ny $m= $i; # The index of the m nimum el enent.
ny $x = $array->[$m], # The nini num val ue.

for ($j =$i +1; $§ < @array; $j++) {
($m $x) = ($j, Sarray->[$]) # Update m ni num
if Sarray->[$] It $x;

Swap i f needed.
@array[$m $i] = @array[$i, $m] unless $m== $i;

Page 121

the ploce for the smallest
the smallest element found in its final place

O b

v
Y
v
—>
scan
%
%
—
[
7
%
%
>
in its final place smallest unsorfed [] elementtobe | " sorted or
element swapped 5al
Figure 4-3.

Thefirst steps of selection sort: alternating minimum-finding scans and swaps

Wecaninvokesel ecti on_sort () asfollows:

@rray = gMable was i ere i saw el ba);
sel ection_sort(\@rray);

print "@rray/n;

able elba ere i i saw was

Don't use selection sort as a general-purpose sorting algorithm. It's dreadfully sow— W (N
2)—which is a pity because it's both stable and insensitive.break

Page 122

A short digression: pay particular attention to thelast linein sel ecti on_sort (), where
we use array dices to swap two elements in a single statement.

Minima and Maxima

The selection sort finds the minimum value and movesit into place, over and over. If al you
want is the minimum (or the maximum) value of the array, you don't need to sort the the rest of
the values—you can just loop through the elemsents, aQ (N) sprocedure. On the other hand, if
you want to find the extremum multiple timesin arapidly changing data collection, use a heap,
described in the section "Heaps' in Chapter 3, Advanced Data Structures. Or, if you want a set
of extrema ("Give methe ten largest"), usetheper cent i | e() function described in the
section "Median, quartile, percentile" later in this chapter.

For unordered data, m ni nun{) and maxi nmun() are simpletoimplement since all the
elements must be scanned.

A more difficult issue is which comparison to use. Usually, the minimum and the maximum
would be needed for numerical data; here, we provide both numeric and string variants. The
s-prefixed versions are for string comparisons, and the g-prefixed versions are generic: they
take a subroutine reference as their first parameter, and that subroutine is used to compare the
elements. The return value of the subroutine must behave just like the comparison subroutine of
sort : anegative valueif the first argument is less than the second, a positive value if the first
argument is greater than the second, and zero if they are equal. One critical difference: because
it'saregular subroutine, the argumentsto be compared are$_[0] and$_[1] and not $a and
$b.

The agorithms for the minimum are as follows.break

sub min { # Nunbers.
ny $mn = shift;
foreach (@) { $mn =% if $ < $mn }
return $mn;

sub smn { # Strings.
ny $s_mn = shift;
foreach (@) { s _mn =% if $ It $s nin}
return $smn;

sub

gmn { # Ceneric.

ny $g cnp = shift;

nmy $g_mn = shift;

foreach (@) { $g. mn =$_if $g cnp->($, $g nmn) <0}
return $g_mn;

Page 123

Here are the dgorithms for the maximum:

sub

sub

sub

}

max { # Nunbers.

ny $max = shift;

foreach (@) { $max = $_ if $_ > $max }
return $max;

smax { # Strings.

ny $s_nmax = shift;
foreach (@) { $s_max
return $s_nax;

$ if $ gt $s_max }

gmex { # Ceneric.

ny $g_cnp = shift;

ny $g_nmax = shift;
foreach (@) { $g_max
return $g_nex;

$ if $g cnmp->($, $g max) > 0 }

In the generic subroutines, you'll notice that we invoke the user-provided subroutine as
$code_ref ererence->(ar gunment s) . That'sless punctuation-intensive than the
equivalent & $code_r ef er erence} (argunent s) .

If you want to know which element contains the minimum instead of the actual value, we can do
that as follows:break

sub

mni {

ny $1 = $_[0];

ny $n = @ $l };

return () unless $n; # Bail out if nolist is given
ny $v.mn = $l->[0]; # Initialize indices.

ny @_mn =(0);

for (ny $i =1; $i < 3n; Si++) {
if ($l-> $i] <$v_mn) {
$v. nmin =3$l-> $i]; # Update nini num and

@ mn=(3%$); # reset indices.
}oelsif ($l-> &] == $v_nin) {
push @_mn, $i; # Accumnul ate m ni rum i ndi ces.

}

return @_mn;

}
sub maxi {
ny $I =$_[0];
ny $n = @ $l };
return () unless $n; # Bail out if nolist is given.
ny $v_max = $l->[0]; # Initialize indices.
ny @_max = (0);
Page 124
for (my i =1; $i < $n; $i++) {
if ($l-> $i 1 > $v_nmax) {
$v_nmax = $l->[$i]; # Update nmaxi num and
@ mx = ($i); # reset indices.
}oelsif ($l-> &] == $v_nmax) {
push @_nax, $i; # Accumnul at e nmaxi num i ndi ces.
}
}
return @ _nax;
}

smni(),gmni(),smaxi (),andgmaxi () canbewritten smilarly. Note that these
functions should return arrays of indices instead of asingle index since the extreme values
might liein several array locations:

| ndex: 0 1 2 3 45 6 7 8 91011
my @& = qw(31 41 59 26 59 26 35 89 35 89 79 32);

ny @ max = maxi (\ @&); # @ _nax should now contain 7 and 9.

Lastly, we present a general extrema-finding subroutine. It uses a generic sorting routine and
returns the minima- or maxima-holding indices:break

sub gextri {

ny $g_cmp = $_[0];

ny $l =%$[1];

ny $n =@ 3l };

return () unless $n; # Bail out if nolist is given.
ny $v.mn = $l->[0];

ny $v_max = $v_mn; # The maxi rumso far.

ny @_nmn=¢(0); # The m ninma indices.

ny @_nmax = (0); # The maxi ma indi ces.

ny $v_cnp; # The result of conparison.

for (ny $i =1; $i < 3n; Si++) {
$v_cnp = $g_cnp->($l->[$i], $v_mn);
if ($v.cnmp <0) {
$v_mn = $l->[$i]; #Updat e m ni num and reset m ni na.

@_mn=($i);
} elsif ($v_cmp == 0) {
push @_mn, $i; # Accunul ate mnima if needed.
} else { # Not m ni nrum maybe maxi munf
$v_cnp = $g_cnp->($l->[$i], $v_max);
if ($v.cnmp > 0) {
$v_max = $l->[$i]; # Updat e nmaxi nrum and reset maxi ma.

@ _mx = ($i);
} elsif ($v_cmp == 0) {

push @_nax, $i; # Accumnul at e naxi na.
}

} # El se nei ther m ni num nor naxi num

return (\@_nin, \@_nmax);

Page 125

Thisreturns alist of two anonymous arrays (array references) containing the indices of the
minima and maxima:

0 1 2 3 45 6 7 8 91011
ny @& = qw(31 41 59 26 59 26 35 89 35 89 79 32);

my ($i_nmin, $i_max) = gextri(sub { $ [0] <=> $ [1] }, \@&);

@i _mn now contains 3 and 5.
@i _nmax now contains 7 and 9.

Remember that the preceding extrema-finding subroutines make sense only for unordered data.
They make only one linear pass over the data—but they do that each time they are called. If you
want to search the data quickly or repeatedly, see the section "Heaps' in Chapter 3.

Bubble Sort

The bubble sort has the cutest and most descriptive name of all the sort algorithms—but don't
be tempted by a cute name.

This sort makes multiple scans through the array, swapping adjacent pairs of elementsif they're
in the wrong order, until no more swaps are necessary. If you follow an element asiit
propagates through the array, that's the "bubble.”

Figure 4-4 illustrates the first full scan (stages ato g) and the first stages of the second scan
(stagesh andi).

sub bubbl esort {
ny $array = shift;

ny $i; # The initial index for the bubbling scan.
ny $j; # The running i ndex for the bubbling scan.
ny $nconp = O; # The nunber of conpari sons.

ny $nswap = O; # The nunber of swaps.

for ($i = $#Parray; $i; Si--) {
for (() =1, $ <= $i; $++) {
$nconp++;
Swap i f needed.
if (Sarray->[$j - 1] gt Sarray->[$]) {
@array[$j, $ - 1] = @array[$ - 1, $ 1;
$nswap++;

}
}
print "bubblesort: ", scalar @array,
' el enents, $nconp conparisons, $nswap swaps\n";

}

We have included comparison and swap counters, $nconp and $nswap, for comparison with
avariant of thisroutine to be shown later. The later variant gresatlycontinue

Page 126

scan

the bubble

—_—

RN

\

DMHINMNNS.

(o]

swap

Dt

|
AN

_
AN

-

a rR: »

=
=
=
B
S
Loal
o
=

(=)
PESS NSS4

MINN

ﬁ

'\t sorfed area

| inifs final place 7] the element being moved
Figure 4-4.

Thefirst steps of bubble sort: large elements bubble forward
reduces the number of comparisons, especidly if theinput is sorted or almost sorted.

Avoid using bubble sort as a general-purpose sorting algorithm. Its worst-case performance is
W (N 2), and its average performance is one of the worst because it might traverse the list as
many times as there are elements. True, the unsorted part of the list does get one element

)) L NV=1
shorter each time, yielding the series ¥+ =1+ 8= 2+ -+ 24 1= 1t that's till W
(N 2).break

Page 127

However, bubble sort has avery interesting property: for fully or amost fully sorted datait is
the fastest algorithm of all. It might sound strange to sort sorted data, but it's a frequent
situation: suppose you have aranked list of sports teams. Whenever teams play, their ranks
change—but not by much. The rankings are always nearly sorted. To reduce the left and right
bounds of the sorted area more quickly when the datais already mostly sorted, we can use the
following variant:

sub bubbl esmart {

ny $array = shift;

ny $start = 0; # The start index of the bubbling scan
ny $nconp = 0; # The nunber of conpari sons.

ny $nswap = 0; # The nunber of swaps.

ny $i = $#3array;

while (1) {
ny $new start; # The new start index of the bubbling scan
ny $new end = 0; # The new end index of the bubbling scan

for (ny $j = $start || 1; $ <= $i; $j++) {
$nconp++;
if ($array->[$j - 1] gt Sarray->[$j 1) {
@array[$j, $§ - 1] = @array[$ - 1, $ 1;

$nswap++;
$new end = $ - 1;
$new start = $j - 1 unless defined $new start;
}
}
[ast unl ess defined $new start; # No swaps: we're done.
$i = $new end;
$start = $new start;
}
print "bubblesnmart: ", scalar @array,

' elenents, $nconp conparisons, $nswap swaps\n";

}

Y ou can compare this routine and the original bubblesort with the following code:break

@ ="a".."z";

Reverse sorted, both equally bad.
@ = reverse @;

Few inserts at the end.
@ =(@ "a".."e");

Random shuffl e.
srand();
foreach (@ = @) {
ny $i = rand @
(S, $d[$i]) =($d[$], $);

Page 128

ny @abel = gw Sorted Reverse Append Random;
ny % abel ;
@abel{\@, \@®, \@, \@} =0..3;
foreach ny $var (\@, \@®, \@, \@) {
print $l abel [$l abel {$var}], "\n";
bubbl esort [@var];
bubbl esmart [@var];
}

Thiswill output the following (the number of comparisons at the last line will vary dightly):

Sorted

bubbl esort: 26 el enents, 325 conparisons, 0 swaps
bubbl esmart: 26 el enents, 25 conparisons, 0 swaps
Rever se

bubbl esort: 26 el enents, 325 conparisons, 325 swaps
bubbl esmart: 26 el enents, 325 conparisons, 325 swaps

Append
bubbl esort: 31 el enents, 465 conparisons, 115 swaps

bubbl esmart: 31 el enents, 145 conparisons, 115 swaps
Random

bubbl esort: 26 el enents, 325 conparisons, 172 swaps
bubbl esmart: 26 el enents, 279 conparisons, 172 swaps

Asyou can see, the number of comparisonsis lower with bubbl esmart () and significantly
lower for already sorted data. This reduction in the number of comparisons does not come for
free, of course: updating the start and end indices consumes cycles.

For sorted data, the bubble sort runsin linear time, Q (N), because it quickly realizes that there
isvery little (if any) work to be done: sorted data requires only afew swaps. Additionally, if
the sizeif thearray issmall, soisN 2. Thereis not alot of work done in each of the N 2
actions, so this can be faster than an O (N log N) algorithm that does more work for each of its
steps. This feature makes bubble sort very useful for hybrid sorts, which we'll encounter later
in the chapter.

Insertion Sort

Insertion sort scans al elements, finds the smallest, and "inserts" it in its proper place. As
each correct place is found, the remaining unsorted elements are shifted forward to make room,
and the process repeats. A good example of insertion sort is inserting newly bought books into
an alphabetized bookshelf. Thisis aso the trick people use for sorting card hands: the cards
are arranged according to their value one at atime.” break

* Expert poker and bridge players don't do this, however. They leave their cards unsorted because
moving the cards around reveals information.

Page 129

In Figure 4-5, steps a, ¢, and e find the minimums; steps b, d, and e insert those minimums into
thelr rightful placesinthearray i nserti on_sort () implementsthe procedure:

sub insertion_sort {
ny $array = shift;

ny $i; # The initial index for the mninum el ement.
ny $j; # The running index for the m ni numfinding scan.

for ($i = 0; $i < $#%array; $i++) {
ny $m= $i; # The final index for the mninmum el enent.
ny $x = $array->[$m]; # The nmi ni num val ue.
for ((§ =$i +1; $ < @array; $++) {

($m $x) = ($j, Sarray->[$]) # Update m ni num
if Sarray->[$ 1 It $x;

}

The doubl e-splice sinply noves the $mth el enment to be

the $i-th element. Note: splice is N, not ((1).

As far as the tinme conplexity of the algorithmis concerned
it makes no difference whether we do the bl ock novenent

using the preceding |loop or using splice(). Still, splice()
is faster than noving the block el enent by el enent.

splice @array, $i, 0, splice @array, $m 1 if $m> $i;

}

Do not use insertion sort as a general-purpose sorting algorithm. It has W (N 2) worst-case, and
its average performance is one of the worst of the sorting algorithmsin this chapter. However,
like bubble sort, insertion sort is very fast for sorted or alrost sorted data—Q (N)—and for
the same reasons. The two sorting algorithms are actually very similar: bubble sort bubbles
large elements up through an unsorted area to the end, while insertion sort bubbles elements
down through a sorted area to the beginning.

The preceding insertion sort code is actually optimized for already sorted data. If the $j loop
were written like this:

for ($ = $i;
$j >0 && $array->[--$] gt $small;) { }
$small is the mni mum el enent

$j++ if Parray->[$j] le $small;

sorting random or reversed data would sightly speed up (by a couple of percentage points),
while sorting aready sorted data would slow down by about the same amount. break

Page 130
thesevted e snolles)
ares etement found it elamends thal
[warg movad forwend
Q [] (b]
1 iit f15 final 7]
ploce
r § d‘ ! -‘
stan " St
L et O B
Al o
e J Pl e Lf []

B in s finad ploce [elemenis thert hod' 2] smollest wmsoed 1 sorfed oven
o Al jmmuwfmm’ element

Figure 4-5.
The first steps of insertion sort

One hybrid situation is especially appropriate for insertion sort: let's say you have alarge
sorted array and you wish to add a small number of elementsto it. The best procedure hereis
to sort the small group of newcomers and then merge them into the large array. Because both
arrays are sorted, thisi nserti on_ner ge() routine can merge them together in one pass
through the larger array:break

sub insertion_nerge {
ny ($large, $small) = @;

ny $nerge; # The nmerged result.

ny $i; # The index to @rerge.
ny $l; # The index to @l arge.
ny $s; # The index to @snall.
Page 131
$#Snerge = @l arge + @snall - 1; # Pre-extend.

for (($i, $I, $s)
$nerge->[$i]
$l < @large &&
($s == @small || $large->[$I] < $small->] $s]) ?
$large->[$l ++]
$smal | ->[$s++]

(0, 0, 0); $i < @nerge; $i++) {

return $nerge;

}

Hereshow wed usei nserti on_mner ge() toinsert some primesinto squares.

@arge =g 1 4 9 16 25 36 49 64 81 100);
@mall =g 2 5 11 17 23);
$nerge = insertion_nerge(\@arge, \@nall);

print "@$nerge}\n";
12459 11 16 17 23 25 36 49 64 81 100

Shellsort

Shellsort is an advanced cousin of bubble sort. While bubble sort swaps only adjacent
elements, shellsort swaps the elements over much longer distances. With each iteration, that
distance shortens until it reaches one, and after that pass, the array is sorted. The distanceis
called the shell. The term isn't so great a metaphor as one would hope; the sort is named after
its creator, Donald Shell.

The shell spirasfrom the size of the array down to one element. That spiraling can happen via
many paths. For instance, it might be this:

] r:\"_r) _,;\"\'..‘] N, .
ind{ 7_3*]:EHLLT__|, areLLE,,. |

Or it might be this:
int{log{ N}, int{log{V} — 1), int{log(N) = 2),.. .. 1

No seriesis always the best: the optimal series must be customized for each input. Of course,
figuring that out might take aslong as the sort, so it's better to use a reasonably well-performing
default. Besides, if wereally knew the input intimately, there would be even better choices
than shellsort. More about that in the section "Beating O (N log N)."

In our sample code we will calculate the shell by starting with k, = 1 and repeatedly

caculating k,, = 2k;+1, resulting in the series1, 3, 7, 15,

. Wewill usethe

series backwards, starting with the largest value that is smaller than the size of the array, and

ending with 1:break
Page 132
sub shellsort {

ny $array = shift;
ny $i; # The initial index for the bubbling scan
ny $j; # The running index for the bubbling scan
ny S$shell; # The shell size.
ny $nconp = O; # The nunber of conpari sons.
ny $nswap = 0; # The nunber of swaps.
for ($shell = 1; $shell < @array; $shell =2 * $shell + 1) {

Do nothing here, just let the shell grow
}
do {

$shell =int(($shell - 1) [/ 2);

for ($i = $shell; $i < @array; $i++) {

for ($) = $i - S$shell;
$j >= 0 && ++Snconp &&
Sarray->[$j] gt Sarray->[$ + $shell];
$j -= $shell) {
@array[$j, $ + $shell | = @array[$ + $shell, $j 1;
$nswap++;
}

}
} while $shell > 1;
print "shellsort: ", scal ar @array,

' el enents, $nconp conparisons, $nswap swaps\n";

}

If we test shellsort alongside the earlier bubbl esort () and bubbl esmart () routines,

we will seeresults similar to:

Sorted

bubbl esort: 26 el ements, 325 conpari sons,
bubbl esmart: 26 el ements, 25 conpari sons,
shel | sort: 26 el enents, 78 conparisons,
Rever se

bubbl esort: 26 el ements, 325 conpari sons,
bubbl esmart: 26 el enments, 325 conpari sons,
shel | sort: 26 el enents, 97 conparisons,
Append

bubbl esort: 31 el enents, 465 conpari sons,
bubbl esmart: 31 el enments, 145 conpari sons,
shel | sort: 31 el enents, 133 conparisons,
Random

bubbl esort: 26 el enments, 325 conpari sons,
bubbl esmart: 26 el enments, 231 conpari sons,

0 swaps
0 swaps
0 swaps

325 swaps
325 swaps
35 swaps

115 swaps
115 swaps
44 swaps

138 swaps
138 swaps

shel | sort: 26 el enents, 115 conparisons, 44 swaps

In Figure 4-6, the shell distance begins at 6, and the innermost loop makes shellsized hops
backwards in the array, swapping whenever needed. Theshel | sort () subroutine
implements this sort.break

Page 133

the sorfed
areg shell end

©
&

NN

shell = 6

=
&
@

N

M

—
shell = 1

e
&
=

T AU |

C&\\\\\\\\\\\\W

[GA [] beginning of shell end of shell

Figure 4-6.
The first steps of shellsort

The average performance of shellsort is very good, but somewhat hard to analyze; it is thought
to be something like O (N (log N)2), or possibly O (N1+€), e > 0. The worst caseisW

B U L U
Y nglog v . The exact performance characteristics of shellsort are difficult to analyze
because they depend on the series chosen for $shel |

Log-Linear Sorting Algorithms

In this section, we'll explore some O (Nlog N) sorts mergesort, heapsort, and quicksort.break

Page 134
Mergesort

Mergesort is a divide-and-conquer strategy (see the section "Recurrent Themes in Algorithms
in Chapter 1). The "divide" step literaly dividesthe array in half. The "conquer” isthe merge
operation: the halved arrays are recombined to form the sorted array.

To illustrate these steps, assume we have only two el ements in each subarray. Either the
elements are already in the correct order, or they must be swapped. The merge step scans those
two aready sorted subarrays (which can be donein linear time), and from the elements picks
the smallest and placesit in theresult array. Thisis repeated until no more e ements remain in
the two subarrays. Then, on the next iteration, the resulting larger subarrays are merged, and so
on. Eventudly, al the e ements are merged into one array: break

sub nergesort {
mergesort _recurse ($_[0], O, $#{ $ [0] });
}

sub nergesort_recurse {
my ($array, $first, $last) = @;

if ($last > $first) {
| ocal $"W= 0; # Sil ence deep recursion warning.
ny $mddle = int(($last + $first) / 2);

nmergesort _recurse($array, $first, $mddle);
nmergesort _recurse ($array, $nmiddle + 1, $last);
nerge($array, $first, $niddle, $last);

ny @work; # A global work array.

sub nerge {
my (Sarray, $first, $niddle, $last) = @;

ny $n = $last - $first + 1

Initialize work with relevant elenents fromthe array.
for (my $1 = $first, ny $§ =0, $i <= $last;) {

$work[$j++] = Sarray->[$i++];
}

Now do the actual merge. Proceed through the work array

and copy the elenents in order back to the original array

$i is the index for the nerge result, $ is the index in

first half of the working copy, $k the index in the second hal f.

$middle = int(($first + $last) / 2) if $mddle > $l ast;
ny $nl1 = $nmiddle - $first + 1; # The size of the 1st half.

Page 135

for (ny $i = $first, ny $§§ = 0, ny $k = $n1; $i <= $last; $i++) {
Sarray->[$i] =

$ < $nl &&
(Sk == $n || $work[$j] It Swork[$k]) ?
$work[$j++] :

$wor k[$k++];

}

Notice how we silence warningswith | ocal $*w = 0; Silencing warningsis bad
etiquette. but currently that's the only way to make Perl stop groaning about the deep recursion
of mergesort. If a subroutine callsitself more than 100 times and Perl is run with the - w
switch. Perl getsworried and exclaims, Deep recursi on on subroutine .

The - w switch sets the $”w to true; we locally set it to false for the duration of the sort.

Mergesort is avery good sort agorithm. It scales well and isinsensitive to the key distribution
of theinput: Q (N log N) Thisis obvious because each mergeis Q (N), and repetitively
having N elements takes Q (N) rounds. The bad news s that the traditional implementation of
mergesort requires additional temporary space equal in size to the input array.

Mergesort's recursion can be avoided easily by walking over the array with aworking area that
starts at 2 and doublesits size at each iteration. The inner loop does merges of the same size.

sub nergesort_iter (9$) {
ny ($array) = @;

ny $N
ny $Nt2
ny $Nmi

@arr ay;
SN * 2; # Ntines 2.
$N - 1; # N minus 1.

$#wor k = $Nni

for (ny $size = 2; Psize < $Nt2; $size *= 2) {
for (ny $first =0, $first < $N, $first += $size) {
ny $last = $first + $size - 1
nerge($array,
$first,
int(($first + $last) / 2),
$last < SN ? $last : SNl)

}
Heapsort

Asits name suggests, the beapsort uses the heap data structure described in the section
"Heaps' in Chapter 3. In asense, heapsort is similar to selection sort. It finds the largest
element and moves it to the end. But the hesp structure permitscontinue

Page 136

heapsort to avoid the expense of afull search to find each element, allowing the previously
determined order to be used in subsequent passes.

use integer;.
sub heapi fy;

sub heapsort {
ny $array = shift;

foreach (ny $index = 1 + @array / 2; $index--;) {
heapi fy $array, $index;
}

foreach (ny $last = @array, --$last;) {
@ S$array }[O, $last | = @ S$array }[$last, 0];
heapi fy $array, 0, $last;

sub heapify {
ny ($array, $index, $last) = @;
$l ast = @barray unl ess defined $l ast;

$i ndex;
$index * 2 + 1;

ny $swap
ny $high

foreach (ny $try = $index * 2;
$try < $last & & $try <= $high;
$try ++) {
$swap = $try if Sarray->[$try] gt Sarray->[$swap];

}

unl ess ($swap == $index) {
The heap is in disorder: nmust reshuffle.
@ S$array }[$swap, $index | = @ S$array } [$index, $swap];
heapi fy $array, $swap, $l ast;

}

}

Heapsort is anice overall algorithm .1t is one of the fastest sorting algorithms, it scales well,
and itisinsensitive, yielding Q (Nlog N) performance. Furthermore, the first element is
availablein O (N) time, and each subsequent el ement takes O (Nlog N) time .If you only
need thefirst k elements of aset in order, you can sort themin O (N+ klog N) timein general,
andin O (N+ klog k) timeif k is known in advance

Heapsort is unstable, but for certain data structures, particularly those used in graph algorithms
(see Chapter 8, Graphs), it isthe sorting algorithm of choice.break

Page 137
Quicksort

Quicksort is awell-known divide-and-conquer agorithm. So well-known, in fact, that Perl
usesit for implementing itsown sor t . Quicksort is a good compromise when no
characteristics of the input are known.

The basic ideaisto pick one element of the array and shuffleit to itsfinal place. That element
is known as the pivot, and the shuffling is known aspartitioning. The pivot divides the array
into two partitions (at some points three; more about this shortly). These two partitions are then
recursively quicksorted. A moderately good first guess for the pivot isthe last element, but that
can lead into trouble with certain input data, as we'll see.

The partitioning does al the work of comparing and exchanging the elements. Two scans
proceed in parallel, one from the beginning of the array and the other from the end. The first
scan continues until an element larger than the pivot is found. The second scan continues until
an element smaller than the pivot is found. If the scans cross, both stop. If none of the
conditions terminating the scans are triggered, the elements at the first and second scan
positions are exchanged. After the scans, we exchange the element at the first scan and the
pivot.

The partitioning algorithm is as follows:

1. At Point 1 (seethepartiti on() subroutine) the elementsin positions$first.. $i-1
areadl lessthan or equal to the pivot, the elementsin $j +1. . $l ast - 1 areal greater than
or equa to the pivot, and the element in $I ast isequa to the pivot.

2. At Point 2theelementsin $f i r st. . $i - 1 areall lessthan or equa to the pivot, the
elementsin $j +1. . 3l ast - 1 are all greater than or equal to the pivot, the elementsin

$j+1..8i-1 are all equal to the pivot, and the el ement at $l ast isequa to
the pivot.

3. At Point 3 we have athree way partitioning. The first partition contains el ements that are
less than or equal to the pivot; the second partition contains elements that are all equal to the
pivot. (There must be at least one of these—the original pivot element itself.) The third
partition contains elements that are greater than or equal to the pivot. Only the first and third
partitions need further sorting.

The quicksort agorithm isillustrated in Figure 4-7 .
First, let'slook at the partition subroutine:break

sub partition {
ny ($array, $first, $last) = @;

ny $i $first;
ny $j $l ast - 1;
ny $pivot = $array->[$last],

Page 138

the ,um:lr it it r.gﬁr plate

oot
|

|

KEY: [ins il ploce the

Figure 4-7
The first steps of quicksort

SCAN: {

}

do {
$first <= $i <= $ <= $last - 1
Point 1.

Move $i as far as possible.

while ($array->[$i] le $pivot) {
$i ++,
last SCAN if $j < $i;

Move $j as far as possible.

while ($array->[$] ge $pivot) {
$j--;
last SCANif $ < $i;

Page 139

$i and $ did not cross over, so swap a | ow and a hi gh val ue.

@array[$j, $i] = @array[$i, $ 1;
} while (--$ >= ++8i);
}
$first - 1 <= $ < $i <= $last
Point 2.

Swap the pivot with the first larger element (if there is one)
if ($i < $last) {
@array[$last, $i] = @array[$i, $last];

++$i ;

Point 3.

return ($i, $); # The new bounds excl ude the middle.

Y ou can think of the partitioning process as afilter: the pivot introduces a little structure to the
data by dividing the elements into less-or-equal and greater-or-equal portions. After the
partitioning, the quicksort itself is quite ssimple. We again silence the deep recursion warning,
aswedidinnmergesort ().

sub qui cksort _recurse {

ny ($array, $first, $last) = @;

if ($last > $first) {
ny ($first_of last, $last_of first,) =
partition($array, $first, $last);

| ocal $"W= 0; # Silence deep recursion warning.
qui cksort _recurse $array, $first, $l ast _of first;
qui cksort_recurse $array, $first_of _|ast, $last;

sub qui cksort {
The recursive version is bad with BIGlists
because the function call stack gets REALLY deep
qui cksort_recurse $[0], O, $#{ $ [0] };

}

The performance of the recursive version can be enhanced by turning recursion into iteration;
see the section "Removing recursion from quicksort.”

If you expect that many of your keys will be the same, try adding this before the returnin
partition():

Extend the nmiddle partition as nmuch as possi bl e.
++$i while $i <= $last && $array->[$i] eq $pivot;
--$] while $j >= $first & $array->[$] eq $pivot;

Thisisthe possible third partition we hinted at earlier.break

Page 140

On average, quicksort is avery good sorting algorithm. But not aways. if the input isfully or
close to being fully sorted or reverse sorted, the algorithms spends alot of effort exchanging
and moving the elements. It becomes as slow as bubble sort on random data: O (N 2).

Thisworst case can be avoided most of the time by techniques such as the median-of-three:
Instead of choosing the last element as the pivot, sort the first, middle, and last e ements of the
array, and then use the middle one. Insert the following before $pi vot = $arrays-> |
$last] inpartition():

ny $mddle = int(($first + $last) / 2);

@array[$first, $mddle] = @array[$mddle, $first]
if Sarray->[$first] gt $array->[$mddle];

@array[$first, $last | = @array[$last, $first]
if Sarray->[$first] gt $array->[$last];

$array[$first] is now the smallest of the three.
The smaller of the other two is the mddle one;
It should be noved to the end to be used as the pivot.
@array[$mddle, $last | = @array[$last, $niddle]
if Sarray->[$middle] It $array->[$last];

Another well-known shuffling technique is simply to choose the pivot randomly. This makes
sthe worst case unlikely, and even if it does occur, the next time we choose a different pivot, it

will be extremely unlikely that we again hit the worst case. Randorrization is easy; just insert
thisbefore $pi vot = $array->[$l ast]:

ny $random = $first + rand($last - $first + 1);
@array[$random $last | = @array[$last, $random];

With this randomization technique, any input gives an expected running time of O (N log N).
We can say the randomized running time of quicksort is O (N log N). However, thisis slower
than median-of-three, as you'll seein Figure 4-8 and Figure 4-9.

Removing Recursion from Quicksort

Quicksort uses alot of stack space becauseit callsitself many times. You can avoid this
recursion and save time by using an explicit stack. Using a Perl array for the stack is dightly
faster than using Perl's function call stack, which iswhat straightforward recursion would
normally use:break

sub qui cksort _iterate {
ny ($array, $first, $last) = @;
ny @tack = ($first, $last);

do {
if ($last > $first) {
ny ($last_of first, $first _of last) =
partition $array, $first, $last;

Page 141

Larger first.
if ($first_of last - $first > $last - $last_of first) {
push @tack, $first, $first_of |ast;
$first = $last_of first;
} else {
push @tack, $last_of first, $last;
$last = $first_of |ast;

}
} else {

($first, $last) = splice @tack, -2, 2; # Doubl e pop
}

} while @&t ack;

sub quicksort _iter {
qui cksort_iterate $_[0], O, $#{ $_[0] };
}

Instead of |etting the quicksort subroutine call itself with the new partition limits, we push the
new limits onto a stack using push and, when we're done, pop the limits off the stack with

spl i ce. An additional optimizing trick isto push the larger of the two partitions onto the
stack and process the smaller partition first. This keeps @t ack shallow. The effect is shown
in Figure 4-8.

Asyou can see from Figure 4-8, these changes don't help if you have random data. In fact, they

hurt. But let's see what happens with ordered data.

The enhancementsin Figure 4-9 are quite striking. Without them, ordered data takes quadratic
time; with them, the log-linear behavior is restored.

In Figure 4-8 and Figure 4-9, the x-axis is the number of records, scaled to 1.0. They-axisis
therelative running time, 1.0 being the time taken by the dowest algorithm (bubble sort). As
you can see, the iterative version provides a dight advantage, and the two shuffling methods
slow down the process a bit. But for already ordered data, the shuffling boosts the algorithm
considerably. Furthermore, median-of-threeis clearly the better of the two shuffling methods.

Quicksort is common in operating system and compiler libraries. Aslong as the code
devel opers sidestepped the stumbling blocks we discussed, the worst case is unlikely to occur.

Quicksort is unstable: records having identical keys aren't guaranteed to retain their origina
ordering. If you want a stable sort, use mergesort.

Median, Quartile, Percentile

A common task in gtatistics is finding the median of the input data. The median isthe element in
the middle; the value has as many elements less than itself asit has elements greater than
itself.break

Page 142

I

005

Running time (Normalized to Bubble Sort)
S

0.01

0.005

0 01 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Number of elemenis (Normalized)

Quick - —— Quick Rnd
e = — Quick lferative + + + Quick Me3
Figure 4-8.

Effect of the quicksort enhancements for random data

medi an() findstheindex of the median element. Theper centi | e() alowseven more
finely grained dicing of the input data; for example, per centi | e($array, 95) findsthe
element at the 95th percentile. Theper cent i | e() subroutine can be used to create
subroutineslikequartil e() anddecil e().

WEell use aworst-case linear algorithm, subroutinesel ect i on(), for finding the ith eement
and build medi an() and further functions on top of it. The basic idea of the algorithm isfirst
to find the median of medians of small partitions (size 5) of the original array. Then we either

recurse to earlier elements, are happy with the median we just found and return that, or recurse
to later elements:break

use constant PARTITION SI ZE => 5;

NOTE 1: the $index in selection() is one-based, not zero-based as usual .

NOTE 2: when 3N is even, selection() returns the |arger of

"two nmedi ans", not their average as is customary--
wite a wapper if this bothers you.
Page 143
or .
E ad b
B i- ; . ; : : :
I R SO _
< _.-+—--+-—-'i‘"-*
ﬂ SIS e bt N SRSE T S
o 6 82 0y 04 05 08 07 0f 0y I
Wursber of afamants (Narmofized)
. s o —+ Quick Rnd
------ Ouick Mermiive # = = — &+ Quick Mol
Fsigure 4-9.
Effect of the quicksort enhancements for ordered data
sub sel ection {
$array: an array reference fromwhich the selection is nade.
$conpare: a code reference for conparing el ements,
must return -1, 0, 1.
$i ndex: the wanted index in the array.

ny ($array, $conpare, $index) = @;

ny $N = @array;

Short circuit for partitions.
return (sort { $conpare->($a, $b) } @array)[$index-1]
if $N <= PARTI TI ON_SI ZE;

ny $nedi ans;

Find the nedian of the about $N'5 partitions.
for ((ny $i = 0; $i < BN $i += PARTITION SIZE) {
ny $s = # The size of this partition.
$i + PARTITION SIZE < $N ?
PARTI TION_SI ZE : $N - $i;

Page 144
ny @& = # This partition sorted.
sort { Sarray->[$i + $a] cnp $array->[$i + $b] }
0 .. $s-1;
push @ $nedi ans }, # Accunul ate t he nedi ans.

$array->[$i + $s[int($s/ 2) 1 1:

Recurse to find the nedian of the nedi ans.
ny $nmedi an = sel ection($nedi ans, $conpare, int(@nmedians / 2));
ny @i nd;

use constant LESS => 0;
use constant EQUAL = 1:
use constant GREATER => 2;

Less-than el enents end up in @ $kind[LESS] },
equal -to el enents end up in @ $ki nd[EQUAL] },
greater-than elenments end up in @ $ki nd[GREATER] }.
foreach ny $elem (@array) ({

push @ $kind[$conpare->($el em $nedian) + 1] }, $elem
}

return sel ection($kind[LESS], $conpare, $index)
if $index <= @ $kind[LESS] };

$index -= @ $ki nd[LESS] };

return $nedi an
if $index <= @ $kind[EQUAL] };

$index -= @ $ki nd[EQUAL] };

return sel ection($ki nd] GREATER], $conpare, $index);

sub nedi an {
ny $array = shift;
return selection($array,
sub { $_[0]
@array / 2

sub percentile {
ny ($array, $percentile) = @;
return sel ection($array,
sub { $_[0] <=>$_[1] },
(@array * $percentile) / 100) ;
}

We can find the top decile of arange of test scores as follows:break

@cores = qw(40 53 77 49 78 20 89 35 68 55 52 71);
print percentile(\@-cores, 90), "\n";

Page 145
Thiswill be:
77

Beating O (N log N)

All the sort algorithms so far have been "comparison™ sort—they compare keys with each
other. It can be proven that comparison sorts cannot be faster than O (N log N). However you
try to order the comparisons, swaps, and inserts, there will always be at least O (N log N) of
them. Otherwise, you couldn't collect enough information to perform the sort.

It is possible to do better. Doing better requires knowledge about the keys befor e the sort
begins. For instance, if you know the distribution of the keys, you can beat O (N log N). You
can even beat O (N log N) knowing only the length of the keys. That's what the radix sort does.

Radix Sorts

There are many radix sorts. What they al have in common isthat each uses the internal
structure of the keysto speed up the sort. The radix is the unit of structure; you can think it as
the base of the number systerr used. Radix sorts treat the keys as numbers (even if they're
strings) and look at them digit by digit. For example, the string ABCD can be seen as a number
in base 256 asfollows: D + C* 256 + B* 2562 + A* 2563,

The keys have to have the same number of bits because radix agorithms walk through them all
one by one. If some keys were shorter than others, the agorithms would have no way of
knowing whether akey really ended or it just had zeroes at the end. Variable length strings
therefore have to be padded with zeroes (\ x00) to equalize the lengths.

Here, we present the straight radix sort, which isinteresting because of its rather
counterintuitive logic: the keys are inspected starting from their ends. Well use aradix of 28
because it holds all 8-bit characters. We assume that all the keys are of equa length and
consider one character at atime. (To consider n characters at atime, the keys would have to be
zero-padded to alength evenly divisible by n). For each pass, $f r on contains the results of
the previous pass. 256 arrays, each containing all of the elements with that 8-bit value in the
inspected character position. For the first pass, $f r orr contains only the original array.

Radix sort isillustrated in Figure 4-10 and implemented in ther adi x_sort () sub-routine
asfollows:break

sub radi x_sort {
ny $array = shift;

Page 146

ny $from= $array;
ny $to;

Al |engths expected equal.

for (my $i = length $array->[0] - 1, $i >=0; $i--) {
A new sorting bin.
$to=1[1;

foreach ny $card (@from) {
Stability is essential, so we use push().
push @ $to->[ord(substr $card, $i)] }, $card;

Concat enate the bins.

$from=[mp{ @ $_|| []} } @to];

Now copy the elenents back into the original array.

@array = @from

-

wolf pumal b AT h.'r'a;wk bear kear
boar pik%_ bjﬁr b%;lr :}qpar boar
hawk wolfl pikk plke hiwk hawk
bear hawl;_r:_\, wnj_._\,f].-,1:._;:\:1 i'fic»r'. lion
pike lioh puma walf [1vmee lymx
lion boar) lvok loar iEv'ike pike
lyox bear|), lLigh puma puma puma
puma lymix Yhawk lidee Wplf wolf

START i=3 =2 i=1 i= EXND

i for "

Figure 4-10.
The radix sort

We walk through the characters of each key, starting with the last. On each iteration, the record
is appended to the "bin" corresponding to the character being considered. This operation
maintains the stability of the original order, which is critical for this sort. Because of the way
the bins are allocated, ASCII ordering is unavoidable, as we can see from the misplaced wolf

in this sample run:

@rray = gMflow | oop pool WIf root sort tour);
radi x_sort (\@rray);

print "@rray\n";

Wl f flow |l oop pool root sort tour

For you old-timers out there, yes, thisis how card decks were sorted when computers were
real computers and programmers were real programmers. The deckcontinue

Page 147

was passed through the machine several times, one round for each of the card columnsin the
field containing the sort key. Ah, the flapping of the cards. . .

Radix sort isfast: O (Nk), where k is the length of the keys, in bits. The price is the time spent
padding the keysto equal length.

Counting Sort

Counting sort works for (preferably not too sparse) integer data. It Simply first establishes
enough counters to span the range of integers and then counts the integers. Findly, it constructs
the result array based on the counters.

sub counting_sort {
ny ($array, $nmex) = @; # All @array el enents nust be O.. $nax.
ny @ounter = (0) x ($max+1);
foreach ny $elem (@array) { $counter[$elem]++ }
return map { ($_) x $count[$_]1 } O..9$max;

}
Hybrid Sorts

Often it isworthwhile to combine sort agorithms, first using a sort that quickly and coarsely
arranges the elements close to their final positions, like quicksort, radix sort, or mergesort.
Then you can polish the result with a shell sort, bubble sort, or insertion sort—preferably the
|atter two because of their unparalleled speed for nearly sorted data. Y ou'll need to tune your
switch point to the task at hand.

Bucket Sort

Earlier we noted that inserting new books into a bookshelf resembles an insertion sort.
However, if you've only just recently learned to read and suddenly have many books to insert
into an empty bookcase, you need a bucket sort. With four shelvesin your bookcase, a
reasonable first approximation would be to pile the books by the authors' last names: A-G,
H-N, O-S, T-Z. Then you can lift the piles to the shelves, and polish the piles with afast
insertion sort.

Bucket sort is very hard to beat for uniformly distributed numerical data. The records are first
dropped into the right bucket. Items near each other (after sorting) belong to the same bucket.
The buckets are then sorted using some other sort; here we use an insertion sort. If the buckets
stay small, the O (N 2) running time of insertion sort doesn't hurt. After this, the buckets are
simply concatenated. The keys must be uniformly distributed; otherwise, the size of the buckets

becomes unbalanced and the insertion sort dows down. Our implementation is shown in the

bucket sort () subroutinebreak

use constant BUCKET_SI ZE => 10;

sub bucket _sort {

ny ($array, $nmin, $max) = @;
my $N = @array or return;

ny $range = $max - $min;
ny $N _BUCKET = $N / BUCKET_SI ZE;
ny @ucket;

Create the buckets.

for (ny $i = 0; $i < $N BUCKET; $i++) {
$bucket[$i] =1 1;

}

Fill the buckets.

for ((my $i =0; $i < BN S$i++) {
ny $bucket = $N BUCKET * (($array->[$i] - $min)/$range);
push @ $bucket|[$bucket] }, S$array->[$i 1;

Sort inside the buckets.

for ((my $i = 0; $i < $N BUCKET; $i++) {
insertion_sort($bucket[$i]) ;

}

Concat enate the buckets.

@ Sarray } =mp { @ $_} } @ucket;
}

Page 148

If the numbers are uniformly distributed, the bucket sort is quite possibly the fastest way to sort

numbers.
Quickbubblesort

To further demonstrate hybrid sorts, we'll marry quicksort and bubble sort to produce

guickbubblesort, or gbsort () for short. We partition until our partitions are narrower than a
predefined threshold width, and then we bubble sort the entire array. Thepartiti onMd3()
subroutineisthe sameastheparti ti on() subroutinewe used earlier, except that the
median-of-three code has been inserted immediately after the input arguments are copied.break

sub gbsort _qui ck;

sub partitionM3;

sub gbsort {
gbsort _quick $ [0], O, $#{ $ [0] }, defined $ [1] ? $ [1] : 10;
bubbl esnart $ [0]; # Use the variant that's fast for al nost sorted dal

The first half of the qui ckbubbl esort: quicksort.
A conpl etely normal quicksort (using median-of-three)
except that only partitions larger than $width are sorted

sub gbsort_qui ck {
ny ($array, $first, $last, $width) = @;

Page 149

my @tack = ($first, $last);

do {
if ($last - $first > $width) {
ny ($last_of first, $first_of last) =
partitionM3($array, $first, $last);

if ($first_of last - $first > $last - $last_of first) {
push @tack, $first, $first_of |ast;
$first = $last_of first;
} else {
push @tack, $last_of first, $last;
$last = $first_of |ast;
}
} else { # Pop.
($first, $last) = splice @tack, -2, 2;
¥

} while @t ack;

sub partitionM3 {
ny ($array, $first, $last) = @;

use i nteger;
ny $mddle = int(($first + $last) / 2);

Shuffle the first, mddle, and |ast so that the nedi an
is at the mddle.

@array[$first, $mddle] = @array[$mddle, $first]
if ($$array[$first] gt $$array[$middle]);

@array[$first, $last | = @array[$last, $first]
if ($$array[$first] gt $$array[$last]);

@array[$mddle, $last | = @array[$last, $niddle]
if ($$array[$middle] It $$array[$last]);

ny $i = $first;
ny $§ = $last - 1;
ny $pivot = $$array[$last];

Now do the partitioning around the nedi an

SCAN: {
do {
$first <= $i <= $ <= $last - 1
Point 1.

Move $i as far as possible.

while ($$array[$i] le $pivot) {
$i ++;
last SCAN if $ < $i;

Page 150

Move $ as far as possible.

while ($$array[$] ge $pivot) {
$j--;
last SCAN if $ < $i;

$i and $j did not cross over,
swap a | ow and a hi gh val ue.
@array[$j, $i] = @array[$i, $];
} while (--$] >= ++8i);
}
$first - 1 <= $ <= $i <= $last
Point 2.

Swap the pivot with the first |arger el enent
(if there is one).
if($i < $last) {

@array[$last, $i] = @array[i, Slast];

++$i ;

Point 3.

return ($i, $); # The new bounds excl ude the middle.

}

Theqgbsort () default threshold width of 10 can be changed with the optional second
parameter. We will see in the final summary (Figure 4-14) how well this hybrid fares.

External Sorting

Sometimes its Smply not possible to contain al your datain memory. Maybe there's not enough
virtual (or real) memory, or maybe some of the data has yet to arrive when the sort begins.
Maybe the items being sorted permit only sequential access, like tapesin atape drive. This
makes all of the algorithms described so far completely impractical: they assume random
access devices like disks and memories. When the cost of retrieving or storing an el ement
becomes, say, linearly dependent on its position, all the algorithms we've studied so far
become at the least O (N 2) because swapping two elementsis no longer O (1) as we have
assumed, but O (N).

We can solve these problems using a divide-and-conquer technique, and the easiest is
mergesort. Mergesort isideal because it reads its inputs sequentially, never looking back. The
partial solutions (saved on disk or tape) can then be combined over several stagesinto the final
result. Furthermore, the finished output is generated sequentially, and each datum can therefore
be finalized as soon as the merge "pointer" has passed by.break

Page 151

The mergesort we described earlier in this chapter divided the sorting problem into two parts.
But there's nothing special about the number two: in our dividing and conquering, there's no
reason we can't divide into three or more parts. In externa sorting, this multiway-merging may
be needed, so that instead of merging only two subsolutions, we can combine severd
simultaneoudly.

Sorting Algorithms Summary

Most of the time Perl'sown sor t isenough because it implements a fine-tuned quicksort in C.
However, if you need a customized sort algorithm, here are some guidelines for choosing one.

Reminder: In our graphs, both axes are scaled to 1.0 because the absolute numbers are
irrelevant—that's the beauty of O-analysis. The 1.0 of the running time axisis the dowest case:
bubblesort for random data.

The data set used was a collection of randomly generated strings (except for our version of
bucket sort, which understands only numbers). There were 100, 200, . . ., 1000 strings, with
lengths varying from 20 to 100 characters (except for radix sort, which demands equal-length
strings). For each algorithm, the tests were run with all three orderings: random, already
ordered, and already reverse-ordered. To avoid statistical flutter (the computer used was a
multitasking server), each test was run 10 times and the running times (CPU time, not real time)
were averaged.

To illustrate the fact that the worst case behavior of the algorithm has very little to do with the
computing power, comprehensive tests were run on four different computers, resulting in
Figure 4-11. An insertion sort on random data was chosen for the benchmark because it curves
quite nicely. The computers sported three different CPU families, the frequencies of the CPUs
varied by afactor of 7, and the real memory sizes of the hosts varied by afactor of 64. Due to
these large differences the absolute running times varied by afactor of 4, but since the worst
case doesn't change, the curves all look similar.

O (N 2) Sorts
In this section, we'll compare selection sort, bubble sort, and insertion sort.
Selection Sort

Selection sort is insensitive, but to little gain: performanceis aways O (N 2). It always does
the maximum amount of work that one can actually do without repeating effort. It is possible to
code stably, but not worth the trouble.break

Page 152

R

Funning time (Kormalired to Averoge)
2

L J

) &l i 03 04 05 0.4 or 0 0y I

Murmber of elerments [Normafized)

—— - —— Mothing o — e —— Mo b —— ——— Mochina ¢
—— - —— Moehine d Averoge

Figure 4-11.
Theirrelevance of the computer architecture

Bubble Sort and I nsertion Sort

Don't use bubble sort or insertion sort by themselves because of their horrible average
performance, O (N 2), but remember their phenomenal nearly linear performance when the data

is already nearly sorted. Either is good for the second stage of a hybrid sort.
i nsertion_nerge() canbeused for merging two sorted collections.

In Figure 4-12, the three upward curving lines are the O (N 2) agorithms, showing you how the
bubble, selection, and insertion sorts perform for random data. To avoid cluttering the figure,
we show only one log-linear curve and one linear curve. Well zoom in to the speediest region
soon.

The bubble sort is the worst, but as you can see, the more records there are, the quicker the
deterioration for all three. The second lowest lineisthe archetypal O (N log N) agorithm:
mergesort. It looks like astraight line, but actually curves slightly upwards (much more gently
than O (N 2)). The best-looking (lowest) curve belongs to radix sort: for random data, it's
linear with the number of records.break

Page 153

Runniing fime (Warmnoitzed fo Buble Sor)

Wormber of elerments (iormafized)
o Bublle Selaction — ——— lasartion
———— Merge Herafive RRE |¥ 1
Figure 4-12.

The quadratic, merge, and radix sorts for random data
Shellsort
The shellsort, with its hard-to-analyze time complexity, isin a class of its own:
*O(N1+e), e>0
* unstable

* sensitive

Time complexity possibly O (N (log N)2).
O (N log N) Sorts

Figure 4-13 zooms in on the bottom region of Figure 4-12. In the upper left, the O (N 2)
algorithms shoot up aggressively. At the diagona and clustering below it, the O (N log N)
algorithms curve up in amuch more civilized manner. At the bottom right are the four O (N)
algorithms: from top tos bottom, they are radix, bucket sort for uniformly distributed numbers,
and the bubble and insertion sorts for nearly ordered records.break

Page 154

gos LTl

o b, "
[/ S

Qo -

Ruvlng K (Novmolized fo Fubbe Sarf)

om

Figure 4-13.
All the sorting agorithms, mostly for random data

M er gesort

Always performswell (O (N log N)). The large space requirement (as large as the input) of
traditional implementations is a definite minus. The agorithm isinherently recursive, but can
and should be coded iteratively. Useful for externa sorting.

Quicksort

Almost always performs well—O (N log N)—but is very sensitiveinits basic form. Its
Achilles heel isordered or reversed data, yielding O (N 2) performance. Avoid recursion and
use the median-of-three technique to make the worst case very unlikely. Then the behavior
revertsto log-linear even for ordered and reversed data. Unstable. If you want stability, choose
mergesort.

How Well Did We Do?

In Figure 4-14, we present the fastest general-purpose algorithms (disqualifying radix, bucket,
and counting): the iterative mergesort, the iterative quicksort, our iterative
median-of -three-quickbubblesort, and Perl's sor t , for both random andcontinue

Page 155

ordered data. The iterative quicksort for ordered data is not shown because of its aggressive
quadratic behavior.

007 ..

I

= | Bl
T 005+ o
-t
= ~
-':2'; 3 : ' Ty B
e ;) i : : i ey :
= b S e e e BT s e R L e s R ne AL e e E
~ 0.04 - E ! : : : : - :
g : g ; : : : F’f !
[=] 23 :
: ﬂ‘ﬂg N _,r.f”. e Q-""I
E T 07
=y : : i
= r .
B -~
| ; ; ’f:-" : i § :
| : : s -2 : : : :
- 3 % : X FE|
LT e ;
o ° :

0 0.1 0.2 0.3 04 0.5 0.4 0.7 0.8 |
Number of elements (Normalized)

--------------------- Quicksort lterafive, random inpuf — — — Merge Iterative,

Qe -0y QuickBubble (Mo3 Iterative) , random input =—— Perl sori(), ored

ti) QuickBubble (Mo3 Iterative), ordered input +— Perl sori(), rand
Figure 4-14.

The fastest general-purpose sorting algorithms

Asyou can see, we can approach Perl's built-in sor t , which as we said before is a quicksort

under the hood.” Y ou can see how creatively combining algorithms gives us much higher and
more balanced performance than blindly using one single algorithm.

Here are two tables that summarize the behavior of the sorting algorithms described in this
chapter. As mentioned at the very beginning of this chapter, Perl has implemented its own
quicksort implementation since Version 5.004 _05. It isahybrid of

qui cksort-with-median-of-three (quick+mo3 in the tables that follow) and insertion sort. The
terminally curious may browse pp_ctl.c in the Perl source code.continue

* The better gsor t () implementations actually are also hybrids, often quicksort combined with
insertion sort.
Page 156
Table 4-1 summarizes the performance behavior of the algorithms as well as their stability and
sengitivity.

Table 4-1. Performance of Sorting Algorithms

Sort Random Ordered Reversed Stability | Sensitivity
selection N2 N2 N2 stable insensitive
bubble N2 N N2 unstable | senditive
insertion N 2 N N 2 stable sensitive
shell N (log N)2 N (log N)2 N (log N)2 stable senditive
merge Nlog N Nlog N Nlog N stable insensitive
heap NlogN NlogN NlogN unstable | insensitive
quick NlogN N2 N2 unstable | sensitive
quick+mo3 | Nlog N NlogN NlogN unstable | insensitive
radix Nk Nk Nk stable insensitive
counting N N N stable insengitive
bucket N N N stable sensitive

The quick+mo3 is quicksort with the median-of-three enhancement. "Almost ordered" and

"amost reversed” behave like their perfect counterparts. . . almost.

Table 4-2 summarizes the pros and cons of the algorithms.

Table 4-2. Pros and Cons of Sorts

Sort Advantages Disadvantages

selection stable, insensitive Q (N2

bubble Q (N) for nearly sorted W (N 2) otherwise
insertion Q (N) for nearly sorted W (N 2) otherwise

shell O (N (log N)2 worse than O (N log N)
merge Q (Nlog N), stable, insensitive O (N) temporary workspace

Ieay U N TUY N, HHiserisuve ulistauie

quick Q (NlogN) unstable, sensitive (W (N 2) at worst)
quick+mo3 | Q (Nlog N), insensitive unstable

radix O (NK), stable, insensitive only for strings of equal |ength
counting O (N), stable, insensitive only for integers

bucket O (N), stable only for uniformly distributed numbers

"No, not at therear!" the slave-driver shouted. "Threefiles up.
And stay there, or you'll know it, when | come down the line!"
—J. R. R. Talkien, The Lord of the Ringsbreak

Page 157

5—
Sear ching

Theright of the people to be secure against unreasonable searches and
seizures, shall not beviolated . . .
—Constitution of the United States, 1787

Computers—and people—are aways trying to find things. Both of them often need to perform
tasks like these:

* Select fileson adisk

* Find memory locations

* |dentify processesto bekilled

* Choose the right item to work upon

* Decide upon the best algorithm

* Search for the right place to put aresult

The efficiency of searching isinvariably affected by the data structures storing the information.
When speed is critical, you'll want your data sorted beforehand. In this chapter, we'll draw on
what we've learned in the previous chapters to explore techniques for searching through large
amounts of data, possibly sorted and possibly not. (Later, in Chapter 9, Srings, we'll
separately treat searching through text.)

Aswith any agorithm, the choice of search technique depends upon your criteria. Does it
support al the operations you need to perform on your data? Does it run fast enough for
frequently used operations? Isit the simplest adequate algorithm?

We present alarge assortment of searching algorithms here. Each technique hasits own
advantages and disadvantages and particular data structures and sorting methods for which it
works especially well. Y ou have to know which operationscontinue

Page 158

your program performs frequently to choose the best agorithm; when in doubt, benchmark and
profile your programsto find out.

There are two general categories of searching. The first, which we call lookup searches,
involves preparing and searching a collection of existing data. The second category,

gener ative searches, involves creating the data to be searched, often choosing dynamically the
computation to be performed and almost always using the results of the search to control the
generation process. An example might be looking for ajob. While thereis a great deal of
preparation you can do beforehand, you may learn things at an actual interview that drastically
change how you rate that company as a prospective employer—and what other employers you
should be seeking ouit.

Most of this chapter is devoted to lookup searches because they're the most general. They can
be applied to most collections of data, regardless of the internal details of the particular data.
Generative agorithms depend more upon the nature of the data and computations involved.

Consider the task of finding a phone number. Y ou can search through a phone book fairly
quickly—say, in less than a minute. This gives you a phone number for anyone in the city—a
primitive lookup search. But you don't usually call just anyone, most often you call an
acquaintance, and for their phone number you might use a personal address book instead and
find the number in afew seconds. That's a speedier lookup search. And if it's someone you call
often and you have their number memorized, your brain can complete the search before your
hand can even pick up the address book.

Hash Search and Other Non-Sear ches

The fastest search technique is not to have to search at al. If you choose your data structuresin
away that best fits the problem at hand, most of your "searching” is ssimply the trivia task of
accessing the data directly from that structure. For example, if your program determined mean
monthly rainfal for later use, you would likely storeit in alist or a hash indexed by the month.
Later, when you wanted to use the value for March, you'd "search” for it with either
$rainfall[3] or$rainfall {March}.

Y ou don't have to do alot of work to ook up a phone number that you have memorized. Y ou
just think of the person's name and your mind immediately comes up with the number. Thisis
very much like using a hash: it provides a direct association between the key value and its
additional data. (The underlying implementation is rather different, though.)

Often you only need to search for specific elementsin the collection. In those cases, ahash is
generaly the best choice. But if you need to answer more compli-soft

Page 159

cated questions like "What is the smallest element?" or "Are any elements within a particular
range?" which depend upon the relative order of elementsin the collection, a hash won't do.

Both array and hash index operations are O (1)—taking afixed amount of time regardless of

the number of elementsin the hash (with rare pathological exceptions for hashes).

L ookup Searches

A lookup search is what most programmers think of when they use the term "search"—they
know what item they're looking for but don't know whereit isin their collection of items. We
return to afavorite strategy of problem solving in any discipline: decompose the problem into
easy-to-solve pieces. A fundamental technique of program design isto break a problem into
pieces that can be dealt with separately. The typical components of a search are asfollows:

1. Collecting the data to be searched

2. Structuring the data

3. Sdlecting the data e ement(s) of interest

4. Restructuring the selected element(s) for subsequent use

Coallecting and structuring the data is often done in a separate, earlier phase, before the actual
search. Sometimesit is done along time before—a database built up over yearsisimmediately
available for searching. Many companies base their business upon having built such
collections, such as companies that provide mailing lists for qualified targets, or encyclopedia
publishers who have been collecting and updating their data for centuries.

Sometimes your program might need to perform different kinds of searches on your data, and in
that case, there might be no data structure that performs impeccably for them all. Instead of
choosing a smple data structure that handles one search situation well, it's better to choose a
more complicated data structure that handles al situations acceptably.

A well-suited data structure makes selection trivial. For example, if your datais organized in a
heap (a structure where small items bubble up towards the top) searching for the smallest
element is Simply a matter of removing the top item. For more inforrmration on heaps, see
Chapter 3, Advanced Data Structures.

Rather than searching for multiple e ements one at atime, you might find it better to select and
organize them once. Thisiswhy you sort a bridge hand—a little time spent sorting makes all of
the subsequent analysis and play easier.break

Page 160

Sorting is often a critical technique—if a collection of itemsis sorted, then you can often find a
specificitemin O (log N) time, even if you have no prior knowledge of which item will be
needed. If you do have some knowledge of which items might be needed, searches can often be
performed faster, maybe even in constant—O (1)—time. A postman walks up one side of the
street and back on the other, delivering all of the mail in asingle linear operation—the top
letter in the bag is always going to the current house. However, there is aways some cost to
sorting the collection beforehand. Y ou want to pay that cost only if the improved speed of
subsequent searchesisworth it. (While you're busy precisely ordering items 25 through 50 of
your to-do list, item 1 is il waiting for you to perform it.)

Y ou can adapt the routines in this chapter to your own datain two ways, as was the case in
Chapter 4, Sorting. You could rewrite the code for each type of data and insert a comparison

function for that data, or you could write a more general but dower searching function that
accepts a comparison function as an argument.

Speaking of comparison testing, some of the following search methods don't explicitly consider
the possibility that there might be more than one element in the collection that matches the target
value—they smply return the first match they find. Usually, that will be fine—if you consider
two items different, your comparison routine should too. Y ou can extend the part of the value
used in comparisons to distinguish the different instances. A phone book does this. after you

have found "J Macdonald,” you can use his address to distinguish between people with the
same name. On the other hand, once you find ajar of cinnamon in the spice rack, you stop
looking even if there might be others there, too—only the fussiest cook would care which bottle

to use.

Let'slook at some searching techniques. Thistable gives the order of the speed of the methods
we'll be examining for some common operations:break

Method L ookup Insert Delete
ransack O (N) (unbounded) | O(1) O (N) (unbounded)
list—linear O(N) o) O(N)
list—binary O (log, N) O(N) O(N)
list—proportional O (log, N) to O(N) O(N)

O(N)
binary tree (balanced) O (log, N) O (log, N) O (log, N)
binary tree (unbalanced) O(N) O(N) O (log, N)
busiher trees (various) (various) (various)
list—using index o) o) o)
lists of lists O (k) (number of O (kI) (Iength of O (kh

lists) lists)
(table continued on next page)

Page 161

(table continued from previous page)
M ethod L ookup Insert Delete

B-trees (k entries per node)

hybrid searches

O (logy N + log, k)

(various)

O (logg N + log, k)

(various)

O (logg N + log, k)

(various)

Ransack Search

People, like computers, use searching algorithms. Here's one familiar to any parent—the
ransack search. As searching algorithms go, it's atrocious, but that doesn't stop
three-year-olds. The particular variant described here can be attributed to Gwilym Hayward,
who is much older than three years and should know better. The algorithm is as follows:

1. Remove a handful of toys from the chest.

2. Examine the newly exposed toy: if it is the desired object, exchange it with the handful and
terminate.

3. Otherwise, replace the removed toys into arandom location in the chest and repest.

This particular search can take infinitely long to terminate: it will never recognize for certain if
the element being searched for is not present. (Termination is an important consideration for
any search.) Additionally, the random replacement destroys any cached location information
that any other person might have about the order of the collection. That does not stop children
of al agesfromusing it.

The ransack search is not recommended. My mother said so.
Linear Search

How do you find a particular item in an unordered pile of papers? Y ou look at each item until
you find the one you want. Thisisalinear search. It is so simple that programmersdo it al the
time without thinking of it as a search.

Here's a Perl subroutine that linear searches through an array for a string match:* break

$index = linear_string(\@rray, $target)
@rray is (unordered) strings
on return, $index is undef or else $array[$i ndex] eq $target

sub linear_string {
nmy ($array, S$target) = @,

* The peculiar-looking f or loopinthel i near _string() functionisan efficiency measure. By
counting down to 0, the loop end conditional isfaster to execute. It iseven faster than af or each
loop that iterates over the array and separately increments a counter. (However, it is slower than a

f or each loop that need not increment a counter, so don't useit unless you really need to track the
index as well asthe value within your loop.)

Page 162

for (ny $i = @array; $i--;) {
return $i if Sarray->[$i] eq $target;
}

return undef;

}

Often this search will be written inline. There are many variations depending upon whether you
need to use the index or the value itself. Here are two variations of linear search; both find all
matches rather than just the first:

CGet all the matches.
@ratches = grep { $_ eq $target } @rray;

CGenerate paynent overdue notices.

foreach $cust (@ustoners) {
Search for overdue accounts.
next unless $cust->{status} eq "overdue"
Generate and print a mailing |abel
print $cust->address_| abel ;

}

Linear search takes O (N) time—it's proportional to the number of elements. Before it can fail,
it has to search every element. If the target is present, on the average, half of the elements will
be examined before it isfound. If you are searching for all matches, all e ements must be
examined. If there are alarge number of elements, this O (N) time can be expensive.

Nonetheless, you should use linear search unless you are dealing with very large arrays or very
many searches; generaly, the smplicity of the code is more important than the possible time
savings.

Binary Search in a List

How do you look up a name in a phone book? A common method is to stick your finger into the
book, look at the heading to determine whether the desired page is earlier or later. Repeat with
another stab, moving in the right direction without going past any page examined earlier. When
you've found the right page, you use the same technique to find the name on the page—find the
right column, determine whether it isin the top or bottom half of the column, and so on.

That is the essence of the binary search: stab, refine, repeat.

The prerequisite for abinary search isthat the collection must already be sorted. For the code
that follows, we assume that ordering is aphabetical. Y ou can modify the comparison operator
if you want to use numerical or structured data.

A binary search "takes a stab" by dividing the remaining portion of the collection in half and
determining which half contains the desired element.break

Page 163
Here'saroutine to find astring in a sorted array: break

$index = binary string(\@rray, $target)

@rray is sorted strings

on return,

either (if the element was in the array):

$index is the el enent

$array[$i ndex] eq $target

or (if the elenent was not in the array):

$index is the position where the el ement shoul d be inserted
$index == @rray or S$array[$i ndex] gt $target

splice(@rray, $index, 0, $target) would insert it
into the right place in either case

#

sub binary_string {

ny ($array, $target) = @;

$lowis first elenent that is not too | ow

$high is the first that is too high
#
ny ($low, $high) = (0, calar@array));

Keep trying as long as there are el enents that m ght work.
#
while ($low < $high) {

Try the mddle el ement.

use integer;
nmy $cur = ($l ow+$hi gh)/ 2;
if ($array->[$cur] It $target) {

$low = $Scur + 1; # too small, try higher
} else {
$hi gh = $cur; # not too small, try | ow

}

return $l ow

exanpl e use:

ny $index = binary _string (\ @eywords, $word);

i f($index < @eywords && $keywords[$i ndex] eq $word) {
found it: use $keywords[$i ndex]

} else {
1t's not there.

You m ght issue an error
warn "unknown keyword $word" ;

or you might insert it.
splice(@eywords, $index, 0, $word);

Page 164

This particular implementation of binary search has a property that is sometimes useful: if there
are multiple elements that are all equal to the target, it will return the first.

A binary search takes O (log N) time—either to find atarget or to determine that the target is
not in the array. (If you have the extra cost of sorting the array, however, that isan O (Nlog N)

operation.) It istricky to code binary search correctly—you could easily fail to check the first
or last element, or conversely try to check an element past the end of the array, or end upina
loop that checks the same element each time. (Knuth, in The Art of Computer Programming:
Sorting and Searching, section 6.2.1, points out that the binary search was first documented in
1946 but the first algorithm that worked for all sizes of array was not published until 1962.)

One useful feature of the binary search isthat you can useit to find arange of elements with
only two searches and without copying the array. For example, perhaps you want all of the
transactions that happened in February. Searching for arange lookslikethis:

($i ndex_l ow, $i ndex_high) =
bi nary_range_string(\@rray, $target_|low, $target_high);
@rray is sorted strings
On return:
$array[$i ndex_| ow. . $i ndex_hi gh] are all of the
val ues between $target | ow and $target high inclusive
(if there are no such values, then $index_| ow will
equal $i ndex_hi gh+1, and $index_low w |l indicate
the position in @rray where such a val ue should
be inserted, i.e., any value in the range should be
inserted just before el enent $index_ | ow

HHHHHFHHFH R

sub binary range string {
ny ($array, $target low, $target_high) = @;
ny $index low = binary_string($array, $target_low);
ny $index_high = binary_string($array, $target_high);

- - $i ndex_hi gh
i f $index_high == @array |
$array- >[$i ndex_hi gh] gt $target_high

return ($index_| ow, $index_high);
}
($Feb_start, $Feb_end) = binary_range string(\ @ear, '0201',' 0229');

The binary search method suffers if elements must be added or removed after you have sorted
the array. Inserting or deleting an element into or from an array without disrupting the sort
generaly requires copying many of the elements of the array. This condition makes the insert
and delete operations O (N) instead of O (log N).break

Page 165
This algorithm is recommended as long as the following are true:
» The array will be large enough.
e The array will be searched often.”

* Once the array has been built and sorted, it remains mostly unchanged (i.e., there will be far
many more searches than inserts and del etes).

It could also be used with a separate list of the inserts and deletions as part of a compound

strategy if there are relatively few inserts and deletions. After binary searching and finding an
entry in the main array, you would perform alinear search of the deletion list to verify that the
entry is dill valid. Alternatively, after binary searching and failing to find an element, you
perform alinear search of the addition list to confirm that the element still does not exist. This
compound approach is O ((log N) + K) where K is the number of inserts and deletes. Aslong
as K ismuch smaler than N (say, lessthan log N) this approach is workable.

Proportional Search

A significant speedup to binary search can be achieved. When you are looking in a phone book
for aname like "Anderson”, you don't take your first guessin the middle of the book. Instead,
you begin a short way from the beginning. Aslong as the values are roughly evenly distributed
throughout the range, you can help binary search aong, making it a proportional search.
Instead of computing the index to be halfway between the known upper and lower bounds, you
compute the index that is the right proportion of the distance between them—conceptualy, for
your next guess you would use:

(target - Sarraw-=[low])
thigh- Lo + lim
{Sarray->[bigh] - Sorray-=[low])

To make proportional search work correctly requires care. Y ou have to map the result to an
integer—it's hard to look up element 34.76 of an array. Y ou aso have to protect against the
cases when the value of the high element equals the value of the low element so that you don't
divide by zero. (Note also that we are treating the values as numbers rather than strings.
Computing proportions on strings is much messier, as you can see in the next code example.)

A proportional search can speed the search up considerably, but there are some
problems:break

* "Large enough" and "often" are somewhat vague, especially because they affect each other.
Multiplying the number of elements by the number of searchesis your best indicator—if that product
isin the thousands or less, you could tolerate alinear search instead.

Page 166
* |t requires more computation at each stage.

* It causes adivide by zero error if the range bounded by $I ow and $hi gh isagroup of
elements with an identical key. (Well handle that issue in the following code by skipping the
computation in such cases.)

* It doesn't work well for finding the first of a group of equal elements—the proportion always
points to the same index, so you end up with alinear search for the beginning of the group of
equal elements. Thisisonly aproblem if very large collections of equal-valued el ements are
allowed.

* It degrades, sometimes very badly, if the keys aren't evenly distributed.

To illustrate the last problem, suppose the array contains a million and one elements—all of
the integers from 1 to 1,000,000, and then 1,000,000,000,000. Now, suppose that you search
for 1,000,000. After determining that the values at the ends are 1 and 1,000,000,000,000, you

compute that the desired position is about one millionth of the interval between them, so you
check theelement $ar r ay[1] since 1 isone millionth of the distance between indices 0 and
1,000,000. At each stage, your estimate of the element's location isjust as badly off, so by the
time you've found the right element, you've tested every other element first. Some speedup! Add
this danger to the extra cost of computing the new index at each stage, and even more lustre is
lost. Use proportional search only if you know your datais well distributed. Later in this
chapter, the section "Hybrid Searches" shows how this example could be handled by making
the proportional search part of a mixed strategy.

Computing proportional distances between strings is just the sort of "simple modification”
(hiding a horrible mess) that authors like to leave as an exercise for the reader. However, with
avaliant effort, we resisted that temptation: break

sub proportional _binary_string_search {
ny ($array, $target) = @;

Slowis first element that is not too | ow

$high is the first that is too high

$common is the index of the |last character tested for
equality in the elements at $l ow 1 and $hi gh

Rat her than conpare the entire string value, we only
use the "first different character"

W start with character position -1 so that character
0 is the one to be conpared.

HHH R

ny ($low, $high, $common) = (0, scalar(@array), -1);

return O if $high == -1 || S$array->[0] ge $target;
return $high if $array->[$high-1] It $target;
- - $hi gh;

Page 167

ny ($low ch, $high ch, $targ ch) = (0, 0);
ny ($l ow ord, $high ord, $targ_ord);

Keep trying as long as there are el enents that m ght work.
#
while($low < $high) {
if ($low.ch eq $high_ch) {
while ($l ow ch eq $high_ch) {

return $low if $common == | engt h($array->[$high]);
++$conmon;
$l ow _ch substr($array->[$lowj, $comon, 1);

$hi gh_ch = substr($array->[$hi gh], $common, 1);

}

$targ_ch = substr($target, $common, 1);

$low ord = ord($lowch);
$high_ord = ord($high_ch);
$targ ord = ord($targ ch);

}

Try the proportional elenent (the preceding code has

ensured that there is a nonzero range for the proportion
to be within).

ny $cur = $low

$cur +=int(($high - 1 - $low) * (S$targ_ord - $l ow ord)
/ ($high_ord - $low ord)) ;

ny $new ch = substr($array->[$cur], $common, 1);

ny $new ord = ord($new ch);

if ($new ord < $targ_ord
|| ($new ord == $targ_ord
&& Sarray->[Scur] It Starget)) {
$low = S$cur+1; # too small, try higher

$l ow ch = substr($array->[$low], $common, 1);
$l ow ord = ord($low ch);

} else {
$hi gh = $cur; # not too small, try | ower

$hi gh_ch = $new ch;
$hi gh_ord = $new ord;
}
}
return $l ow

}
Binary Search ina Tree

The binary tree data structure was introduced in Chapter 2, Basic Data Structures. Aslong as
the tree is kept balanced, finding an element in atree takes O (log N) time, just like binary
searchin an array. Even better, it only takes O (log N) to performr an insert or delete operation,
which isalot less than the O (N) required to insert or delete an element in an array.break

Page 168
Should You Usea List or a Treefor Binary Searching?

Binary searching is O (log N) for both sorted lists and balanced binary trees, so as afirst
approximation they are equally usable. Here are some guidelines:

» Use alist when you search the data many times without having to change it. That hasa
significant savings in space because there's only data in the structure (no pointers)—and only
one structure (little Perl space overhead).

» Use atree when addition and removal of elementsis interleaved with search operations. In
this case, the tree's greater flexibility outweighs the extra space requirements.

Bushier Trees

Binary trees provide O (log, N) performance, but it's tempting to use wider trees—atree with
three branches at each node would have O (log; N) performance, four branches O (log, N)
performance, and so on. Thisis analogous to changing a binary search to a proportional
search—it changes from adivision by two into adivision by alarger factor. If the width of the
treeis a constant, this does not reduce the order of the running time; itisstill O (log N). What it

does do isreduce by a constant factor the number of tree nodes that must be examined before
finding aleaf. Aslong as the cost of each of those tree node examinations does not rise unduly,
there can be an overall saving. If the tree width is proportional to the number of elements,
rather than a constant width, there is an improvement, from O (log N) to O (1). We already
discussed using lists and hashes in the section "Hash Search and Other Non-Searches,” they
provide "trees’ of one level that is as wide as the actual data. Next, though, we'll discuss
bushier structures that do have the multiple levels normally expected of trees.

Lists of Lists

If the key is sparse rather than dense, then sometimes a multilevel array can be effective. Break
the key into chunks, and use an array lookup for each chunk. In the portions of the key range
where the data is especially sparse, there is no need to provide an empty tree of
subarrays—this will save some wasted space. For example, if you were keeping information
for each day over arange of years, you might use arrays representing years, which are
subdivided further into arrays representing months, and finally into elements for individual
days:break

$val ue = datetab($table, $date)

datetab($table, $date, $newal ue)

#

Look up (and possibly change) a val ue i ndex by a date.

Page 169

The date is of the form"yyyymdd", year(1990-), nonth(1-12),
day(1-31).

sub datetab {
my ($tab, $date, $value) = @;

ny ($year, S$nonth, $day) = ($date =~ /A(\d\d\did) (\d\d)(\d\d)$/)
or die "Bad date format $date";

$year -= 1990;
--$nont h; --$day;
if (@ < 3) {
return $tab->[$year][$nont h] [$day] ;
} else {
return $tab->[$year] [$nont h] [$day] = $val ue;
}

}

Y ou can use avariant on the same technique even if your datais a string rather than an integer.
Such abreakdown is done on some Unix systems to store the terminfo database, a directory of
information about how to control different kinds of terminals. Thisterminal information is
stored under the directory /usr/lib/terminfo. Accessing files becomes slow if the directory
contains avery large number of files. To avoid that slowdown, some systems keep this
information under atwolevel directory. Instead of the description for vt100 being in the file
lusr/lib/terminfo/vt100, it is placed in /usr/lib/ter minfo/v/vt100. There is a separate directory
for each letter, and each terminal type with that initial is stored in that directory. CPAN uses up
to two levels of the same method for storing user IDs—for example, the directory K/IKS/KSTAR

has the entry for Kurt D. Starsinic.
B-Trees

Another wide tree algorithm is the B-tree. It usesamultilevel tree structure. In each node, the
B-tree kegps alist of pairs of values, one pair for each of its child branches. One value
specifies the minimum key that can be found in that branch, the other points to the node for that
branch. A binary search through this array can determine which one of the child branches can
possibly contain the desired value. A node at the bottom level contains the actual value of the
keyed item instead of alist. See Figure 5-1 for the structure of a B-tree.

B-trees are often used for very large structures such as filesystem directories—structures that
must be stored on disk rather than in memory. Each node is constructed to be a convenient size
in disk blocks. Constructing awide tree this way satisfies the main requirement of data stored
on file, which isto minimize the number of disk accesses. Because disk accesses are much
dower than in-memory operations, we can afford to use more complicated data processing if it
saves accesses. A B-tree node, read in one disk operation, might contain references to 64
subnodes. A binary tree structure would require six times as many disk accesses,continue

Page 170

nordvark: nordwol; bear:
o nocurnal momrmal on AFricen marnal o large heavy
of southern Africo ... uf the hyeno mammal of the
Fomily .. Famity Ursidoa ..
Figure 5-1.
Sample B-tree

but these disk accesses totally dwarf the cost of the B-tree's binary search through the 64
elements.

If you've installed Berkeley DB (available at http: //www.sleepycat.comv/db) on your machine,
using B-trees from Perl is easy:

use DB Fil eg;

tie %ash, "DB File", $filenane, $flags, $node, $DB BTREE;

Thisbinds %hash to thefile $f i | enane, which keepsits datain B-tree format. Y ou add or
change items in the file Ssmply by performing normal hash operations. Examine perldoc
DB_File for more details. Since the datais actually in afile, it can be shared with other
programs (or used by the same program when run at different times). Y ou must be careful to
avoid concurrent reads and writes, either by never running multiple programs at once if one of
them can change the file, or by using locks to coordinate concurrent programs. Thereis an
added bonus: unlike anormal Perl hash, you can iterate through the elements of %hash (using
each, keys, orval ues) inorder, sorted by the string value of the key.

The DB_File module, by Paul Marquess, has another feature: if the value of $f i | e- nane is
undefined when you tie the hash to the DB_File module, it keeps the B-tree in memory instead
of in afile.break

Page 171

Alternatively, you can keep B-trees in memory using Mark-Jason Dominus BTree module,
which is described in The Perl Journal, Issue #8. It is available at
http: //www.plover.com/~mjd/per|/BTree/BTree.pm.

Here's an example showing typical hash operations with a B-tree

use BTree;

ny $tree = BTree->new B => 20);

Insert a fewitens.
while (ny ($key, $value) = each %ash) {
$tree- >B_sear ch(
Key => $key,
Data => $val ue,
Insert => 1);

Test whether sone items are in the tree.
foreach (@est) {
defined $tree->B_search(Key => $_)
? process_yes($)
process_no($_);

Update an itemonly if it exists, do nothing if it doesn't.
$tree- >B_sear ch(

Key => 'sone key',

Dat a => 'new val ue',

Repl ace => 1);

Create or update an itemwhether it exists or not.
$tree->B search (

Key => 'anot her key',
Dat a => 'a val ue',
Insert =>1,

Repl ace => 1);

Hybrid Searches

If your key values are not consistently distributed, you might find that a mixture of search
techniques is advantageous. That familiar address book uses a sorted list (indexed by the initia
letter) and then alinear, unsorted list within each page.

The example that ruined the proportional search (the array that included numbers from 1
through 1,000,000 as well as 1,000,000,000,000) would work really well if it used a
three-level structure. A hybrid search would replace the binary search with a series of checks.
Thefirst check would determine whether the target was the Saganesque 1,000,000,000,000
(and return its index), and a second check would determine if the number was out of range for 1
.. 1,000,000 (saying "not found").continue

Page 172
Otherwise, the third level would return the number (which isits own index in the array):

sub sagan_and_a_mllion {
ny $desired = shift;

return 1_ 000 001 if $desired == 1 000_000_000_000;
return undef if $desired < 0 || $desired > 1_000_000;
return $desired;

}

This sort of search structure can be used in two situations. First, it is reasonable to spend alot
of effort to find the optimal structure for data that will be searched many times without
modification. In that case, it might be worth writing aroutine to discover the best multilevel
organization. The routine would use lists for ranges in which the key space was completely
filled, proportional search for areas where the variance of the keys was reasonably small,
bushy trees or binary search lists for areas with large variance in the key distribution. Splitting
the data into areas effectively would be a hard problem.

Second, the data might lend itself to a natural split. For example, there might be atop level
indexed by company name (using a hash), a second level indexed by year (alist), and athird
level indexed by company division (another hash), with gross annua profit as the target value:

$profit = $gross->{$conpany}[$year] { $di vi si on};

Perhaps you can imagine atree structure in which each node is an object that has a method for
testing a match. As the search progresses down the tree, entirely different match techniques
might be used at each leve.

Lookup Search Recommendations

Choosing a search algorithm isintimately tied to choosing the structure that will contain your
data collection. Consider these factors as you make your choices:

» What is the scale? How many items are involved? How many searches will you be making?
A few? Thousands? Millions? 101007

When the scaleislarge, you must base your choice on performance. When the scaleis small,
you can instead base your choice on ease of writing and maintaining the program.

» What operations on the data collection will be interleaved with search operations?

When a data collection will be unchanged over the course of many searches, you can organize
the collection to speed the searches. Usualy that means sorting it. Changing the collection, by
adding new elements or deleting existingcontinue

Page 173

elements, makes maintaining an optimized organization harder. But, there can be advantages to
changing the collection. If an item has been searched for and found once, might it be requested
again?If not, it could be removed from the collection; if you can remove many items from the
structure in that way, subsequent searches will be faster. If the search can repedt, isit likely to
do so?If itisespecialy likely to repedt, it is worth some effort to make the item easy to find
again—thisis called caching. Y ou cache when you keep arecipe file of your favorite recipes.
Perl caches object methods for inherited classes so that after it has found one, it remembersits
location for subsequent invocations.

» What form of search will you be using?

Sngle key
Find the e ement that matches avalue.

Key range
Find all the elementsthat are within arange of values.

Order
Find the element with the smallest (or largest) value.

Multiple keys
Find the element that matches a value, but match against different parts of the element on
different searches (e.g., search by name, postal code, or customer number). This can be a
real problem, since having your data sorted by customer number doesn't help at al when
you are searching by name.

Table 5-1 listsanumber of viable data structures and their fitness for searching.break

Table 5-1. Best Data Structures and Algorithms for Searching

Data Structure | Recommended Use | Operation Implementation Cost
add push o
small scaletasks delete from pop, unshi ft 01
. (including rarely end _
list (unsorted) used alternate delete arbitrary splice O(N)
search keys) element
Al mmmvabamm linear cearch la¥4N\

dll SediLles e oo AN
when the key add/delete/key array element 0(1)
used for searching search operétions
list (indexed isasmall unique range search array slice size of range
by key) positive integer (or smallest first defined O (1) (dense
can easily be element array), O (N)
mapped to one) (sparse array)
(table continued on next page)
Page 174
Table 5-1. Best Data Structures and Algorithms for Searching (continued)
Data Structure | Recommended Use | Operation Implementation Cost
add/delete binary search; O(N)
when there are range splice
searches (or many key search binary search O (logN)
list (sorted) single key searches) | range searches binary range O (log N)
and few adds (or search
deletes)
smallest first element 0(1)
add push; heapup O(logN)
small to medium delete smallest exchange; O(logN)
list (binar scale tasks, only heapdown
heep) y searchisfor delete known exchange; O (logN)
P smallest, no random | element heapup or
deletes heapdown
smallest first element o)
add add method o)
object |arge scale tasks, delete smallest ;ﬁ;ozct _minimm | O(logN)
(Fibonacci only search s for delete known del et e method O (logN)
heap) smallest o
ement
smallest m ni mun method o1
sinloe kev and add/del ete/key hash element o)
hash (indexed by ge ey search operations
order-independent :
key) range search, linear search O(N)
searches
smallest
single key add/delete hash, plus O(N)
searches mixed binary search
with order andsplice
hash and dependent key search hash element o)
sorted list searches, can be operations
well handled by range search, binary search O(logN)
smallest

having both a

IhAaAl AmAl A Amd D~

ISl iU aSLIL 1HESL
many elements add bal _tree_add O (log N)
(but still ableto fit delete bal _tree_del O (log N)
i bal _t find
balanced m_to memory), key/range al_tree_tin O (logN)
binary tree with very large search .
numbers of smallest follow left link O(logN)
searches, adds, toend
and deletes

(table continued on next page)

Page 175

Table 5-1. Best Data Structures and Algorithms for Searching (continued)

Data Structure | Recommended Use | Operation Implementation Cost

external files When the datais various disk 1/0
method too largetofitin
memory, or is

large and long-

lived, keepitina
file. A sorted file
alows binary

search on thefile.

A dorr or B-treefile
allows hash access
conveniently. A B-
tree dso allows
ordered access for
range operations.

Table 5-1 give no recommendations for searches made on multiple, different keys. Here are
some general approaches to dealing with multiple search keys:

* For small scale collections, using alinear search is easiest.

» When one key is used heavily and the others are not, choose the best method for that heavily
used key and fall back to linear search for the others.

» When multiple keys are used heavily, or if the collection is so large that linear search is
unacceptable when an dternate key is used, you should try to find a mapping scheme that
converts your problem into separate single key searches. A common method isto use an
effective method for one key and maintain hashes to map the other keys into that one primary
key. When you have multiple data structures like this, there is a higher cost for changes (adds
and deletes) since all of the data structures must be changed.

Gener ative Sear ches

Until now, we've explored means of searching an existing collection of data. However, some

problems don't lend themselves to this model—they might have alarge or infinite search space.
Imagine trying to find where your phone number first occursin the decimal expansion of p. The
search space might be unknowable—you don't know what's around the corner of a maze until
you move to a position where you can look; a doctor might be uncertain of adiagnosis until test
results arrive In these cases, it's necessary to compute possible solutions during the course of
the search, often adapting the search process itself as new information is learned.break

Page 176

We call these searches generative searches, and they're useful for problems in which areas of
the search space are unknown (for example, if they interact autonomoudy with the real world)
or where the search space is so immense that it can never be fully investigated (such asa
complicated game or all possible paths through alarge graph).

In one way, analysis of gamesis more complicated than other searches. In agame, thereis
alternation of turns by the players. What you consider a"good" move depends upon whether it
will happen on your turn or on your opponent's turn, while nongame search operations tend to
strive for the same goal each step of the way. Often, the alternation of goals, combined with
being unable to control the opponent's moves, makes the search space for game problems
harder to organize.

In this chapter, we use games as exampl es because they require generative search and because
they are familiar. This does not mean that generative search techniques are only useful for
games—far from it. One exampleisfinding a path. Thelist of routes tell you which locations
are adjacent to your starting point, but then you have to examine those locations to discover
which one might help you progress toward your eventual goal. There are many optimizing
problemsin this category: finding the best match for assigning production to factories, might
depend upon the specific manufacturing abilities of the factories, the abilities required by each
product, the inventory at hand at each factory, and the importance of the products. Generative
searching can be used for many specific answers to a generic question: "What should | do
next?'

We will study the following techniques:
Exhaustive search Minimax

Pruning Alpha-beta pruning
Killer move Transpose table

Greedy agorithms Branch and bound

A* Dynamic programming

Game I nterface

Since we are using games for examples, we'll assume a standard game interface for al game
evaluations. We need two types of objects for the game interface—a position and a move.

A posi ti on object will contain data to define al necessary attributes of the game at one
instant during a particular game (where pieces are located on the board, whose turniit is, etc.).
It must have the following methods:break

Page 177

pr epar e_noves
Prepares to generate all possible moves from the position (returning undef if there are no
legal moves from the position, i.e., it isafina position).

next _nove
Returnsanove object for the next of the possible moves (returning undef if al of the
possible moves have already been returned since the last call to pr epar e_noves).

make nove(nove)
Returns anew posi t i on object, the result of making that particular nove from the
current position.

eval uate
Returns a numerical rating for the posi t i on, giving the vaue for the player who most
recently moved. Negating this value changesit to the viewpoint of the opponent.

best rating
Returns a constant value that exceeds the highest result that could be returned by
eval uat e—the best possible win. Negating this value should be lower than the worst
possible loss.

di spl ay
Displaystheposi ti on.

A nove object is much smpler. It must contain data sufficient to define all necessary attributes
of amove, as determined by the needs of the posi t i on object's make_nove method, but
the internal details of anbve object are unimportant as far as the following agorithms are
concerned (in fact, amove need not be represented as an object at al unlessthe make_nove
method expectsit to be).

Hereis a game interface definition for tic-tac-toe:break

tic-tac-toe gane package
package tic_tac_toe;

$empty =" ',
@ove = ('X, 'O),

Map X and Oto 0 and 1.

%move = (0=>0, 1=>1, 'X =>0, 'O =>1);

new(turn, board)

#

To create a new tic-tac-toe gane:
tic_tac_toe->new)

#

Page 178

This routine is also used internally to create the position
that will occur after a nove, sw tching whose turn it is and
adding a nove to the board:

$board = . . . adjust current board for the sel ected nove
tic_tac_toe->new 1 - $self->{turn}, $board)
sub new {

ny ($pkg, $turn, $board) = @;

$turn = 0 unl ess defined $turn;

$turn = $nove{ $t urn};

$board = [($empty) x 9] unless defined $board,
ny $self = { turn => $turn, board => $board);
bl ess $sel f, $pkg;

$sel f - >eval uate_score

return $self;

We cache the score for a position, calculating it once when
the position is first created. Gve the value fromthe
vi ewpoi nt of the player who just noved.

100 win for current player (-100 for opponent)

10 for each unbl ocked 2-in-a-row (-10 for opponent)
1 for each unbl ocked 1-in-a-row (-1 for opponent)
0 for each bl ocked row

#
#
#
#
scoring:
#
#
#
#
sub eval uate_score {

ny $self = shift;
my $ne = $nove[l - S$sel f->{turn}];
ny $him = $nove[$sel f->{turn}];

ny $board = $sel f->{board};

ny $score = O;

Scan all possible |ines.
foreach $line (

[0,1,2], [3,4,5], [6,7,8], # rows
[0,3,6], [1,4,7], [2,5,8], # col ums
[0,4,8], [2,4,6]) # di agonal s

ny ($ny, $his);
foreach (@line) {
my $owner = $board->[$_];

++$ny if $owner eq $ne;
++$his if $owner eq $him

No score if line is blocked.
next if $ny && $his;

Lost.
return $self->{score} = -100 if $his ==

Wn can't really happen, opponent just noved.

Page 179
return $self->{score} = 100 if $ny == 3;

Count 10 for 2 inline, 1 for 1 in |ine.
$score +=
(-10, -1, 0, 1, 10)[2 + $ny - S$his];

return $sel f->{score} = $score

Prepare to generate all possible noves fromthis position
sub prepare_noves {
ny $self = shift;

None possible if game is al ready won.
return undef if abs($sel f->{score}) == 100;

Check whether there are any possi bl e noves:
$sel f - >{ next _nove} = -1;
return undef unless defined($sel f->next_nove);

There are. Next tinme we'll return the first one.
return $sel f->{next_nove} = -1

Determ ne the next nove possible fromthe current position
Return undef when there are no nore noves possible.
sub next _nove {

ny $self = shift;

Continue returning undef if we've already finished.
return undef unless defined $sel f->{next_nove};

Check each square fromwhere we last left off, skipping
squares that are al ready occupi ed.
do {
++$sel f - >{ next _nove}
} while $sel f->{next_nove} <= 8

&& $sel f->{board}[$sel f - >{ next _nove}] ne $enpty;

$sel f->{next _nove} = undef if $self->{next_nove} == 9;
return $sel f->{next _nove};

Create the new position that results from maki ng a nove
sub make nove {
ny $self
ny $nove

shift;
shift;

Copy the current board, changing only the square for the nove.
ny $nyturn = $sel f->{turn};

ny $newboard = [@ $sel f->{board}}];

$newboar d- >[$nove] = $nove[$nyt urn];

Page 180

return tic_tac_toe->new(1l - $nmyturn, $newboard);

Get the cached eval uation of this position
sub eval uate {
ny $self = shift;

return $sel f->{score};

Display the position
sub description {
ny $self = shift;
ny $board = $sel f->{board};
ny $desc = " @board[0..2]\n@board[3..5]\n@hboard[6..8]\n";
return $desc

sub best_rating {
return 101;
}

Exhaustive Search

The technique of generating and analyzing all of the possible states of a situation is called
exhaustive search. An exhaustive search is the generative analog of linear search—try
everything until you succeed or run out of thingsto try. (Exhaustive search has also been called
the British Museum Search, based on the light-hearted idea that the only way to find the most
interesting object in the British Museum is to plod through the entire museum and examine
everything. If your data structure, like the British Museum, does not order its elements
according to how interesting they are, this technique may be your only hope.)

Consider a program that plays chess. If you were determined to use alookup search, you might
want to start by generating a data structure containing all possible chess positions. Positions
could be linked wherever alegal move leads from one position to another. Then, identify all of
the final positions as"win for white," "win for black," or "tie," labeling themW, B, and T,
respectively. In addition, when alink leads to alabeled position, label the link with the same
letter as the position it leads to.

Next, you'd work backwards from identified positions. If aW moveis available from a
position where it is white's turn to move, label that position W too (and remember the move
that leads to the win). That determination can be made regardless of whether the other moves
from that position have been identified yet—white can choose to win rather than move into
unknown territory. (A similar check finds positions where it is black's move and aB moveis
available) If there is no winning move available, a position can only beidentified if all of the
possi-soft

Page 181

ble moves have been labeled. In such acase, if any of the available movesis T, soisthe
position; but if al of the possible moves are losers, so isthe position (i.e., B if it iswhite's
turn, or W if it is black's turn). Repeat until all positions have been labeled.

Now you can write a program to play chess with alookup search—simply lookup the current
position in this data structure, and make the preferred move recorded there, an O (1) operation.
Congratulations Y ou have just solved chess. White's opening move will be labeled W, T, or B.
Quick, publish your answer—no one has determined yet whether white has a guaranteed win
(athough it would come as quite a shock if you discovered that black does).

There are anumber of problems, however. Obvioudy, we skipped alot of detail—you'd need
to use anumber of agorithms from Chapter 8, Graphs, to manage the board positions and the
moves between them. We've glossed over the possibilities of draws that occur because of
repeated positions—more graph agorithmsto find loops so that we can check them to see
whether either player would ever choose to leave the loop (because he or she would have a
winning position).

But the worst problem is that there are alot of positions. For white's first move, there are 20
different possibilities. Similarly, for black's first move. After that, the number of possible
MOVeS varies—as major pieces are exposed, more moves become available, but as pieces are
captured, the number decreases.

A rough estimate says that there are about 20 choices for each possible turn, and atypical game
lasts about 50 moves, which gives 2050 positions (or about 1065). Of course, there are lots of
possible games that go much longer than the "typica” game, so this estimate islikely quite
low.” If we guess that a single position can be represented in 32 bytes (8 bytes for a bitmap
showing which squares are occupied, 4 bits for each occupied square to specify which pieceis
there, afew bits for whose turn it is, the number of times the position has been reached, and
"win for white," "win for black," "tie," or "not yet determined," and avery optimistic
assumption that the links to all of the possible successor positions can be squeezed into the
remaining space), then all we need is about 1056 32-gigabyte disk drives to store the data.
With only an estimated 1070 protons in the universe, that may be difficult.

It will take quite afew rotations of our galaxy to generate all of those positions, so you can take
advantage of bigger disk drives as they become available. Of course, the step to analyze all of
the positions will take a bit longer. In the meantime, you might want to use a less complete
analysis for your chess program. break

* Patrick Henry Winston, in his book Artificial Intelligence, (Addison-Wesley, 1992) provides a
casual estimate of 10120,

Page 182

The exponentia growth of the problem's size makes that technique unworkable for chess, but it
istolerable for tic-tac-toe:

use tic_tac toe; # defined earlier in this chapter

exhaustive analysis of tic-tac-toe
sub ttt_exhaustive {

ny $gane = tic_tac_toe->new);

ny $answer = ttt_anal yze($gare);
if ($answer > 0) {

print "Player 1 has a winning strategy\n" ;
} elsif ($answer < 0) {

print "Player 2 has a winning strategy\n";
} else {

print "Drawn";

}
}
Sanswer = ttt_anal yze($gane)
Det er m ne whet her the other player has won. |f not,
try all possible noves (from $avail) for this player.

sub ttt_anal yze {
ny $gane = shift;

unl ess (defined $gane->prepare_noves) {
No noves possible. Either the other player just won,
or else it is a draw
ny $score = $gane->eval uat e;
return -1 if $score < 0;
return O;

Find result of all possible noves.
ny $best _score = -1;

while (defined($nove = $gane->next _nove)) {
Make the nove negating the score

- what's good for the opponent is bad for us.
ny $this score = - ttt_anal yze($gane->nmake nove($nove));
eval uate

$best _score = $this _score if $this score > $best _score

return $best_score;

}
Running this.break

print &tt_exhaustive, "\n";

Page 183
produces:

Dr aw

As acomment on just how exhausting such a search can be, the tic-tac-toe exhaustive search
had to generate 549,946 different game positions. More than half, 294,778, were partid
positions (the game was not yet complete). Less than half, 209,088, were wins for one player
or the other. Only arelative few, 46,080, were draw positions—yet with good play by both
players, the gameisaways adraw. Thisruntook amost 15 minutes. A human can anayze the
game in about the same time—but not if they do it by exhaustive search.

Exhaustive search can be used for nongame generative searches, too, of course. Nothing about
it depends upon the alternating turns common to games. For that matter, the definition of
exhaustive search is vague. The exact meaning of "try everything" depends upon the particular
problem. Each problem has its own way of trying everything, and often many different ways.

For many problems, exhaustive search is the best known method. Sometimes, it is known to be
the best possible method. For example, to find the largest element in an unsorted collection, it
is clear that you have to examine every element at least once. When that happens for a problem
that grows exponentially, the problem is called intractable. For an intractable problem, you
cannot depend on being able to find the best solution. Y ou might find the best solution for some
specia cases, but generally you have to lower your sights—either accept an imperfect solution
or be prepared to have no solution at all when you run out of time. (We'll describe one
example, the Traveling Salesman problem, later in this chapter.)

There are a number of known classes of really hard problems. The worst are called
"undecidable"'—no correct solution can possibly exist. The best known is the Halting
Problem.”

There are al'so problemsthat are intractable. They are solvable, but all known solutions take
exponentialy long—e.g., O (2 N). Some of them have been proven to require an exponentially
long time to solve. Others are merely believed to require an exponentialy long time.break

* The Halting Problem asks for a program (HP) that accepts two inputs: a program and a description
of aninput. HP must analyze the program and determine whether, invoked with that input, the program
would run forever or halt. A "program" must include any descriptive information required for HP to
understand it, as well as the code required for a computer to execute it. If you assume that HP could
exigt, then it is easy to write another program that we can call Contrary. Contrary runs HP, giving it

Contrary's own description as the program to be analyzed and HP's description as the input. HP

determines whether Contrary will halt. But now, Contrary uses the answer returned by HP to take an
opposite choice of whether to halt or to run forever. Because of that contrary choice, HP will have

been wrong in its answer. So HP isnot a correct solution to the halting problem and since this

argument can be applied to any solution, no correct solution can exist.

NP-Complete and NP-Hard

Intractable problemsinclude alarge collection of problems called NP, which
stands for non-deterministic polynomial. These are problems for which there
are known polynomial solutions that may require you to run an arbitrarily large
number of identical computationsin parallel. A subset, P, contains those
problems that can be solved in polynomia time with just asingle deterministic
computation.

Thereisalarge group of NP problems, called NP-complete, for which thereis
no known P solution. All the problemsin this group have the property that they
can be transformed into any of the others with a polynomia number of steps.
That means that if anyone finds a polynomia solution to one of these problems,
then al of them arein group P.

Another group of problems, called NP-hard, is at |least as hard as the
NP-complete problems. Any NP-complete problem can be transformed into
such an NP-hard problem, so if thereis a P solution to that NP-hard problem,
itisalso aP solution for every NP-complete problem.

The reason that NP-hard problems are rated as "at least as hard as"
NP-completeis that there is no known transformation in the other
direction—from the NP-hard into an NP-complete problem. So, even if a
solution to the NPcompl ete class of problems were found, the NP-hard
problems would still be unsolved.

Page 184

We are not going to list all of the intractable problems—that subject could fill awhole book.*

One example of an intractable problem is the Traveling Salesman problem. Given alist of
cities and the distances between them, find the shortest route that takes the salesman to each of
the cities on the list and then back to his original starting point. An exhaustive search requires
checking N'! different routes to see which isthe shortest. Asit happens, exhaustive search is
the only method known to solve this problem. You'll see this problem discussed further in

Chapter 8.

When a problem is too large for exhaustive search, other approaches can be used. They tend to
resemble bushy tree searches. A number of partial solutions are generated, and then one or
some of them are selected as the basis for the next generative stage.break

* Infact, it hasfilled at least one book. See Computers and Intractability: A Guide to the Theory of
NP-Compl eteness, by Michael R. Garev and David S. Johnson (W. H. Freeman and Co., 1979).

Page 185

For some problems, such approaches can lead to a correct or best possible answer. For
intractable problems, however, the only way to be certain of getting the best possible answer is
exhaustive search. In these cases, the available aternative approaches only give
approximations to the best answer—sometimes with a guarantee that the approximate answer is
close to the best answer (for some specific definition of "close™). With other problems all you
can doisto try afew different approximations and hope at |east one provides atolerable

result. For example, for the Traveling Salesman problem, some solutions form a route by
creating chains of nodes with relatively short connections and then choosing the minimum way
of joining the endpoints of those chainsinto aloop. In some cases, Monte Carlo methods can be

applied—generating some tria solutionsin arandom way and selecting the best.*

It is not always easy to know whether a particular problem isintractable. For example, it
would appear that a close relative of the Traveling Salesman problem would be finding a
minimum cost spanning tree—a set of edges that connects al of the vertices with no loops and
with minimum total weight for the edges. But, this problem is not intractable; it can be solved
rather easily, asyou'll seein the section "All-pairs shortest paths.”

Alternatives to Exhaustive Search in Games

Instead of an exhaustive search of the entire game, chess programs typically look exhaustively
at only the next few moves and then perhaps look a bit deeper for some special cases. The
variety of techniques used for chess can also be used in other programs—not only in other
game programs but also in many graph problems.

Minimax

When you consider possible moves, you don't get excited about what will happen if your
opponent makes an obvioudly stupid move. Y our opponent will choose the best move
available—his "maximum™ move. In turn, you should examine each of your available moves
and for each one determine your opponent's maximum response. Then, you select the |east
damaging of those maximum responses and select your move that leads to it. This minimum of
the maximums strategy is called minimax. ("Let's see, if | move here | get checkmated, if |

move here | lose my queen, or if | move here the worst he can do is exchange knights—I'll take
that third choice.")break

* A way of carrying out non-deterministic computationsin a practical anount of time has been shown
recently in Science. A Hamiltonian path (avariant of the Traveling Salesman problem) can be solved
by creating atailored DNA structure and then growing enough of them to try out all of the possible
routes at once.

Page 186

Minimax is often used in game theory. We also used it implicitly earlier, in the exhaustive
search when we assumed that black would aways choose a "win for black” move if there was
one available, and that white would similarly choose a"win for white" move, and that both
would prefer a"tie" move to losing if no win were available. That was using minimax with
exact vaues, but you can aso use minimax with estimates. Chess programs search asfar as
time alows, rate the apparent value of the resulting position, and use that rating for the
minimax computation. The rating might be wrong since additional moves might permit a
significant change in the apparent status of the game.

The minimax algorithm is normally used in situations where response and counterresponse
aternate. The following code for the minimax algorithm takes a starting position and a depth. It
examines al possible moves from the starting position, but if it failsto find aterminating
position after dept h moves, it evaluates the position it has reached without examining further
moves. It returns the minimax value and the sequence of moves determined to be the
minimax.break

Usage:
To choose the next nove:

($noves, $score) = mi ni max($position, $dept h)
You provide a gane position object, and a naxm nmum depth
(nunber of noves) to be expanded before cutting off the
nove generation and eval uating the resulting position
There are two return val ues:

1. areference to a list of noves (the |ast el enent on the
list is the position at the end of the sequence - either
it didn't | ook beyond because $depth noves were found, or
else it is atermnating position with no noves posible.

2: the final score

HHHHH R

sub m ni max {
my ($position, $depth) = @;

Have we gone as far as permtted or as far as possible?
if ($depth-- and defined($position->prepare_noves)) {

No - keep trying additional noves from $position

ny $nove;

ny $best _score = -$position->best_rating;

ny $best nove_seq;

while (defined($nove = $position->next_nove)) {
Eval uate the next nove
ny ($this_nove_seq, $this_score) =
m ni max(
$posi ti on- >nmake_nove($nove),
$depth);
Qpponent's score i s opposite neaning of ours.
$this_score = -$this_score
if ($this_score > $hest_score) {
$best _score = $this_score

Page 187

$best _nove_seq = $this_nove_seq;
unshi ft (@best _nove_seq, $nove);

Return the best one we found.
return ($best _nove_seq, 3$best score);

} else {
Yes - evaluate current position, no nove to be taken.
return ([$position], -$position->evaluate);

}

As an example of using thisroutine, well use that tic-tac-toe game description we defined
earlier. Well limit the search depth to two half-turns. Y ou'd probably use a higher number, if
you wanted the program to play well.

use tic_tac_toe;
ny $gane = tic_tac_toe->new);

ny ($noves, $score) = minmax($gane, 2);
ny $ny_nove = $noves->[0];
print "I nove: $ny_nove\n";

This produces:

| nove: 4
which is a perfectly reasonable choice of taking the center square as the first move.
Pruning

With a game like chess, you need to continue this analysis for many plies because there can be
long chains of moves that combine to produce aresult. If you examine every possible move that
each player could make in each turn, then you won't be able to examine many levels of resulting
moves. Instead, programs compromise—they examine al possible moves that might be made
for the firgt few turns, but examine only the most promising and the most threatening positions
deeply. This act—skipping the detailed analysis of (apparently) uninteresting positions—is
called pruning. It requires very careful distinction to label a move uninteresting, asimplistic
anaysiswill overlook sacrifices—moves that trade an initial obvious loss for a positional
advantage that can be used to recoup the loss later.

Alpha-beta Pruning

Oneform of pruning is especialy useful for any adversarial situation. It avoids evaluating
many positions, but still returns the same result it would if it hadcontinue

Page 188

evaluated them all. Suppose you've analyzed one of your possible moves and determined that
your opponents best reply will lead to no change in relative advantage. Now you are about to
examine another of your possible moves. If you find that one response your opponent might
make leads to the loss of one of your pieces, you need not examine the rest of your opponent's
replies. You don't care about finding out whether he may be able to checkmate you instead,
because you aready know that this move is not your best choice. So, you skip further anaysis
of thismove and immediately go on to examine aternate moves that you actually might make.

Of course, the analysis of the opponent’'s moves can use the same strategy. The agorithm that
implementsthisis adight variation of minimax called al pha-beta pruning. It uses two
additional parameters, al pha and bet a, to record the lower and upper cutoff bounds that are
to be applied. The caller doesn't have to provide these parameters; they are initalized
internally. Like minimax, this routineis recursive. Note that on the recursive cals, the
parameters $al pha and $bet a are swapped and negated. That corresponds to the change of
viewpoint as it becomes the other player'sturn to play.break

Usage:

To mnimze the next nove:

($nove, $score) = ab_m ni nax($posi ti on, $dept h)

You provide a gane position object, and a naxm nmum depth
(nunber of noves) to be expanded before cutting off the
nove generation and evaluating the resulting position

sub ab_m ni max {
ny ($position, $depth, $al pha, $heta) = @;

defined ($al pha) or $al pha
defined ($beta) or $beta

- $posi ti on->best _rating;
$posi tion->best_rating;

Have we gone as far as permtted or as far as possible?
if ($depth-- and defi ned($position->prepare_noves)) {

no - keep trying additional noves from $position

ny $nove;

ny $best _score = -$position->best_rating;

ny $best nove_seq;

ny $al pha_cur = $al pha;

whil e (defined($nove = $position->next_nove)) {

Eval uate the next nove
ny ($this_nove_seq, $this_score) =

ab_m ni max($position->nmake nove($nove),

$depth, -$beta, -%al pha_cur);

Qpponent's score is opposite nmeaning from ours.
$this_score = -$this_score
if ($this_score > $hest_score) {

$best _score = $this_score

$al pha_cur = $best _score if $best _score > $al pha _cur;

Page 189

$best _nove_seq = $this_nove_seq
unshi ft (@best _nove_seq, $nove);

Here is the al pha-beta pruning.
- quit when soneone el se is ahead!
last if $best _score >= $bet a;

Return the best one we found.
return ($best _nove_seq, 3$best score);

} else {
Yes - evaluate current position, no nove to be taken
return ([$position], -$position->evaluate);
}
}

As an example of using thisroutine, we'll again use tic-tac-toe, limiting the search depth to two
half-turns (one move by each player):

use tic_tac_toe;

ny $gane = tic_tac_toe->new);

ny ($noves, $score) = ab_mi ni max($gane, 2);
ny $ny_nove = $noves->[0];
print "I nove: $ny_nove\n";

This produces

| nove: 4
again taking the center square for the first move, but finding it in half the time.
Killer Move

A useful search strategy isthe killer move strategy. When a sequence of movesis found that
produces an overwhelming decision (say, a checkmate) while analyzing one branch of possible
moves, the same sequence of moves is checked first in the analysis of the other branches. It may
lead to an overwhelming decision there too.

Killer move works especially well with alpha-beta pruning. The quicker your examination
finds good bounds on the best and worst possibilities, the more frequently pruning occurs for
the rest of the analysis. The time saved by this more frequent pruning can be used to allow
deeper searching.

In fact, if the program is written to try shallow analyses first and progressively deeper analyses

astime permits, then testing the best and worst moves found in the previous shallower analysis
establishes the alpha and beta bounds immediatel y—unless the deeper analysis uncovers a
previously unnoticed loophole.break

Page 190
Transpose Tables

Y ou may recall that the exhaustive search of tic-tac-toe examined 549,946 game positions. The
tic-tac-toe board has 9 squares and each square can contain one of three different
values—blank, X, or O. That means that there are a maximum of 39, or 19,683 possible board
states. In fact, there are even fewer board states since the number of X squares must be either
equal to or one greater than the number of O sguares. That program examined most board
positions repeatedly sinceit is possible to arrive at a particular position in many ways—by
having the players occupy the same squaresin a different order.

A common optimization uses a transpose table. When amove is being considered, the resulting
position is checked against a cache of positions that have been considered previoudly. If it has
already been examined, the cached result is returned without repesting the analysis. If we
convert the exhaustive tic-tac-toe analysis to use a transpose table, we reduce the running time
from 15 minutes to 12 seconds. The computer is how solving the game faster than ahuman
could. The number of positions analyzed drops from 549,946 down to 16,168 (10,690 of them
were found in the transpose table; only 5,478 actually had to be examined). Here's the changed
code:break

use tic_tac_toe; # defined earlier in this chapter

exhaustive analysis of tic-tac-toe using a transpose table
sub ttt_exhaustive_table {

ny $gane = tic_tac_toe->new);

ny $answer = ttt_anal yze tabl e($gane);
if ($answer > 0) {

print "Player 1 has a wi nning strategy\n";
} elsif ($answer < 0) {

print "Player 2 has a wi nning strategy\n";
} else {

print "Drawn";
}

@ache = ();

$answer = ttt_anal yze tabl e($gane)
Det er m ne whether the other player has won. |f not,
try all possible noves (from$avail) for this player.
sub ttt_anal yze table {

ny $ganme = shift;

ny $nove = shift;

Compute id - the index for the current position

Treat the board as a 9-digit base 3 nunber. Each square

contains O if it is unoccupied, 1 or 2 if it has been
taken by one of the players.
if(! defined $nove) {
Enpty board.
$gane->{id} = 0;
} else {
A nove is being tested, add its value to this id of
the starting position
ny $id = $ganme->{id} + ($ganme->{turn)+1)*(3**$nove);
if(defined(nmy $score = $cache[$id])) {
That resulting position was previously anal yzed.
return -1 if $score < 0;
return O;
}
ny $prevgame = $gane;
A new position - analyze it.
$gane = $gane- >nake_nove($nove)
$gane->{id} = $id;

unl ess (defined $gane->prepare_noves) {
No noves possible. Either the other player just won,
or else it is a draw
ny $score = $gane- >eval uat €;
$cache[$gane- >{i d}] = $score;
return -1 if $score < 0;
return O;

Find result of all possible noves.
ny $best _score = -1

while (defined($nove = $gane->next _nove)) {
Make the nove negating the score

- what's good for the opponent is bad for us.
ny $this score = - ttt_anal yze_ tabl e(_$gane, S$nove);
eval uate

$best _score = $this score if $this score > $best _score

$cache[$gane->{i d}] = $best_score;
return $best_score;

Page 191

Of course, the revised program still determines that the game is a draw after best play.

A transpose table can be used with minimax or apha-beta pruning, not just with exhaustive
search. For agame like chess, where it is easy to arrive at the same position in different ways
(like re-ordering the same sequence of moves), this strategy is very valuable.break

Page 192
Advanced Pruning Strategies

There are additional pruning strategies derived from alpha-beta pruning. If you invoke the
alpha-beta search with narrower set of bounds than the "infinite" bounds used earlier, it can
prune much more frequently. The result from such a search, however, is no longer necessarily
exact. With the bounds al pha and bet a andtheresult r esul t there are three possibilities:

If Then

al pha < result < beta resul t istheexact minimax value

result <= al pha resul t isan upper bound on the minimax vaue
beta <= result resul t isalower bound on the minimax value

When the result provides only abound instead of an exact answer, it is necessary to carry out
another search with different al pha and bet a bounds. This sounds expensive, but it actually
can be faster. Because al pha and bet a start closer together, there is immediate opportunity
for pruning. Using a transpose table, the second (and any subsequent) search will only have to
search positions that weren't searched in a previous attempt. See

http: //www.cs.vu.nl/~aske/mtdf.html for a description of this algorithm in more detail.

Other Strategies

The transpose table described earlier can be used in further ways. The transpose table can't
provide an exact answer if the value in it was computed by traversing a shallower depth than is
currently required. However, it can still be used to give an estimate of the answer. By first
trying the move with the best estimate, there is a good chance of establishing strong pruning
bounds quickly. This method is away of remembering information about positions from one
round to another, which is more valuable than remembering asingle killer move.

While al pha-beta pruning and transpose tables are risk-free, there are other pruning strategies
that are risky—they are specific to the particular game and are more like the rules of thumb that
ahuman expert might use One example is the opening book. Most chess programs use a library
of opening moves and responses. As long asthe gameis still within the pre-analyzed
boundaries of this book, only moves listed within the book are considered Until a position that
isnot in the book is reached, the program does no searching at al. Other strategies involve
searching to a deeper level for specialized cases like a series of checks.

Some games, like tic-tac-toe, are symmetrical, so there are many positions that are equivalent
to each other, varying only by areflection or arotation of the board (In chess, there israrely
any point in checking for positions that are symmetric copies of each other—the
one-directional movement of pawns and the asymmetrycontinue

Page 193

of having aking and a queen instead of two identical pieces makes symmetrically equivalent
positions quite rare.) For games with such symmetry, where symmetrical variations are likely
to be analyzed, it may be helpful to map positions cached in the transpose table into a
particular one of its symmetrical variants Then, the transpose table can provide an immediate
result for all of those symmetric variants too.

Nongame Dynamic Searches

Game situations differ from other generative search situationsin that they have adversaries.
This makes the analysis more complicated because the goa flips every haf-turn. Some
algorithms like minimax. apply only to such game situations Other agorithms, like exhaustive
search, can be applied to any type of situation Still others apply only when, unlike in games,
thereisasingle fixed goal.

All kinds of dynamic searches have to concern themselves with the search order among
multiple choices. Thereisactually a continuum of ordering techniques. At one extremeis
depth-first search; at the other extreme is breadth-first search.

They differ in the order that possibilities are examined. A breadth-first search examines all of
the possible first choices, then all of the possible second choices (from any of the first
choices), and so on. Thisis much like the way that an incoming tide covers a beach, extending
its coverage across the entire beach with each wave, and then a bit further with each
subsequent wave. A depth-first search, on the other hand, examines the first possible first
choice, the first possible second choice (resulting from that first choice), the first third choice
(resulting from that second choice), and so on. Thisis more like an octopus examining all of the
nooks and crannies in one cora opening before moving on to check whether the next might
contain atasty lunch. The two searches are shown in Figure 5-2.

The minimax algorithm is necessarily depth-first to some extent—it examines a single sequence
of moves al of the way down to afinal position (or the maximum depth). Then, it evaluates that
position and backs up to try the next choice for the final move. The choice of depth controls the
extent to which it is depth first. We already saw how chess has an exponentially huge number

of positions—a completely depth-first traversal would never accomplish anything useful in a
reasonable amount of time. Using a depth of 1, then adepth of 2, and so on, actualy turnsit into
abreadth-first series of searches.

Whether depth-first or breadth-first is a better answer depends upon the particular problem. If
most choices lead to an acceptable answer and at about the same depth, then a depth-first
search will generally be much faster—it finds one answer quickly while a breadth-first search
will have almost found many answers before it completely finds any one answer. On the other
hand, if there are huge areas thatcontinue

Page 194

Breadth-First

Depth-first

Figure 5-2.
Breadth-first versus depth-first

do not contain an acceptable answer, then breadth-first is safer Suppose that you wanted to
determine whether, starting on your home web page, you could follow links and arrive at
another page on your site. Going depth-first takes the chance that you may happen to reach the
"my favorite links" page and never get back to your own site again. This would be like having
that poor octopus try to completely examine a hole that lead down to the bottom of the
Marianas Trench and never finding the smorgasboard of tender morselsin the shallower hole a
few meters away. Y ou will normally prefer breadth-first—it is rare to use depth-first without a
limit (such as the depth argument to our minimax implementation).

Here are two routines for depth-first and breadth-first searches. They use asimilar interface as
the minimax routines earlier. They require that a position object provide one additional
method, i s_answer , which returns true if the position isafina answer to the origina
problem. break

$final _position
sub depth_first {
ny @ositions

depth_first($position)

shift;

while (ny $position = pop(@ositions)) {
return $position if $position->i s _answer;

1f this was not the final answer, try each position that
can be reached fromthis one.

$posi ti on->prepare_noves;

ny $nove;

Page 195

while ($nove = $position->next_nove) {
push (@ositions, $position->make _nove($nove));
}

}

No answer found.
return undef;

$final _position = breadth first($position)
sub breadth first {
ny @ositions = shift;

while (ny $position = shift(@ositions)) {
return $position if $position->i s _answer;

1f this was not the final answer, try each position that
can be reached fromthis one.
$posi ti on->prepare_noves;
ny $nove;
while ($nove = $position->next_nove) {
push (@ositions, $position->make_nove($nove));
}
}

No answer found.
return undef;

}

The two routines look very similar. The only difference is whether positionsto examine are
extracted from @osi ti ons usngashi ft or apop. Treating the array as a stack or a
gueue determines the choice between depth and breadth. Other algorithms use this same
structure but with yet another ordering technique to provide an algorithm that is midway
between these two. We will see a couple of them shortly.

Greedy Algorithms

A greedy algorithm works by taking the best immediately available action. If you are greedy,
you aways grab the biggest piece of cake you can, without worrying that you'll take so long
eating it that you'll miss getting a second piece. A greedy agorithm does the same: it breaks the
problem into pieces and chooses the best answer for each piece without considering whether
another answer for that piece might work better in the long run. In chess, thislogic would
trandate to always capturing the most valuable piece available—which is often a good move
but sometimes a disaster: capturing a pawn isno good if you lose your queen as aresult. In the
section Minimum Spanning Trees' in Chapter 8, we'll find that for the problem of finding a
minimal-weight-spanning tree in a graph, a greedy approach—specifically, aways adding the
lightest edge that doesn't create aloop—Ieads to the optimal solution, so sometimes a greedy
algorithm is not just an approximation but an exact solution.break

Page 196

For nongame searches, a greedy algorithm might choose whatever action will yield the best
score thus far. That requires that you be able to determine some sort of metric to specify how
well apartial solution satisfies your goal. For some problems, that is fairly easy; for others, it
ishard. Finding a series of links to a particular web pageis hard. Until you have examined all

of the links from a page, you have no way of telling whether one of them leads to the target
page. A similar problem with a better metric is finding a route from one city to another on a
map. Y ou know that all cities are reachable, barring washed out bridges and the like, and you
can see agenera direction that reasonable routes will have to follow, so you can downgrade
the roads that |ead in the opposite direction right away.

Branch and Bound

Asyou consider partia solutions that may be part of the optimum answer, you will keep a "cost
so far" value for them. Y ou can then easily keep the cost of each solution updated by adding the
cost of the next leg of the search.

Consider Figure 5-3, amap that shows the roads between the town of Urchin and the nearby
town of Sula Center. The map shows the distance and the speed limit of each road. Naturaly,
you never exceed the speed limit on any road, and we'll aso assume that you don't go any
dower. What is the fastest route? From the values on the map, we can compute how long it
takes to drive along each road:

Start Point End Point Distance | Speed Limit | Travel Time
Urchin Wolfbane Corners | 54 km 90 km/h 36 min.
Wolfbane Corners | Sula Center 30km 90 km/h 20 min.
Urchin Sula Junction 50 km 120 km/h 25 min.
Sula Junction Sula Center 21 km 90 km/h 14 min.

When solving such problems, you can always examine the position that has the lowest
cost-so-far and generate the possible continuations from that position. Thisis a reasonable way
of finding the cheapest route. When the position with the lowest cost-so-far is the final
destination, then you have your answer. All positions considered previoudy were not yet at the
destination, while all positions not yet considered have a cost that is the same or worse. You
now know the best route. This method is called branch and bound.

This method lies in between breadth-first and depth-first: it's a greedy algorithm, choosing the
cheapest move so far discovered, regardless of whether it is deep or shallow. To implement
this requires that a position object provide a method for cost-so-far. We'll have it inherit it
from the Heap:: Elem object interface. Keeping the known possible next positions on a heap,
instead of a stack or queue, makes it easy to find the smallest: break

Page 197

wa@_ Sula Junction
—_— k

Sula Center

Wolfbane Corners

Figure 5-3.
Map of towns with distances and speeds

$final _position = branch_and bound($start_position)
sub branch_and_bound {
ny $position;

use Heap: : Fi bonacci ;
ny $positions = Heap:: Fi bonacci - >new;
$posi tions->add(shift);

while ($position = $positions->extract_mninmum)) {
return $position if $position->i s _answer;

That wasn't the answer.
So, try each position that can be reached from here.
$posi ti on->prepare_noves;
ny $nove;
while ($nove = $position->next_nove) {
$posi tions->add($position->make nove($nove));
}
}

No answer found.
return undef;

}

Let's define an appropriate object for a map route. Well only define here the facets of the
object that deal with creating a route, using the same interface we used earlier for generating
game moves. (In areal program, you'd add more methods to make use of the route onceit's
been found.)break

package map_rout e;

use Heap:: El em

@ SA = qw(Heap: : El em

new - create a new nap route object to try to create a

route froma starting node to a target node.
#
$route = map_route->new $start_town, $finish_town);
sub new {
ny $class = shift;
$cl ass = ref($class) || $class;
ny $start = shift;
ny $end = shift;

return $cl ass- >SUPER : new(
cur => $start,
end => $end,
cost_so far => 0,
route _so far => [$start],

)
}
cnp - conpare two nap routes.
#
$cnp = $nodel - >cnp($node2);
sub cnp {
ny $self = shift;
ny $other = shift;
return $sel f->{cost_so far} <=> $other->{cost_so far};
}

is_answer - does this route end at the destination (yet)

#
$bool ean = $rout e->i s_answer;
sub is_answer {
ny $self = shift;
return $self->{cur} eq $sel f->{end};

prepare_noves - get ready to |look at all valid roads.
#
$rout e- >prepare_noves;
sub prepare_noves {
ny $self = shift;
$sel f - >{ edge} = -1;

next _nmove - find next usable road.
#
$nove = $rout e- >next _nove;

Page 198

sub next _nove {
ny $self = shift;
return $sel f->{cur}->edge(++$sel f->{edge});

}
nmake_nove - create a new route object that extends the
current route to travel the specified road.
Page 199
#

$route_new = $rout e->make_nove($nove);
sub make nove {

ny $self = shift;

ny $edge = shift;

ny $next = $edge->dest;

ny $cost = $sel f->{cost_so far) + $edge->cost;

return $sel f - >SUPER : new(
cur => $next,
end => S$sel f->{end},
cost_so far => $cost,
route so far => [@%self->{route_so far}}, %edge, S$next],

}

This example needs more code, but it's already getting too long. It needs a class for towns
(nodes) and a class for roads (edges). The class for towns requires only one method to be used
inthis code: $t own- >edge($n) should return areference to one of the roads leading from
$t own (or undef if $n ishigher than theindex of the last road). The class for roads has two
methods: $r oad- >dest returnsthetown at the end of that road, and $r oad- >cost returns
the time required to traverse that road. We omit the code to build town and road objects from
the previoustable. Y ou can find relevant code in Chapter 8.

With those additional classes defined and initialized to contain the map in Figure 5-3, and
references to the towns Urchin and Sula Center in the variables $ur chi n and $sul a,
respectively, you would find the fastest route from Urchin to Sula Center with this code:

$start_route = map_route->new $urchin, $sula);
$best _route = branch_and_bound($start_route);

When this code isdone, the br anch_and_bound function usesits heap to continually
process the shortest route found so far. Initialy, the only route is the route of length 0—we
haven't left Urchin. The following table shows how entries get added to the heap and when they
get examined. In each iteration of the outer whi | e loop, one entry gets removed from the heap,
and a number of entries get added:break

Iteration Added | Iteration Removed | Cost So Far | Route So Far

0 1 0 Urchin
1 2 25 Urchin® SulaJunction

1 2 on Llvaliwm M VA AlflhAaimA D AaviaAv~

(table continued on next page)

(table continued from previous page)

VIl vvolpd e CUINIEer S

Urchin® SulaJunction ®
Sula Center

Urchin® SulaJunction ®
Urchin

Iteration Added | Iteration Removed | Cost So Far Route So Far

3 never 44 Urchin® Wolfbane Corners
® SulaCenter

3 never 72 Urchin® Wolfbane Corners

® Urchin

S0, the best route from Urchin to Sula Center is to go through Wolfbane Corners.

The A* Algorithm

Page 200

The branch and bound agorithm can be improved in many casesif at each stopping point you
can compute a minimum distance remaining to the fina goal. For instance, on aroad map the

shortest route between two points will never be shorter than the straight line connecting those
points (but it will be longer if thereis no road that follows that straight line).

Instead of ordering by cost-so-far, the A* algorithm orders by the total of cost-sofar and the
minimum remaining distance. As before, it doesn't stop when the first road that leads to the
target is seen, but rather when the first route that has reached the target is the next oneto
consider. When the next path to consider is already at the target, it must have a minimum
remaining distance of O (and this minimum" is actually exact). Because we require that minima
never be higher than the correct value, no other postions need be examined—there might be

unexamined answers that, at a minimum, are equal, but none of them can be better. This

algorithm provides savings over branch and bound whenever there are positions that haven' t
been considered yet have a cost so far that isless than the final cost but whose minimum
remainder is sufficiently high that it needn’t be considered.

In Figure 5-4, the straight-line distances provide part of alower bound on the shortest possible
time. The other limit to use is the maximum speed limit found anywhere on the map—2120 kmv/h.
Using these vaues gives a minimum cost: the time from any point to Sula Center must be at

least as much as this"crow' sflight" distance driven at that maximum speed:

L ocation | Straight Line Distance | Minimum Cost
Urchin 50 km 25 min.
Sula Junction 4km 2min.

VA AlflhAnnA D AaviaArs~

O loan

A mnlm

vvuolipd ie CUINietS | o Kiil

Sula Center Okm

4 1.

Omin.

The code for A* isamost identical to branch and bound—in fact, the only difference isthat the
cnp metric adds the minimum remaining cost tocost _so_f ar . Thisrequires that map
objects provide a method to compute a minimum cost—straightcontinue

Page 201

Urchin T ~-._Sula Junction

Wolfbane Corners

Figure 5-4.
Minimum time determined by route "as the crow flies'

line distance to the target divided by maximum speed limit. So, the only difference isthat the
cnp function is changed to the following:

package nmap_route_m n_possi bl e;

@SA = g map_route);

cnp - conpare two nap routes.
#

$cnp = $nodel- >cnp($node2);
Conpare two heaped positions.

sub cnp {
ny $self = shift->[0];
ny $other = shift->[0];
ny $target = $sel f->{end};
return ($self->{cost_so_far) + $self->(cur}->m n_cost($target))

<=> ($ot her->{cost_so_far} + $other->{cur}->m n_cost($target));

To use A* searching:

$start_route =

$best _route =

nmap_rout e_m n_possi bl e->new ($urchin,
branch_and_bound ($start_route);

$sula);

Because the code is nearly identical, you can see that branch and bound is just a special case of
A*. It dways uses aminimum remaining cost of 0 .That's the most conservative way of meeting
the reguirement that the minimum mustn't exceed the true remaining cost; aswe seein the

following table, the more aggressive minimum speeds up the search process.break

Iteration | Iteration Cost SoFar | Minimum Comparison | Route So Far

Added Removed Remaining | Cost

0 1 0 25 25 Urchin

1 2 25 2 27 Urchin® SulaJunction

(table continued on next page)

Page 202

(table continued from previous page)
Iteration | Iteration Cost SoFar | Minimum Comparison | Route So Far
Added Removed Remaining | Cost
1 never 36 4 40 Urchin® Wolfbane

Corners
2 never 50 25 75 Urchin® SulaJunction

® Urchin
2 3 (success) | 39 0 39 Urchin® SulaJunction

® SulaCenter

Notice that thistime only three routes are examined. Routes from Wolfbane Corners are never
examined because even if there was a perfectly straight maximumspeed highway between them,
it would still be longer than the route through Sula Junction. While the A* agorithm only saves
one route generation on thistiny map, it can save far more on alarger graph. You will see
additional algorithmsfor thistype of problem in Chapter 8.

Dynamic Programming

Dynamic programming was mentioned in the introduction. Like the greedy approach, dynamic
programming breaks the problem into pieces, but it does not determine the solution to each
piece in isolation. The information about possible solutions is made available for the analysis
of the other pieces of the problem, to assist in making afinal selection. The killer move
strategy discussed earlier is an example. If the killer move still applies, it doesn't have to be
rediscovered. The positions that permit the killer move to be used may never arisein the
game—the other player will certainly choose a position that prevents that sequence from
having the devastating effect (if there is any a safer aternative). Both branch and bound and A*
are dynamic programming techniquesbreak

Page 203

Sets

| don't want to belong to any club that would have me as a member.
—Groucho Marx

Isthe Velociraptor a carnivore or an herbivore? |s Bhutan an African river or an Asian state?
|s a seaplane a boat, a plane, or both? These are al statements about membership in a set: the
set of carnivores, the set of states, the set of planes. Wherever you have elements belonging to
groups, you have sets. A set isssimply a collection of items, called members or elements of the
set. The most common definition of set members s that they are unique and unordered. In other
words, amember can bein aset only once, and the ordering of the members does not matter:
any sets containing the same members are considered equal. (However, at the end of this
chapter, we'll meet afew strange sets for which thisisn't true.)

In this chapter, we'll explore how you can manipulate sets with Perl. We'll show how to
implement setsin Perl using either hashes or bit vectors. In parald, we'll demonstrate relevant
CPAN modules, showing how to use them for common set operations. Then we'll cover sets of
sets, power sets, and multivalued sets, which include fuzzy sets and bags (also known as
multisets). Finally, we'll summarize the speed and size requirements of each variant.

There is no built-in datatype in Perl for representing sets. We can emulate them quite naturally
with hashes or bit vectors. Since there are no native setsin Perl, obviously there aren't native
set operations either. However, devel oping those operations pays off in many situations. Set
operations abound in programming tasks.break

Page 204
* Users who have accounts on both Unix workstations and PCs: a set intersection
* Customers who have bought either a car or amotorbike: a set union
* Offices that have not yet been rewired: a set difference

* Patients who have either claustrophobia or agoraphobia but not both: a symmetric set
difference

» Web search engines (+novi e +sci fi - horror): al of the above

Think of set operations whenever you encounter a problem described in terms of using the
words "and," "or", "but," "except,” and "belong" (or sometimes "in").

When most people think of sets, they think of the finite variety, such asal the files on ahard
disk or the first names of all the Nobel prize winners. Perl can represent finite sets easily.
Infinite sets aren't impossible to represent, but they are harder to manage. Consider the
intersection of two infinite sets: "all the even numbers' and "all the numbers greater than 10."
Humans can construct the answer trivialy: 12, 14, 16, and so on. For infinitelistsin Perl, see
the section "Infinite Lists' in Chapter 3, Advanced Data Structures, or the Set:: IntSpan module
discussed later in this chapter.

Venn Diagrams

Sets are commonly illustrated with Venn diagrams.” A canonical illustration of aVenn

diagram appears in Figure 6-1. We'll use them throughout the chapter to demonstrate set
concepts.break

Birds

(/*"__miiﬁ"
spartaw

Figure 6-1.
A Venn diagram depicting members of the set Birds

* Named after the English logician John Venn, 1834-1923.

Page 205

Creating Sets

Why can we represent setsin Perl as hashes or bit vector? Both arise naturally from the
uniqueness requirement; the unorderedness requirement is fulfilled by the unordered nature of
hashes. With bit vectors we must enumerate the set members to give them unique numerica
identifiers.

We could aso emulate sets using arrays, but that would get messy if the sets change
dynamically: when either adding or removing an el ement we would have to scan through whole
list; an O (N). Also, operations such as union, intersection, and checking for set membership
(more of these shortly) would be somewhat inefficient unless the arrays were somehow
ordered, either sorted (see Chapter 4, Sorting, especialy mergesort) or heapified (see the
section "Heaps' in Chapter 3).

Creating Sets Using Hashes

A natural way to represent a set in Perl is with a hash, because you can use the names of
members as hash keys. Hash keys must be unique, but so must set members, so al iswell.

Creating setsis simply adding the keys to the hash:

One nmenber at a tine .
$Fel i nes{ti ger} 1; # W don't care what the val ues are,
$Fel i nes{j aguar} 1; # so we'll just use 1.

O several nenbers at a tine using a hash slice assignnent.
@wof = gw hyena coyote wol f fox);
@cani nes{ @wof } = (); # W can also use undefs as the val ues.

O you can inline the slice keys.
@Rodent s{ gwm squirrel nouse rat beaver) } = ();

Members can be removed with del et e:break

One nenber at a tine .
del ete $Horses{canel}; # The canel is not equine.

. . .or several nenbers at a time using a hash slice delete.
NOTE: the hash slice delete -- deleting several hash nenbers
with one delete() -- works only with Perl versions 5.004 and up.

@ enove = gw(dol phin seal);
del ete @ish{ @enove };

. . .or the goners inlined.
del ete $Mammal { platypus }; # Nor is platypus a mammal .
del ete @anmmal { 'vanpire', 'werewolf' } if $here ne 'Transyl vani a';

To be conpatible with pre-5.004 versions of Perl
you can use for/foreach instead of del ete(@ash{@lice}).

Page 206

foreach $delete (@enove) {
del ete $Fi sh{ $delete };
}

Creating Sets Using Bit Vectors

To use bit vectors as sets we must enumerate the set members because all vectors have an
inherent ordering. While performing the set operations, we won't consider the "names’ of the
members, but just their numbers, which refer to their bit positions in the bit vectors.

WEII first show the process "manually” and then automate the task with a member enumerator
subroutine. Note that we still use hashes, but they are for the enumeration process, not for
storing the sets. The enumeration is global, that is, universal—it knows all the members of all
the sets—whereas a single set may contain just some or even none of the members.

To enumerate e ements, we'll use two data structures. One is a hash where each key is the name
of an element and the valueisits bit position. The other is an array where each index is a bit
position and the value is the name of the element at that bit position. The hash makesit easy to
derive abit position from aname, while the array permits the reverse.

ny $hit = 0;

$menber = ' kangaroo';

$nunber{ $nenber } = $hit; # Snunber {' kangaroo'} = 0;

$nane [$bit] = $nmenber; # $nanme [0] = 'kangar oo’ ;
$bi t ++;

$nmenber = 'wonbat ' ;

$nunber{ $nenber } = $bit; # $nunber {' wonbat ' } = 1

$nane [$bit] = $nenber; # $name [1] = 'wonbat';

$bi t ++;

$nenber = ' opossuni ;
$nunber{ $nmenber }
$nane [$bit]
$bi t ++;

2.

$bit; # $nunber {' opossuni } :
' opossun ;

$nenber ; # $name [2]

Now we have two-way mapping and an enumeration for marsupials:

Name Number
kangaroo 0
wombat 1
opossum 2

Now welll use Perl scalars as bit vectors to create sets, based on our Marsupial universe (the
set universe concept will be defined shortly). The bit vector tool incontinue

Page 207

Perl isthevec() function: with it you can set and get one or more bits (up to 32 bits at atime)
in a Perl scalar acting as a bit vector.” Add set members simply by setting the bits
corresponding to the numbers of the members.

$set = '"; # A scalar should be initialized to an enpty string
before performng any bit vector operations on it.

vec(set, Snunber{ wonbat }, 1)
vec(set, Snunber{ opossum}, 1)

1
1

This smple-minded process has two problems: duplicate members and unknown members.
The first problem comes into play while enumerating; the second one while using the results of
the enumeration.

Thefirst problem isthat we are not checking for duplicate members—although with a hash we
could perform the needed check very easily:

$nenber = ' bunyip';

$nunber{ $nmenber } = $bit; # $nunber {' bunyip'} = 3

$nane [$hit] = $nenber; # $nane [3] = 'bunyip';
$bi t ++;

$nmenber = ' bunyip';

$nunber{ S$nenber } = $hit; # Snunber{' bunyip'} = 4;

$nane [$hit] = $nenber; # $nane [4] = 'bunyip';

$bi t ++;
Oops. We now have two different mappings for bunyi p.
Thisiswhat happens when unknown set members sneak in:

vec(set, Snunber{ koala }, 1) =1

Because $nunber { koal a } isundefined, it evaluatesto zero, and the statement
effectively becomes:

vec($set, 0, 1) = 1;
which trandates as:
vec($set, $nunber{ kangaroo }, 1) =1

so when we wanted koala we got kangaroo. If you had been using the - w option or | ocal
$" W = 1; youwould have gotten awarning about the undefined value.

Here is the subroutine we promised earlier. It accepts one or more sets represented as
anonymous hashes. From these it computes the number of (unique) members and two
anonymous structures, an anonymous hash and an anonymous array. The number of membersin
these data structures is the number of the bitscontinue

* Wewill usethevec() and bit string operators for our examples: if you need aricher bit-level
interface, you can use the Bit::Vector module, discussed in more detail later in this chapter.

Page 208

we will need. The anonymous structures contain the name-to-number and number-to-name
mappings.

sub nmenbers_to_nunbers {
ny (@anes, $nane);
ny (Y%unbers, $nunber);

$nunber = 0;
while (ny $set = shift @) {
while (defined ($name = each %set)) {
unl ess (exists $nunbers{ $nane }) {

$nunbers{ $nane } = $nunber;
$nanes [$nunber] = $nane;
$nunber ++;
}

}

}

return ($nunber, \%wunbers, \ @anes);

}
For example:

nmenbers_to_nunbers({ kangaroo => undef,
wonbat => undef,
opossum => undef })

should return something similar to:

(3!
{ (wonbat => 0, kangaroo => 1, opossum=> 2) },

[gw(wonbat kangar oo opossun)])

This means that there are three unique members and that the number of opossun, for instance,
is 2. Note that the enumeration order is neither the order of the original hash definition nor
alphabetical order. Hashes are stored in an internally meaningful order, so the hash elements
will appear from each() in pseudorandom order (see the section "Random Numbers® in
Chapter 14, Probability).

After having defined the set universeusing nenber s_t o_nunber s() , the actua sets can
be mapped to and from bit vectors using the following two subroutines:break

sub hash_set _to_bit_vector {
ny ($hash, S$nunbers) = @;
ny ($nane, S$vector);

Initialize $vector to zero bits.
#
$vector ="'

while (defined ($name = each % $hash }
vec($vector, $nunbers->{ $nane }, 1
}

)) A
) = L

Page 209

return $vector;

sub bit_vector_to_hash_set {
ny ($vector, $nanes) = @;
ny ($nunber, %ash_set);

foreach $nunber (0..$#{ $nanes }) {
$hash_set{ $nanes->[$nunmber] } = undef
if vec($vector, $nunber, 1);

return \ %ash_set;

}

Thehash_set to _bit_ vector() isusedtobuildabit vector out of aset represented
asahash reference, andthebi t _vector _to _hash_set () isused to reconstruct the hash
reference back from the bit vector. Note again that the order of names from
menbers_to_nunber s() ispseudorandom. For example:

@ani nes{ gw(dog wolf) } = ();

($size, $nunbers, $nanes) = nenbers_to_nunbers(\%ani nes);

$Cani nes = hash _set to _bit_vector(\%ani nes, $nunbers);
print "Canines ="
"@ [keys % bit_vector_to_hash_set($Canines, $nanes) }] }\n";
This prints:
Cani nes = wol f dog
Set Union and I ntersection

Sets can be transformed and combined to form new sets; the most basic transformations are
union and inter section.

Union
Show me the web documents that talk about Perl or graphs.

The union of two sets (also called the set sum or the set maximum) has all the members found
in both sets. Y ou can combine as many sets as you like with aunion. The union of
mathematicians, physicists, and computer scientists would contain, among others, Laplace,
Maxwell, and Knuth. Unionislikelogical OR: if amember isin any of the participating sets,
it'sin the union. See Figure 6-2 for an example.break

Page 210

Figure 6-2.
Set union: the union of the set of canines and the set of domesticated animals.

The English "or" can mean either inclusive or or exclusive or. Compare the sentences Y our
choice of Spanish or Italian wine" and "We can hold the next conference in Paris or Tokyo." It
islikely that both Spanish and Italian wines could be served but unlikely that a conferenceis
going to be held in both France and Japan. This ambiguous use is unacceptable in formal logic
and programming languages: in Perl the inclusive logical oris| | or or ; the exclusive
logical orisxor . Thebinary logic (bit arithmetic) counterpartsare| and ".

In Figure 6-2 the union of sets Canines and Domesticated is shaded. The sets may have
common elements or overlap, but they don't have to. In Figure 6-3 despite the two component
sets having no common eements (no animal is both canine and feline), aunion can still be
formed.

Canines

Figure 6-3.
The union of felines and canines

In set theory the union is marked using the E operator. The union of sets Canines and
Domesticated is CaninesE Domesticated. Union is commutative: it doesn't matter in what
order the sets are added or listed; AE B isthe same as BE A.break

Page 211

I ntersection
Show me the web documents that talk about Perl and graphs.

Intersection, also known as the set product or the set minimum, is the set that has only the
members common to all the participating sets. It can be understood as logical AND: a member
isin theintersection only if it'sin all the sets. Intersection is also commutative. See Figure 6-4

for an example.*

Domesticated

Figure 6-4.
Set intersection: the intersection of the canines and domesticated animals sets

In Figure 6-4 the intersection of sets Canines and Domesticated is shaded. The sets need not
have common members or overlap. Nothing is shaded because the intersection of the sets
Felines and Canines, in Figure 6-5, is the empty set, @. Felines and Canines have no common

members; therefore, FelinesC Canines = g.break

Figure 6-5.
Set intersection: the intersection of felines and caninesis empty

* Cat owners might argue whether cats are truly domesticated. We sacrifice the independence of cats
for the sake of our example.

Page 212
Set Universe

Show me the web documents that talk about anything. That is, show me all the web documents.

By creating al our sets, we implicitly create a set called the set universe, also known as the
universal set, denoted by U. It isthe union of al the members of all the sets. For example, the
universe of al the speakers of Germanic languages includes all the English, German, and Dutch
speakers.” When using a bit vector representation, the ¥munber s and $nunber data
structures represent the universe because they contain every possible e ement the program will
deal with.

We don't include afigure of everything for hopefully obvious reasons.
Complement Set
Show me the web documents that do not talk about Perl.

By creating asingle set, we implicitly create a set called the complement set, a or the set
inverse, denoted by —A. It contains al the members of the set universe that are not present in
our set. For example, the complement of the albino camels includes, among other colors, the
brown, grey, and pink ones. Another possible complement is shown in Figure 6-6.break

Flightless Birds

emu
gL T

/ sengull
sporrow

: i condor
Kfﬁnﬁh
4 R mod

osfrich

Figure 6-6.
Set complement: the complement of the birds that can fly are the flightless birds

* There are more mathematically rigorous definitions for "sets of everything," but such truly universal
sets are not that useful in our everyday lives.

Page 213

Null Set
Show me the web documents that talk about nothing. In other words, show me nothing.

The null set (also called the empty set), has no elements. It's the complement of the universal
set. In set theory, the null set is denoted as @.

We don't include afigure of the null set because that would be kind of boring.

Set Union and | ntersection Using Hashes

If we're using hashes to represent sets, we can construct the union by combining the keys of the
hashes. We again use hash dices, although we could have used af or each loop instead.

@at s_Dogs{ keys %Cats, keys %logs } = ();
| ntersection means finding the common keys of the hashes:
@cat s{ gwcat lion tiger) }

@ si an{ gw(ti ger panda yak) }
@triped{ gw(zebra tiger) }

I
—~ e~
— N

Initialize intersection as the set of Cats.
#
@ats_Asian_Striped{ keys %ats } = ();

Delete fromthe intersection all those not Asian aninals.
#
del ete @ats_Asian_Stri ped{
grep(! exists $Asian{ $_},
keys %Cats_Asian_Striped) };

Delete fromthe intersection all those not Striped creatures.
#
del ete @ats_Asian_Striped{
grep(! exists $Striped{ $_ 1},
keys % Cats_Asian_Striped) };

Thisis growing in complexity, so let's turn it into a subroutine. Our sets are passed in to the
subroutine as hash references. We can't pass them in as hashes, using the call

i ntersection (% ashl, %ash2), becausethat would flatten the two hashes into one
big hash.break

sub intersection {
ny ($i, $sizei) = (0, scalar keys %4 $ [0] });
ny ($j, $sizej);

Find the snmall est hash to start.
for ($) =1; $§ < @; $j++) {
$sizej = keys %4 $ [$ 1 };

Page 214
($i, $sizei) = ($j, $sizej) if $sizej < $sizei;

Reduce the list of possible elenents by each hash in turn.
ny @ntersection = keys %4 splice @, $i, 1 };
ny $set;
while ($set = shift) {

@ntersection = grep { exists $set->{ $_} } @ntersection;
}

ny % ntersection;
@ntersection{ @ntersection} = ();

return \ % ntersection;

@rat s{ g cat lion tiger) }
@\si an{ gw(ti ger panda yak) }
@triped{ gw(zebra tiger) }

I mn
—~ A~~~
~— N

$Cats_Asian_Striped = intersection(\% ats, \%\sian, \%5triped);

print join(" ", keys % $Cats_Asian_Striped }), "\n";
Thiswill printti ger .

|dentifying the smallest set first gives extra speed: if amember isgoing to bein the
intersection, it must be in the smallest set. The smallest set again gives the fastest possible

whi | e loop. If you don't mind explicit loop controls such asnext , use this aternate
implementation for intersection. It's about 10% faster with our test input.break

sub intersection {
ny ($i, $sizei) = (0, scalar keys %4 $ [0] });
ny ($, $sizej);

Find the snallest hash to start.
for (($f =1, $§ < @; $j++) {
$sizej = scalar keys % $ [$ 1 };
($i, $sizei) = (%, $sizej)
if $sizej < $sizei;

ny ($possible, % ntersection);

TRYELEM
Check each possi bl e nmenber against all the remaining sets.
foreach $possible (keys %4 splice @, $i, 1}) {
foreach (@) {
next TRYELEM unl ess exists $_->{ $possible };
}

$intersecti on{$possi bl e} = undef;

Page 215

return \% ntersection

}

Hereisthe union written in traditional procedural programming style (explicitly loop over the
parameters):

sub uni on {
ny %union = ();

while (@) {

Just keep accunul ating the keys, slice by slice.
@nion{ keys % $_[0] } } =();
shift;

return \%uni on

}
or, for those who like their code more in the functional programming style (or, more terse):

sub union { return { mp { %_} @ } }
or even:

sub union { +{ mp { %B_} @ } }

The + acts here asadisambiguator: it forcesthe{ . . . } tobeunderstood asan
anonymous hash reference instead of a block.

Weinitialize the valuesto undef instead of 1 for two reasons:

» Some day we might want to store something more than just a Boolean value in the hash. That
day isin fact quite soon; see the section "Sets of Sets" later in this chapter.

* [nitidizing to anything but undef , such aswith ones, @ash{ @keys } = (1) X
@xeys ismuch dower because the list full of ones on the righthand side has to be generated.
Thereisonly oneundef in Perl, but the ones would be all saved asindividual copies. Using
just the oneundef saves space.”

Testingwith exi st s $hash{ $key} isaso dightly faster than $hash{ $key} . Inthe
former, just the existence of the hash key is confirmed—the value itself isn't fetched. In the
latter, not only must the hash value be fetched, but it must be converted to a Boolean value as
well. This argument doesn't of course matter asfar asthe undef versus1 debateis
concerned.break

* There are two separate existence issues in hashes: whether an element with acertain key is present,
and if so, whether itsvalueis defined. A key can exist with any value, including avalue of undef .

Page 216
We can compare the speeds of various membershipnesses with the Benchmark module:

use Benchnark;

@ = 1..1000; # The keys.

ti met hese(10000, ({
e = @af @ }
"ib => ' @b{ @ }

(), # Assi gni ng undefs.
(1) x @& # Assi gni ng ones.

})s

The key '123' does exist and is true.

ti met hese(1000000, {

"nu' => ' $nb++' # Just the increnent.
"ta' => '$na++ if exists $ha(123}', # Increnent if exists.
"thb* => '"$nb++ if $hb{123}" # Increment if true.

1)

The key '1234' does not exist and is therefore inplicitly false.

ti met hese(1000000, {
'ua' => '"$na++ if exists $ha{1234}', # Increnent if exists (never).
"ub' => '$nb++ if $hb{1234}" # Increment if true (never).

1)

In this example, we first measure how much time it takes to increment a scalar one million
times (nu). We must subtract that time from the timings of the actual tests (t a, t b, ua, and
ub) to learn the actual time spentinthei f s.

Running the previous benchmark on a 200 MHz Pentium Pro with NetBSD release 1.2G
showed that running nu took 0.62 CPU seconds; therefore, the actual testing parts of t a and
t b took 5.92 — 0.62 = 5.30 CPU seconds and 6.67 — 0.62 = 6. 05 CPU seconds. Therefore
exi st s wasabout 12% (1 — 5.30/6.05) faster.

Union and I ntersection Using Bit Vectors

The union and intersection are very ssimply bit OR and bit AND on the string scalars (bit
vectors) representing the sets. Figure 6-7 shows how set union and intersection look alongside
binary OR and binary AND.

Here's how these can be done using our subroutines:break

@cani nes { qw(dog wol f) }
@onesti cated{ gw(dog cat horse) }

()
()

($size, $nunbers, $names) =
menmber s_t o_nunber s(\ %Cani nes, \%onesticated);

$Cani nes = hash_set _to _bit_vector(\%ani nes, $nunbers);
Page 217
‘ aly (a b c 111 L 00 bitvecrs
wy | coel 00101 bitvdewy
. wim (abec el 11101 bieryOR
‘ intersection | c o001 00 bimwyAND
Figure 6-7.

Union and intersection as bit vectors

$Donest i cat ed hash _set to _bit_vector(\%onesticated, $nunbers);

$uni on $Cani nes | $Donesticated; # Binary OR

$i ntersection = $Cani nes & $Domesticated; # Binary AND.

print "union ="
"@ [keys % bit_vector _to_hash set($union, $names) }] }\n";

print "intersection ="

"@ [keys % bit_vector to_hash set(S$intersection, $nanes) }] }\n'

This should output something like the following:

dog wol f cat horse
dog

Set Differences

There are two types of set differences, each of which can be constructed using complement,
union, and intersection. One is noncommutative but more intuitive; the other is commuitative but
rather weird, at least for more than two sets. We'll call the second kind the symmetric
difference to distinguish it from the first kind.*

Set Difference
Show me the web documents that talk about Perl but not about sets.

Ever wanted to taste al the triple ice cream cones—except the ones with pecan? If so, you
have performed a set difference. The tipoff English word is "except," asin, "al the managers
except those who are pointy-haired males."break

* Itis possible to define all set operations (even complement, union, and intersection) using only one
binary set operation: either "nor" (or "not or") or "nand" (or "not and"). "Nor" isalso called Peirce's
relation (Charles Sanders Peirce, American logician, 1839-1914), and "nand” is aso called Sheffer's
relation (Henry Sheffer, American logician, 1883-1964). Similarly, all binary logic operations can
be constructed using either NOR or NANLC logic gates. For example, not x isequal to either "Peircing”
or "Sheffering” x with itself, because either x nor x or x nand x are equivalent to not x.

Page 218

Set difference is easy to understand as subtraction: you remove al the members of one set that
are a'so members of the other set. In Figure 6-8 the difference of sets Canines and
Domesticated is shaded.

Figure 6-8.
Set difference: "canine but not domesticated"

In set theory the difference is marked (not surprisingly) using the - operator, so the difference
of sets A and B is A - B. The difference is often implemented as AC—B. Soon you will see how
to do thisin Perl using either hashes or bit vectors.

Set difference is noncommutative or asymmetric: that is, if you exchange the order of the sets,
the result will change. For instance, compare Figure 6-9 to the earlier Figure 6-8. Set
difference is the only noncommutative basic set operation defined in this chapter.

Figure 6-9.
Set difference: "domesticated but not canine”

In its basic form, the difference is defined for only two sets. One can define it for multiple sets
asfollows: first combine the second and further sets with a union. Then subtract (intersection
with the complement) that union from the first set. This definition feels natural if you think of
sets as numbers, union as addition, and difference as subtraction: a- b - ¢ = a - (b+c).break

Page 219

Set Symmetric Difference

Show me the web documents that talk about Perl or about sets but not those that talk about
both.

If you like garlic and blue cheese but not together, you have just made not only a culinary
statement but a symmetric set difference. The tipoff in English is "not together."

The symmetric difference is the commutative cousin of plain old set difference. Symmetric
difference involving two sets is equivalent to the complement of their intersection.
Generalizing this to more than two setsis abit odd: the symmetric difference consists of the
members that are members of an odd number of sets. See Figure 6-11.

In set theory the symmetric difference is denoted with the \ operator: the symmetric difference
of setsa and b iswritten as a\b. Figure 6-10 illustrates the symmetric difference of two sets.

e Conines

Domesticated

Figure 6-10.
Symmetric difference: "canine or domesticated but not both"

Why does the set difference include any odd number of sets and not just one? This
counterintuitiveness stems, unfortunately, directly from the definition:

AVB=An-BU-ANB
which implies the following (because \ is commutative):
AVBY O =
I:I:_-'l M=Bll=4M B':' mn —|l'.'-.'-':| J I:—|I:.-'1 M=BLU=An B:I M l’,‘l =

(AN=-Bn-ClU(~ANBN=C)U(~An=-BnC)U(AnNBNC)

That is, set difference includes not only the three combinations that have only one set "active'
but also the one that has all the three sets "active." This definition may feel counterintuitive, but
one must cope with it if oneisto use the definition A\B = AC-BE -ACB. Fedl freeto define a
Set operation "present only in one set,” but that is no longer symmetric set difference.break

Page 220

Figure 6-11.
Symmetric difference of two and three sets

In binary logic, symmetric difference is the exclusive-or also known as XOR. We will see this
soon when talking about set operations as binary operations.

Set Differences Using Hashes

In our implementation, we alow more than two arguments: the second argument and the ones
following are effectively unioned, and that union is "subtracted” from the first argument.

sub difference {
ny % lifference;

@li fference{ keys %4 shift() } } =();

while (@ and keys %lifference) {
Delete all the nenbers still in the difference
that are also in the next set.
delete @ifference{ keys % shift() } };

return \%lifference

}

An easy way to implement symmetric difference isto count the times a member is present in the
sets and then take only those members occurring an odd number of times.

We could have used counting to compute set intersection. The required number of times would
equal the number of the sets. Union could also be implemented by counting, but that would be a
bit wasteful because al we care about is whether the number of appearances is zero.break

sub symmetric_difference {
ny Y%symetric_difference;

ny ($el enent, $set);

Page 221

while (defined ($set =shift(@))) {
while (defined ($el ement = each %set)) {
$symmetric_difference{ $el ement }++;
}
}

delete @ymetric_difference{
grep(($symetric_difference{ $_} & 1) == 0,
keys %synmetric_difference)
b

return \%ynmmetric_difference;

@ol ar{ gw pol ar _bear pengui n) }
@ear{ gw pol ar_bear brown_bear) }
@ird{ gw penguin condor) }

—~ A~
N N N

$SymmDi ff _Pol ar_Bear _Bird =
symmetric_difference(\%olar, \%Bear, \%Bird);
print join(" ", keys %4 $SymmDiff_Polar_Bear Bird }), "\n";
Thiswill output:
br own_bear condor

Notice how we test for evenness. an element iseven if abinary AND with 1 equals zero. The
more standard (but often dightly slower) mathematical way is computing modulo 2:

($symetric_difference{ $_} %2) ==1
Thiswill betrueif $symmetric_difference{ $_ } isodd.
Set Differences Using Bit Vectors

The difference and symmetric difference are bit mask (an AND with a NOT) and bit XOR on the
string scalars (bit vectors) representing the sets. Figure 6-12 illustrates how set difference and

symmetric difference ook in sets and binary logic.break

iy la b c } 11100 Wwdos

saly [c a) 00101 bvedwy

differeme 1o b) 11000 biserymask

symmelric difference {2 b a) 1100 1 bieary ¥R
Figure 6-7.

Set differences as bit vectors

Page 222

Hereis how our code might be used:

Binary mask is AND wi th NOT.
$di fference = $Cani nes & ~$Donesti cat ed;

Binary XOR
$symetric_difference = $Canines ~ $Donesti cat ed,;

print "difference = ",

"Q[keys UYbit_vector to hash _set($difference, $nanes)}]}\n";
print "synmmetric_difference =",

"Q[keys UYbit_vector to hash_set($symretric_difference,
$nanes)}]}\n";

and thisiswhat is should print (again, beware the pseudorandom ordering given by hashes):

wol f
wol f cat horse

Counting Set Elements

Counting the number of membersin aset is straightforward for sets stored either as hash
references:

@onest i cated{ gw(dog cat horse) } = ();

sub count nenbers {
return scalar keys %4 $ [0] };
}

print count_nenbers(\%onesticated), "\n";

or as hit vectors:

@xonesticated{ gw(dog cat horse) } = ();
($size, $nunbers, $names) =
menmbers_t o_nunbers(\ %onesticated);

$Donesti cated = hash_set to bit_vector(\%onesticated, $nunbers);

sub count _bit_vector_nenbers {
return unpack "932b*", $_[0];
}

print count_bit_vector_nenbers($Donesticated), "\n";

Both will print 3.break

Page 223

Set Relations

Do all the web documents that mention camels also mention Perl? Or vice versa?

Sets can be compared. However, the situation is trickier than with numbers because sets can
overlap and numbers can't. Numbers have a magnitude; sets don't. Despite this, we can till
define similar relationships between sets. the set of all the Californian beach bumsis
obvioudy contained within the set of all the Californians—therefore, Californian beach bums
are asubset of Californians (and Californians are a superset of Californian beach bums).

To depict the different set relations, Figure 6-13 and the corresponding table illustrate some
sample sets. Y ou will have to imagine the sets Canines and Canidae as two separate but
identical sets. For illustrative purposes we draw them just alittle bit apart in Figure 6-13.

Conlies Cornivores

Figure 6-13.
Set relations

The possible cases for sets are the following: break

Relation M eaning

Canines isdisjoint from | Canines and Felines have no common members. In other words,
Felines. their intersection isthe null set.

Canines (properly) Canines and Car nivores have some common members. With
intersects Carnivores. | "properly,” each set must have some members of its own.

Felines isasubset of Carnivores has everything Felines has, and the sets might even be
Carnivores. identical.

Felines isa proper All that Felines has, Carnivores has too, and Car nivores has
subset of Carnivores. additional members of its own—the sets are not identical. Felines

IS CUltadllIeu DYy Ldl THVUIES, d iU Ldl TTTVUI ES Lulilall IS el IES.

Carnivoresisasuperset | All that Felines has, Carnivores hastoo, and the sets might even be
of Felines. identical.

Carnivoresisaproper Carnivores has everything Felines has, and Carnivores aso has
super set of Felines. members of its own—the sets are not identical. Carnivores
contains Felines, and Felinesis contained by Carnivores.

(table continued on next page)

Page 224

(table continued from previous page)

Relation Meaning
Canines isequal to Canines and Canidae are identical.
Canidae.

8 In case you are wondering, foxes, though physiologically carnivores, are omnivoresin
practice.

Summarizing: asubset of aset S isaset that has some of the members of € but not al (if itisto
be a proper subset). It may even have none of the members: the null set is a subset of every st.
A superset of aset Sisaset that hasall of the membersof S; to be a proper superset, it also
has to have extra members of its own.

Every set isits own subset and superset. In Figure 6-13, Canidae is both a subset and superset
of Canines—but not a proper subset or a proper superset because the sets happen to be
identical.

Canines and Carnivores are neither subsets nor supersets to each other. Because sets can
overlap like this, please don't try arranging them with sor t () , unlessyou are fond of endless
recursion. Only in some cases (equality, proper subsetness, and proper supersetness) can sets
be ordered linearly. Intersections introduce cyclic rankings, making a sort meaningless.

Set Relations Using Hashes

The most intuitive way to compare sets in Perl isto count how many times each member
appearsin each set. Asfor the result of the comparison, we cannot return simply numbers as
when comparing numbers or strings (< O for less than, O for equal, > O for greater than) because
of the digoint and properly intersecting cases. We will return a string instead.

sub conpare ($%$) {
ny ($setl, $set2) = @;

ny @een_twice = grep { exists $setl->{ $_} } keys Ubset2;

return 'disjoint' unl ess @een_twice;
return 'equal’ if @een_twice == keys ¥%bset1l &&

@een_twi ce == keys %bset 2;

return 'proper superset' if @een_twi ce == keys %bset 2;
return 'proper subset' if @een_twi ce == keys %bset 1;
'superset', 'subset never returned explicitly.

return 'proper intersect';

}
Hereishow conpar e() might be used:break

%Cani nes = %Cani dae = %--elines = %BigCats = %Carnivores = ();

@ani nes{ gw(fox wolf) } =();
@ani dae{ gw(fox wol f) } =();
Page 225
@elines{ gw(cat tiger lion) } =();
@i gCats{ gw(tiger lion) } =();
@Car ni vores{ gw(wolf tiger lion badger seal) } = ();

printf "Cani nes cnp Cani dae
Printf "Canines cnp Felines
printf "Canines cnp Carnivores

%\ n", conpare(\% ani nes, \ %Cani dae) ;
%\ n", conpare(\% ani nes, \ %-el i nes);
%\ n", conpare(\% ani nes, \ %Car ni vor es) ;

printf "carnivores cnp Cani nes
printf "Felines cnp BigCats
printf "Bigcats cnp Felines

%\ n", conpare(\%arnivores, \ %ani nes) ;
%\ n", conpare(\%-elines, \9Bi gCat s) ;
%\ n", conpare(\%Bigcats, \ %-el i nes);

and how thiswill look:

Cani nes cnp Cani dae
Cani nes cnp Fel i nes
Cani nes cnp Carni vores
Carni vores cnp Cani nes
Felines cnp BigCats
Bi gCats cnp Felines

equal

di sj oi nt

proper intersect
proper intersect
proper super set
proper subset

We can build the tests on top of this comparison routine. For example:

sub are disjoint ($%) {
return conpare($_[0], $_[1]) eq 'disjoint';
}

Because superset and subset are never returned explicitly, testing for nonproper
super/subsetness actually means testing both for proper super/subsetness and for equality:

sub is_subset ($%) {

ny $cnp = conpare{ $ [0], $ [1]);
return $cnp eq ' proper subset' or $cnp eq 'equal’;

}

Similarly, testing for an intersection requires you to check for all the following: proper
intersect, proper subset, and equal. Y ou can more easily check for digoint; if the sets are not
digoint, they must intersect.

Set Relations Using Bit Vectors

Set relations become a question of matching bit patterns against each other:break

sub conpare_bit_vectors {
ny ($vectorl, $vector2, $nbits) = @;

Bit-extend.
ny $topbit = $nbits - 1;

vec($vectorl, $topbit, 1) = vec($vectorl, $topbit, 1);
vec($vector2, $topbit, 1) = vec($vector2, $topbit, 1);
return 'equal’ if $vectorl eq $vector?2;

The =~ /M 0*$/ checks whether the bit vector is all zeros

Page 226
(or enpty, which neans the sane).
return 'proper subset' if ($vectorl & ~$vector2) =~ /MN0*$/;
return 'proper superset' if ($vector2 & ~$vectorl) == /™M 0*$/;
return 'disjoint' if ($vectorl & $vector2) =~ /M0*9/;

'superset', 'subset' never returned explicitly.
return 'proper intersect';

}
And now for agrand example that pulls together alot of functions we've been defining: break

%Cani nes = %Cani dae = %-elines = 9BigCats = %Carnivores = ();

@cani nes{ gw(fox wolf) }

@cani dae{ gw(fox wolf) }

@elines{ gw(cat tiger lion) }

@i gCats{ gw(tiger lion)

@arni vores{ gwmwolf tiger |ion badger seal) }

{1 L e TR 1|
AN AN S S
— N N

($size, $nunbers) =
nmenber s_t o_nunber s(\ %Cani nes, \%ani dae,
\ %-el i nes, \%Bi gCats,
\ %Carni vores);

$Cani nes

hash_set _to_bit_vector(\%ani nes, $nunbers);

$Cani dae hash_set _to_bit_vector(\%ani dae, $nunbers);

$Fel i nes hash_set _to_bit_vector(\%-elines, $nunbers);

$Bi gCat s hash_set _to _bit_vector(\9Bi gCats, $nunbers);

$Carnivores = hash _set _to_bit_vector(\%arni vores, $nunbers);
printf "Canines cnp Cani dae = 9%\n",

conpare_bit_vectors($Cani nes, $Cani dae, $si ze);
printf "Canines cnp Felines = o8\ n",

conpare_bit_vectors($Cani nes, $Fel i nes, $si ze);
printf "Canines cnp Carnivores = %\n",

conpare_bit_vectors($Cani nes, $Car ni vores, $size);
printf "Carnivores cnp Cani nes = %\n",

conpare_bit_vectors($Canivores, $Canines, $si ze);
printf "Felines cnp BigCats = %\n",

conpare_bit_vectors($Felines, $Bi gCat s, $si ze);
printf "BigCats cnp Felines = %\n",

conpare_bit_vectors($BigCats, $Fel i nes, $si ze);

Thiswill output:

Cani nes cnp Cani dae equa
Cani nes cnp Felines di sj oi nt

Cani nes cnp Carni vores
Carni vores cnp Cani nes

proper intersect
proper intersect

Felines cnp BigCats = proper superset
Bi gCats cnp Felines = proper subset

Page 227

The somewhat curious-looking "bit-extension” codein conpare_bit _vectors() is

dictated by a specia property of the & bit-string operator: when the operands are of different
length, the result is truncated at the length of the shorter operand, as opposed to returning zero
bits up until the length of the longer operand. Therefore we extend both the operands up to the
Size of the "universe,” in bits.

The Set Modules of CPAN

Instead of directly using hashes and hit vectors, you might want to use the following Perl
modules, available from CPAN:

Set:: Scalar

An object-oriented interface to sets of scalars

Set:: Object

Much like Set::Scalar but implemented in XS

Set::IntSpan
Optimized for sets with long runs of consecutive integers

Bit::Vector
A speedy implementation for sets of integers

Set::IntRange
A Bit::Vector-based version of Set::IntSpan

The following sections describe these modules very briefly. For detailed information please
see the modules own documentation.

Set::Scalar

Jarkko Hietaniemi's Set::Scalar module provides all the set operations and relations for Perl
scalar variables. Here's a sample of how you'd create new sets called $nret al and
$pr eci ous and perform set operations on them: break

use Set:: Scal ar;

Set:: Scal ar->new('tin', ‘gold', "iron');
Set:: Scal ar->new('dianond', 'gold', 'perl');

ny $net al
nmy $precious

Page 228

print "union(Metal, Precious)
$net al - >uni on($preci ous), "\n";
print "intersection(Mtal, Precious) ,
$net al - >i nt ersecti on($preci ous), "\n";

will result in:

uni on(Metal, Precious)
i ntersection(Metal, Precious)

(dianond gold iron perl tin)
(gol d)

Perhaps the most useful feature of Set::Scalar isthat it overloads Perl operators so that they
know what to do with sets. That is, you don't need to call the methods of Set::Scalar directly.
For example, + is overloaded to perform set unions, * is overloaded to perform set
intersections, and sets are "stringified" so that they can be printed. This means that you can
manipulate setslike $net al + $preci ous and$netal * $preci ous without
explicitly constructing them.

The following code:

print "Metal + Precious
print "Metal * Precious

$netal + $precious, "\n";
$netal * $precious, "\n";

will print:

Metal + Precious
Metal * Precious

(di anond gold iron perl tin)
(gol d)

Set::Scalar should be used when the keys of the hash are strings. If the members are integers, or
can be easily transformed to integers, consider using the following modules for more speed.

Set:: Object

Jean-Louis Leroy's Set::Object provides sets of objects, similar to Smalltalk Identity-Sets. Its
downsideisthat sinceit isimplemented in XS, that is, not in pure Perl, a C/C++ compiler is
required. Here's a usage example:

use Set::vject;

$di nos = Set:: (bj ect - >new $br ont osaur us, $tyrannosaurus);
$di nos- >i nsert ($tri ceratops, $brontosaurus);

$di nos- >r enobve($t yrannosaur us, $al | osaur us);

foreach ny $dino ($dni os->nmenbers) { $di no->f eed(@l ants) }

Set::IntSpan

The Set::IntSpan module, by Steven McDougall, is a specialized set module for dealing with
lists that have long runs of consecutive integers. Set::IntSpan storescontinue

Page 229

such lists very compactly using run-length encoding.” The implementation of Set::IntSpan
differs from anything else we have seen in this chapter—for details see the summary at the end
of this chapter.

Lists of integers that benefit from run-length encoding are common—for example, consider the
.newsrc format for recording which USENET newsgroup messages have been read:

conp. |l ang. perl.msc: 1-13852, 13584, 13591- 14266, 14268- 14277
rec. hurmor. funny: 18-410, 521-533

Here's another example, which lists the subscribers of alocal newpaper by street and by house
number:

Oak Grove: 1-33, 35-68
ElmStreet: 1-12,15-41, 43-87

As an example, we create two | nt Spans and populate them:

use Set::lntSpan gw(grep_set); # grep_set will be used shortly
%subscribers = ();

Create and popul ate the sets.
$subscribers{ 'Cak Gove' } = Set::lIntSpan->new "1-33,35-68");
$subscribers{ '"Elm Street' } = Set::IntSpan->new "1-12,43-87");

and examine them:
print $subcribers{ 'ElmStreet' }->run_list, "\n";
$just_north_of railway = 32;

$oak_grovers_south_of railway =
grep_set { $_ > $just_north_of _railway } $subscribers{ 'Cak Gove' };

print $oak grovers_south_of railway->run_list, "\n";
which will reveal to usthe following subscriber lists:

1-12, 43-87
33, 35-68

Later we update them:
foreach (15..41) { $subscriberst 'Elm Street' }->insert($_) }

Such lists can be described as dense sets. They have long stretches of integersin which every
integer isin the set, and long stretches in which every integer isn't. Further examples of dense
sets are Zip/postal codes, telephone numbers, hel pcontinue

* For more information about run-length encoding, please see the section "Compression” in Chapter
9, Strings.

Page 230

desk requests—whenever elements are given "sequential numbers." Some numbers may be
skipped or later become deleted, creating holes, but mostly the elements in the set sit next to
each other. For sparse sets, run-length encoding is no longer an effective or fast way of storing
and manipulating the set; consider using Set::IntRange or Bit::Vector.

Other features of Set::IntSpan include:

List iterators
Y ou don't need to generate your sets beforehand. Instead, you can generate the next
member or go back to the pr ev member, or jJump directly tothef i r st or| ast
members. Thisis more advanced than the Perl'seach for hashes, which can only step
forward one key-value pair at atime.

Infinite sets
These sets can be open-ended (at either end), such as the set of positive integers, negative
integers, or just plain integers. There are limitations, however. The sets aren't really
infinite, but as long as you don't have billions of €lements, you won't notice.”

Set::IntSpan is useful when you need to keep accumulating a large selection of numbered
elements (not necessarily always consecutively numbered).

Here'sared life example from the PAUSE maintenance procedures. alow-priority job runs
hourly to process and summarize certain spooled requests. Normally, the job never exits, and
the next job launched on the hour will detect that the requests are aready being handled.
However, if the request traffic isreally low, the original job exits to conserve memory
resources. On exit it savesitsrunlist for the next job to pick up and continue from there.

Bit::Vector

Steffen Beyer's Bit::Vector module is the fastest of all the set modules because most of it is
implemented in C, alowing it to use machine words (the fastest integer type variables offered
by the hardware). If your set members are just integers, and you need more operations than are

available in Set::IntSpan, or you need all the speed you can get, Bit::Vector is your best choice.

Here is an example:break

use Bit::Vector;

Create a bit vector of size 8000.

* The exact maximum number of elements depends on the underlying system (to be more exact, the
binary representation of numbers) but it may be, for example, 4,503,599,627,370,495 or 252 -1.

Page 231

$vector = Bit::Vector->new 8000);

Set the bits 1000..2000.

$vector->Interval _Fill(1000, 2000);

Clear the bits 1100..1200.

$vector->Interval _Enpty(1100, 1200);

Turn the bit 123 off, the bit 345 on, and toggle bit 456.

$vector->Bit _OFf (123);
$vector->Bit_On (345);
$vector->bit_flip(456);

Test for bits.

print "bit 123 is on\n" if $vector->bit_test(123);

Now we'll fill the bits 3000..6199 of $vector with ASCI| hexadeci mal .
First, create set with the right size .

$fill = Bit::Vector->new 8000);

fill it in froma 8000-character string .

$fill->fromstring("deadbeef" x 100);

and shift it left by 3000 bits for it to arrive
at the originally planned bit position 3000.

$fill->Mve_Left(3000);

and finally ORthe bits into the original $vector.

$vector | = $fill;

Qutput the integer vector in the "String" (hexadecinmal) fornmat.

print $vector->to String, "\n";
Thiswill output the following (shortened to alleviate the dull bits):

00 . . . OODEADBEEF . . . DEADBEEFOO . . . OO1FF . . . FFEOO . . . OOFF .

For more information about Bit::Vector, consult its extensive documentation.

Bit::Vector also provides severa higher level modules. Itslow-level bit-dinging algorithms
are used to implement further agorithms that manipulate vectors and matrices of bits, including
DFA::Kleene, Graph::Kruskal (see the section "Kruskal's minimum spanning tree" in Chapter
8, Graphs), and Math::MatrixBool, (see Chapter 7, Matrices).break

Page 232
Don't bother with the module called Set::IntegerFast. It has been made obsolete by Bit::Vector.

Set::IntRange

The module Set::IntRange, by Steffen Beyer, handlesintervals of numbers, as Set::IntSpan
does. Because Set::IntRange uses Bit::Vector internally, their interfaces are smilar:
use Set:: | nt Range;

Create the integer range. The bounds can be zero or negative.
Al that is required is that the lower Iimt (the first
argunment) be less than upper linmt (the second argument).

$range = new Set::IntRange(1l, 1000);
Turn on the bits (nenbers) from 100 to 200 (i ncl usive).
$range->Interval _Fill(100,200);

Turn of f the bit 123, the bit 345 on, and toggle bit 456.

$range->Bit _Of (123);
$range->Bit_On (345);
$range->bit_flip(456);

Test bit 123.

print "bit 123 is ", $range->bit _test(123) ? "on" : "off", "\n";

Testing bit 9999 triggers an error because the range ends at 1000.
print "bit 9999 is on\n" if $range->bit_test(9999);

H*

Qutput the integer range in text fornat.

This format is a lot like the "runlist" format of Set::|ntSpan
the only difference is that instead of '-' in ranges the Perlish
is used. Set::IntRange al so knows how to decode

this format, using the nmethod from Hex().

HHH R

print $range->to _Hex, "\n";
The last print will output the following (again, shortened):
00 . . . 080..010..00FF..FBF..FF800. .00

Y ou need to have Bit::Vector installed for Set::IntRange to work.break

Page 233

Sets of Sets

These are sets whose members are themselves entire sets. They require a different data
structure than what we've used so far; the problem is that we have been representing the
members as hash keys and ignoring the hash values. Now we want the hash values to be
subsets. When Per| stores a hash key, it "stringifies’ it, interpreting it asa string. Thisis bad
news, because eventually we'll want to access the individual members of the subsets, and the
stringified keys look something like this: HASH(0x73a80) . Even though that hexadecimal
number happens to be the memory address of the subset, we can't use it to dereference and get
back the actual hash reference.” Here's a demonstration of the problem:

$x = { a=>3, b =>4},

$y ={ ¢ =>5, d=>6, e =>7};

% $z } =(); # dear % $z }.

$z->{ $x } = (); # The keys %4 $z }, $x, and $y are stringified,
$z->{ $y } = (); # and the values %4 $z } are new all undef.

print "x is $x\n";

print "x->{b} is '$x->{b}"'\n";

print "z->{x} is $z->{$x}\n";

print "z->{x}->{b} is '$z->{$x}->{b}'\n";

This should output something like the following (the hexadecima numbers will differ for you).
Notice how the last print can't find the 4 (because the $z- >{ $x} looks awfully empty).

i s HASH(0x75760)
->{b} is "4
->{x} is
->{x}->{b} is "’

N N X X

Thereis a solution: we can use those hash values we have been neglecting until now. Instead of
unimaginatively assigning undef to every value, we can store the hash references there. So
now the hashref is used as both key and value—the difference being that the values aren't
stringified.break

$x ={ a=>3, b =>4},

$y ={ ¢ =>5, d=>6, e => 7 };

W Bz } =(); # ear % %z }.

$z->{ $x } = $x; # The keys get stringified,

$z->{ $y } = $y; # but the values are not stringified.

* Not easily, that is. There are sneaky ways to wallow around in the Perl symbol tables, but this book
is supposed to be about beautiful things.

Page 234

print "x is $x\n";

print "x->{b} is '$x->{b}'\n";

print "keys % are @[keys %4 $z }]}\n";
print "z->{x} is $z->{$x}\n";

print "z->{x}->{b} is '$z->{$x}->{b}'\n";

This should output something like the following. Notice how the last print now findsthe 4.

X is HASH(0x75760)

x->{b} is "4

keys % are HASH(0x7579c) HASH(0x75760)
z->{x} is HASH(0x75760)

z->{x}->{b} is "4

So thetrick for sets of setsisto store the subsets—the hash references—twice. They must be
stored both as keys and as values. The (stringified) keys are used to locate the sets, and the
values are used to access their elements. We will demonstrate the use of subsets soon as power
sets, but beforewe do, hereisasos_as_stri ng() subroutine that converts a set of sets
(hence the sos) to astring, ready to be printed:break

#

sos_as_string($set) returns a stringified representation of

a set of sets. $string is initially undefined, and is filled
in only when sos_as_string() calls itself later.

#

sub sos_as string ($;%) {
ny ($set, $string) = @;

$$string .= "{'; # The begi nning brace

ny $i; # Nunber of nenbers

foreach ny $key (keys % $set }) {
Add space between the nenbers.
$$string .= " ' if $i++
if (ref $set->{ $key }) {
sos_as_string($set->{ $key }, S$string); # Recurse

} else {
$$string . = Skey; # Add a menber
}
}
return $$string .= '}"; # The ending brace

ny $a = { ab => 12, cd => 34, ef => 56 };

Renenber that sets of sets are represented by the key and

the val ue being equal: hence the $a, $a and $b, $b and $nl, $nl
ny $b ={ pg => 23, rs => 45, tu => 67, $a, %a };

ny $c = { xy => 78, $b, $b, zx => 89 };

Page 235
ny $n1 = { };
ny $n2 = { $n1, 3$nl };
print "a =", sos_as_string($a), "\n";
print "b =", sos_as_string($b), "\n";
print "c =", sos_as_string($), "\n";
print "nl =", sos_as_string($nl), "\n";
print "n2 =", sos_as_string($n2), "\n";
This prints:
a = {ef ab cd}
b = {tu pgrs {ef ab cd}}
c ={xy zx {tu pg rs {ef ab cd}}}
nl = {}
n2 = {{}}
Power Sets

A power set isderived from another set: it isthe set of al the possible subsets of the set. Thus,
asshown in Figure 6-14, the power set of set S= a, b, cis &, = 2, {a}, {b}, {c}, {a,b},
{a,c}, {b,c}, {a,b,c}.

Figure 6-14.
Power set S of S={a b, c}

power

For aset S with n members there are aways 2" possible subsets. Think of a set as abinary
number and each set member as abit. If the bit is off, the member is not in the subset. If the bit
ison, the member isin the subset. A binary number of N bits can hold 2N different numbers,
which iswhy the power set of aset with N members will have 2N members.

The power set is another way of looking at all the possible combinations of the set members;
see Chapter 12, Number Theory.break

Page 236
Power Sets Using Hashes

WEe'll need to store the subsets of the power set as both keys and values. The trickiest part of
computing a power set of aset of size N is generating the 2N subsets. This can be done in many
ways. Here, we present an iterative technique and a recursive technique.” The state will
indicate which stage we are at. Piecemeal approaches like thiswill help with the aggressive
space requirements of the power set, but they will not help with the equally aggressive time
requirement.

The iterative technique uses aloop from 0 to 2N —1 and uses the binary representation of the
loop index to generate the subsets. Thisis done by inspecting the loop index with binary AND
and adding the current member to a particular subset of the power set if the corresponding bit is
there. Because of Perl's limitation that integer values can (reliably) be no more than 32 bits,**
the iterative technique will break down at sets of more than 31 members, justas1 << 32
overflows a 32-bit integer. The recursive technique has no such limitation—~but in real
computers both techniques will grind to amajestic halt long before the sets are

enumerated.”** break

The mask cache for the powerset _iter().
ny @powerset_iterate_mask = ();

sub powerset iterate {
ny $set = shift;

ny @eys = keys % $set };

ny @alues = values % $set };

The nunber of nenbers in the original set.
ny $nnenbers = @eys;

The nunber of subsets in the powerset.

ny $nsubsets = 1 << $nnenbers;

ny ($i, $j, $powerset, $subset);

Conpute and cache the needed masks.
if ($nnenbers > @powerset _iterate mask) {
for ($j = @powerset _iterate nmask; $ < Snnenbers; $j++) {
The 1 << $j works reliably only up to $nnenbers == 31.
push(@powerset iterate mask, 1 << $j) ;

for ($i =0; $i < $nsubsets; $i++) {
$subset = { };
for ($j = 0; $ < $nnenbers; $j++) {

* Yet another way would be to use iterator functions: instead of generating the whole power set at
once we could return one subset of the power set at atime. This can be done using Perl closures. a
function definition that maintains some state.

** This might change in future versions of Perl.

***Hint: 2 raised to the 32nd is 4,294,967,296, and how much memory did you say you had?

Page 237

Add the ith nmenber if it is in the jth mask.
$subset - >{ $keys[$] } = $values[$]
if $i & $ powerset iterate_mask[$j];

}

$power set - >{ $subset } = $subset;

return $powerset;

ny $a = { a => 12, b => 34, ¢ => 56 };

ny $pi powerset iterate($a);

print "pi =", sos_as_string($pi), "\n";

Figure 6-15 illustrates the iterative technique.

5i 53 i hinary generatad subdet

[l ... 000 1

] 1 oo (&}

? a o1lao [E]

2 a 011 (2k

4 a 1 a0 [1

g 0 11 [a ol

e R R - SRR - - ey
Figure 6-15.

The inner workings of the iterative power set technique

The recursive technique callsitself $nmenber s times, at each round doubling the size of the
power set. Thisis done by adding to the copies of the current power set under construction the
$i th member of the original set. This processis depicted in Figure 6-16. As discussed earlier,
the recursive technique doesn't have the 31-member limitation that the iterative technique
has—but when you do the math you'll realize why neither islikely to perform well on your
computer.break

sub powerset _recurse ($; @ {
ny ($set, $powerset, S$keys, $values, $n, $i) = @;

if (@ ==1){ # Initialize.
ny $null ={ };
Page 238
$powerset = { S$null, S$null };
$keys =[keys % $set }];
$val ues = [values % $set }];
$nenbers = keys % S$set }; # This many rounds.
$i = 0; # The current round.
}
Ready?
return $powerset if $i == $nnenbers;
Remap.
ny @owerkeys = keys % S$powerset };
ny @owerval ues = val ues % $powerset };
ny $powern = @ower keys;

ny $j;

for ($j = 0; $j < $powern; $j++) {
ny %ubset = ();

Copy the old set to the subset.
@ubset {keys % S$powerset->{ $powerkeys [$] } }} =
val ues % $powerset->{ $powervalues[$j] } };

Add the new nenber to the subset.
$subset { Skeys->[$i]} = $values->[$i];

Add the new subset to the powerset
$pover set ->{ \%ubset } = \%subset;

Recurse
power set _recurse($set, $powerset, S$keys, $val ues, S$nmenbers, $i+1l);

}

ny $a = { a => 12, b => 34, ¢ => 56 };

ny $pr = powerset recurse($a);

print "pr =", sos_as_string($pr), "\n";

Thiswill output the following:
pr = {{a} {b c} {b} {c} {a b c} {ab} {} {a c}}

Theloopinbit _vector _to_hash_set () (seethesection"Creating Sets') bearsa
strong resemblance to the inner loop of the power set _recur se() . Thisresemblanceis
not accidental; in both algorithms we use the binary representation of the index of the current
member. Inbi t _vector _to_hash_set () (back when we enumerated members of sets
for doing set operations via bit vector operations), we set the corresponding nameif vec() so
indicated. We set it to undef , but that is as good value as any other. In

power set _recurse() we add the corresponding member to a subset if the & operator so
indicates.break

Page 239

S={abd

=0 1)

=1 (1 (&}

i=2 {} lal b} {ab}

i=# {} fal (b} {fab} f{e} lacl {be} {abel
Spower =

{{t+ {al {b} {fab} {c} f(acl (bec} f{abc})
Figure 6-16.

Building a power set recursively

We can benchmark these two techniques while trying sets of sets of sets:

ny $a = { ab => 12, cd => 34, ef => 56 };
ny $pial = powerset iterate($a);

ny $pral = powerset recurse($a);

ny $pia2 = powerset iterate($pial);

ny $pra2 = powerset recurse($pral);

use Benchnark;

ti met hese(10000, ({
"pia2' => 'powerset iterate($pial)',
"pra2' => 'powerset_recurse($pral)',

1)

On our test machine™ we observed the following results, revealing that the recursive technique
is actually dlightly faster:

Benchnar k:
pi a2: 11 secs (10.26 usr 0.01 sys
pra2: 9 secs (8.80 usr 0.00 sys

timng 100000 iterations of pia2, pra2
10. 27 cpu)
8. 80 cpu)

Wewould not try computing pi a3 or pr a3 from pi a2 or pr a2, however. If you have the
CPU power to compute and the memory to hold the 2256 subsets, we won't stop you. And could
we get an account to that machine, please?break

* A 200-MHz Pentium Pro, 64 MB memory, NetBSD release 1.2G.

Page 240

Multivalued Sets

Sometimes the strict bivaluedness of the basic sets (a member either belongs to a set or does
not belong) can be too restraining. In set theory, thisis called the law of the excluded middle:
there isno middle ground, everything is either-or. This may be inadequate in several cases.

Multivalued Logic
Show me the web documents that may mention Perl.

We may want to have severa values, not just "belongs’ and "belongs not," or in logic terms,
"true" and "false." For example we could have aternary logic. That's the casein SQL, which
recognizesthree values of truth: t r ue, fal se,andnul | (unknown or rrissing data). The
logical operations work out as follows:

or (union)
Trueif ether istrue, faseif both are false and null otherwise

and (intersection)
Trueif both aretrue, falseif either isfalse, and null otherwise

not (complement)
Trueif false, faseif true, and null if null

In Perl we may model trivalued logic with true, false and undef . For example:

sub or3 {
return $_[0] if $_[0];
return $_[1] if $_[1];
return O if defined $_[0] && defined $_[1];
return undef;
}
sub and3 {
return $_[1] if $_[0];
return $_[0] if $_[1];
return 0 if defined $ [0] || defined $ [1];
return undef;
}
sub not 3 {
return defined $ [0] ? ! $ [0] : undef;
}

With three-valued sets, we would have members that belong, members that do not belong to

sats, and members whose state is unknown. break

Page 241
Fuzzy Sets
Show me the web documents that contain words resembling Perl.

Instead of having severa discrete truth values, we may go really mellow and allow for a
continuous range of truth: a member belongs to a set with, say, 0.35, in arange from 0 to 1.
Another member belongs much "more" to the set, with 0.90. The real number can be considered
a degree of membershipness, or in some applications, the probability that a member belongs to
aset. Thisisthe fuzzy set concept.

The basic ideas of set computations stay the same: union is maximum, intersection is minimum,
complement is 1 minus the membershipness. What makes the math complicated isthat in real
applications the membershipness is not a single value (say, 0.75) but instead a continuous
function over the whole [0,1] area (for example e-(t-0.5)2),

Fuzzy sets (and its relatives, fuzzy logic and fuzzy numbers) have many rea world
applications. Fuzzy logic becomes advantageous when there are many continuous variables,
like temperature, acidity, humidity, and pressure. For instance, in some cars the brakes operate
in fuzzy logic—they trandate the pedal pressure, the estimated friction between the tires and
the road (functions of temperature, humidity, and the materials), the current vehicle speed, and
the physical laws interconnecting all those conditions, into an effective braking scheme.

Another area where fuzziness comes in handy is where those fuzzy creatures called humans and
their fuzzy data called language are at play. For example, how would you define a"cheap car,”
a"nice apartment,” or a"good time to sell stock"? All these are combinations of very fuzzy
variables.”

Bags

Show me the web documents that mention Perl 42 times.

Sometimes instead of being interested about truth or falsity, we may want to use the set idea for
counting things. Sometimes thisis called multisets, but more often it's caled bags. In CPAN
thereisamodule for bags, caled Set::Bag, by Jarkko Hietanieri. It supports both the

traditional union/intersection and the bag-like variants of those concepts, better known as sums
and differences.break

use Set:: Bag;

Set : : Bag- >new appl es => 3, oranges => 4);
Set : : Bag- >new appl es => 2, bananas => 1);

ny $ny_bag
my $your _bag

* Just as this book was going into press, Michal Wallace released the Al::Fuzzy module for fuzzy
sets.

Page 242

print $ny_bag | $your_bag, "\n"; # Uni on (Max)
print $ny_bag & $your_bag, "\n"; # Intersection (Mn)
print $ny_bag + $your_bag, "\n"; # Sum

$ny_bag- >over _del ete(1l), # Allow to del ete non-existing nenbers.

print $ny_bag - $your_bag, "\n"; # Difference
Thiswill output the following:

(appl es => 3, bananas => 1, oranges => 4)
(appl es => 2)

(appl es => 5, bananas => 1, oranges => 4)
(apples => 1, oranges => 4)

Sets Summary

In this final section, welll discuss the time and size requirements of the various set
implementations we have seen in this chapter. As always, there are numerous tradeoffs to
consider.

» What are our sets? Are they traditional bivalued sets, multivalued sets, fuzzy sets, or bags?

» What are our members? Could they be thought as integers or do they require more complex
datatypes such as strings? If they are integers, are they contiguous (dense) or sparse? And do
we need infinities?

» We must also consider the static/dynamic aspect. Do we first create all our sets and then do
our operations and then we are done; or do we dynamically grow and shrink the sets,
intermixed with the operations?

Y ou should look into bit vector implementations (Perl native bitstrings, Bit::Vector, and
Set::IntRange) either if you need speed or if your members are so smple that they can be
integers.

If, on the other hand, you need more elaborate members, you will need to use hash-based
solutions (Perl native hashes, Set::Scalar). Hashes are slower than bit vectors and aso
consume more memory. If you have contiguous stretches of integers, use Set::IntSpan and
Set::IntRange. If you need infinities, Set::IntSpan can handle them. If you need bags, use
Set::Bag. If you need fuzzy sets, the CPAN is eagerly waiting for your module contributions.

Y ou may be wondering where Set::IntSpan fitsin? Does it use hashes or bit vectors?
Neither—it uses Perl arraysto record the edges of the contiguous stretches. That's avery
natural implementation for runlists. Its performance is halfway between hashes and bit
vectors.break

Page 243

If your sets are dynamic, the bit vector technique is better because it's very fast to twiddle the
bits compared to modifying hashes. If your situation is more static, there is no big difference
between the techniques except at the beginning: for the bit vector technique you will need to

map the membersto the bit positions.break

Page 244

7—
M atrices

... when the chips are down we close the office door and compute with
matrices like fury.
—Irving Kaplansky, in Paul Halmos: Celebrating 50 Years of
Mathematics

The matrix is, at heart, nothing more than away of organizing numbers into arectangular grid.
Matrices are like logarithms, or Fourier transforms: they're not so much data structures as
different representations for data. These representations take some time to learn, but the effort
pays off by ssimplifying many problems that would otherwise be intractable.

Many problems involving the behavior of complex systems are represented with matrices.
Wall Street technicians use matrices to find trends in the stock market; engineers use them in
the antilock braking systems that apply varying degrees of pressure to your car tires. Physicists
use matrices to describe how a soda can thrown into the air, with all itsridges and
irregularities, will strike the ground. The echo canceller that prevents you from hearing your
own voice when you speak into a telephone uses matrices, and matrices are used to show how
the synchronized marching of soldiers walking across a bridge can cause it to collapse (this
actually happened in 1831).

Consider asmple 3 x 2 matrix: break

Page 245

This matrix has three rows and two columns: six el ements atogether. Since thisis Perl, well
treat the rows and columns as zero-indexed, so the element at (0, 0) is 5, and the element at (2,
1) is10.

In this chapter, we'll explore how you can manipulate matrices with Perl. We'll start off with
the bread and butter: how to create and display matrices, how to access and modify individual
elements, and how to add and multiply matrices. We'll see how to combine matrices, tranpose
them, extract sections from them, invert them, and compute their determinants and eigenvalues.
WEe'l aso explore a couple of common uses for matrices: how to solve a system of linear
equations using Gaussian elimination and how to optimize multiplying large numbers of
matrices.

WEe'l use two Perl modules that you can download from the CPAN:
* Steffen Beyer's Math::MatrixReal module, which provides an all-Perl object-oriented

interface to matrices. (Thereis aso a Math::Matrix module, but it has fewer features than
Math::MatrixReal.)

* (Perl Data Language) module, a huge package that uses C (and occasionally even Fortran) to
manipulate multidimensional data sets efficiently. Founded by Karl Glazebrook, PDL isthe
ongoing effort of amultitude of Perl developers, Tuomas J. Lukkareleased PDL 2.0 in early
1999.

WE!I show you examples of both in this chapter. There is one important difference between the
two: PDL uses zero-indexing, so the element in the upper left is (0, 0). Math::MatrixReal uses
one-indexing, so the upper left is (1, 1), and an attempt to access (0, 0) causes an error.

Math::MatrixReal is better for casual applications with small amounts of data or applications
for which speed isn't paramount. PDL is a more comprehensive system, with support for
severa graphical environments and dozens of functions tailored for multidinrensional data sets.
(A matrix isatwo-dimensional data set.)

If your task is smple enough, you might not need either module; remember that you can create
multidimensional arraysin Perl like so:

$mat ri x[0] [O]
$mat ri x[0] [1]
$mat ri x[1] [0]

"upper left corner";
"one step to the right";
8;

In the section "Computing Eigenvalues' is an example that uses two-dimensiona arraysin just
this fashion. Nevertheless, for serious applications you'll want to use Math::MatrixReal or
PDL; they let you avoid writing f or each loops that circulate through every matrix
€lement.break

Page 246

Creating Matrices

The Math::MatrixReal module provides two ways to create matrices. Y ou can create an empty
matrix with rows and columns, but no values, as follows:

use Math:: Matri xReal ;
$matri x = new Mat h:: Mat ri xReal ($rows, $col ums);

To create amatrix with particular values, you can usethenew from stri ng() method,
providing the matrix as a newline-separated list of anonymous arrays:

use Math:: Matri xReal ;
$matrix = Math:: MatrixReal ->new fromstring(" [5 3]\n[2 7 J\n[8 10 J\n"

Y ou can aso provide the matrix as a here-string. Note that there must be spaces after the [and
beforethe].

use Math:: Matri xReal ;
$matrix = Math:: Matri xReal - >new from string(<<' MATRI X');

MATRI X

With PDL, matrices are typically created with the pdl () function:

use PDL;
$matrix = pdl [[5, 3], [2, 7], [8, 10]];

The structures created by pdl () are pronounced "piddies.”

Manipulating Individual Elements
Once you've created your matrix, you can access and modify individual elements as follows.

Math::MatrixReal:

Set $elemto the el enent of $matrix at ($row, $col um)
$elem = el enent $matrix ($row, $col um);

Set the elenent of $matrix at ($row, $columm) to $val ue
assign $matrix ($row, $columm, $val ue);

PDL:break
$elem = at ($matrix, $row, $col um); # access
set($matrix, $row, $col um, $val ue); # nodify

Page 247

Finding the Dimensions of a Matrix

Often, you'll need to know the size of amatrix. For instance, to store something at the bottom
right, you need to know the number of rows and columns. Another incompatibility between
Math::MatrixReal and PDL arises here: they order the dimensions differently. PDL'sformis
more general, since it's meant to work with multidimensional data sets and not just matrices:
the fastest-varying dimension comes first. In amatrix, that's the x dimension—the columns.
With a3 x 2 matrix, the dimensions would be accessed in the following ways.

Math::MatrixReal:

($rows, $col ums) dmS$matrix; # 3 2

PDL:

($col ums, $rows) dins $matrix; # 2 3

Displaying Matrices

Math::MatrixReal and PDL provide identical means for displaying matrices. Y ou smply
print() them.

Math::MatrixRedl:

print $matrix;

PDL:
print $matrix;

Math::MatrixReal displays numbersin scientific notation, so with our 3 x 2 matrix here's what
we see:

[5.000000000000E+00 3. 000000000000E+00]
[2.000000000000E+00 7. 000000000000E+00]
[8.000000000000E+00 1. 000000000000E+01]

PDL's presentation is more pleasing:

[
[5 3]
[2 7]
[8 10]
]

PDL usesthe APIs of several graphicslibraries, such as PGPLOT and pbmplus. Thei mag()
method displays a matrix as an image on your screen: the higher the value, the brighter the
pixel.break

Page 248

Adding or Multiplying Constants

At this point, we can start to explore some matrix applications. Well use two examples, both
representing images. Matrices are useful for much more than images, but images are ideal for
illustrating some of the trickier operations. So let's start with a set of three points, one per
column:

-1 0 1

-1 1 -1
WEe'll use Math::MatrixReal to move, scale, and rotate the triangle represented by these three
points, shown in Figure 7-1.

Figure 7-1.
Three points, stored ina 2 x 3 matrix

For our second example (Figure 7-2), welll use an image of one of the brains that created this

book. Thisimage can be thought of as a 351-row by 412-column matrix in which every element
is avalue between 0 (black) and 255 (white).

Adding a Constant to a Matrix

To add a constant to every element of a matrix, you needn't write af or loop that iterates
through each element. Instead, use the power of Math::MatrixReal and PDL: both let you
operate upon matrices as if they were regular Perl datatypes.

Suppose we want to move our triangle two spaces to the right and two spaces up. That's
tantamount to adding 2 to every element, which we can do with Math::MatrixReal as
follows:break

#!/usr/bin/perl -w

use Math:: Matri xReal ;
$, = "\n";

Figure 7-2.
A brain, soon to be a matrix

Create the triangle.

@riangle = (Math:: MatrixReal ->new fromstring("[-1] 11\n")
Mat h: : Matri xReal ->new fromstring("[O]\n[1]\n")
Mat h: : Matri xReal ->new fromstring("[1] 11\n")

Move it up and to the right.
foreach (@riangle) { $ ->add_scalar($_, 2) }

Display the new points.
print @riangle;

This prints the following, which moves our triangle as shown in Figure 7-3.

[1.000000000000E+00]
[1.000000000000E+00]

[2.000000000000E+00]
[3.000000000000E+00]
[3.000000000000E+00]
[1.000000000000E+00]

Let'suse PDL to read in the brain, add 60 to every pixel (element) in it, and write the resulting
brighter image out to a separate file:break

#! [usr/ bi n/ perl

Use the PDL::1Q : Fast Raw nodul e, a PDL nodul e that can read

Page 250

Figure 7-3.
Thetriangle, trandated two spaces up and to theright

and wite raw data fromfil es.
use PDL::1Q : Fast Raw;

Read the data fromthe file "brain" and store it in the pdl $a.
$pdl = readfraw("brain", { Dins => [351,412], Readonly => 1 });

Add 60 to every el enent.
$pdl += 60;

Wite the pdl back out to the file "brain-brite".
witefraw($pdl, "brain-brite");

Here, we've used the PDL::10::FastRaw module bundled with PDL to read and write raw
image data. To view these images, we just need to prepend the appropriate header. To convert
thisimage into a ppm file, for instance, you just need to prepend thisto your file:

P5
412 351
255

Theresult is shown in Figure 7-4.

Looks abit strange, doesn't it? There's alarge hole in the part of the brain responsible for
feeling pain. That black area should have been white—if you look at the origina image, you'll
see that the area was pretty bright. The problem was that the program displaying the image
assumed that it was an 8-bit grayscale image—in other words, that every pixel is an integer
between 0 and 255. When we added 60 to every pixel, some of those exceeded 255 and
"wrapped around" to a dark shade, somewhere between 0 and 60. What we really wantto do is
to add 60 to every point but ensure that all points over 255 are clipped to exactly 255.break

Page 251

S ST
ey 1
Bl

Figure 7-4.
An even more brilliant brain

With Math::MatrixReal, you have to write aloop that moves through every element. In PDL,
it's much less painful, but not quite aseasy assaying $pdl = 255 if $pdl > 255.
Instead of blindly adding 60 to each element, we need to be more selective. Thetrick isto
create two temporary matrices and set $pd| to their sum.

$pdl = 255 * ($pdl >= 195) + ($pdl + 60) * ($pdl < 195); # clip to 255

The first matrix, 255 * ($pdl >= 195),is 255 wherever the brain was 195 or greater,
and 0 everywhere else. The second matrix, ($pdl + 60) * ($pdl < 195),isequa to
$pdl + 60 wherever the brain was |less than 195, and 0 everywhere else. Therefore, the sum
of these matricesis exactly what we're looking for: amatrix that is equal to 60 plus the original
matrix, but never exceeds 255. Y ou can see the result in Figure 7-5.

Adding a Matrix to a Matrix

When we added 2 to each of our triangle vertices, we didn't need to discriminate between the
x- and y-coordinates since we were moving the same distance in each direction. Let's say we

wanted to move our triangle one space to the right and three spaces up. Then we'd want to add
1
the matrix [3] to each point. This moves our triangle as illustrated in Figure 7-6.break

Figure 7-5.
A properly clipped image
#!/ usr/ bi n/ perl

use Math:: Matri xReal ;

@riangle = (Math:: Matri xReal ->new fromstring("[-1]J\n[-1]\n"),
Mat h: : Matri xReal ->new fromstring("[O]J\n[1]\n"),
Mat h: : Matri xReal ->new fromstring("[1]\n[-1]\n"));

$translation = Math:: Matri xReal ->new fromstring("[1]J\n[3]\n");

Add 2 x 1 translation matrix to all three 2 x 1 matrices in @riangle.

foreach (@riangle) { $_ += $translation }

Like Math::MatrixReal, PDL overloads the + operator, so adding matricesis a snap. Well

create an image that is dark in the center and bright toward the edges so that when we add it to
our brain, it'll whiten the corners:break

#! /[usr/ bi n/ perl

use PDL;
use PDL::1Q : Fast Raw;

Read the data into the $brain piddle
$brain = readfrawm("brain", { Dins => [351,412], ReadOnly => 1 });

Create a second piddle (351 high and 412 wide) full of zeroes
$bul | seye = zeroes(412, 351);

Page 253

Figure 7-6.
The triangle trandlated one space to the right and three spaces up

Repl ace each el enment of $bullseye with its distance fromthe center.
rval s(i npl ace($bul | seye));

dip $bull seye to 255.
$bul | seye = 255 * ($bul |l seye >= 255) + $hul |l seye * ($bul |l seye < 255);

Create a new piddle, $ghost, that is a weighted sumof $brain and $bull se

$ghost = S$brain/2 + $bul | seye/ 1. 5;

Coerce each el enent of $ghost to a single byte.
$ghost = byte $ghost;

Wite it out to a file nanmed "vignette".
writefraw $ghost, "vignette");

Four new PDL functions are demonstrated here. $bul | seye = zeroes(412, 351)
creates a piddle with 412 columns and 351 rows, where every element is0. (ones() creates
apiddlie with every element 1.) $bul | seye isthus completely black, but not for long; the
next statement, r val s(i npl ace($bul | seye)), replaces every element of $bul | seye
with a brightness proportional to its distance from the center of the image. The very center of
the image stays at 0, the elements directly above (and below, left, and right) become 1, and the
elements one place farther away become 2, and so on, out to the corners of the image. The left
corner will be +2062 + 175% = 270. 298.

Unfortunately, that's a shade more than 255, so we clip $bul | seye using the technique we've
already seen. Theresult is shown in Figure 7-7.break

Page 254

Figure 7-7.
The clipped bullseye

Now we're ready to add the images. Adding always makes them brighter, so to prevent the
resulting image from being too bright, we add attenuated versions of each image: $br ai n/ 2
will have no values higher than 127, and $bul | seye/ 1. 5 will have no values higher than
170.

When added to our brain image, the bullseye creates a pretty vignette around the edges, shown
in Figure 7-8.
Transposing a Matrix

One common matrix operation is transposition: flipping the matrix so that the upper right
corner becomes the lower left, and vice versa. Transposition turnsap x g matrix intoaq x p
meatrix.

Transposition is best explained visually, so let's transpose our brain (our transposed brain is
shown in Figure 7-9):break

#!/ usr/ bi n/ perl

use PDL::10Q : Fast Raw,

$pdl = readfrawm"brain", { Dinms => [351,412], ReadOnly => 1 });
$pdl = $pdl - >t ranspose;
witefraw($pdl, "brain-transpose");

Figure 7-8.
A vignetted brain

Math::MatrixReal also hasat r anspose method:

#!/usr/bin/perl -w

use Math:: Matri xReal ;

trix Mat h: : Matri xReal - >new_from stri ng(<<' MATRI X');
23
56

—roen

ma
1
4

=

TRl X

$matrix2 = Math:: Matri xReal - >new 3, 2) ;

$mat ri x2- >t ranspose($matri x) ;

print $natrix2;
Transposing our 3 x 2 matrix resultsin a2 x 3 matrix: break

[1.000000000000E+00 4. 000000000000E+00]
[2.000000000000E+00 5. 000000000000E+00]
[3.000000000000E+00 6. 000000000000E+00]

Page 256

=@

Figure 7-9.
A transposed brain

Multiplying Matrices

When you multiply one matrix by another, the result is athird matrix. Each row of the |eft

matrix is matched up with a column from the right matrix, and the individual terms are
multiplied together and their products summed in what's often termed a scalar multiplication
(unrelated to Perl scalars!). Here's a demonstration of multiplying a2 x 3 matrix by a3 x 2
matrix. Theresultisa2 x 2 matrix. (Multiplying a7 x 5 matrix by a5 x 11 matrix resultsina7
x 11 matrix. The common dimension, 5, disappeers.)

8

23 {; ol [T TH204E 1 18210+ 3012

One thing that surprises many newcomersto matricesis that matrix multiplication isn't
commutative; that is, AB will usually not equal BA.

Multiplying ap x g matrix by agxr matrix requires pgr scalar multiplications. At the end of the
chapter, well see an agorithm for multiplying many matricescontinue

Page 257

together, but first let's see how to multiply just two matrices. In computer graphics,
transformation matrices are used to rotate points. To scale a point (or image), we multiply a
scaling matrix by the point (or image):

se 0] = |
O s | Lw] ¥
Math::MatrixReal overloads*, so our program should look familiar:

#! /usr/bin/perl -w
use Math:: Matri xReal ;

@riangle = (Math:: MatrixReal ->new fromstring("[-1]J\n[-1]\n"),
Mat h: : Matri xReal ->new fromstring("[O]J\n[1]\n"),
Mat h: : Matri xReal ->new fromstring("[1]J\n[-1]\n"));

$scale = Math:: MatrixReal ->new fromstring("[2 0]J\n[0 3]J\n");
Scale the triangle, doubling the width and tripling the height

foreach (@riangle) { $_ = $scale * $_}

Thiswarps our triangle as shown in Figure 7-10.break

Figure 7-10.
A scaled triangle

Page 258

We can rotate our triangle through an arbitrary angle q with the transformation matrix:

1

sin(f/) cos(fé) || ¥

cos(f) —sin(#) 1 =

v

where q is measured counterclockwise, with O as the positive x-axis. Here's a program that
rotates our triangle by 45 degrees. This rotates the triangle so that it now points northwest, as
shown in Figure 7-11.

#!/usr/bin/perl -w

use Math:: Matri xReal ;
$theta = atan2(1,1); # 45 degrees in radians

@riangle = (Math:: Matri xReal ->new fromstring("[-1] 1]1\n")
Mat h: : Mat ri xReal ->new fromstring("[O]J\n[1]\n")
Mat h: : Mat ri xReal ->new fromstring("[1] 1]1\n")

Create the rotation matrix.

$rotate = Math:: MatrixReal ->new fromstring("[" .
cos($theta) . " " . -sin($theta) . " J\n" . "[
sin($theta) . " " . cos($theta) . "]\n");

Rotate the triangle by 45 degrees.

foreach (@riangle) {
$ = $rotate * $_;

print "$ \n";

}

PDL usesx instead of * to multiply matrices:
use PDL;
$a = pdl [[1,3,5], [7,9, 11]]

$b = pdl [[3, 9], [5,611], [7,13]]

$c

$a x $b;

print $c;
Theresults are;

[
[53 107]

[143 305]
]

Aswith Math::MatrixRedl, you need to be sure that the left matrix has as many columns as the
right matrix has rows.break

Page 259

i

Figure 7-11.
A rotated triangle

Extracting a Submatrix

The owner of our featured brain is aclumsy fellow. Perhaps all the years of Perl hacking have
impaired his coordination, or perhaps his lack of motor control was what made him choose the
career inthe first place. Let's find out by examining his cerebellum, the area of the brain
responsible for motor control. In our image (Figure 7-2), the upper-left corner of the
cerebellumisat (231, 204) and the lower-right corner is at (346, 281). Rectangular portions of
matrices are called submatrices, and we can extract one with PDL asfollows:

#!/ usr/ bi n/ perl

use PDL;
use PDL::1Q : Fast Raw;

$brain = readfrawm"brain", {Dins => [351, 412], ReadOnly => 1,});

Excise the rectangul ar section defined by the two points (231, 204)
and (346, 281)

#

$cerebel | um = sec($brain, 231, 346, 204, 281);

writefraw $cerebell um "cerebel | unt');

Here, we've used PDL'ssec() function to extract arectangle from our matrix; the result is
shownin Figure 7-12. sec() takesthe name of the piddie as the first argument, followed by
the x-coordinates of the upper-left and lower-right corner,continue

Page 260

followed by the y-coordinates of the upper-left and lower-right corner. If we had a
three-dimensional data set, the z-coordinates would follow the y-coordinates.

Figure 7-12.
The cerebellum submatrix

There is no way to extract a submatrix from a Math::MatrixReal matrix without looping through
all of the elements.

Combining Matrices

Mad scientists are fond of artificially augmenting their brains, and Perl hackers (and authors)
are no exception. The operation is simple: slice off the top of the brain (part of the frontal 1obe,
including areas responsible for thought and skilled movements, and most of the sensations),
replicate it, and mash it back into the skull.

Well cut out this rectangle of our brain with sec() and pasteit back in withthei ns() PDL
function:

#!/ usr/ bi n/ perl

use PDL;

use PDL:: | QO : Fast Raw;
$brain = readfrawm"brain", {Dinms => [351,412], ReadOnly => 1,});
$suppl enent = sec($brain, 85, 376, 40, 142);

Insert $supplenent into $brain
i ns(inplace($brain), $supplenent, 79, 0);

witefraw($brain, "mad-scientist");

Here we extract $suppl enent , arectangle of the matrix ranging from (85, 40) to (376, 142),
and overlay it beginning at (79, 0) with i ns() . Theresult is shown in Figure 7-13.

There's no way to combine two Math::MatrixReal matrices without explicitly creating athird
matrix and looping through al of the elementsin the first two matrices.break

Page 261

Figure 7-13.
Two heads are better than one

Inverting a Matrix

Theinverse of asguare matrix M is another square matrix M-1 such that MM-1= [, the identity
matrix. (Theidentity matrix isall zeros except for the diagona running from the upper |eft to
the lower right, which isal ones. When you multiply | by amatrix, the matrix remains
unchanged.)

Finding the inverse of amatrix isatricky and often computationally intensive process. Luckily,
Math::MatrixReal can compute inversesfor us:

#!/ usr/ bi n/ perl
use Mat h:: Matri xReal ;

= Mat h:: Matri xReal - >new _from string(<<' MATRI X);

Deconpose the matrix into an LR form
$i nverse = $matri x- >deconpose_LR->i nvert LR

print $inverse;

Notice that we couldn't just say $i nver se = $mat ri x- >i nver se; Math::MatrixRed
doesn't let us do that. Finding the inverse of a generic matrix is hard; it's muchcontinue

Page 262

easer to find the inverse of another matrix, an "LR" matrix, with the same inverse. (See any
linear algebratext for details.) So weinvoke $mat ri x- >deconpose_LR() to generate an
LR matrix that has the sameinverseas$mat ri x. Theni nvert LR() isapplied to that
matrix, yielding the inverse.

If $mat ri x hasnoinverse, $i nver se will be undefined.

PDL has no built-in matrix inverse operation, because it's meant for use with large data sets,
for which computing the matrix inverse would take an absurdly long time

There are severa different methods for inverting matrices; the LR method isQ (N 3), but aQ
(N 10g,7) » Q (N 2.807) agorithm exists. Why isn't it used? Because it takes alot of space;
severa intermediate matrices and extra multiplications are required. The method (called
Strassen's algorithm) is superior only when N is quite large.

Computing the Deter minant

Severa important properties of amatrix can be summed up in a single number. That number is
called the determinant, and computing it isa common task in linear algebra. Ina2 x 2 matrix,
the determinant is given by asmple formula:

o

[a f
et | : _— .

‘ =l — b

For larger matrices, the formula for computing the determinant grows in complexity: for a3 x 3
matrix, it has six terms, and in genera an N x N matrix has N! terms. Each term is N elements
multiplied together, so the total number of multiplicationsisN! * (N - 1).

The most important property of the determinant isthat if it's zero, the matrix has no inverse, and
if the matrix has no inverse, the determinant will be zero. In addition, the absolute value of the

determinant gives the volume of a parallelepiped defined by the matrix, each row congtituting
the coordinates of one of the vertices. A 2 x 2 matrix defines a square (and the determinant
givesitsarea), a3 x 3 matrix defines a cube (and the determinant givesits volume), and so on.

Thedet LR() method of Math::MatrixReal computes determinants for you: break

#! [usr/ bi n/ perl

use Math:: Matri xReal ;

trix = Math::MatrixReal ->new_fromstring(<<' MATRI X);

—roen

ma
1
3

AN T
——

Page 263
MATRI X

$det er mi nant = $nmatri x- >deconpose LR->det LR;

print $deterninant;
The determinant is 1*4 — 2* 3:
-2

Aswith matrix inversions, we must first convert the matrix to LR-form before computing the
determinant.

There'sno core PDL det er m nant () function for the same reason there'snoi nver se()
function: it's generaly not something you can compute for large data sets because of the amount
of computation required.

Gaussian Elimination

Many problemsin science and engineering involve linear equations: that is, equations of the
form ax = b. Solving this equation for x is just a matter of simple algebra; the fun arises when
you have a systerr of interdependent linear equations, usually arising from a set of constraints
that must be satisfied smultaneoudly. Linear equation systems are found in dozens of
disciplines, especially in economics and structural engineering.

Suppose you're throwing a poker party, and need to decide how many peopleto invite (p), how
many poker chipsto provide (c), and how many mini-pretzelsto serve (z). Let'simpose three
constraints that will determine these the values of p, ¢, and z.

At the beginning of the game, every person should have 50 poker chips, and the bank should
have 200 in reserve:

S0+ 200 = ¢

We want to make sure that we have many more pretzels (say, 1,000) than poker chips, or else

people might confuse the two and start betting with pretzels:
- 1000 = ¢

And we want to be sure that even after every person has eaten 100 pretzels, there will still be
400 more pretzels than chips:

100G +400+ e =z

Rewriting these so that all the variables are on the left and al the constants are on the right, we
have the following system: break

S0p— 1o+ Dz =—200

Page 264

= 1c+ 1z = 1040
1Hp+ 1c— 1z = —400

Thisisn't too hard; we could solve these three equations directly using algebra, the back of an
envelope, and afew minutes. But that won't scale well: a system with seven variables (and
therefore seven equations, if we're to have any hope of solving the system) would take all
afternoon. More complicated phenomena might involve the interaction of dozens or even
hundreds of variables, demanding a more efficient technique.

With our constraints rewritten as above, we can think of the left sside asa 3 x 3 matrix and the
right sdeasal x 3 matrix:

no-1 40 =200
o -1 1 = | 1000
mi 1 -1 —40010)

We can then use atechnique called Gaussian elimination to solve this set of equationsfor p, c,
and z. Gaussian €limination involves a succession of transformations that turn these twa
matrices into this form:;

1 00 r
o1 0|=|cC
o o1 z

where P, C, and Z are the values of p, ¢, and z that we're trying to find.

Asusual, Math::MatrixReal does the dirty work for us. There are several different styles of
Gaussian elimination; Math::MatrixReal uses LR decomposition, a reasonably effective
method.

Here's how we can solve our system of linear equations:break

#! [usr/ bi n/ perl

use Math:: Matri xReal ;

sub linear_sol ve {

ny @gquations = @;
ny ($i, $j, $solution, @olution, $dinension, $base matrix);

Create $matrix, representing the | efthand side of our equations.
#
ny $matrix = new Math:: Matri xReal (scal ar @quati ons,

scal ar @quations);

Create $vector, representing the y val ues.
ny $vector = new Math::MatrixReal (scalar @quations, 1);

Fill $matrix and $vector.

Page 265

#
for ($i =0; $ < @quations; $i++) {
for ($) = 0; $ < @quations; $j++) {
assign $matrix ($i+1, $j+1, Sequations[$i][$ji]);
}

assign $vector ($i+1, 1, $equations[$i][-1]);

Transform $matrix into an LR matri x.
#
ny $LR = deconpose LR $matri x;

Solve the LR matrix for $vector.
#
($di mensi on, $sol ution, $bhase matrix) = $LR >sol ve_LR($vector);

for ($i =0; $ < @quations; $i++) {
$solution[$i] = elenent $solution($i+1, 1);

}
return @ol ution;
}
@olution = linear_solve([50, -1, 0, -200],

=

[0, -1, 1, 1000],
[100, 1, -1, -400]);

print "@olution\n";
We could also havefilled $mat ri x and $vect or asfollows:
$matrix = Math:: Matri xReal - >new _from string(<<' MATRI X');

[50 -1 0]
[0-1 1]

[100 1 -1]
MATRI X

$vector = Math:: MatrixReal ->new _fromstring(<<' MATRI X')
[-200]

[1000]
[-400]
MATRI X

Hereis the solution:

$ |inearsol ve
6 500 1500

This tells us that we need 6 people, 500 poker chips, and 1,500 mini-pretzels. This agorithm
for Gaussian elimination is O (N 3).break

Page 266

Eigenvalues and Eigenvectors

"The elgenvalues are the most important feature of practically any dynamical system,” says
Gilbert Strang in Linear Algebra and Its Applications, and who are we to argue? Consider
some properties of these magic numbers:

* Every eilgenvalue has a corresponding eigenvector; each eigenvector is an independent
"mode" of the system of equations defined by the matrix.

* Theratio of the highest eigenvalue to the lowest eigenvalue is called the condition number
and tells you how singular (really, "well-behaved") the matrix is. Think of it as a determinant
with more finesse.

* The product of the eigenvalues is the determinant of the matrix.
* In any triangular matrix, the eigenvalues are the diagonal elements.

» Whether or not the matrix is triangular, the sum of its eéigenvaluesis equa to the sum of the
diagona elements.

* One of the eigenvalues of any singular matrix is 0.

Eigenvalues can be real or complex numbers, and an n x n matrix has n of them, denoted | ; . . .
| . Only square matrices have eigenvalues.

For every eigenvalue of the matrix M, there isa corresponding eigenvector x that satisfies (M
-1)x=0.

Computing Eigenvalues

Finding the eigenvalues of a matrix is cumbersome. PDL can do eigenvalues, but the
Math::Matrix modules can't. In short, you have to solve the characteristic polynomial,
depicted asfollowsfor a3 x 3 matrix:

€on — & £ f
ﬁ'ln 1] —)\ 2 _ []
b a7l gz — A

Calculating an eigenvalue istrivial for al x 1 matrix (the eigenvalue is the sole element), easy
for a2 x 2 matrix, tractable for a3 x 3 matrix, and after that you'll probably want a numerical
solution. PDL to the rescue.

Using PDL to Calculate Eigenvalues and Eigenvectors

In PDL, theei gen_c function calculates both the eigenvalues and eigenvectors for you.
Here's an example that also demonstrates the perldl shell bundled with PDL: break

$ perldl
perldl > $x = new PDL([3, 4], [4, -3]);

Page 267

perldl > p PDL::Math::eigen_c($x);
[5 -95]
[

[0.89442719 0.4472136]

[-0.4472136 0.89442719]
]

This calculates the two eigenvalues of:

]

which are 5 and -5. The matrix followingthe[5 - 5] are the two eigenvectors corresponding
to those eigenvalues. However, when the eigenvalues can be complex, PDL normalizes them
whether you like it or not. The eigenvalues of:

1 -1
Iy
are 1 ++z24 and1-=+2i, but, asyou can see, PDL norms the complex valuesto 3 and - 1:
perldl > p PDL::Mth::eigen_c(new PDL([1, -1], [2, 1]))

[3 -1]

[
[0.70710678 0.70710678]

[-0.70710678 0.70710678]
]

Furthermore, the iterative numerical methods used by PDL become apparent when values that
should be rounded off aren't. The eigenvalues of:

1 =1 0
-1 2 -1
0 -1 1

are0, 3, and 1.
perldl > $n8 = new PDL([1, -1, 0],[-1, 2, -1],[0, -1, 1]);

perldl > p PDL:: Mt h: :ei gen_c($nB)
[-6.9993366e-17 3 1]

[

[0. 57735027 0. 57735027 0. 57735027]
[-0.40824829 0. 81649658 - 0. 40824829]
[-0.70710678 1.0343346e-16 0. 70710678]

]
Instead of O, we get - 6. 9993366e- 17.break

Page 268

Calculating Easy Eigenvalues Directly

PDL isthe most robust technique for finding eigenvalues. But if you need complex eigenvalues,

you can caculate them directly using the root-finding methods in the section " Solving
Equations." Here, we provide alittle program that usesthe cubi c() subroutine from that
section to find the eigenvalues of any 1 x 1, 2 x 2, or 3 x 3 matrix:break

#! /usr/bin/perl -w

use Mat h:: Conpl ex;

@i genval ues = eigenvalue([[3, 4], [4, -3]]); # Two real eigenval ues
print "The eigenvalues of [[3, 4], [4, -3] are: @i genvalues\n";

@i genval ues = eigenvalue([[1, -1], [2, 1]]); # Two conpl ex eigenval ues

print "The eigenvalues of [[1, -1], [2, 1] are: @i genval ues\n";

@i genval ues = eigenvalue([[1, -1, 0],[-1, 2, -1],[0, -1, 1]11);
print "[[1, -1, O0],[-1, 2, -1],[0, -1, 1]]: @i genvalues\n";

sub ei genval ue {
ny $m= shift;
ny ($cl, $c2, $discrimnant);

1x1 matrix: the eigenvalue is the el enment.
return $m>[0][0] if @m== 1;

if (@m==2) {
$discrimnant = ($m>[0][0] * $m>[0][0]) +
($m>[1][1] * $m>[1][1]) -
(2 * $m>[0][1] * $m>[1][1]) +
(4 * $m>[0][1] * $m>[1][0]);

$ci new Mat h: : Conpl ex;
$cl = sqgrt($discrimnant);
$c2 = -%cl;
$cl += $m>[0][0] + Sm>[1][1]; $c1 /
$c2 += $m>[0][0] + Sm>[1][1]; $c2 /
return ($cl, $c2);

} elsif (@m== 3) {
use constant two_pi => 6.28318530717959; # Needed by cubic().

2;
2;

ny ($a, $b, $c, $d);
$a = -1;
$b = $m>[0][0] + $m>[1][1] + $m>[2][2];

$c = Im>[0][1] * $m>[1][0] +
$m>[0][2] * $m>[2][0] +
Sm>[1][2] * $m>[2][1] -
Sm>[1][1] * $m>[2][2] -
$m>[0][0] * $m>[1][1] -
$m>[0][0] * $m>[2][2];
$d = $m>[0][0] * $m>[1][1] * $m>[2][2] -
$m>[0][0] * $m>[1][2] * $m>[2][1] +
$m>[0][1] * $m>[1][2] * $m>[2][0] -

Page 269

$m>[0][1] * $m>[1][0] * $m>[2][2] +
$m>[0][2] * $m>[1][0] * $m>[2][1] -
$m>[1][1] * $m>[0][2] * $m>[2][0];
return cubic($a, $b, $c, $d); # From "Cubi ¢ Equations" in Chapter

}
return; # Can't handl e bigger matrices. Try PDL!

}

This program uses the Math::Complex module to handle complex eigenvalues. The results have
no significant roundoff error, either:

The ei genvalues of [[3, 4], [4, -3] are: 5 -5
The eigenval ues of [[1, -1], [2, 1] are: 1+1.4142135623731i 1-1.41421356237:

[[1, -1, 0],[-1, 2, -1],[0, -1, 1]]: 03 1

The Matrix Chain Product

Consider this matrix product:
o s]
s 1 5. B
BB e o oaaf 23 S A R
7 8 l‘* s GJ 4 5 6 R T S 0 11 18
9 10 SR Bl T R .
11 12 1,?.: 14 1a
| 13 14 16 17 18

Matrix multiplication is associative, so it doesn't matter if we compute the product as this:

1 2 : 4
5 : I 2 3 T S S A
s 1 ¢ 1 ; R 4 | v & 4
2 b L5 g ||| N IR | B
91 R O O LR LR L) Sl
11 12 [
& 16 17 18
or this:
; ‘I 123
506 TR e 1 2 % 4 5 & 4 ; E;
T 8 [é : h] 4 5 6 Too& 8 1 11 12 1'r~ b
9 10 aad |7 89 kST O LR S L s i
1% ke 16 17 18

13 14

Well arrive at the same 7 x 3 matrix either way. But the amount of work varies tremendoudly!
The first method requires 357 scalar multiplications; the second requires only 141. But is there
an even better way to arrange our parentheses? Y es.break

Page 270

Thisisthe matrix chain product problem, and its solution is a classic example of dynamic
programming—the problem is broken up into small tasks which are solved first and
incrementally combined until the entire solution is reached.

For matrices this small in quantity and size, the time difference will be negligible, but if you
have large matrices, or even many small ones, it's worth spending some time determining the
optimal sprinkling of parentheses.

Y ou don't want to consider all possible parenthesizations. For N matrices, there are

4
approximately ay/ry Ways to parenthesize them. That's called the Catalan number, and since
it's Q (4 N) we'll do our best to stay away fromit.

Let's call the five matrices A, B, C, D, and E. We can divide and conguer the problem by first
computing the cost of multiplying al possible pairs of matrices. AB, BC, CD, and DE. Then we
can use that information to determine the best parenthesizations for the three triples ABC, BCD,
and CDE, and then use those for quadruples, and finally arrive at the optimal parenthesi zation.

The bulk of the Perl code we use to implement the matrix chain product is spent deciding the
best order to multiply the matrices. Aswe consider possible parenthesizations, we'll use three
auxiliary matrices to store the intermediate data we need: the number of multiplications
required so far by the path we're pursuing.break

#! /usr/bin/perl -w

use PDL;

Create an array of five matrices.
@matrices = (pdl ([[1,2],[3,4],[5,6],[7,8],[9,10],[11,12],[13,14]]),

pdl ([[1,2,3],[4,5,6]]),
pdl ([[1,2,3],[4,56].[7,.89]]),
pdl ([[1,2,3,4,5,6],[7,8,9,10,11,12],[13, 14, 15, 16, 17, 18]]),
pdl ([[1,2,3],[4,5,6],[7,8,9],[10,11,12],[13, 14, 15],
[16,17,18]]));
Initialize the three auxiliary matrices that we'll use to

store the costs (nunber of scalar nultiplications),
the parenthesization so far, and the dinensions of what the
intermedi ate product would be if we were to conpute it.

for ($i =0; $i < @mtrices; $i++) {
$costs[i][$i] 0;
$parens[$i][$i] "$matrices[' . $i . ']";

$di ms[$i] [$i] [dins $matrices[$i]];
}
Determine the costs of the pairs ($i == 1), then the triples
($ == 2), the quadruples, and finally all five nmatrices.

Page 271
for ($i =1, $i < @mtrices; $i++) {

Loop through all of the entries on each diagonal
#
for ($j = $i; $ < @mtrices; $j++) { # colum

Determ ne the best parenthesization for the entry
at row $j-%i and colum $j.
#
for ($k = $j - $i; $k < $j; $k++) {
($col 1, $rowl) @3dinms[$) -1] [$k] };
($col 2, undef) @ 3di ms[$k+1][$j 1};

Conpute the cost of this parenthesization

#

$try = $costs[Pj-$i][Bk] + Scosts[Sk+1][Fj] +
$rowl * $coll * $col 2;

1f it's the | owest we've seen (or the first we've seen),

store the cost, the dinmensions, and the parenthesization

#

if (!'defined $costs[$j-S$i][$j] or $try < $costs[$j-3%i]1[$j]) {

$costs[F-Si][$] = Stry;

$dinms[$j-Si][$j] = [$col 2, $rowl];

$parens[$j-Si][S] = "(" . Sorders[$j-Si][Sk] . "x"
$parens[Sk+1]1[$j] . ")";

At this point, all of the informati on we need has been propagated
to the upper right corner of our naster nmatrix: the parenthesizations
and the nunber of scalar multiplications.

print "Evaluating:\n", $parens[O][$#natrices], "\n";
print "\tfor a total of $costs[O][$#matrices] scalar nultiplications.\n";

Evaluate the string and, finally, multiply our matrices!
print eval $parens[O0][$#matrices];

When we run this program, we'll see that indeed we can do better than 141 scalar
multiplications:break

Eval uati ng:

($matrices[0] x(($matrices[1]x$matrices[2])x($matrices[3]x$matrices[4])))
for a total of 132 scalar multiplications.

[

[341010 377460 413910]
[743688 823176 902664]
[1146366 1268892 1391418]
[1549044 1714608 1880172]
[1951722 2160324 2368926]
[2354400 2606040 2857680]

Page 272

[2757078 3051756 3346434]
]

Delving Deeper

For amore detailed discussion of matrices, see any text on linear algebra. We recommend
Gilbert Strang, Linear Algebra and Its Applications. Strassen's algorithm for matrix inversion
isdiscussed in Numerical Recipesin C.

Documentation for PDL and Math::MatrixReal is bundled with the modules themsealves. There
will probably be a PDL book available in late 1999.break

Page 273

88—
Graphs

| wonder what happensif | connect thisto this?

—the last words of too many people

Graphs are fundamental to computer science: they define relationships between items of
data—in particular, membership (certain things belong together) and causalities (certain things
depend on other things). Graphs were thought up long before computers were anything more
than sand on the beach,” and when mathematics started to sprout branches that later became
computer science, graphs were there. Great age does not imply stagnation: graph theory is still
avery vigorous area and many unsolved problems await their conquerors.

Hereis asample of what you can do with graphs:
» Want to schedule many interdependent tasks? See the section "Topological Sort."

» Want to plan aroute that takes you through al the interesting places without using the same
road twice? (the section "The Seven Bridges of Konigsberg")

» Want to find the cheapest flight from Helsinki to Auckland? Or the fastest? (the section
"Single-source shortest paths") Or the one with fewest transfers? (the section "Breadth-First
Search")

» Want to plan your network so that there are as few points of failure as possible? (the section
"Graph Classes: Connectivity")break

* The year was 1736 and the place was K dnigsberg, East Prussia, in case you were wondering, but
more about that later.

Page 274

» Want to find the shortest distances between al your favorite haunts? (the section "All-pairs
shortest paths")

» Want to maximize the throughput of your network? (the section "Flow Networks")

Perhaps because of their centuries of practice, graph theorists have defined alot of
terminology. (For example, graphs are also called networks.) Another reason for the dizzying
amount of jargon might be the unavoidable gap between what we see and what we can say:
graphs areintrinsically visual and many common tasks seem trivial—but when we try to codify
avisual solution with words, we find that we lack the means to describe what happens when
we explore and transform our graphs.

But don't get confused about what agraphis: it'sjust a set of dots with lines connecting them.
Certainly, agraph can be displayed as an aesthetically pleasing figure (see Figure 8-1), but do
not confuse graphs with their graphical representation. If you're reading this chapter in the
hopes of learning about graphics, stop now and skip to Chapter 10, Geometric Algorithms,
instead.

'i
!

\
SRR
X 1 s

.I'

Figure 8-1.
A beastly graph

The reason you won't (necessarily) find much in the way of graphicsin a ch