

Why is decontamination planning important?

• Radiological Attack = Psychological/Economic Attack

Public refusal to inhabit contaminated areas → halt in economic activity & steep decline in property values → access denial effect

- Rapidly Restore ® Drive Down ® Minimize Access Costs Attack Effects
- No comprehensive national strategy for radiological decontamination

Description of Urban Contamination

Dust

» Micron scale

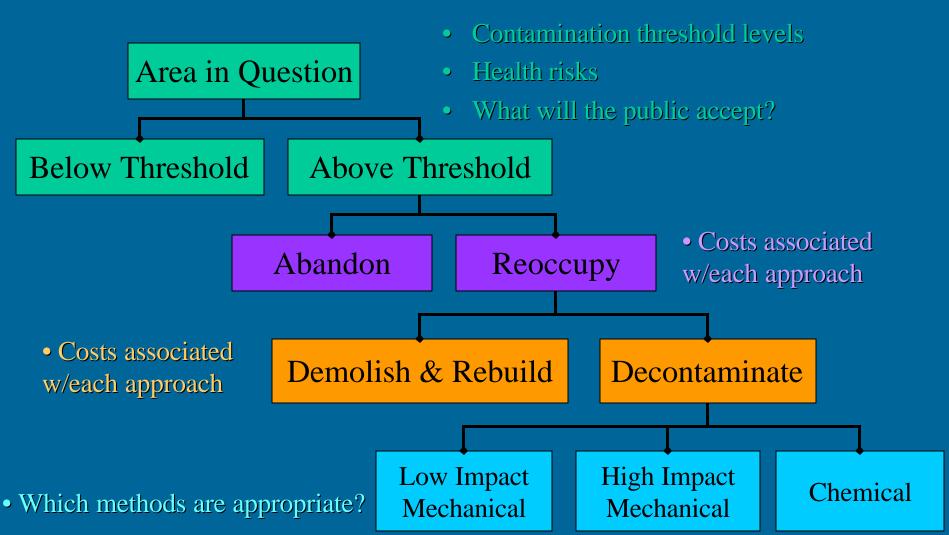
Non-homogeneous distribution

» Hot-spots, not-spots, moderately contaminated areas

Loose vs. Fixed

- » Most will be "loose" superficial contamination.
- » Dust settled on external surfaces of buildings (concrete, granite), streets (asphalt) soil and plants.
- » Some sucked into building interiors though ventilation systems or pass through open doors and windows

Time Effects


- \rightarrow W/time \rightarrow contamination more "fixed."
- Radionuclides absorbed by porous materials (concrete, wood)
 & by oxide layers on metal surfaces.

Radioisotopes

Isotope	Primary Radiation	Half Life (years)	Chemical Class
²⁴¹ Am	Alpha	432.7	Actinide
²³⁹ Pu	Alpha	24,390	Actinide
²⁵² Cf	Alpha	2.6	Actinide
²²⁶ Ra	Alpha	1,602	Alkali Earth Metal
⁹⁰ Sr	Beta	27.7	Alkali Earth Metal
¹⁹² Ir	Beta/Gamma	*73.83 (days)	Transition Metal (Platinum Group)
⁶⁰ Co	Gamma	5.3	Transition Metal (Iron Group)
¹³⁷ Cs	Gamma	30	Alkali Metal

Proposed Post-Attack Decision Process

Q#4 – Decontamination Methods Decontamination Process

1. Characterization

- Type of contamination (α, β, γ) and Isotope
- Distribution of contamination

2. Decontaminate vs. Demolish

- Case-by-case basis for each building or area

3. Radionuclide Removal

- External: building exteriors, sidewalks, streets, parks, sewage systems
- Building interiors: walls and floors, carpeting, ventilation ducts
- Transport systems and water supplies

4. Post Cleanup Survey

- Safe Levels?

Detection

- Both before and after decontamination
- Leverage existing technologies from nuclear nonproliferation and border security

Gamma – easy to detect

Beta – detectable

Alpha – difficult to detect

- Large particle → easily shielded
- Particle does not travel long distances
- Need to scan in close proximity to source, slowly & repeatedly

Decontamination Technologies

• The national labs and private industry have developed a wide variety of decontamination technologies:

```
Vibratory processing Solution-grit blasting Light ablation Power brushing Sponge-jet blasting Strippable coatings CO<sub>2</sub> blasting Cryogenic blasting Scabbling Spalling Concrete-eating bacteria HEPA vacuuming Manual wiping Electro-kinetic concrete cleaning Dry-blasting Foams Gels Pressure washing Oxidizers Reductants Chelants Acids
```

- Suitable for urban environment?
- Technologies applicable to urban decontamination need to be identified and adapted.

Desired Characteristics for Methods Applied to Urban Decontamination

- Effectively decontaminates urban materials concrete, granite, asphalt, metal, wood, glass, soil, vegetation, water
- Applicable to large-scale operations
 - Large surface area covered per unit time
 - Can be used in-situ
 - Simple methods that do not require highly specialized skills
- Minimizes secondary waste
 - e.g. water in pressure washing, chemicals
- Cost effective

Methods: Low Impact Mechanical

Manual wiping w/moist cloth

Pressure Washing/Power Brushing

W/water collection, treatment and recycling Collect water w/coupled vacuum system or by tenting work area

HEPA Steam vacuuming

Superheated pressurized water Flashes to steam upon impact Water collected by vacuum, separated and filtered

Stripcoating

Coating sprayed onto surfaces

Mechanically locks radionuclides into polymer matrix

Removes contamination from substrate when peeled off

Methods: Low Impact Mechanical (Cont'd)

Appropriate for most contaminated areas:

- Removes loose contamination
- Large surface area / unit time
- Low cost
- Low-tech
- Waste easily processed

Methods: High Impact Mechanical

Abrasive Blasting

Dry Blasting – e.g. sand-blasting Solution-Grit Blasting

Surface removal for asphalt/concrete

Scabbling – pummeling resulting in chipping Spalling – drilling & slicing into surface

® Top 1mm removed majority of ¹³⁷Cs from asphalt

Tearing out sidewalks & streets

Removal of topsoil & vegetation ® Top 5-7 cm removed >90% 137Cs from soil

May be necessary in a small subset of areas where contamination is fixed:

- Removes fixed contamination
- Small area/unit time
- High cost
- High-tech
- Waste burial costly

Methods: Chemical

• Chemically disrupt metal oxide layer

® release physically trapped radionuclides

Oxidizers - Alkaline permanganates
Reductants - Oxalic acid and citric acid

• Remove from porous surfaces - concrete, granite

Chelants - Large organic molecules – EDTA

+ Foam - Improves surface contact

May be necessary in a small subset of areas where contamination is fixed:

- Removes contamination from metal oxides & porous materials
- Small surface area / unit time
- High cost, high-tech
- Waste difficult to process

Decontamination Methods Summary

- Low-impact mechanical most areas
- Chemical & High-impact mechanical few small areas
- Time passes \rightarrow contamination becomes fixed \rightarrow rigorous methods
- Low decontamination thresholds \rightarrow High DF \rightarrow rigorous methods

Method	Low-Impact Mechanical	High-Impact Mechanical	Chemical
Contamination Type	Loose	Fixed	Fixed
Rate	Fast	Slow	Slow
Effectiveness	Low DF	High DF	High DF
Cost	Low Cost	High Cost	High Cost
Waste	2° - Liquid Water	1° - Solids	2° - Liquid chemical
	or solid polymer	(concrete, asphalt)	waste
	* Easily Treated	* Buried	*Difficult to process

Related Concerns

Worker Safety

- Protective suits & respiration gear
- High costs associated with personnel hours and hazard pay

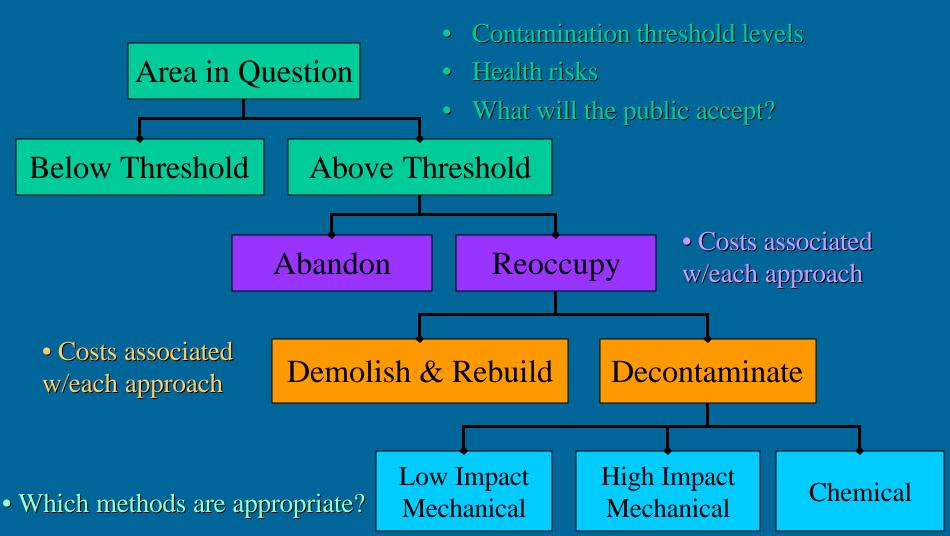
Rain

Would <u>not</u> obviate the need to decontaminate

- Would not remove fixed contamination
- Large quantities of contaminated water could flow out to nearby lakes and rivers

Additional Research Required

- Appropriate for large-scale urban operations?


 Test existing technologies: rate, cost & DF on urban materials

 Same experimental conditions RDD conditions
- Decontamination Models

 Determine which methods for which tasks
- Improved alpha detection systems
 Improve sampling
- Adapt existing technologies

 e.g. Pressure washing system w/coupled water collection,
 microbial scabbling

Proposed Post-Attack Decision Process

Q#3 Demolish vs. Decontaminate

What are the costs associated with each option?

Option A: Demolish and Rebuild

Costs (C_{DR}): Demolition, solid waste disposition, rebuilding, social value

12 story office building (30,000 ft²) \sim \$50M

Option B: Decontaminate

Costs (C_{DE}): Labor, protective gear, equipment, materials,

liquid waste processing, solid waste disposition

12 story office building $(30,000 \text{ ft}^2) \sim $5M$

Modeling the decision process:

If $C_{DR} > C_{DE}$ decontaminate

If $C_{DR} < C_{DE}$ demolish and rebuild

Q#2 Abandon vs. Reoccupy

What are the costs associated with each option?

Option A: Abandon

Costs (C_{AB}): property value, lost economic activity, social value

Property value of Boston = \sim \$83B

Annual economic activity = \sim \$70B

Option B: Reoccupy

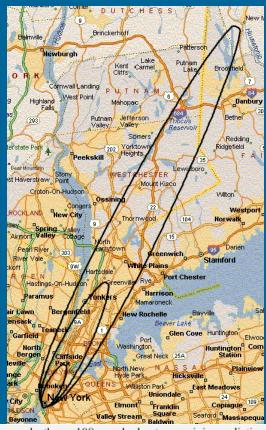
Costs (C_{RE}) : decontamination costs

costs of demolishing and rebuilding

Modeling the decision process:

If C_{AB}>C_{RE} Reoccupy

If $C_{AB} < C_{RE}$ Abandon



Q#1 What areas to address

- What are the health risks associated with contamination?
- What are the existing contamination threshold levels?
 - **»EPA** thresholds were designed to keep corporate polluters accountable
 - »Need to develop separate set of thresholds for security purposes.

Q#1 What areas to address (cont'd) Comparison of EPA and Chernobyl standards

Inner Ring: One cancer death per 100 people due to remaining radiation Middle Ring: One cancer death per 1,000 people due to remaining radiation Outer Ring: One cancer death per 10,000 people due to remaining radiation EPA recommends decontamination or destruction

Middle Ring: Outer Ring:

Inner Ring: Same radiation level as *permanently closed* zone around Chernobyl Same radiation level as permanently controlled zone around Chernobyl Same radiation level as periodically controlled zone around Chernobyl

Q#1 What areas to address (cont'd)

What will the public accept?

Technical

What has been done?

- Detection and decontamination technologies (national labs and private industry)
- RDD decon. technology development (DHS)
- Studies in Chernobyl
- Field Manual 3-5 (military manual on NBC decon.)

What needs to be done?

- Test and modify technologies for urban RDD scenario
- Create urban decontamination & cost/benefit models
- Create urban database so variables can be plugged rapidly into flexible models

Policy

What has been done?

- Federal Radiological Emergency Response Plan
- TOPOFF emergency response simulation
- DHS interagency working group

What needs to be done?

Develop comprehensive national strategy:

- Identifies exposure limits
- Prioritizes decontamination tasks
- Assigns authority & responsibility

The Bottom Line

• We need to develop a comprehensive national decontamination strategy <u>now</u> so it can be implemented as rapidly as possible in the event of an attack.

- Planning will require technical research.
- Planning will need to address policy questions.