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1. Introduction
An identity is an equality relationship between two mathematical expressions. For
example, in basic algebra students are expected to master various algbriac factoring
identities such as

a2 − b2 = (a − b)(a + b) or
a3 + b3 = (a + b)(a2 − ab + b2).

Identities such as these are used to simplifly algebriac expressions and to solve alge-

briac equations. For example, using the third identity above, the expression
a3 + b3

a + b
simpliflies to a2 − ab + b2. The first identiy verifies that the equation (a2 − b2) = 0 is
true precisely when a = ±b. The formulas or trigonometric identities introduced in
this lesson constitute an integral part of the study and applications of trigonometry.
Such identities can be used to simplifly complicated trigonometric expressions. This
lesson contains several examples and exercises to demonstrate this type of procedure.
Trigonometric identities can also used solve trigonometric equations. Equations of
this type are introduced in this lesson and examined in more detail in Lesson 7.
For student’s convenience, the identities presented in this lesson are sumarized in
Appendix A



2. The Elementary Identities
Let (x, y) be the point on the unit circle centered at (0, 0) that determines the angle
t rad . Recall that the definitions of the trigonometric functions for this angle are

sin t = y tan t = y
x

sec t = 1
y

cos t = x cot t = x
y

csc t = 1
x

.

These definitions readily establish the first of the elementary or fundamental
identities given in the table below. For obvious reasons these are often referred to
as the reciprocal and quotient identities. These and other identities presented in
this section were introduced in Lesson 2 Sections 2 and 3.

sin t = 1
csc t

cos t = 1
sec t

tan t = 1
cot t

= sin t
cos t

csc t = 1
sin t

sec t = 1
cos t

cot t = 1
tan t

= cos t
sin t

.

Table 6.1: Reciprocal and Quotient Identities.
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Section 2: The Elementary Identities 5

Example 1 Use the reciprocal and quotient formulas to verify

sec t cot t = csc t.

Solution: Since sec t = 1
cos t

and cot t = cos t
sin t

we have

sec t cot t =
1

cos t

cos t

sin t
=

1
sin t

= csc t.

Example 2 Use the reciprocal and quotient formulas to verify

sin t cot t = cos t.

Solution: We have

sin t cot t = sin t
cos t

sin t
= cos t.
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Several fundamental identities follow from the sym-
metry of the unit circle centered at (0, 0). As indicated
in the figure, if (x, y) is the point on this circle that
determines the angle t rad, then (x, −y) is the point
that determines the angle (−t) rad . This suggests that
sin(−t) = −y = − sin t and cos(−t) = x = cos t. Such
functions are called odd and even respectively1. Sim-
ilar reasoning verifies that the tangent, cotangent, and
secant functions are odd while the cosecant function is
even. For example, tan(−t) =

−y

x
= −y

x
= tan t. Identi-

ties of this type, often called the symmetry identities,
are listed in the following table.

1A function f is odd if f(−x) = −f(x) and even if f(−x) = f(x) for all x in its domain. (See
section 2in section 5for more information about these two properties of functions.
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sin (−t) = − sin t cos (−t) = cos t tan (−t) = − tan t

csc (−t) = − csc t sec (−t) = sec t cot (−t) = − cot t

Table 6.2: The Symmetry Identities.

The next example illustrates an alternate method of proving that the tangent
function is odd.

Example 3 Using the symmetry identities for the sine and cosine functions verify
the symmetry identity tan(−t) = − tan t.
Solution: Armed with theTable 6.1 we have

tan(−t) =
sin(−t)
cos(−t)

=
− sin t

cos t
= − tan t.

This strategy can be used to establish other symmetry identities as illustrated in
the following example and in Exercise 1.)
Example 4 The symmetry identity for the tangent function provides an easy method
for verifying the symmetry identity for the cotnagent function. Indeed,

cot(−t) =
1

tan(−t)
=

1
− tan t

= − 1
tan t

= − cot t.
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The last of the elementary identities covered in this lesson are the Pythagorean
identities2 given in Table 6.3. Again let (x, y) be the point on the unit circle
with center (0, 0) that determines the angle t rad. Replacing x and y by cos t and
sin t respectively in the equation x2 + y2 = 1 of the unit circle yields the identity3

sin2 t + cos2 t = 1. This is the first of the Pythagorean identities. Dividing this last
equality through by cos2 t gives

sin2 t

cos2 t
+

cos2 t

cos2 t
=

1
cos2 t

which suggest the second Pythagorean identity tan2 t + 1 = sec2 t. The proof of the
last identity is left to the reader. (See Exercise 2.)

sin2 t + cos2 t = 1 tan2 t + 1 = sec2 t 1 + cot2 t = csc2 t

Table 6.3: Pythagorean Identities.

2These identities are so named because angles formed using the unit circle also describe a right tri-
angle with hypotenuse 1 and sides of length x and y. These identities are an immediate consequence
of the Pythagorean Theorem.

3The expression sin2 t is used to represent (sin t)2 and should not be confused with the quantity
sin t2.
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The successful use of trigonometry often requires the simplification of complicated
trigonometric expressions. As illustrated in the next example, this is frequently done
by applying trigonometric identities and algebraic techniques.

Example 5 Verify the following identity and indicate where the equality is valid:
cos2 t

1 − sin t
= 1 + sin t.

Solution: By first using the Pythagorean identity sin2 t + cos2 t = 1 and then the
factorization 1 − sin2 t = (1 + sin t)(1 − sin t), the following sequence of equalities can
be established:

cos2 t

1 − sin t
=

1 − sin2 t

1 − sin t
=

(1 + sin t)(1 − sin t)
1 − sin t

= 1 + sin t, 1 − sin t 6= 0.

As indicated, the formula is valid as long as 1 − sin t 6= 0 or sin t 6= 1. Since sin t = 1
only when t = π

2 + 2kπ where k denotes any integer, the identity is valid on the set

< − {t : t =
π

2
+ 2kπ where k is an integer}.
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The process of using trigonometric identities to convert a complex expression to
a simpler one is an intuitive mathematical strategy for most people. Sometimes,
however, problems are solved by initially replacing a simple expression with a more
complicated one. For example, in some applications the expression 1+sin t is replaced

by the more complex quantity
cos2 t

1 − sin t
. This essentially involves redoing the steps

in Example 5 in reverse order as indicated in the following calculations:

1 + sin t =
(1 + sin t)(1 − sin t)

1 − sin t
=

1 − sin2 t

1 − sin t
=

cos2 t

1 − sin t
.

In particular, the first step would be to multiply 1 + sin t by the fraction
1 − sin t

1 − sin t

(which has value one as long as 1−sin t 6= 0) to obtain the quantity
(1 + sin t)(1 − sin t)

1 − sin t
.

The reader is advised to review the calculatons above while keeping in mind the in-
sights required to perform the steps. The strategy of replacing seemingly simple
expressions by more sophisticated ones is a rather unnatural and confusing process.
However, with practice the strategy can be mastered and understood. The next
example further illustrates this type of problem.
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Example 6 Determine the values of t such that 2 sin t + cos2 t = 2.
Solution: Equations such as these are usually solved by rewriting the expression in
terms of one trigonometric function. In this case it is reasonable to use the first
identity in Table 6.3 to change cos2 t to the more complicated expression 1 − sin2 t.
This will produce the following equation involving only the sine function:

2 sin t + 1 − sin2 t = 2.

This last equation should remind the reader of the corresponding quadratic equation
2x+1−x2 = 2 which can be solved by factoring. That is what we will do here. First,
subtract 2 from both sides of the above equation and then multiply through by (−1) to
obtain sin2 t − 2 sin t + 1 = 0. Factoring this expression yields

(sin t − 1)2 = 0.

The only solution to this last expression is given by sin t = 1 or t = π
2 + 2kπ where k

is any integer.



3. The sum and difference formulas
This section begins with the verification of the difference formula for the cosine
function:

cos(α − β) = cos α cos β + sin α sin β

where α − β denotes the measure of the difference of the two angles α and β. Once
this identity is established it can be used to easily derive other important identities.
The verification of this formula is somewhat complicated. Perhaps the most difficult
part of the proof is the complexity of the notation. A drawing (Figure 6.1 )should
provide insight and assist the reader overcome this obstacle. Before presenting the
argument, two points should be reviewed. First, recall the formula for the distance
between two points in the plane. Specifically, if (a, b) and (c, d) are planer points,
then the distance between them is given by√

(a − c)2 + (b − d)2. (1)

Second, the argument given below conveniently assumes that 0 < α − β < 2π. The
assumption that α−β < 2π is justified because complete wrappings of angles (integer
multiples of 2π) can be ignored since the cosine function has period 2π. The assump-
tion that the angle α − β is positive is justified because the Symmetry Identities
guarantee that cos(α − β) = cos(β − α). We can now derive the formula.
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x

y

α

β

α − β
( x 1 , y 1 )

( x 2 , y 2 )

x

y

α − β

( w ,  z )

a b

Figure 6.1: Differences of angles.

First, observe that the angle
α − β appears in Figure 6.1(a)
and (b) and is in standard position
in Figure 6.1b. This angle deter-
mines a chord or line segment in
each drawing (not shown), one con-
necting (x1, y1) to (x2, y2) (in Fig-
ure 6.1a) and one connecting (w, z)
to (1, 0) (in Figure 6.1b). These
chords have the same length since
they subtend angles of equal mea-
sure on circles of equal radii. (See
Lesson 3 Section 6 .) This observa-
tion and the distance formula (Equation 1) permit the equality√

(x2 − x1)2 + (y2 − y1)2 =
√

(w − 1)2 + z2. (2)
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Squaring both sides of Equation 2 removes the radicals resulting in

(x2 − x1)2 + (y2 − y1)2 = (w − 1)2 + z2.

Expanding the squares of the binomials suggests that

x2
2 − 2x1x2 + x2

1 + y2
2 − 2y1y2 + y2

1 = w2 − 2w + 1 + z2. (3)

Since (x1, y1) is a point on the unit circle so that the equality x2
1 + y2

1 = 1 holds, the
sum of x2

1 and y2
1 in Equation 3 can be replaced by 1. Similar statements hold for the

points (x2, y2), and (w, z). These replacements yield

2 − 2x1x2 − 2y1y2 = 2 − 2w,

or, after dividing by 2 and solving for w,

w = x1x2 + y1y2.

The desired formula

cos(α − β) = cos α cos β + sin α sin β (4)

follows from the observations that (Refer to Figure 6.1.) w = cos(α − β), x2 = cos α,
x1 = cos β, y2 = sin α, and y1 = sin β. This completes the proof.



Section 3: The sum and difference formulas 15

Example 7 Without the use of a calculator determine the value of cos(π/12). (Com-
puting the value of cos(π/12) is not the instructional goal of this example. The
purpose is to provide the reader with some experience using the cosine formula for
the difference of two angles. Being able to derive a correct answer using a comput-
ing device will never serve as a substitute for analytical thinking and understanding
mathematical concepts.)
Solution: Note that

π

12
=

π

3
− π

4
.

Equation 4 and Figure 6.1 yield

cos
π

12
= cos(

π

3
− π

4
)

= cos
π

3
cos

π

4
+ sin

π

3
sin

π

4

=
1
2

√
2

2
+

√
3

2

√
2

2

=
√

2
4

(1 +
√

3).
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Example 8 Without the use of a calculator determine the value of cos(7π/12).
Solution: This problem can easily be done using the formula for the cosine of the sum
of two angles which is covered in the sequel (Equation 6). Presently, however, we
must use Equation 4. First, write

7π
12

=
π

3
+

π

4
=

π

3
−

(
−π

4

)
.

Then

cos
7π
12

= cos
[π

3
−

(
−π

4

)]
= cos

π

3
cos

(
−π

4

)
+ sin

π

3
sin

(
−π

4

)
= cos

π

3
cos

π

4
+ sin

π

3

(
− sin

π

4

)
Table 6.2

= cos
π

3
cos

π

4
− sin

π

3
sin

π

4

=
1
2

√
2

2
−

√
3

2

√
2

2
=

√
2

4

(
1 −

√
3
)

.
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The cofunction identities are immediate consequences of Equation 4. These
express the values of the trigonometric functions at α in terms of their cofunctions at
the complementary angle π

2 − α. For example, by Equation 4

cos
(π

2
− α

)
= cos

π

2
cos α + sin

π

2
sin α = 0 · cos α + 1 · sin α = sin α,

so

cos
(π

2
− α

)
= sin α. (5)

Replacing α with π
2 − α in Equation 5 validates the following cofunction identity for

the sine function:

sin
(π

2
− α

)
= cos

[π

2
−

(π

2
− α

)]
= cos α.
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Example 9 Verify that sin
(

π
4 + t

)
= cos

(
π
4 − t

)
.

Solution: Since

sin
(π

4
+ t

)
= sin

[π

2
− (

π

4
− t)

]
= cos(

π

4
− t)

the desired equality follows.

The cofunction identity for the tangent function is easily established since

tan
(π

2
− t

)
=

sin
(

π
2 − t

)
cos

(
π
2 − t

) =
cos t

sin t
= cot t.

The reader should verify the remaining cofunction identities. (See Exercise 3.) Ta-
ble 6.4 summarizes these identities.

sin
(

π
2 − t

)
= cos t cos

(
π
2 − t

)
= sin t tan

(
π
2 − t

)
= cot t

cot
(

π
2 − t

)
= tan t sec

(
π
2 − t

)
= csc t csc

(
π
2 − t

)
= sec t

Table 6.4: The cofunction identities.
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Now we return to the general discussion of sum and difference formulas for the
trigonometric functions. Their derivation uses the formula for the cosine of the dif-
ference of two angles (Equation 4) in conjunction with the symmetry indentities
(Table 6.2). The following sequence of equalities demonstrates this strategy:

cos(α + β) = cos[α − (−β)]
= cos α cos(−β) + sin α sin(−β)
= cos α cos β + sin α(− sin β)
= cos α cos β − sin α sin β.

This establishes the cosine formula for the sum of two angles:

cos(α + β) = cos α cos β − sin α sin β. (6)
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The sum and difference formulas for the sine and cosine functions are

sin(α + β) = sin α cos β + sin β cos α (7)
sin(α − β) = sin α cos β − sin β cos α. (8)

The proof of the first of these is given below while that for the second is left as an
exercise (Exercise 4). The identity cos

(
π
2 − t

)
= sin t in Table 6.4 allows the equality

sin(α + β) = cos
[π

2
− (α + β)

]
= cos

[(π

2
− α

)
− β)

]
.

Appealing to Equation 4 using the two angles
(

π
2 − α

)
and β yields

cos
[(π

2
− α

)
− β)

]
= cos

(π

2
− α

)
cos(−β) − sin

(π

2
− α

)
sin(−β)

= sin α cos β − cos α(− sin β)
= sin α cos β + cos α sin β.

The two intermediate steps made use of identities in Table 6.2 and Table 6.4. This
completes the proof.
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The following example uses the sum formula for the sine function (Equation 7).

Example 10 Without the use of a calculator determine the value of sin(7π/12).
Solution: This problem requires a strategy similar to that used in Example 7. Consider

sin
7π
12

= sin(
π

3
+

π

4
)

= sin
π

3
cos

π

4
+ sin

π

4
cos

π

3

=
√

3
2

√
2

2
+

√
2

2
1
2

=
√

2
4

(1 +
√

3).

Example 11 Note that the answers for both Example 7 and Example 10 are the same.
Verify this result using a cofucntion identity. That is, prove that cos π

12 = sin 7π
12 .

Solution: Consider cos π
12 = cos

(
7π
12 − π

2

)
= cos

(
π
2 − 7π

12

)
= sin 7π

12 . The second step in
the sequence used the fact that cos(−t) = cos t.
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The sum formulas can be used to establish some of the properties of the trigono-
metric functions discussed in Lesson 2 Section 4 as illustrated in the following example.

Example 12 Use the sum formula for the cosine function (Equation 6) to establish
the identities

cos(t + π) = − cos t and cos(t + 2π) = cos t.

Solution: The sum formula for the cosine function and the values cos π = −1 and
sin π = 0 give

cos(t + π) = cos t cos π − sin t sin π = cos t(−1) − sin t(0) = − cos t.

Similarly, because cos(2π) = 1 and sin(2π) = 0,

cos(t + 2π) = cos t cos(2π) − sin t sin(2π) = cos t.

The first identity in the previous example can be proven using the Cofunction
Identities as illustrated by the following calculations:

cos (t + π) = cos
(π

2
−

(
t − π

2

))
= sin

(
t − π

2

)
= − sin

(π

2
− t

)
= − cos t.
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The last sum and difference formulas to be treated in this tutorial are those for
the tangent function. Consider

tan(α + β) =
sin(α + β)
cos(α + β)

=
sin α cos β + sin β cos a

cos α cos β − sin α sin β
.

Dividing the numerator and denominator of this last fraction by sinα cos β yields

sin α cos β + sin β cos a

cos α cos β − sin α sin β
=

sin α cos β
sin α cos β

+ sin β cos a
sin α cos β

cos α cos β
sin α cos β

− sin α sin β
sin α cos β

=
1 + tan β

tan α

cot α − tan β

=
tan α+tan β

tan α
1

tan α
− tan β

=
tan α+tan β

tan α
1−tan2 β

tan α

=
tan α + tan β

1 − tan α tan β
.

Hence, the sum formula for the tangent function is

tan(α + β) =
tan α + tan β

1 − tan α tan β
. (9)
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Example 13 Determine the value of tan
(

11π
12

)
.

Solution: First observe that 11π
12 = 2π

3 + π
4 so that

tan
(

11π
12

)
= tan

(
2π
3

+
π

4

)
=

tan 2π
3 + tan π

4

1 − tan 2π
3 tan π

4

=
1 − √

3
1 +

√
3

=
1 − √

3
1 +

√
3

1 − √
3

1 − √
3

= −2 +
√

3.

The difference formula for the tangent function is easily derived using the formula
for the tangent of the sum of two angles (Equation 9) and the symmetry identity
tan(−β) = tan β (Table 6.2). Consider

tan(α − β) = tan[α + (−β)]

=
tan α + tan(−β)

1 − tan α tan(−β)

=
tan α − tan β

1 + tan α tan β
. (10)
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Example 14 Determine the value of tan
(

5π
12

)
.

Solution: Write 5π
12 = 2π

3 − π
4 so that

tan
(

5π
12

)
= tan

(
2π
3

− π

4

)
=

tan 2π
3 − tan π

4

1 + tan 2π
3 tan π

4

=
−1 − √

3
1 − √

3
=

−1 − √
3

1 − √
3

1 +
√

3
1 +

√
3

= 2 +
√

3.

The following table lists the sum and difference formulas presented in this section.

sin(α + β) = sin α cos β + sin β cos α

sin(α − β) = sin α cos β − sin β cos α

cos(α + β) = cos α cos β − sin α sin β

cos(α − β) = cos α cos β + sin α sin β

tan(α + β) = tan α+tan β
1−tan α tan β

tan(α − β) = tan α−tan β
1+tan α tan β

Table 6.5: Sum and Difference Formulas.



4. The double and half angle formulas
Some rather simple applications of the sum formulas result in additional useful iden-
tities. The double angle formulas fall into this category. By Equation 7 sin(2α) =
sin(α + α) = sin α cos α + sin α cos α = 2 sin α cos α, resulting in the double angle
formula for the sine function:

sin(2α) = 2 sin α cos α (11)

There are three double angle identities for the cosine function. The first of these is
obtained by using the sum formula for the cosine function: cos(2α) = cos α cos α −
sin α sin α = cos2 α − sin2 α. Replacing cos2 α by 1 − sin2 α in this last formula yields
the double angle formula cos(2α) = 1 − 2 sin2 α. The proof of the last double angle
formula for the cosine function, cos(2α) = 2 cos2 α − 1, is left to the reader. (See
Exercise 9.) The three double angle formulas for the cosine function are

cos(2α) = cos2 α − sin2 α (12)
= 1 − 2 sin2 α (13)
= 2 cos2 α − 1. (14)

Example 15 Show that cos(3α) = 4 cos3 α − 3 cos α.
Solution: The proof of this identity involves the formula the sum of two angles for
the cosine functions, the double angle formulas for both the sine and cosine functions,

26
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and Equation 6 Consider

cos(3α) = cos(2α + α)
= cos(2α) cos α − sin(2α) sin α

= (2 cos2 α − 1) cos α − (2 sin α cos α) sin α

= 2 cos3 α − cos α − 2 sin2 α cos α

= 2 cos3 α − cos α − 2(1 − cos2 α) cos α

= 2 cos3 α − 3 cos α + 2 cos3 α

= 4 cos3 α − 3 cos α.
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The double angle formula for the tangent function is an immediate consequence
of the sum formula for that function. Consider

tan(2α) = tan(α + α)

=
tan α + tan α

1 − tan α tan α

=
2 tan α

1 − tan2 α
. (15)

The following table summarizes the double angle formulas

sin(2α) = 2 sin α cos α

cos(2α) = cos2 α − sin2 α = 1 − 2 sin2 α = 2 cos2 α − 1

tan(2α) = 2 tan α
1−tan2 α

.

Table 6.6: The Double Angle Formulas
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The half angle formulas for the sine and cosine functions can be derived from
two of the double angle formulas for the cosine function. Consider the double angle
formula cos(2t) = 2 cos2 t − 1. Solving this for cos2 t gives

cos2 t =
1 + cos(2t)

2
.

Taking square roots of both sides of this last equation and replacing t with α
2 results

in the half-angle formula for the cosine function:

cos
α

2
= ±

√
1 + cos α

2
. (16)

The ± in front of the radical is determined by the quadrant in which the angle α
2

resides. It is left to the reader (See Exercise 10) to verify that the half angle formula
for the sine function is

sin
α

2
= ±

√
1 − cos α

2
. (17)
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Example 16 Without the use of a calculator, determine the value of cos(π/24).
Solution: Recall that cos(π/12) =

√
2

4 (1 +
√

3) was calculated in Example 7. Using
this quantity in Equation 16 yields

cos(π/24) = cos
(

π/12
2

)

=

√
1 + cos

[
2
(

π
24

)]
2

=

√
1 + cos π

12

2

=

√
1 +

√
2

4 (1 +
√

3)
2

.

Similar calculations would provide the values of cos(π/48), cos(π/64), and so on.
This technique also works with the other trigonometric functions as demonstrated in
Exercise 11.
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The half-angle formulas for the sine and cosine functions provide a means for
establishing a similar identity for the tangent function. To see this construct the
quotient of Equation 17 and Equation 16 to obtain

tan
(α

2

)
=

sin
(

α
2

)
cos

(
α
2

) =
±

√
1−cos α

2

±
√

1+cos α
2

= ±
√

1−cos α
2

1+cos α
2

= ±
√

1 − cos α

1 + cos α
. (18)

Once again, the sign of the last expression above is determined by the location of the
angle α

2 . There are two additional half-angle formulas for the tangent function. The
derivation of these is left to the reader. (See Exercise 12).
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Example 17 By Equation 18

tan 15 ◦ = tan
(

30 ◦

2

)
=

√
1 − cos 30 ◦

1 + cos 30 ◦ =

√
1 − √

3/2
1 +

√
3/2

=

√
2 − √

3
2 +

√
3
.

Example 18 A half-angle formula for the cotangent function follows from Equa-
tion 18 since

cot
α

2
=

1
tan α

2

=
1

±
√

1−cos α
1+cos α

= ±
√

1 + cos α

1 − cos α
.

Hence,

cot 15 ◦ =

√
2 +

√
3

2 − √
3
.
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Table 6.7 lists the half angle formulas covered in this lesson.

sin α
2 = ±

√
1 − cos α

2

cos α
2 = ±

√
1 + cos α

2

tan
(

α
2

)
= ±

√
1 − cos α

1 + cos α
=

sin α

1 + cos α
=

1 − cos α

sin α
.

Table 6.7: The Half Angle Formulas



5. Product Identities and Factor formulas
There are at least three useful trigonometric identities that arise from the sum formu-
las. For example, adding Equation 4 and Equation 6 yields cos(α+β)+cos(α−β) =
2 cos α cos β. Dividing by 2 results in the product formula for the cosine function:

cos α cos β =
1
2

(cos(α + β) + cos(α − β)) . (19)

Two additional product formulas are

sin α sin β =
1
2

(cos(α − β) − cos(α + β)) (20)

and

cos α sin β =
1
2

(sin(α + β) − sin(α − β)) . (21)

The reader should derive the last two product formulas. (See Exercise 14.) Table 6.8
contains a list of the Product Identities.

cos α cos β = 1
2 (cos(α + β) + cos(α − β))

sin α sin β = 1
2 (cos(α − β) − cos(α + β))

cos α sin β = 1
2 (sin(α + β) − sin(α − β))

Table 6.8: The Product Identities
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The last collection of identities are called the factor formulas (sometimes called
the sum formulas). These are listed in the table below. The development of a strategy
for verifying these formulas is left to the reader (See Exercise 1515).

sin s + sin t = 2 sin
(

s+t
2

)
cos

(
s−t
2

)
cos s + cos t = 2 cos

(
s+t
2

)
cos

(
s−t
2

)
sin s − sin t = 2 cos

(
s+t
2

)
sin

(
s−t
2

)
cos s − cos t = 2 sin

(
s+t
2

)
sin

(
s−t
2

)
Table 6.9: The Factor Formulas



6. Exercises
Exercise 1. Using the strategy presented in Example 3 in show that the cotangent
and cosecant functions are odd. Also show that the secant function is even.

Exercise 2. Verify that 1 + cot2 t = csc2 t.

Exercise 3. Show that cot(π
2 −α) = tan α, sec(π

2 −α) = csc α, and csc(π
2 −α) = sec α.

Exercise 4. Verify the sine formula for the difference of two angles. That is, establish
the identity

sin(α − β) = sin α cos β − sin β cos α.

Exercise 5. Without a calculator determine the value of sin(π/12).

Exercise 6. Trigonometric identities are independent of the dimension used to mea-
sure angles. With this in mind determine tan 105 ◦

Exercise 7. Prove that csc(π
2 − t) = sec t.

Exercise 8. Prove that tan
(
t − π

4

)
=

tan t − 1
tan t + 1

.

Exercise 9. Verify the double-angle formula cos(2α) = 2 cos2 α − 1.

Exercise 10. Verify the half-angle formula for the sine function:

sin
α

2
= ±

√
1 − cos α

2
.

36
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(See Equation 17.)

Exercise 11. Use the formula derived in Exercise 10 and the value computed in
Example 7 to evaluate sin(π/24).

Exercise 12. Verify the half-angle identities

tan
(α

2

)
=

sin α

1 + cos α
=

1 − cos α

sin α
.

Exercise 13. Use Example 15 to establish the identity

cos(4α) = 8 cos4 α − 4 cos2 α + 2.

Exercise 14. Derive Equation 20 and Equation 21

Exercise 15. Verify the identity

sin s + sin t = 2 sin
(

s + t

2

)
cos

(
s − t

2

)
.

Exercise 16. Verify the identity
sin 4t − sin 2t
cos 4t + cos 2t

= tan t.
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Exercise 17. Verify the identity
sin t − sin 3t
sin2 t − cos2 t

= 2 sin t.



Solutions to Exercises
Exercise 1. Using the strategy presented in Example 3 show that the cotangent and
cosecant functions are odd. Also show that the secant function is even.
Solution: Since cot(−t) =

cos(−t)
sin(−t)

=
cos t

− sin t
= − cot t and csc(−t) =

1
sin(−t)

=

1
− sin t

= − csc t, the cotangent and cosecant functions are odd. The secant function

is even because sec(−t) =
1

cos(−t)
=

1
cos t

= sec t. Exercise 1
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Exercise 2. Verify that 1 + cot2 t = csc2 t.
Solution: Divide both sides of the identity sin2 t + cos2 t = 1 by sin2 t to obtain
1 + cos2 t

sin2 t
= 1

sin2 t
which reduces to 1 + cot2 t = csc2 t. Exercise 2
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Exercise 3. Show that cot(π
2 −α) = tan α, sec(π

2 −α) = csc α, and csc(π
2 −α) = sec α.

Solution Using a similar identity for the tangent function we have cot(π
2 − α) =

1
tan( π

2 −α) = 1
cot α

= tan α. Likewise, sec(π
2 − α) = 1

cos(π
2 −α) = 1

sin α
= csc α. Of course

one could solve these problems using the approach given below for the secant function.
Consider csc α = csc(π

2 − (π
2 − α)) = sec(π

2 − α). Exercise 3
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Exercise 4. Establish the identity sin(α − β) = sin α cos β − sin β cos α.
Solution: Since sin t = cos

(
π
2 − t

)
we have sin(α−β) = cos

(
π
2 − (α − β)

)
= cos

(
(π

2 − α) + β)
)
.

Then appealing to Equation 6 using the two angles (π
2 − α) and β yields

cos
(
(
π

2
− α) + β)

)
= cos(

π

2
− α) cos β − sin(

π

2
− α) sin β

= sin α cos β − cos α sin β.

Exercise 4
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Exercise 5. Without a calculator determine the value of sin(π/12).
Solution: This problem is similar to Example 7. Write sin

(
π
12

)
= sin

(
π
3 − π

4

)
and use

Exercise 4 to obtain

sin
(π

3
− π

4

)
= sin

π

3
cos

π

4
− sin

π

4
cos

π

3

=
√

3
2

1√
2

− 1√
2

1
2

=
1

2
√

2

(√
3 − 1

)
.

Exercise 5
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Exercise 6. solutionDetermine tan 105 ◦ .
Solution: Write 105 ◦ = 60 ◦ +45 ◦ so that

tan 105 ◦ =
tan 60 ◦ + tan 45 ◦

1 − tan 60 ◦ tan 45 ◦

=
√

3 + 1
1 − √

3
.

Exercise 6
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Exercise 7. Prove that csc(π
2 − t) = sec t.

Solution: Using the reciprocal identity for the cosecant function and the cofunction
identity for the sine function we have

csc(
π

2
− t) =

1
sin(π

2 − t)
=

1
cos t

= sec t.

Exercise 7
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Exercise 8. Prove that tan
(
t − π

4

)
=

tan t − 1
tan t + 1

.

Solution: Using the formula for the tangent of the difference of two angles Table 6.5
we get

tan
(
t − π

4

)
=

tan t − tan π
4

1 + tan t tan π
4

=
tan t − 1
1 + tan t

and the equality follows. Exercise 8
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Exercise 9. Verify the double-angle formula cos(2α) = 2 cos2 α − 1. Solution: Using
Equation 6 it follows that

cos(2α) = cos(α + α)
= cos α cos α − sin α sin α

= cos2 α − sin2 α

= cos2 α − (1 − cos2 α)
= 2 cos2 α − 1.

Exercise 9
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Exercise 10. Verify the half-angle formula for the sine function:

sin
α

2
= ±

√
1 − cos α

2
.

Solution: We will use a strategy similar to that for deriving Equation 16. We have
cos(2t) = 1 − 2 sin2 t ⇒ 2 sin2 t = 1 − cos(2t). Dividing this last equation through by
2 and then taking the square root of both sides yields

sin t = ±
√

1 − cos(2t)
2

.

Replacing t with α
2 in this equation yields the desired half-angle formula Equation 17.

Exercise 10
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Exercise 11. Evaluate sin(π/24). Solution: In Example 7 we established the value
cos

(
π
12

)
=

√
2

4 (
√

3 + 1). Using this in the formula given in Exercise 10 we arrive at

sin
( π

24

)
=

√
1 − cos

(
π
12

)
2

=

√
1 −

√
2

4 (
√

3 + 1)
2

.

The positive square root is used since π
24 is in the first quadrant. Exercise 11
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Exercise 12. Verify: tan
(

α
2

)
= sin α

1+cos α
= 1−cos α

sin α
.

Solution: Using Equation 18 we have

tan
(α

2

)
= ±

√
1 − cos α

1 + cos α

= ±
√

1 − cos α

1 + cos α

1 + cos α

1 + cos α

= ±
√

1 − cos2 α

(1 + cos α)2

= ± sin α

1 + cos α
=

sin α

1 + cos α
.

Note that we were able to drop the ± sign in front of the fraction. A moments
reflection reveals that tan

(
α
2

)
is positive when and only when sin α is. Since 1+cos α

is never negative, the sign of the last fraction above is determined solely by sinα. The
calculation sin α

1+cos α
1−cos α
1−cos α

= sin α(1−cos α)
1−cos2 α

= 1−cos α
sin completes the problem.

Exercise 12
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Exercise 13. Establish the identity cos(4α) = 8 cos4 α − 4 cos2 α + 2.
Solution: This problem requires several calculations. We begin with Equation 6. We
have

cos(4α) = cos(3α + α)
= cos(3α) cos α − sin(3α) sin α

= (4 cos3 α − 3 cos α) cos α − sin(2α + α) sin α

= 4 cos4 α − 3 cos2 α − sin α[sin(2α) cos α + cos(2α) sin α]
= 4 cos4 α − 3 cos2 α − sin α[2 sin α cos2 α + sin α(cos2 α − sin2 α)]
= 4 cos4 α − 3 cos2 α − 2 sin2 α cos2 α − sin2 α(cos2 α − sin2 α)
= 4 cos4 α − 3 cos2 α − 3(1 − cos2 α) cos2 α + (1 − cos2 α)2

= 4 cos4 α − 3 cos2 α − 3 cos2 α + 3 cos4 α + 1 − 2 cos2 α + cos4 α

= 8 cos4 α − 8 cos2 α + 1.

Exercise 13
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Exercise 14. Derive Equation 20 and Equation 21.
Solution: Subtracting Equation 6 from Equation 4 we arrive at

cos(α − β) − cos(α + β) = 2 cos α cos β.

Dividing this last expression by 2 completes the exercise. Likewise,

sin(α + β) − sin(α − β) = 2 cosα sin β

where division by 2 again completes the problem. Exercise 14
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Exercise 15. Verify sin s + sin t = 2 sin
(

s+t
2

)
cos

(
s−t
2

)
. Solution: Recall the identity

Equation 21 cos α sin β = 1
2 (sin(α + β) − sin(α − β)) . Set α = s−t

2 and β = s+t
2 so

that α+β = s−t
2 + s+t

2 = s and α−β = s−t
2 − s+t

2 = −t. Substitute these in Equation 21
to obtain

cos
(

s − t

2

)
sin

(
s + t

2

)
=

1
2
(sin s − sin(−t)).

The result follows by multiplying by 2 and recalling that sin(−t) = − sin t.
Exercise 15
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Exercise 16. Verify the identity
sin 4t − sin 2t
cos 4t + cos 2t

= tan t.

Solution: Use the second and third factor formulas (See Table 6.9.) to write

sin 4t − sin 2t = 2 cos 3t sin t

and

cos 4t + cos 2t = 2 cos 3t cos t.

Then
sin 4t − sin 2t
cos 4t + cos 2t

=
2 cos 3t sin t

2 cos 3t cos t
=

sin t

cos t
= tan t.

Exercise 16
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Exercise 17. Verify the identity
sin t − sin 3t
sin2 t − cos2 t

= 2 sin t.

Solution: Use the second factor formula (See Table 6.9) and the property that the
sine function is even to write

sin t − sin 3t = 2 cos 2t sin(−t) = −2 cos 2t sin t.

Since sin2 t − cos2 t = − cos 2t, we have
sin t − sin 3t
sin2 t − cos2 t

=
−2 cos 2t sin t

− cos 2t
= 2 sin t.

Exercise 17


