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Preface

The course presented in this book, and in the List of Laboratory Experiments,
which is published in a separate volume, has grown out of the actual needs of
the elementary work in physics in the University of Chicago, particularly in the
University High School of the School of Education and the affiliated secondary
schools. Its most characteristic features have been on trial for three or four
years in more than a score of different secondary schools in various parts of the
country.

The books represent primarily an attempt to give concrete expression to a
rapidly spreading movement to make high-school physics, to a lass extent than
it has been in the past, either a condensed reproduction of college physics, or a
mathematical and mechanical introduction to technical science, and to a grater
extent than it has heretofore been, a simple and immediate presentation, in
language which the student already understands, of the hows and whys of the
physical world in which he lives.

A secondary aim has been to develop a course in which the laboratory and
class-room phases of elementary instruction in physics are carefully differenti-
ated and, at the same time, closely correlated. It is hoped that something may
thus be done toward remedying the inadequacy which still exists in the labo-
ratory instruction of many small schools. A very carefully selected and tested
list of distinctively class-room demonstrations will be found to run through the
book in fine print, while foot-notes indicate the location and nature of the lab-
oratory exercises which should be inserted. For the sake of definiteness and
simplicity the references are made simply to the authors’ manual, though the
exercises may be taken from any good laboratory text.

In the chapters on Molecular Motions and Molecular Forces, the authors have
sought to brig into the proper relations to one another and to the modern theory
of physics a large number of phenomena which are sometimes thrown together
in somewhat scrappy and illogical form under the general head, Properties of
Matter.

In the treatment of image formulation the time-honored fiction of rays has
been replaced by the truer, simpler, and more comprehensible view point of
change in wave curvature. In the treatment also of surface tension, electro-
magnetic induction, and the mechanism of tone production by wind instru-
ments, it is thought that some familiar fictions of physics have been replaced by
“causally conditioning” facts.
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iv PREFACE

In the description of illustration of physical appliances the course has been
made unusually complete. It is not expected that all of the material of this sort
which has been introduced will under all circumstances be assigned for recitation
purposes. It is inserted because it is precisely what the student is usually most
eager to learn, but cannot, in general, obtain from books because their language
is too technical for him, not yet from his teacher because the latter lacks the
necessary diagrams. It is thought that it will be read by mostly pupils whether
it is assigned or not.

In the last chapter are presented in some detail the recent epoch-making
discoveries which have brought the electron into prominence and have so pro-
foundly modified molecular, electrical, and optical theories.

Much attention has been given to the Questions and Problems which are
placed at the end of each subdivision and a chapter, so that they may be made,
in so far as is possible, a part of each day’s assignment.

In the illustration of the course an effort has been made to make each of the
very large number of figures not in any sense showy, but in the fullest possible
sense educative. The portraits of sixteen of the great makers of physics have
been inserted for the sake of adding human and historic interest.

Finally, the authors have endavored to avoid sacrificing comprehensibility
to condensation. Although they have presented a smaller number of subjects
than is often found in an elementary text, they have striven to present each
subject with sufficient illustration and amplification to make it easily and quickly
intelligible. This, together with the large number of figures, has added to the
number of pages in the book, although it has actually shortened the course. For
the sake, however, of indication in what directions omissions may be made, if
necessary, without interfering with continuity, paragraphs have here and there
been thrown into find print. These paragraphs will easily be distinguished from
the class-room experiments, which are in the same type. They are, for the most
part, descriptions of physical applications.

It is quite impossible to make suitable recognition of the assistance which
has been derived from the close coöperation of more than a score of men who
have taken an active interest in the development of this course. All of the fol-
lowing have read wither the whole or large parts of the manuscript or proof,
and all of them have made important suggestions which have been incorporated
in the text: Dr. C. J. Ling of the Manual Training high School, Denver Col-
orado; Superintendent H. O. Murfee of the Marion Military Institute, marion,
Alabama; Mr. C. F. Adams of the Central High School Detroit, Michigan; J. C.
Packard, Sub-master of Brookline High School, Brookline, Massachusetts; Dr.
T. C. Hebb of the Central High School, St. Louis, Missouri; Professor B. O.
Hutchison of Shurtleff Colloege, Upper Alton, Illinois; Mr. C. C. Kirkpatrick of
the Seattle High School, Washington; Dr. G. M. Hobbs, Dr. C. J. Lynde, and
Mr. F. H. Wescott of the University High School, and Mr. Harry D. Abells of
the Morgan Park Academy of the University of Chicago. The part which Dr.
Ling has had in the development of the course has been of especial importance.

R. A. Millikan, H. G. Gale
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Chapter 1

Measurement

1.1 Fundamental Units

1.1.1 The historic standard of length

Nearly all organized civilizations have at some time employed a unit of length
the name of which bore the same significance as does foot in English. There Is this accurate?
can scarcely be any doubt, therefore, that in each country this unit has been
derived from the length of the human foot. Where is this information

fromBut, as might have been expected from such an origin, no two peoples have
agreed in the length of their standard. Thus the Greek foot, supposed to repre-
sent the length of the foot of Hercules, was 12.14 English inches; the Macedonian
foot was 14.08, the Pythian 9.72, and the Sicilian 8.75. In Europe during the
Middle Age almost every town had its own characteristic foot; thus in Tome a
foot was 11.62 inches, in Milan 13.68, in Brussels 10.86, in Göttingen 11.45, and
in Geneva 19.21.

It is probable that in England, after the yard (a unit which is supposed to
have represented the length of the arm of king Henry I) became established as a
standard, the foot was arbitrarily chosen as one third of this standard yard. The Find the true story and cite

it.mean length of the male foot in the United States, according to measurements
made upon 16,000 men in the United States, is 10.05 inches. What was the name of the

study and when was it con-
ducted? Is there a more cur-
rent source for information?

1.1.2 Relations between different units of length

It has also been true, in general, that in a given country the different units
of length in common use, such, for example, as the inch, the hand, the foot,
the fathom, the rod, the mile, etc., have been derived either from the lengths of
different members of the human body or from equally unrelated magnitudes, and
in consequence have been connected with one another by no common multiplier.
Thus there are 12 inches in a foot, 3 feet in a yard, 5.5 yards in a rod, 1760
yards in a mile, etc. Furthermore the multipliers are not only different, but are
frequently extremely awkward; e.g. there are 16.5 feet, or 5.5 yards, in a rod.

1
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Metric!System
Meter
Metric
Meter
Area
Volume
Area
Are

1.1.3 Relations between units of length, area, volume, and
mass

A similar and even worse complexity exists in the relations of the units of length
to those of area, capacity, and mass. For example, a square field containing a
acre measures 12.649 rods, 69.569 yards, or 208.708 feet on a side; one square
rod contains 274.25 square feet; there are 57.75 cubic inches in a quart, and 31.5
gallons in a barrel.

When we turn to the unit of weight we find that the grain, the ounce, the
pound, the ton, etc., not only bear different and often very inconvenient relations
to one another, but also that none of them bear any simple and logical relations
to the units of length. Thus, for example, the pound, instead of being the weight
of a cubic inch or a cubic foot of water, or of some other common substance,
is the weight of a cylinder of platinum, of inconvenient dimensions, which is
preserved in London.Is this still true?

1.1.4 Origin of the metric system

At the time of the French revolution the extreme inconvenience of existing
weights and measures, together with the confusion arising from the use of dif-
ferent standards in different localities, let the National Assembly of France to
appoint a commission to devise a more logical system. The result of the labors of
this commission was the present metric system, which was introduced in France
in 1793, and has since been adopted by the governments of most nations except
those of Great Britain and the United States; and even these countries its use
in scientific work is practically universal.Find the real history and cite

the source. Does the U.K.
use the metric system? 1.1.5 The standard meter

The standard length in the metric system is called the meter . It was originally
defined as the distance, at the freezing temperature, between two transverse
parallel lines ruled on a bar of platnum (Fig. 1), which is kept in the palace of
the Archives in paris.

In order that this standard length might be reproduced if lost, the commis-
sion attempted to make it one ten-millionth of the distance from the equator to
the north pole, measured on the meridian of Paris. But since later measurements
have thrown some doubt upon the exactness of the commission’s determination
of this distance, we now define the meter, not as any particular fraction of the
earth’s quadrant, or as the distance between scratches on the above bar, but
now derive the unit as .How is the meter defined?

1.1.6 Metric standards of area and volume

Originally, the standard area in the metric system was the are, which is equal
to 100 square meters. Over time, however, it has become customary to express
area in terms of the square of a length. While 100 square meters and 1000
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Liter
Mass
Gram
Liter
Gram

square meters can be expressed as 1 and 10 ares respectively, it is perceptually
simpler and more common to express them as 100 square meters (m2) and 1000
m2 respectively.

The standard unit of volume is called the liter . It is the volume of a cube
which is one tenth of a meter on a side. Large quantities of volume are sometimes
expressed as the product of three lengths, i.e. a pool may be filled with 150
cubic meters (m3) of water, which is (100)(150) = 15000 liters.

1.1.7 The metric standard of mass

In order to establish a connection between the unit of length and the unit of
mass, the commission directed a committee of the French Academy to prepare
a cylinder of platinum which should have the same weight as a liter of water at
its temperature of greatest density, namely, 4 degrees Centigrade, or 39 degrees
Fahrenheit. This cylinder was deposited with the standard meter in the Palace
of the Archives and now represents the standard of mass in the metric system.
It is called the standard kilogram. One one-thousandth of this mass and was
named the gram.

1.1.8 Other metric units

The four standard units of the metric system – the meter, the liter, the gram, and
the are – have decimal multiples and submultiples, so that every unit of length,
area, volume, or mass is connected with the unit of next higher denomination
by an invariable multiplier, and that the simplest possible miltiplier,–namely,
ten.

The names of the multiples are obtained by adding to the name of the
standard unit the Greek prefices, deka (ten), hecto (hundred), kilo (thousand),
and myria (ten thousand), while the submultiples are formed by adding the latin
prefixes, deci (tenth), centi (hundredth), and milli (thousandth). Examples are
listed on table 1.1.

Table 1.1: Prefix Usage Examples

1 dekameter = 10 meters 1 decimeter = 1
10 meter

1 hectometer = 100 meters 1 centimeter = 1
100 meter

1 kilometer = 1000 meters 1 millimeter = 1
1000 meter

The most common of these units, with the abbreviations which will hence-
forth be used for them, are listed on table 1.2.

1.1.9 Relations between the English and metric units

Table 1.3 gives the relation between the most common English and metric units.
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Table 1.2: Common Unit Abbreviations

Length Area Volume
millimeter (mm) milliliter (ml)
Centimeter (cm) square centimeter (cm2) liter (l)
meter (m) square meter (m2) cubic meter (m3)
kilometer (km)
Mass Time Force
gram (g) second (s) dyne
kilogram (kg) newton (N)

Table 1.3: English and Metric Equivalencies

1 inch (in.) = 2.54 cm. 1 cm. = 0.3937 in.
1 foot (ft.) = 30.48 cm. 1 m. = 1.094 yd.
1 mile (mi.) = 1.609 km. 1 km. = 0.6214 M.

1 in2 = 6.45 cm2 1 cm2 = 0.1550 in2

1 ft3 = 929.03 cm3 1 m3 = 1.308 yd3

1 acre = 0.405 ha. 1 ha. = 2.47 acres

1 in3 = 16.387 cm3 1 cm3 = 0.061 in3

1 ft3 = 28,317 cm3 1 m3 = 1.308 yd3

1 qt. = 0.9463 l. 1 l. = 2.47 acres

1 oz. av. = 28.35 g. 1 g. = 0.0353 oz.
1 lb. av. = 0.4536 kg. 1 kg. = 2.204 lb.
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Time!Second
Mass

This table is inserted chiefly for reference; but the relations 1 in. = 2.54 cm.,
1 m. = 39.37 in., 1 kilogram (kg.) = 2.2 lb. should be memorized. On account
of its more convenient size, the centimeter, instead of the meter, is frequently
used for scientific purposes as the fundamental unit of length. Portions of a
centimeter and of an inch scale are shown together in Fig.2.

1.1.10 The standard unit of time

The second is taken among nearly all nations as the standard unit of time. It
was originally designated as 1

86400 part of the time from noon to noon. But
since the earth’s period of rotation is subject to minute changes, the second is
now defined as . Find the definition

1.1.11 The three fundamental units

It is evident that measurements of both area and volume may be reduced simply
to measurement of length; for an area is expressed as the product of two lengths,
and a volume as the product of three lengths. Hence on a single instrument,
namely, the meter stick, is all that absolutely essential to the determination of
any of these quantities. For these reasons the units of area and volume look
upon as derived units, depending on one fundamental unit, the unit of length.

The weight of an object is determined by the product of its mass by the
magnitude of the gravitational force gradient at the object’s location. An ob-
ject’s mass can thus be found by weighing it if one knows the magnitude of the
force gradient at that point. The mass of a body is found by weighing it upon
a balance. The operation os something wholly distinct from a measurement of
length and requires a new form of instrument. Also the measurement of time
is wholly unlike the measurement of either length or mass, and is made with
another distinct kind of instrument, namely, a clock, or watch.

Now it is found that just as measurements of area and of volume can be
reduced in the ultimate analysis to measurements of length, so the determination
of any measurable quantities, such as the pressure in a steam boiler, the velocity
of a moving train, the amount of magnetism in a magnet, etc., can be reduced
simply to measurement of length, mass, and time. Hence the units of length,
mass, and time are considered as the three fundamental units, and the three
instruments which measure these three quantities, namely, the meter stick, the
balance, and the clock, are considered the most fundamental of al instruments.

Whenever any measurement has been reduced to its equivalent in terms of
the units of length, mass and time it is dais to be expressed in absolute units.
Furthermore, since is all scientific work the centimeter, the gram, and the second
are now universally recognized as the fundamental units of length, mass, and
time reducing all lengths involved to centimeters, all masses to grams, and all
times to seconds. The measurement is the often said, for short, to be expressed
in C.G.S. (Centimeter-Gram-Second) units. M.K.S?
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1.1.12 Questions and problems

1. The Eiffel Tower is 335 m. high. What is its height in feet?

2. A freely falling body, starting from rest, moves 490 cm. during the first
second of its fall. Express this distance in feet.

3. A man weighs 160 lb. What is his weight in kilograms?

4. How many kilograms of butter may be bought for 1 if a pound of butter
costs 30 cents?

5. Find the number of millimeters in 5 km. Find the number of inches in 3
mi.

6. Find the number of square rods in a field of 200 ft. on a side. Find the
number of square meters in a field 0.3 km. on a side.

7. There are 231 cu. in. in a gallon. How deep must a tank be made which
is 4 yd. long and 4 ft. wide if it is to hold 1500 gal.? What must be the
depth of a tank which is to hold 6000 l. if it is 4 m. long and 1.5 m. wide?

1.2 Construction of Standards

1.2.1 Measurement of length

Measuring the length of a body consists simply in comparing its length with
that of the standard meter bar kept in paris. In order that this may be done
conveniently, millions of rods of the same length as this standard meter var
have been made and scattered all over the world. They are our common meter
sticks. Theya re divided into 10, 100, or 1000 equal parts, great care being
taken to have all the parts of exactly the same length. The method of making
a measurement with such a bar is more or less familiar to every one.

1.2.2 Measurement of mass

Similarly, measuring the mass of a body consists in comparing its mass with
that of the standard cylinder of platinum, the kilogram of archives. In order
that this might be done conveniently, it was first necessary to construct bodies
of the same mass as this kilogram and then to make a whole series of bodies
whose masses were 1

2 , 1
10 , 1

100 , 1
1000 , etc., of the mass of this kilogram; in other

words, to construct a set of weights.

1.2.3 Method of duplicating the standard kilogram

To obtain masses exactly equal to the standard kilogram the method of proce-
dure is as follows. The standard cylinder is placed on one pan A of a balance
(Fig. 3),–an instrument which consists essentially of a beam mn, supported on
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a knife edge C, and carrying two pans A and B. Any convenient objects, such
as shot, paper, etc., are then added to the pan B until the beam balances in
the horizontal position, a condition which is indicated by the coincidence of the
pointer P with the matk O. The standard is then removed from A and replaced
by the body which is desired to make equivalent to it. If the pointer is now
found to come back exactly to the mark O, the body is considered to have a
mass of one kilogram. If the the pointer does not return to O, the body is
altered (filled away of added to) until coincidence between P and O is exact.

1.2.4 Method of making a set of weights

To obtain bodies of mass equal to half a kilogram, it is only necessary to take
two pieces of metal as nearly alike as possible and file them down together,
always keeping them exactly equal to each other, until the balance shows that
the two together are exactly equivalent to the standard kilogra. In this way sets
of weights may be made which contain any desired masses, e.g. 500 g., 200 g.,
100 g., 50 g., 10 g., 1 g., 0.1 g., 0.01 g., 0.001 g., etc.

1.2.5 Method of weighing a body of unknown mass

With the aid of such a set of standard weights, the determination of the mass
of any unknown body is made by first placing the body upon the pan A and
counterpoising with shot, paper, etc., then replacing the unknown body by as
many of the standard weights as are required to again bring the pointer back
to O. The mass of the body is equal to the sum of these standard weights. This
is the rigorously correct method of making a weighing, and is called the method
of substitution.

If a balance is well constructed, however, a weighing may usually be made
with sufficient accuracy by simply placing the unknown body upon one pan and
finding how many standard weights must then be placed upon the other pan
to bring the pointer again to O. This is the usual method of weighing. It gives
correct results, however, only when the knife edge C is exactly midway between
the points of support m and n of the two pans. The method of substitution, on
the other hand, is independent of the position of the knife edge.

1.3 Density

1.3.1 Definition of density

When equal volumes of different substances, such as lead, wood, iron, etc., are
weighed in the manner described abouve, they are found to have widely different
masses. The term “density” is therefore introduced to denote the mass of unit
volume of a substance.

In the C.G.S. system the cubic centimeter is taken as the unit of volume and
the gram as the unit of mass. Hence we say that in this system the density of
water is 1 g

cm3 , for it will be remembered that the gram was taken as the mass
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of one cubic centimeter of water. Unless otherwise expressly stated, density is
now universally understood to mean density in C.G.S. units, i.e. the density of
a substance is the weight in grams of one cubic centimeter of that substance.
For example, if a block of cast iron 3 cm. wide, 8 cm. long, and 1 cm thick has
a mass of 177.6 g., then, since there are 24 cm3 in the block, the mass of 1 cm3,
i.e. the density, is equal to 177.6

24 of 7.4.
The density of some of the most common substances is given in table 1.4.

Table 1.4: Densities of Liquids and Solids ( g
cm3 )

Alcohol 0.79 Hydrochloric acid 1.27
Carbon bisulphide 1.29 Mercury 13.6
Glycerine 1.26 Olive oil 0.91
Aluminum 2.58 Lead 11.3
Brass 8.5 Nickel 8.9
Copper 8.9 Oak 0.8
Cork 0.24 Pine 0.5
Glass 2.6 Platinum 21.5
Gold 19.3 Silver 10.53
Iron (cast) 7.4 Tin 7.29
Iron (wrought) 7.86 Zinc 7.15

1.3.2 Relation between mass, volume, and density

Since the volume of a body is equal to the number of cubic centimeters which
it contains, and since its density is by definition the number of grams in one
cubic centimeter, its mass, i.e. the total number of grams which it contains,
must evidently be equal to its volume times its density. Thus, if the density of
iron is 7.4 and if the volume of an iron body is 100 cm3, the mass of this body
in grams must equal (7.4)(100) = 740. To express this relation in the form of
an equation, let M represent the mass of a body, i.e. its total number of grams;
V its volume, i.e. its total number of cubic centimeters; and D its density, i.e.
the number of grams in one cubic centimeter; then

D =
M

V
, or M = V D, or V =

M

D
(1.1)

This equation is merely the algebraic statement of the definition of density.

1.3.3 Distinction between density and specific gravity

The term “specific gravity” is used to denote the ratio between the weight of a
body and the weight of an equal volume of water. Thus, if a cubic centimeter of
iron weighs 7.4 times as much as a cubic centimeter of water, its specific gravity
is 7.4. But the density of iron in C.G.S. units is 7.4 g

cm3 , for by definition density
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in that system is the mass per cubic centimeter. It is clear, then, that density
in C.G.S. units is numerically the same as specific gravity.

Specific gravity is the same in all systems, since it simply expresses how
many times as heavy a body is an equal volume of water. Density, however,
which we have defined as the mass per unit volume, is different in different
systems.

Since we shall henceforth use the term “density” to signify exclusively density
in C.G.S. system of units, we shall have little further use in this book for the
term “specific gravity.”1

1.3.4 Questions and problems

1. A tank is 8 by 4 by 10.5 cm. What weight of water can it hold?

2. If a rectangular block of wood 5 by 4 by 20 cm. weighs 200 g., what is the
density of wood?

3. Find the weight of a liter of mercury. (See table 1.4)

4. How many cm3 in a block of zinc weighing 40 g.?

5. Would you attempt to carry home a block of gold the size of a peck
measure? (Consider a peck equal to 8 l.)

6. Find the volume of a block of pine weighing 80 g.

7. The mean density of the earth id 5.53. Its radius is 6370 km. What is its
weight in metric tons? (A metric ton is 1000 kilos, about 22oo lb.)

8. Find the volume in liters of a block of platinum weighing 45.5 kilos.

9. Find the density of a steel sphere of radius 1 cm. and weighing 32.7 g.

10. One kilogram of alchol is poured into a cylinder vessel and fills it to a
depth of 8 cm. Find the diameter of the cylinder.

11. A capillary glass tube weighs 0.2 g. A thread of mercury 10cm. long is
drawn into the tube, when it is found to weigh 0.6 g. Find the diamter of
the capillary tube.

12. Find the length of a lead rod 1 cm. in diameter and weighing 1 kg.

1Laboratory exercises on length, mass, and density measurements should accompany or
follow this chapter. See, for example, Experiments 1, 2, and 3 of the authors’ manual.
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Chapter 2

Force and Motion

2.1 Definition and Measurement of Force

2.1.1 Distinction between a gram of mass and a gram of
force

The SI unit of force is known as the newton (N) and is defined as the force
required to accelerate a mass of one kilogram at 1 m

s2 . If a one kilogram mass
is held in the outstretched hand, a downward pull upon the hand is felt. If the
mass is 50 kilograms. instead of 1, this pull is so great that the hand cannot be
held in place. The cause of this pull is an attractive force which the earth and
the mass exert upon each other. In fact, there is a mutual attraction between
all the mass of the Universe.

Unfortunately, in common conversation we often fail altogether to distinguish
between the concept of mass and the concept of force, and use the same word
gram to mean sometimes a certain amount of matter. That the two ideas are,
however, wholly distinct is evident from the consideration that the amount of
matter in a body is always the same, no matter where the body is in the universe,
while the pull of the earth’s surface. It will help to avoid confusion if we reserve
the simple term “gram” to denote exclusively “gram of force” wherever we have
in mind the pull of the earth upon this mass.

2.1.2 Method of measuring force

When we wish to compare accurately the pulls exerted by the earth upon dif-
ferent masses, we find such sensations as those described in the preceding para-
graph very untrustworthy guides. An accurate method , however, of comparing
these pulls is that furnished by the stretch produced in a spiral spring. Thus the
pull of the earth upon a gram of mass at its surface will stretch a given spring
a given distance ab (Fig. 4). The pull of the earth upon two grams of mass is
found to stretch the spring a larger distance ac, upon three grams a still larger
distance ad, etc. We have only to place a fixed surface behind the pointer and

11
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Magnitude
Direction
Length
Direction

make lines upon it corresponding to the points to which it is stretched by the
pull of the earth upon different masses in order to graduate a spring balance
(Fig. 5), so that it will thenceforth measure the values of any pulls exerted
upon it, no matter how these pulls may arise. Thus if a man stretch the spring
so that the pointer is opposite the mark corresponding to the pull of the earth
upon two grams of mass, we say that he exerts three grams of force, etc. The
spring balance thus becomes an instrument for measuring forces.

2.1.3 The gram of force varies slightly in different locali-
ties

With the spring balance it is easy to verify the statement made above that the
force of the earth’s pull decreases as we reced from the earth’s surface; for upon
a high mountain the stretch produced by a given mass is indeed found to be
slightly less than at the sea level. Furthermore, if the balance is simply carried
from point to point over the earth’s surface, the stretch is still found to vary
slightly. For example, in Chicago it is about one part in 1000 less than it is at
Paris, and near the equator it is five parts in 1000 lass than it is near the pole.
This is due in part to the earth’s rotation, and in part to the fact that the earth
is an oblate spheroid, so that in going from the equator toward the pole we are
coming closer and closer to the center of the earth. We see, therefore, that the
gram of force is not an absolutely invariable unit of force.

2.2 Composition and Resolution of Force

2.2.1 Graphic representation of force

A force is completely defined when its magnitude and direction, and the point at
which it is applied are given. Since the three characteristics of a straight line are
its length, its direction, and the point at which it starts, it is obviously possible
to represent forces by means of straight lines. Thus, if we wish to represent the
fact that a force of 8 lb., acting in an easterly direction, is applied at the point
A (Fig. 6), we draw a line 8 units long, beginning at the point A and extending
to the right. The length of this line then represents the magnitude of the force;
the direction of the line, the direction of the force; and the starting point of the
line, the point at which the force is applied.

Again, if we wish to represent graphically the fact that two forces are acting
simultaneously upon a body A (Fig. 7), one being a force of 10 lb. acting
toward the east, and the other a force of 15 lb. directed toward the north, we
have simply to draw two lines from the point A,–one 10 units long and running
toward the right, and the other 15 units long running toward the top of the
page. These two lines represent completely the two forces in question.
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Direction
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Equilibrant

2.2.2 Resultant of two forces acting in the same line

The resultant of two forces is defined as that single force which will produce the
same effect upon a body as is produced by the joint action of the two forces.

In general, when a single force acts upon a body which is free to move,
the body moves in the direction in which the force acts; but if two oppositely
directed forces act simultaneously upon the same body, as when two boys pull
in opposite directions on a cart, the effect upon the motion of the cart is just
the same as though it were acted upon by a single force equal to the difference
between the two forces and acting in the direction of the grater force. For
example, if one boy pulls back on the cart with a force of 50 lb., while another
pulls forward with a force of 75 lb., the effect upon its motion is obviously the
same as though it were pulled forward with a single force of magnitude 25 lb.;
i.e. the resultant of two oppositely directed forces applied at the same point is
equal to the difference between them, and its direction is that of the greater force.

if the two forces act in the same direction, the effect upon the motion of the
body which they act is that same as though one single force equal in magnitude
to the sum of the two forces were acting in their common direction; i.e. the
resultant of two similarly directed forces applied at the same point is equal to
the sum of the two forces.

2.2.3 The resultant of forces acting at an angle

If a body at A is pulled toward the east with a force of 10 lb. (represented in
Fig 8 by the line AC) and toward the north with a force of 10 lb. (represented
in the figure by the line AB), the effect upon the motion of the body must, of
course, be the same as though some single force acted somewhere between AC
and AB. If the body moves under the action of the two equal forces, it may be
seen from symmetry that it must move along a line misway between AC and
AB, i.e. along the line AR. This line therefore indicates the direction of the
resultant of the forces AC and AB.

If the two forces are not equal, the the resultant will lie nearer the larger
force. As a matter of fact, the experiment of the following graph will show that
if the two given forces are represented in direction and in magnitude by the lines
AB and AC (Fig. 9), then their resultant will be exactly represented both in
direction and magnitude by the diagonal AR of the parallelogram of which AB
and AC are sides.

2.2.4 Equlibrant

When two or mote forces act upon a body in such a way that no motion results,
there is said to be equilibrium. Any single force which will preven the motion
which one of more forces tends to produce is called an equilibrant . Hence the
equilibrant of two or more forces is a force equal and opposite to their resultant.
Thus if AR (Fig. 9) is the resultant of the forces AB and AC, then AE, taken
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Component equal in length to AR but opposite in direction, is the equilibrant of AB and
AC.

Let the rings of two spring balances be hung over the nails B and C in the rail at

the top of the blackboard (Fig. 10), and let the weight W be tied near the middle of

the string joining the hooks of the two balances. The force of the earth’s attraction

for the weight W is then exactly equal and opposite to the resultant of the two forces

exerted by the spring balances; i.e. OW is the equilibrant of the forces exerted by

the balances. Let the lines OA and OD be drawn upon the blackboard behind the

string, and upon these lines let the distances Oa and Ob be laid off which contain as

many units of length as there are units of force indicated by the balances E and F

respectively. Then let a parallelogram be constructed upon Oa and Ob as sides. The

diagonal of this parallelogram will be found in the first place to be exactly vertical,

i.e. in the direction of the resultant, since it is exactly opposite of OW ; and in the

second place the length of the diagonal will be found to contain as many units of

length as there are units of force in the earth’s attraction for W (W must, of course,

be expressed in the same units as the balance reading). Therefore the diagonal OR

represents in direction, in magnitude, and in point of application the resultant of the

two forces represented by Oa and Ob.

In order to test this conclusion more completely, let balances be hung from B and

G (Fig. 10). When the parallelogram is constructed as before, its diagonal will be

found to have the same length and the same direction as the first. This was to have

been expected, since the resultant of Oa and Ob must be in every case equal and

opposite to the force of the earth’s attraction upon W .

2.2.5 Component of a force

Whenever a force acts upon a body in some other direction than that in which
the body is free to move. it is clear that the full effect of the force cannot be
spent in producing motion. For example, suppose that a force is applied in the
direction OR (Fig. 11) to a car on an elevated track. Evidently OR produces
two distinct effects upon the cat: on the one hand it moves the car along the
track, and on the other it presses down against the rails. These two effects might
be produced just as well by two separate forces acting in the directions OA and
OB respectively. The value of the single force which, acting in the direction OA,
will produce the same motion of the car on the track as is produced by OR,
is called the component of OR in the direction OA. Similarly the value of the
single force which, acting in the direction OB, will produce the same pressure
against the rails as produced by the force OR, is called the component of OR
in the direction OB. In a word, the component of a force in a given direction is
the effective value of the force in that direction.

2.2.6 Magnitude of the component of a force in a given
direction

Since, from the definition of component just given, the two forces, one to be
applied in the direction OA and the other in the direction OB, are together to



2.2. COMPOSITION AND RESOLUTION OF FORCE 15

be exactly equivalent to OR in their effect on the car, their magnitudes must
be represented by the sides of a parallelogram of which OR is the diagonal. For
in section 2.2.3 it was shown that if any one force is to have the same effect
upon a body as two forces. Hence conversely, if two forces are to be equivalent
in their joint effect to a single force, they must be sides of the parallelogram
of which the single force is the diagonal. Hence the following rule: To find the
component of a force in any given direction, construct upon the given force as a
diagonal a rectangle the sides of which are respectively parallel and perpendicular
to the direction of the required component. The length of the side which is
parallel to the given direction represents the magnitude of the component which
is sought. Thus, in the above illustration, the line Om completely represents
the component of OR in the direction of OA, and the line On represents the
component of OR in the direction of OB.

It will be seen from Fig. 11 that as OR becomes more and more nearly
parallel to the track, the component of OR along the track becomes larger and
larger, while the component perpendicular to the track becomes smaller and
smaller. When OR is parallel to the track, the component at right angles to
the track becomes zero. When OR is perpendicular to the track, its component
parallel to the track becomes zero.

2.2.7 Component of weight which is parallel to an inclined
plane

To apply the test of experiment to the conclusions of the preceding paragraph,
let a wagon be placed upon an inclined plane (Fig. 12), the height of which,
BC, is equal to one half its length AB. In this case t he force acting on the
wagon is the weight of the wagon, and its direction is downward. let this force
be represented by the line OR. Then by the construction of the preceding
paragraph, the line Om will represent the value of the force which is pulling
the carriage down the plane, and the line On the value of the force which is
producing pressure against the plane. Now since the triangle ROm is similar to
the triangle abc, their sides being mutually perpendicular, we have

Om

OR
=

bc

ab

i.e. in this case, since bc is equal to one half of ab, Om is one half of OR.
Therefore the force which is necessary to prevent the wagon from slaiding down
the plane should be equal to one half its weight. To theat this conclusion, let
the wagon be weighed on the spring balance and then placed on the plane in
the manner shown in the figure. The pull indicated by the balance will, indeed,
be found to be one half of the weight of the wagon.

The equation Om
OR = bc

ab shows that in general the force which must be applied
to a body to hold it in place upon an inclined plane bears the same ratio to the
weight of the body that the height of the plane bears to its length.
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2.2.8 Component of gravity effective in producing the mo-
tion of a pendulum

When a pendulum is drawn aside from its position of rest (Fig. 13), the force
acting on the bob is its weight, and the direction of this force is vertical. Let
it be represented by the line OR. The component of this force in the direction
in which the bob is free to move is On, and the component at right angles to
this direction is Om. The second component Om simply produces stretch in the
string and pressure upon the point of suspension. The first component On is
alone responsible for the motion of the bob. A consideration of the figure shows
that this component becomes larger and larger the greater the displacement of
the bob. When the bob is already beneath the point of support the component
producing motion is zero. Hence the pendulum can permanently at rest only
when its bob is directly beneath the point of suspension.1

2.2.9 Questions and problems

1. Represent graphically a force of 20 lb. acting southeast and a force of 25
lb. acting southwest at the same point. What will be the magnitude of
the resultant, and what will be its approximate direction?

2. The engines of a steamer can drive it 12 mii. an hour. How fast can it go
up stream in which the current is 5 ft. per second? How fast can is come
down stream?

3. The wind drives a steamer east with a force which would carry it 12 mi.
per hour, and its propeller is driving it south with a force which would
carry it 15 mi. per hour. what distance will it actually travel in an hour?
Draw a diagram to represent the exact path.

4. A boy pulls a loaded sled weighing 200 lb. up a hill which rises 1 ft. in 5.
Neglecting friction, how much force must he exert?

5. What force will be required to support a 50-lb.. ball on an inclined plane
of which the length is 10 times the height?

6. A boy is able to exert a force of 75 lb. How long an inclined plane must
he have in order to push a truck weighing 350 lb. up to a doorway 3 ft.
about the ground?

2.3 Gravitation

2.3.1 Newton’s law of universal gravitation

In order to account for the fact that the earth pulls bodies toward itself, and at
the same time to account for the facts that the moon and the planets are held in

1It is recommented that the formal study of the laws of the pendulum be reserved for
laboratory work (see Experiment 17, authors’ manual).
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their respective rorbits around the earth and sun, Sir Isaac newton (1642-1727)
first announced the law which is now known as the law of universal gravitation.
This law asserts first that any two bodies in the universe attracts every other body
with a force which varies inversely as the square of the distance between them.
This means that if the distance between the two bodies considered is doubled,
the force will become only one fourth as great; if the distance is made three,
four, or five times as great, the force will be reduced to one ninth, on sixteenth,
or one twenty-fifth of its original value, etc. This law of mutual attraction may
be expressed using the formula This has been added.

~F =
Gm1m2

d2
(2.1)

where ~F is the force of attraction between mass m1 and mass m2, and d is
the distance between them. G is called the gravitational constant and G =
6.67× 10−11 N·m2

kg2 .

2.3.2 Variation of the force of gravity with distance abouve
the earth’s surface

If a body is spherical in shape and of uniform density, it attracts external bodies
with the same force as though its mass were concentrated at its center. Since,
therefore, the distance from the surface to the center of the earth is about 40,000
miles, we learn from newton’s law that a body 4000 miles above the earth’s
surface would weigh one forth as much as it does at the surface. It will be seen,
then, that if a body be raised but a few feet or even a few miles above the
earth’s surface, the decreases in its weight must must be a very small quantity,
for the reason that a few feet or a few miles is a small distance compared with
4000 miles. As a matter of fact, a body which would weigh 1000 g. at sea level
would weigh about 998 g. at the top of a mountain 4 miles high.

2.3.3 Center of gravity

From the law of universal gravitation it follows that every particle of a body
upon the earth’s surface is pulled toward the earth. It is evident that the sum of
all these pulls on the particles of which the body is composed must be equal to
the total pull of the earth upon the body, i.e. to the weight of the body. Now it
is always possible to find on a single point in a body at which a single force equal
in magnitude to the weight of the body and directed upward can be applied so
that the body will remain at rest in whatever position it is placed. This point
is called the center of gravity of the body. Since this force counteracts entirely
the weight of the body, it must be equal and opposite of the resultant of all the
small forces which gravity is exerting upon the different particles of the body.
Hence the center of gravity may be defined as the point of application of the
resultant of all the little downward forces; i.e. it is the point at which the entire
weight of the body may be considered as concentrated. The earth’s attraction for
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a body is therefore always considered not as a multitude of little forces but as
one single force F (Fig. 14) equal to the weight of the body and applied at its
center of gravity G.

2.3.4 Method of finding center of gravity experimentally

From the above definition it will be seen that the most direct way of finding the
center of gravity of any flat body, like that shown in Fig. 15, is to find the point
upon which it will balance.

To illustrate another method for finding the center of gravity of the zinc, let
it be supported from a pin stuck through a hole near its edge, e.g. b (Fig. 15).
Let a plumb line be hung from the pin, and let a line bn be drawn through b on
the surface of the zinc, parallel to and directly behind the plumb line. Let the
zinc be hung from another point a, and another line am drawn in similar way.

The point of intersection of the two lines is at the center of gravity. For since
the earth’s attraction may be considered as a single force applied at the center
of gravity, the zinc can remain at rest only when the center of gravity is directly
beneath the oint of support. It must, therefore, lie somewhere on the line am.
For the same reason it must lie on the line bn. But the only point which lies on
both of these lines is their point of intersection G.

2.3.5 Stable equilibrium

A body is said to be in stable equilibrium if it tends to return to its origional
position when given a slight displacement. A endulum, a chair, a sube resting
on its side, a cone resting on its base, are illustrations.

In general, a body is in stable equilibrium whenever a slight displacement
thends to raise its center of gravity. Thus, in Fig. 16 all of the bodies A,B,C, D
are in stable equilibrium, for in oorder to overturn any one of them, its center
of gravity G must be raised through the height ai. If the weights are all alike,
that one will be most stable for which ai is greatest.

The condition of stable equiligrium for bodies which rest upon a horizontal
plane is that a vertical line through the center of gravity shall fall within the
base, the base being defined as the polygon formed by connecting the point at
which the body touches the plane, as ABC (Fig. 17); for its is clear that in such
a case a slight displacement must raise the center of gravity along the arc of
which OG is the radius. If the vertical line drawn through the denter of gravity
fall outsice the base, as in Fig. 18, the body must always fall.

The condition of stable equilibrium for bodies supported from a single point
is that the point of support be above the center of gravity. For example, the
beam of a balance cannot be in stable equilibrium so that it will return to the
horizontal position when slightly displaced, unless its center of gravity g (Fig.
3, p.7) is below the knife edge C.
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2.3.6 Neutral equilibrium

A body is said to be in neutral equilibrium when, after a slight displacement,
it tends neither to return to its original position nor to move farther from it.
Examples of neutral equilibrium are a spherical ball lying on a smooth plane,
a cone lying on its side, a wheel free to rotate about a fixed axis through its
center, or any body is in neutral equilibrium when a slight displacement neither
raises nor lowers its center of gravity.

2.3.7 Unstable equilibrium

A body is in unstable equilibrium when after a slight displacement it tends to
move farther from its original position. A cone balanced on its point or an egg
on its end are examples. In all such cases a slight displacement always lowers
the center of gravity and the motion when continues until the center of gravity
is as low as circumstances will permit. The condition for unstable equilibrium
in the cases of a body supported by a point is that the center of gravity shall
be above the point of support. Fig 19 illustrates the three kinds of equilibrium.

2.3.8 Questions and problems

1. A body weighs 100 kg. at the earth’s surface. What will it weigh 4000 mi.
above the surface? What will it weigh 1000 mi. above the surface? (Take
the earth’s radius as 4000 mi.)

2. What is the object of ballast in a ship?

3. Explain why the toy shown in Fig. 20 will not lie upon its side, but instead
rises to the vertical position. Does the center of gravity actually rise?

4. If a lead pencil is balanced on its point on the finger it will be in unstable
equilibrium, but if two knives are stuck into it, as in stable equilibrium.
Why?

5. Why does a man lean forward when he climbs a hill?

2.4 Uniformly Accelerated Motion

2.4.1 Uniform motion

When a body moves across a distances during a period of time its motion is said
to be uniform if the ratio of distance moved to the time passed during that move
is equal for all moments in time during the body’s motion. Thus the motion
of a train moving between stations can be considered to be generally uniform
if one does not consider the periods during which the train’s motion changes
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Velocity during its departing of one station and its arrival at another. The motion of a
body is normally given as a function of time t, f(t).

f(x) = fx(t) + fy(t) + fz(t)

For now we will concern ourselves with motion along a single axis, namely the
x axis, our function will be fx(t).

2.4.2 Velocity

When the motion of a body is uniform, its velocity is defined as the distance
which it traverses per unit of time. This is called constant velocity. When the
motion of a body is not uniform, its velocity at any instant is defined as the
distance which it would travel in a given period of time if at that instant its
motion were to become uniform, also called instantaneous velocity. Sometimes
we are only concerned with the distance a body travels and the period of time
that travel took. This is called the average velocity vavgand is found by taking
the difference between the initial velocity ~vi and the final velocity ~vf over the
period t

vavg =
~vi − ~vf

t
(2.2)

2.4.3 Acceleration

If a train from rest has a velocity of one meters per second at the end of the first
second, a velocity of two meters per second at the end of the second second, of
three meters per second at the end of the third second, etc., its motion is said to
be uniformly accelerated. The gain in the velocity of such a body per second is
called its acceleration; e.g. in the case above, the acceleration is one meter per
second per second or 1m

s2 . In general, then, acceleration is defined as the rate at
which velocity changes. If the motion is uniformly acceleration, its acceleration
is equal to the velocity gained per second.

2.4.4 Relative distances traversed by a falling body is one,
two, three, four, etc., seconds

The simplest case of uniformly accelerated motion is that of a falling body.
Since, however, a freely falling body acquires velocity so rapidly that it is difficult
to make observations upon it directly, Galileo hit upon the plan of studying the
laws of falling bodies by observing the motion of a ball rolling down an inclined
plane. He found that a body falls exactly 4 times as far in 2 seconds as in 1,
9 times as far in 3 seconds, 16 times as far in 4 seconds, 25 times as far in 5
seconds, etc.

To test the correctness of these results, let a grooved board about 16 ft. long
be supported as in Fig. 22, one end being about a foot and a half above the
other. Let supports be introduced near the middle, if necessary, so that the
plane will not sag. Let the metronome, or clock beating seconds, be started,
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and the marble A released at the instant of one click of the metronome. Let
the block B be placed at the such a distance down the incline that the click
produced by the impact of the ball upon it coincides exactly with, for example,
the fourth click of the metronome. The time of fall is then three seconds. Let
the distance traversed be measured. Then let B be placed at a distance equal to
4
9 of this distance and the experiment repeated. The ball will strike B exactly
at the end of two seconds. At a distance equal to 1

9 of the first distance the
impact will occur at the end of one second, etc. An interesting variation of this
experiment is to have three grooves, three marbles, and three blocks B set at
distances 1, 4, and 9 from the common starting point. If the marbles are all
released at the instant of one click, a marble will strike a block at the exact
instant of each of the three succeeding clicks.

Figure 2.1 contains a graph of two values. The x axis represents time while
the y axis on the left side represents the velocity of the moving body during the
period in question and the right side represents the distance traveled. From the
graph we can see that the body is accelerating because its velocity is increasing
by 9.81m

s each second. We can also see that from the distance graph that the
distance traveled during each second increases by 9.81m from the second before
it.
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2.4.5 Velocity acquired per second by the marble

In the last paragraph we investigated the distances traversed in one, two, three,
etc., seconds. Let us now investigate the velocities acquired on the same inclined
plane in one, two, three, etc., seconds.

Let a second grooved board M be placed at the bottom of the incline, in
the manner shown in Fig. 22. To eliminate friction it should be given a slight
slant, just sufficient to cause the ball to roll along it with uniform velocity. Let
the ball be started at a distance D up the incline, D being the distance which it
was found in the last experiment to roll during the first second. It will then just
reach the bottom of the incline at the instant of the second click. Here it will
be freed from the accelerating force of gravity, and will therefore more along the
lower board with the velocity which it had at the end of the first second. It will
be found that when the block is placed at a distance exactly equal to 2D. If
the ball is started at a distance 4D up the incline, it will take it two seconds to
reach the bottom, and it will roll a distance 4D in the next second; i.e. in two
seconds it acquires a velocity 4D. In three seconds it will be found to acquire a
velocity 6D, etc.

The experiment shows, first, that the increase in velocity each second is the
same, namely 2D, and that the motion is therefore uniformly accelerated. Fur-
thermore, it shows that uniformly accelerated motion the acceleration (velocity
gained per second) is measured by twice the distance passed over in the first
second.

2.4.6 Distances traversed during successive seconds

If we subtract from the distance traversed in two seconds the distance traversed
in one second, we get 4D − D = 3D, which is the distance traversed during
the second second. Similarly, if subtract the distance traversed in two seconds
from the distance traversed in three seconds, we obtain 9D − 4D = 5D, which
is the distance traversed turing the third second. In the same way the distance
traversed in the fourth second is 7D, etc.

2.4.7 Tabular statement of the laws of falling bodies

Putting together the results of the last three paragraphs, we obtain the following
table, in which D represents the distance fallen the first second.

Since D was shown in section 2.4.5 to be equal to one half the velocity
acquired per second, i.e. one half the acceleration a, we have at once, by sub-
stituting 1

2a for D in the last row of the table,

v = at (2.3)

s =
1
2
a2(2t− 1) (2.4)

S =
1
2
at2 (2.5)
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Table 2.1: Falling Body Data

Number Velocities at Spaces Fallen Total
of the End of Each Second Distance

Seconds Each Second Fallen
1 2D 1D 1D
2 4D 3D 4D
3 6D 5D 9D
4 8D 7D 16D
...

...
...

...
t 2tD (2t− 1)D t2D

These formulas are simply the algebraic expression of the facts brought out
by our experiment; but the reasons for these facts may be seen as follows.

Since in uniformly accelerated motion the acceleration a is the velocity
gained per second, it follows at the once that the velocity v gained in t sec-
onds is v = at. This is bormual 2.3 above.

To obtain formula 2.5 we have only to consider that the total distance S
traversed by any moving body is t seconds is the average velocity multiplied by
t, the number of seconds. But the average in uniformly accelerated motion is the
mean of the initial and final velocities. Hence, if the body from rest and acquires
in t seconds a velocity v, its average velocity is 0+v

2 = v
2 . Hence the space

traversed is given by S = v
2 t. By substituting in this equation v = at we get,

S = 1
2at2. To obtain 2.4 we have only to subtract from the space traversed in t

seconds that traversed in (t−1) seconds. Thus s = 1
2at2− 1

2a(t−1)2 = 1
2a(2t−1).

To illustrate the use of these results, suppose that a body rolling down an
inclined plane is known to move over 10 cm. the first second, and that we are
required to find 2.3 what velocity it will have at the end of the tenth second, 2.4
how far it will roll during the tenth second, and 2.5 how far it will have rolled
during the 10 seconds.

Since the acceleration is (2)(10) = 20, the answers are firstly v = at =
(20)(10) = 200 cm

s secondly s = 1
2a(2t− 1) = 1

220(20− 1) = 190 cm. and thirdly
S = 1

2at2(20)(100) = 1000 cm.

2.4.8 Acceleration of a freely falling body

If in the above experiment the slope of the plane be made steeper, the results
will be precisely the same, except that the acceleration has a larger value. If
the board is tilted until it becomes vertical, the body becomes a freely falling
body. In this case the distance traversed the first second is found to be 490
cm., or 16.08 ft. Hence the acceleration expressed in centimeters is 980, in feet
32.16. This acceleration of free fall, called the acceleration of gravity, is usually
denoted by the letter g.
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To illustrate the use of this constant, suppose we wish to know how far a
body will fall in 10 seconds. We have

S =
1
2
gt2 =

1
2
(980)(100) = 49, 000cm. = 490m.

2.4.9 Rates of fall of different bodies

It is a fact of familiar observation that very light bodies, such as feathers and
bits of paper, fall bery much more slowly than pieces of wood of iron. Previous
to Galileo’s time it was taught in the schools that heavy bodies fall toward the
earth with “ velocities proportional to their weights.” Galileo demonstrated
thte incorrectness of this view by his famous experiments conducted from the
leaning tower of Pisa (Fig. 23. In the presence of the professors and students of
the University of Pisa he dropped ball s of different sizes and materials from the
top of the tower, 180 feet high, and showed that they fell in pratically the same
time. He showed that even very light bodies, like paper, fell with velocities which
approached more and more nearly those of heavy bodies the more compactly
they were wadded together. He inferred from these experiments that all bodies,
even the lightest, would fall at the same rate were it not for the resistance offered
by the air,–an inference which could not be verified at that time because the air
pump had not yet been inventer. After its invention, sixty years later, by Otto
von Guericke, Galileo’s inference was verified in the following way. A feather
and a coin were placed in a glass tube four or five feet long, and the air pumped
out. When the tube was then inverted the coin and the feather fell side by side
from the top ot the bottom (Fig. 24).

2.4.10 Velocity acquired in falling from a given height

If we wish to find with what velocity a body which falls from a given height S,
say 20,000 cm., will strike the earth, we can first get the time of descent from
2.5, 2.4.7, and then get the velocity from 2.3, 2.4.7. Thus from 2.5,

t2 =
(2)(20000)

980
, or t =

√
(2)(20000)

980
,

and from 2.3,

v = 980t = 980

√
(2)(20000)

980
=

√
(2)(980)(20000) = 6260 cm.

If we write the symbols instead of the numbers, we see that the formual con-
nection v and S is

v =
√

2gS (2.6)
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2.4.11 Height to which a body projected vertically upward
will rise

Since the earth emparts to a freely falling body a downward velocity of 980
mc. per second, a body shot vertically upward must lose 980 cm. of velocity
during each second of its ascent. Hence the number of seconds during which it
is rising is obtained by dividing its initial velocity by 980. The time of ascent t
is therefore given in terms of g and the initial velocity by t = v

g .
To find the height of ascent, we have only to consider that the total distance

traveled is that average velocity times the time. But since the hody starts with
a velocity v and reaches the top of its path with a velocity 0, the average velocity
during the ascent must be v+0

2 = v
2 . Hence the distance S through which it

tises is given by
S =

v

2
t.

If we substitute in this value of t given above, namely v
g , we get

S =
v2

2g
, or v =

√
2gS (2.7)

Thus, if a body is shot upward with a velocity of 1000 cm
s , equation 2.7 tells

us that it will rise to a height of 10002

980s = 510.2 cm. Or if a body is seen to rise
to a height of 500 m., we know from the second form of 2.7 that it must have
been shot upward with a velocity of v =

√
(2)(980)(50000) = 9366 cm

s .
We learn also from equation 2.7 that the velocity with which a body must

be projected upward to rise to a given height is the same as the velocity whish
it will acquire in falling from the same height (see equation 2.6, 2.4.10).

2.4.12 Questions and problems

Go back and add these questions

2.5 Newton’s laws of Motion

2.5.1 First law–Inertia

In 1686 Sir Isaac Newton formulated three statements which embody the results
of universal observation and experiment on the relations which exist between
force and motion. The statement of the first law is: Every body continues in its
state of rest or uniform motion in a straight line unless impelled by external force
to change that state. This statement is based upon such familiar observations as
the following. Bodies on a moving train tend to move toward the forward end
when the train s stops moving, and toward the rear end when the train starts
moving; i.e. they tend in each case to continue in their previous state whether
that were one of rest of motion. That a moving body also tends to move on in
a straight line in the direction of its motion is seen from such facts as that mud
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Inertia
Momentum

flies off tangentially from a rotating carriage wheel, or water from a whirling
grindstone. This property which all matter possesses of resisting any attempt
to start it if at rest, to stop it if in motion, or in any way to change either the
direction or amount of its motion, is called inertia.

2.5.2 Centrifugal force

It is inertia alone which prevents the planets from falling into the sun; which
causes a rotating sling to pull on the hand until the stone is released, and which
then causes the stone to fly off tangentially. It is inertia which makes rotating
liquids move out as far as possible from the axis of rotation (Fig. 25); which
makes fly wheels sometimes burst; which makes the equatorial diameter of the
earth greater than the polar; which makes the heavier milk move out farther
than the lighter cream in the dairy separator, etc. Inertia manifesting itself in
this tendency of the parts of rotating systems to move away from the center of
rotation is called centrifugal force.

2.5.3 Momentum

The quality of motion possessed by a moving body is defined as the product
of the mass and the velocity of the body. It is commonly called momentum.
Thus a ten gram bullet moving 50,000 cm. per second has 500,000 units of
momentum. A thousand-kilogram pile driver moving 1000 cm. per second has
1,000,000,000 units of momentum, etc. We shall always express momentum in
C.G.S. units, i.e. as a product of grams by centimeters per second.

2.5.4 Second law

Newton’s second law is stated thus: Rate of change of momentum is proportional
to the force acting, and takes place in the direction in which the force acts. While
the first law asserted that no change in the momentum of any body takes place
unless a force acts upon it, the second law goes a step farther and asserts that
two units of force will produce in one second exactly twice as much momentum
as does one unit, one half as much as does four unite, etx. Now every one knows
from his experience that if he pulls for one second upon a sled, a boat, or any
object free to move, the velocity imparted is greater, the greater the pull. That
the velocity imparted is directly proportional to the pull is the essence of the
assertion contained in the second law, and this can be proved only by careful
experiments like the following.

let the grooved inclined plane shown in Fig. 22, p. 26 be raised a distance ab
(Fig. 26), just sufficient to cause the ball to roll down it with uniform velocity.
The let the same end be raised 20 cm. higher and the distance which the ball
rolls in three seconds be measured with the aid of a metronome, as in 2.4.4. In
this case the force which is urging the ball down the incline is the component
of the weight of the ball, parallel to the incline. But we proved in 2.2.7 that
this is the same fraction of weight of the body that the height of the plane is
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of its length; e.g. if the length ois 500 cm. the force acting to move the ball is
20
500 , or 1

25 , of the weight of the body. Now let the plane be lifted until d is 40
cm. higher than b. The force is not twice as great as before, since it is 2

25 of
the weight of the ball. Let the stop B (Fig. 22) be placed twice as far down the
incline. The ball will be found to reach it again in exactly three seconds.

We learn, then, that doubling the force without changing the mass has dou-
bled the momentum acquired in a given interval of time, since it has doubled the
distance which the body has traversed in that length of time. If now we were to
double the size of the ball but keep the height of the plane constant, we should
find that no change in the velocity acquired per second. This is indeed nothing
bu Galileo’s experiment which proved that, barring atmospheric resistance, all
bodies fall with the same accleleration. Hence, since the earth pulls two grams
with twice as much force as it pulls one, doubling the mass without changing the
velocity involves a coubling of the acting force. The two experiemnts taken to-
gether therefore furnish very satisfactory proof of the statement that, whatever
be the mass of the body, the momentym acquired by it per second is strictly
proportional to the acting force.

2.5.5 The dyne

Since the gram of force varies somewhat with locality, it has been found conve-
nient for scientific purposes to take the above law as the basis for the definition
of a new unit of force. It is called an absolute, or C.G.S unit, because it is
based upon the fundamental units of length, mass, and time, and is therefore
independent of gravity. It is named the dyne, and is defined as the force which
acting for one second upon any body imparts to it one unit of momentum.

2.5.6 A gram of force equivalent to 980 dynes

A gram of force was defined as the pull of the earth upon one gram of mass.
Since this pull is capable of imparting to this mass inone second a velocity of
980 cm. per second, i.e. a momentum of 980 units, and since a dyne is the force
required to produce in one second one unit of memtum, it is clear that the gram
of force is equivalent fo 980 dynes of force. The dyne is therefore a very small
unit, about equal to the force with which the earth attracts a cubic millimeter
of water.

2.5.7 Algebraic statement of the second law

If a force F acts for t seconds on a mass of m grams, and in so doing gives
it a velocity of v m

s , then the total momentum imparted in a time t is m~v, the
momentum imparted per second, we have

~F =
m~v

t
. (2.8)
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But since v
t is the velocity gained per second, it is equal to the acceleration a.

Equation 2.8 may therefore be written

~F = m~a (2.9)

This is merely stating in the form of an equation that the force is measured
by rate of change in momentum. Thus if an engine, after pulling for thirty
seconds on a train having a mass of 2,000,000 kg., has given it a velocity of
60 cm. per second, the force of the pull is 2, 000, 000, 000 60

30 = 4, 000, 000, 000
dynes. To reduce this force to grams we divide by 980, and reduce it to kilos
we divide further by 1000. hence the pull exerted by the engine on the train
= 400,000,000

980,000 = 4081 kg., or 4.081 metric tons.

2.5.8 Third law

Newton stated his third law thus: To carry action there is an equal and opposite
reaction. Since force is measured by rate at which momentum changes, this is
only another way of saying that whenever one body acquires momentum some
other body always acquires an equal and opposite momentum. Thus when a
man jumps from a boat to the shore, we all know that the boat experiences a
backward thrust; when a bullet is shot from a gun the gun recoils, of “kicks.”
The essence of the assertion of the third law is that the mass of the man times
his velocity is equal to the mass of the boat times its velocity, and that the mass
of the bullet times its velocity is equal to the mass of the gun times its velocity.
The truth of this assertion has been established by a great variety of careful
experiments. The law may be illustrated as follows.

Let a steel ball A (Fig. 27) be allowed to fall from a position C against
another exactly similar ball B. In ths impact A will lose all of its velocity and
B will move on to a position D which is at the same height at C. hence the
velocity acquired by B in the impact is the same as that which A possessed
before impact. B has therefore taken away from A exactly the same amount of
momentum at A has communicated to B.

It is not always easy to see at first that setting one body into motion involves
imparting an equal and opposite motion to some other body. For example, when
a gun is held against the earth and the bullet shot upward we are conscions only
of the moeion of the bullet. The other body is in theis case the earth and its
momentum is the same as that of the bullet. On account, however, of the
greatness of the earth’s mass its velocity is infinitesimal.

2.5.9 Questions and problems

Add in the questions



Chapter 3

Pressure In Liquids

3.1 Liquid Pressure Beneath a Free Surface

3.1.1 Proof of the existence of a force beneath the surface
of a liquid

If a long tube closed at the bottom is pushed down into a cylinder of water in
the manner shown in Fig. 29, and then left to itself, it will be seen to spring
instantly upward.

Evidently, then, the liquid must exert an upward force upon the bottom
of the tube. A moment’s thought will show that no special experiment was
necessary to demonstrate the existence of this force, for a boat or any other
body could not float on water if the liquid did not push up against its bottom
with sufficient force to neutralize its weight.

3.1.2 Relation between force and depth

To investigate more fully the nature of this force, we shall use a pressure gague
of the form shown in Fig. 30. If the rubber diaphragm whish is stretched across
the mouth of the thistle tube A is pressed in lightly with the finger the drop of
ink B will be observed to move forward in the tube T , but it will return again
to its first position as soon as the finger is removed. If the pressure of the finger
is increased, the drop will move forward a greater distance than before. We may
therefore take the amount of motion of the frop as a measure of the amount of
force acting on the diaphragm.

Now let A be pushed down first 2, then 4, then 8 cm. below the surface.
The motion of the index B will show that the force continually increases as the
depth increases.

Carefyl quantative measurements made in the laboratory on the exact rela-
tion between tyhe force and the depth will show that doubling the depth doubles
the force, tripling the depth triples the force, etc.; in other words, that the force

29
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is directly proportional to the depth1

To state this relationship algebraically, let F1 represent the force at some
depth Dv and F2 the force at some other depth D2; then

F1

F2
=

D1

D2
(3.1)

3.1.3 Force independent of direction

That there is a lateral as well as a vertical force beneath the surface of a liquid
is shown from the fact that water will rush into a boat through a hole in the
side as well as through a hole in the bottom.

To compare the amounts of these two forces on a given surface, let the
diaphragm A (Fig. 30) be pushed down to some convenient depth, e.g. 10 cm.,
and the position of the index noted. Then let it be turned sideways so that its
plane is vertical (see a, Fig. 30), and adjust in position until its center is exactly
10 cm. beneath the surface, i.e. until the average depth of the diaphragm is
the same as before. The position of the index will show that the force is also
exactly the same as before.

Let the diaphragm then be turned to the position b, so that the gauge
measures the downward force at a depth of 10 cm. The index will show that
this force is again the same.

We conclude, therefore, that at a given depth a liquid presses up and down
and sideways with exactly the same force.

3.1.4 The magnitude of the force

In order to determine the exact magnitude of the force exerted by a liquid
against a surface, we shall perform a simple experiment with the apparatus
shown in Fig. 31.

AB is a thin ground glass plate which is pressed against the bottom of the
glass cylinder AD. It is the upward force on the surface AB which we desire
to measure. If we pour colored water carefully into the top of the cylinder, the
weight of this water will press down on AB and tend to counteract this upward
force. When the downward force is equal to the upward force the glass plate
AB will drop from the end of the cylinder.

If the plate is thin, so that its own weight is very small, it will be found
to frop almost exactly at the instant at which the level oft he water within
the culinder is the same as the level of water outside. But at this instant the
downward force on AB is evidently the weight of the column of water AFE.
Hence the upward force which originally acted on AB was also equal to the
weight of the column of water ABFE. In other words, the upward force on any
horizontal surface beneath the free surface of a liquid is equal to the weight of a
column of water whose base is the given surface and whose height is the depth
of the given surface beneath the free surface of the liquid.

1It is recommended that quantative labratory work on the law of depths and on the use of
manometers precede this discussion (see e.g. Experiment 5 and 6 of authors’ manual).
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3.1.5 Magnitude of the force on any surface

In 3.1.3 we proved that the force on a given surface is independent of the di-
rection in which that surface is turned, so long as the dpth of its center is kept
the same. Hence, by combining this result with that of 3.1.4, we arrive at the
conclusion that the force acting on any surface beneath the free surface of the
liquid is equal to the weight of the column of the liquid whose base is the given
surface and whose altitude is the average depth, i.e. the depth of the center of
the surface beneath the free surface of the liquid.

To put this conclusion into algebraic form, let A represent the area of the
given surface, h the mean depth of the surface beneath the free surface of the
liquid, d the density of the liquid, and F the value of the force whish the liquid
exerts against the surface A. Then the weight of the column of liquid whose
base is A and whose height is h is Ahd (section 1.3.2 p. ). Hence the algebaric
statement of the above rule is

F = Adh (3.2)

3.1.6 The hydrostatic paradox

We may infer from thre preceeding paragraph that the downward force exerted
on the bottom of a vessel by a liquid which fills it has nothing whatever to do
with the shape of the vessel, but depends only on the area of the base and on
the depth and density of the liquid (see formula 3.2). Thus, if the three vessels
of Fig. 32 have bases of the same area and are filled to the same depths with
liquids of the same density, the forces exerted uon the bases by the liquies should
be exactly the same in all three vessels, for by the preceeding paragraph they
should all be equal to the weight of a column of liquid of the size ABCD.

This comclusion is known as the hydrostatic paradox, because at first sight
it seems unreasonable to suppose that the little liquid contained in the third
vessel can press down on the bottom with the same force as the large amount of
liquid contained in the second vessel. The following experiment, however, will
furnish a complete demonstration of the correctness of the conclusion, and will
prove expreimentally that the downward force on the bottom of the vessel has
nothing to do with the shape of the vessel.

Let the funnel ABD (Fig. 33, (1)) be closed at the bottom by the some glass
plate whish was used in the experiment of Fig. 31. At a given depth beneath
the free surface of the liquid the upward force acting against the lower side of
the plate AB must, of course, be the same as it was before, then the cylinder
was used, i.e. it is equal to the weight of the column of water ABEF (3.1.4).
Now let water be poured carefully into the top of the funnel until the plate AB
is forced off. Just as in the experiment of section 3.1.4, this will be found to
occur exactly when the level of the water inside of the funnel has risen to the
height of the water outside. Hence the liquid within the funnel ABD must exert
the same downward force on AB as sis the liquid within the cylindrical tube
ABEF in the experiment of section 3.1.4.
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Pressure 3.1.7 Explanation of the hydrostatic paradox

A moment’s consideration will show that there is no real inconsistency in the
fact that the third vessel of Fig. 32 exerts a force on the bottom so much greater
than its own weight, and that the second vessel exerts a force so mush less than
its own weight. For the law sdiscovered in section 3.1.3, that the force at a given
depth beneath the free surface of a liquid acts equally in all directions upon all
equal surfaces, means that while the liquid in the third vessel does indeed exert
a downward force on AB which is equal to the weight of the column of water
ABCD, it also exerts an upwards force on the surfaces of af and eb which is
equal to the weight of the water which would fill the spaces of afhC and ebDg.
Hence the net or resultant force which is acting down is the difference between
the downward force on AB and the upward forces of af and eb, and this will be
seen at once from the figure to be simply the weight of the liquid in the vessel,
as of course it must be.

Similarly in the second vessel of Fig. 32, while the force acting directly upon
te bottom is only the weight of the column of water ABCD, the downward
force upon the sides Am and Bn amounts, in all, exactly to the weight of the
remainder of the water in the vessel, i.e. to the weight of the water contained
in the spaces AmC and BnD.

3.1.8 Pressure in liquids

Thus far attention has been confined to the total force exerted by a liquid against
the whole of a given surface. It is often more convenient to consider the surface
divided into square centemeters and to confine the attention to the force exerted
upon one of these square centermeters. In physics the word “pressure” is used
exclusivly to denote this force per unit area. Thus, if the weight of the column
of liquid ABCD in Fig. 32 is 100 g., and if the ara of the surface AB is 20 cm3.,
then the force per square centemeter acting on AB is 5 g. Hence we say that
the pressure on AB is 5 g. Pressure is thus seen to be a measure of the intensity
of the force acting on a surface, and not to depend at all upon the area of the
surface.

It is clear, then, that in order to obtain pressure, we divide the total force
acting by the area of the surface against shich it acts. Or, algebraically stated,
if we represent pressure by p, force by F , and area by A, we have

p =
F

A
(3.3)

In other words, the liquid pressure existing at any depth h beneath the free
surface of any liquid of density d is equal to the product of this depth by the
density of the liquid ; i.e. it is the weight of the column of liquid whose height
is equal to the given depth, and the area of whose cross section is unity. it is
important to remember this technical use of the word “pressure.”
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3.1.9 Levels of liquids in connection vessels

It is a perfectly familiar fact that when water is poured into a teapot it stands at
exactly the same level in the spout as in the body of the teapot; or if it is poured
into a number of connected tubes, like those shoen in Fig. 34, the surfaces of
the liquid in various tubes lie in the same horizontal plane. These facts follow
as a necessary consequence of the law, discovered above, the pressure beneath
the surface of a liquid depende simply upon the depth and not at all upon the
shape and size of the vessel.

Thus, in accordance with the above rule, in Fig. 35 the pressure acting at o
to drive water to the left is equal to the density of the liquid times the height
hs; and the pressure acting at e to drive water to the right is equal to the same
density times the height eg. hence these two pressures will be balanced and the
liquids will be at reat only when these two heights are the same, i.e. then the
free surfaces in the two vessels are in the same horizontal plane.

If water is poured in at s so that the height hs is increased, the pressure to
the left at o becomes greater than the pressure to the right at e, and a flow of
water takes plase to the left until the heights are again equal.

3.1.10 Questions and problems

Add in these questions

3.2 Pascal’s Law

3.2.1 Transmission of pressure by liquids

From the fact that pressure within a free liquid depends simply upon the depth
and density of the liquid, it is possible to deduce a very suprising conclu-
sion, which was first stated by the famous French scientist, mathematician,
and philsopher, Pascal (1623-1662).

Let us imagian a vessel of the shape shown in Fig. 36, (1), to be filled with
water up to the level ab. For simplicity let the upper portion be assumed to be
1 sq. cm. in cross section. Since the density of water is 1, the force with shich
it presses against any square centemeter of the interior surface which is h cm.
beneath the level ab is h grams. Now let one gram of water (i.e. 1 cc.) be poured
into the tube. Since each square centimeter of surface which was before h cm.
beneath the level of water in the tube is no h+1 cm. beneath this level, the new
pressure which the water exerts against it is h + 1 g.; i.e. applying 1 g. of force
to the square centimeter of surface ab has added 1 g. to the force exerted by the
liquid against each square centimeter of the interior of the vessel. Obviously it
can make no difference whether the pressure which was applied to the surface
ab was due to the weight of the water or to a piston carrying a load, as in Fig.
36, (2), or to any other cause whatever. We thus arrive at Pascal’s conclusion
that pressure applied anywhere to a body of confined liquid is transmitted by the
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liquid so as the act with undiminished force on every square centimeter of the
containing vessel.

3.2.2 Multiplication of force by the transmission of pres-
suer by liquids

Pascal himself pointed out that with the aid of the principle stated above we
ought to be able to transform a very small force into one of unlimited magnitude.
Thus if the area of the cylinder ab, Fig. 37, is 1 sq. cm., while that of the cylinder
AB is 1000 sq. cm., a force of 1 kg. applied to ab would be transmitted by
the liquid so as to act with a force of 1 kg. on each square centimeter of the
surface AB. Hence the total upward force exerted against the piston AB by the
one kilo applied at ab would be 1000 kg. Pascal’s own words are as follows: “A
vessel full of water is a new principle in mechanics, and a new machine for the
multiplication of force to any required extent, since one man will by this means
be able to move any given weight.”

3.2.3 The hydraulic press

The experimental proof of the correctness of the conclusions of the preceeding
paragraph is furnished by the hydraulic press, an instrument now in common
use for subjecting to enormous pressures paper, cotton, etc.; for punching holes
through iron plates, testing the strength of iron beams, extracting oil from seeds,
making dies, embossing metal, etc.

Such a press is represented in section in Fig. 38. As the small piston p is
raised, water from the cistern C enters the piston chamber through the valve v.
As soon as the down stroke begins the valve v closes, the valve v′ opens, and
the pressure applied on the piston p is transmitted through the tube K to the
large reservior, where it acts on the large cylinder P with a force which is as
many times that applied to p as the area of P is times the area of p.

hand presses similar to that shown in Fig. 39 are often made which are
capacle of exerting a compressing force of from 500 to 1000 tons.

3.2.4 No gain in the product of force times distance

It should be noticed that, while the force acting on AB (Fig. 37) is 1000 times
at great as the force acting on ab the distance through which the piston AB is
pushed up in a given time is but 1

1000 of the distance which piston ab moves
down. For, forcing ab down a distance of 1 cm. crownds but 1 cc. of water
over into the large cylinder, and this accitional cubic centimeter can raise the
level of water there but 1

1000 cm. We see therefore that the product of the force
acting by the distance moved is preciesly the same at both ends of the machine.
This important conclusion will be found in out future study to apply to al l
machines.
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3.2.5 The hydraulic elevator

Another very common application of the principle of transformation of pressure
by liquids is found in the hydraulic elevator. The simplist form of such an
elevator is shown in Fig. 40. The cage A is borne on the top of a long piston P
which runs in a cylindrical pit C of the same depth as the height to which the
carriage must ascend. Water enters the pit either directly from the water mains
m of the city’s supply, or, if this does not furnish sufficient pressure, from a
special reservoir on top of the building. When the elevator boy pulls up on the
cord cc, the valve v opens so as to make connection from m into C. the elevator
then ascends. When cc is pulled down, v turns so as to permit the water in C
to escape into the sewer. The elevator then descends.

Where speed is required the motion of the cylinder is communicated indi-
rectly to the cage by a system of pullys like that shown in Fig. 41. With this
arrangement a goot of upward motion of the cylinder P causes the counterpoise
D of the cage to descend 2 ft., for it is clear from the figure that when the
cylinder goes up 1 ft. enough rope must be pulled over the fixed pulley p to
lengthen each of the two strands a and b 1 ft. Similarly, when the counterpoise
descends 2 ft. the cage ascends 4 ft. Hence the cage moves four times as fast
and four times as far as the cylinder. The elevators in the Eiffel Tower in Paris
are of this sort. They have a total travel of 420 ft. and are capable of lifting 50
people 400 ft. per minute.

3.2.6 City water supply

Fig. 42 illustrates the method by which a city is often supplied with water
from a distant source. The aqueduct from the lake a passes under a road r, a
brookb a hill H, and into a reservoir e, from which it is forced by the pump
p into the standpipe P , whence it is distributed to the houses of the city. if a
static condition prevailed in the whole system, then the water level in e would
of necessity be the same as that of a, and the level in the pipes of the building
B would be the same as that in the standpipe P . But when the water is flowing
the friciton of the mains causes the level e to be souewhat less than that in a,
and that in B less than that in P . It is on account of the friction both of the
air and of the pipes that the fountain f() does not actually rise nearly as high
as the ideal limit shown in the figure (see dotted line).

3.2.7 Artesian wells

It is in the principle of transmission of pressure by liquids that artesian wells
find their ecplanation. Fig. 43 is an ideal section of what geologists call an
artesian basin. The stratum A is composed of some porous material such as
cand, open-textured sandstone, of broken rock, through which the water can
precolate easily. Above and below it are strata C and B of clay, slate, or some
other material impervious to water. The porous layer is filled with water which
finds enterance at the outcropping margins. As soon as boring is made through
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the layer C the water gushes forth because of the transmission of pressure from
higher levels. A well of this sort exists near kissingen, Germany, which is 1800 ft.
deep and which throws a stream of water 58 ft. high. The deepest artesian wells
have been bored in the desert of Sahara and an abundant water supply found
at a depth of 200 ft. Great numbers of artesian wells exist in the United States.
Notable ones are located at Chicago, Louisville (Kentuckey, and Charleston
(South Carolina). The artesian basins in which the wells are found are often a
hundred miles or more in width.

3.2.8 Questions and problems

Add in these questions

3.3 The Principle of Archimedes

2

3.3.1 Loss of weight of a body in a liquid

The preceding expreiments have shown that an upward force acts against the
bottom of any body emmersed in a liquid. If the body is a boat, cork, piece of
wood, or any body which floats, it is clear that, since it is in equilibrium, this
upward force must be equal to the weight of the body. Even if the body does
not float, everyday observation shows that it still loses a portion of its natural
weight, for it is well known that it it easier to lift s stone uncerwater than in air;
or again, that a man in a bath tub can support his whole weight by pressing
lightly against the bottom with his fingers. It was indeed this vary ovservation
whish first led the old Greek philsopher, Archimedes (287-212 B.C.), to the
discovery of the exact law which governs the loss of weight of a body in liquid.
Hiero, the tyrant of Syracuse, had ordered a gold crown made, by suspected
that the artisan had fraduently used silver as well as gold in its construction.
He ordered Archimedes to discover whether or not this were true. How to do
so without destroying ths crown was at first a puzzle to the old philsopher.
While in his daily bath, noticed the loss of weight of his own body, it suddenly
occurred to him that any body immersed in a liquid must lose a weight equal to
the weight of the didplaced liquid. He is said to have jumped at once to his feet
and rushed through the streets of Syracuse crying, “Eureka, eureka!” (I have
found it, I have found it!)

3.3.2 Theoretical proof of Archimedes’ principle

It is probable that Archimedes, with that faculty which is so common among
men of great genius, saw the truth of this conclusion without going through

2A laboratory exercise on the experimental proof of Archimedes’ principle should precede
this discussion. See e.g. Experiment 7 of the authors’ manual.
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any logical process of proof. Such a proof, however, can easily be given. Thus,
since the upward force on the bottom of the block abcd (Fig. 45) is equal to the
weight of the column of liquid obce, and since the downward force on the top of
this block is equal to the weight of the column of the liquid oade, it is clear that
the upward force must exceed the downward force by the weight of the column
of liquid abcd; i.e. the bouyant force exerted by the liquid is exactly equal to the
weight of the displaced liquid.

The reasoning is exactly the same no matter what may be the nature of the
liquid in which the body is immersed, not how far the body may be beneath the
surface. Further, if the body weighs more than the liquid which is displaces, it
must sink, for it is urged down with the force of its own weight, and up with the
lesser force of the weight of the displaced liquid. But if it weighs less than the
displaced liquid, the the upward force due to the displaced is greater than its
own weight, and consequently it must rise to the surface. When it reaches the
surface the downward force on the top of the block, due to the liquid, becomes
zero. The body must, however, continue to rise until the upward force on its
bottom is equal to its own weight. But this upward force is always equal to the
weight of the displaced liquid, i.e. to the weight of the column of liquid mben
(Fig. 46).

Hence a floating body must displace its own weight of the liquid in which
it floats. This statement is embraced in the original statement of Archimedes’
principle, for a body which floats has lost its whole weight.

3.3.3 Experimental proof of archimedes’ principle

To test experimentally the truth of Archimedes’ principle, we weigh a body of
known volume first in air, then in some liquid (Fig. 47). If the principle is
correct, the difference should be exactly equal to the product of the volume of
the body by the density of the liquid, since this product is the weight oof the
displaced liquid. If the liquid is water of density 1, then the loss of the weight
should be numerically equal to the volume of the body.

To test the principle for a floating cylinder like that shown in (Fig. 49. If
the liquid is water, this volume whould be numerically equal to the weight of
the floating cylinder. Tests of this sort are best performed by the pupil in the
laboratory.

3.3.4 Density of a heavy solid

The density of a body is by definition its mass divided by its volume. It is
always possible to obtain the mass of a body by weighing it, but it is not, in
general, possible to obtain the volume of an irregular body from measurements
of its dimensions. Archimedes’ principle, however, furnishes an accurate and
easy method for obtaining the volume of any solid, however irregular, for by the
preceeding paragraph this volume is numerically equal to the loss of weight in
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water. Hence the equation which defines density, namely,

Density =
Mass

Volume

becomes in this case

Density =
Mass

Loss of weight in water
. (3.4)

3.3.5 Density of a solid lighter than water

If the body is too light to sink of itself, we may still obtain its volume by forcing
it beneath the surface with a sinker. Thus suppose w1 represents the weight on
the right pan of the balance when the body is in air and the sinker in water,
as in Fig 48; while w2 is the weight on the right pan when both the body and
sinker are under water. Then w1 − w2 is obviously the bouyant effect of the
water on the boyd alone, and is therefore equal to the weight of the displaced
water which is numerically equal to the volume of the body.

3.3.6 Density of liquids by hydrometer method

Archimedes’ principle also furnishes an easy method for finding the density of
any liquid. For suppose a uniform cylinder like that of Fig. 49 is floated in
water and is found to sink a distance l1; then, ifA represents the area of the
cross section of the cylinder, the volume of the displcemed water is 1, the weight
of the displaced water is also Al1. By Archimedes’ principle this is equal to te
weight of the floating body. Next suppose that the same cylinder is floated
in the liquid whose density d2 is sought [Fig. 49, (2)]. It will now sink some
distance l2. The volume of the displaced liquid will be Al2, and its weight will
be Al2d2. By Archimedes’ principle this is again equal to the weight w of the
floating body. Hence

Al2d2 = Al1, or d2 =
l1
l2

; (3.5)

i.e. the density of the unknown liquid is simply the ratio of the depth ls,
which the cylinder sinks in water, to the depth .s, which it sinks in the unknown
liquid.

3.3.7 commercial form of hydrometer

The commercial constant-weight hydrometer such as is now in common use for
testing the density of alchol, milk, acids, sugar colutions, etc., instead of being
a cylinder like sholn in Fig. 49, is of the form shown in Fig. 50. The stem is
calibrated so that the density of any liquid may be read upon it directly. The
advantage of this form over that of Fig. 49 is that it is much more suitable
for the detecting of very slight differences between the densities of two liquids.
The reason for this will be clear when it is remembered that the instrument
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must always sink until is displaces its own weight of the liquid, and that if the
stem is made very narrow in comparison withthe lower portion, the sinking of
the considerable portion of the stem will add but very little to the total volume
of the liwuid displaced. By making the cylinder exceedingly long the same
sensitivity could of course be obtained with the cylindrical form, but it would
then by inconvenient to use.

3.3.8 Density of liquids by “loss-of-weight” method

If any heavy body is weighed first in air, then in water, and lastly in a liquid
of unkowwn density d2, then, since the weight of the water displaced by the
body is its volume V times its density 1, and since the weight of the unknown
liquid displaced is the same as V times the density d2, we have by Archimedes’
principle, if L1 represents the loss of weight in water and L2 the loss in the
unknown liquid,

L1 = V × 1, and L2 = V d2.

Dividing the second equation by the first gives

d2 =
L2

L1
; (3.6)

i.e. the density of the unknown liquid is the loss of weight in that liquid by the
loss of weight in water.3

3.3.9 Questions and problems

Add in these questions

3Labratory experiments in determination of densities of solids and liquids shoulc follow
or accompany the discussion of this chapter. See e.g. Experiments 8 and 9 of the authors’
manual.
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Chapter 4

Pressure In Air

4.1 Barometric Phenomena

4.1.1 The weight of air

To ordinary observation air is scarcely perceptible. It appears to have no weight
and to offer no resistance to bodies passing through it. But if a bulb be balanced
as in Fig. 54, then removed and filled with air under pressure by a few strokes of
a bycle pump, it will be found when again placed on the balance, to be heavier
than it was before. On the other hand, if the bulb be connected with an air
pump and exhausted, it will be found to have lost weight. Evidently, then, air
can be put into and taken out of a vessel, weighed, and handled, just like a
liquid or solid.

We are accustomed to say that bodies are “as light as air,” yet careful
measurement shows that it takes but 12 cu. ft. of air to weigh a pound, so that
a single largh room contains more air than an ordinary man can lift. Thus the
air in a room 60 ft. by 30 ft. by 15 ft. weighs more than a ton. The exact weight
of air at the freezing temperature and undernormal atmospheric conditions is
0.001293 g. per cc., i.e. 1.293 g. per liter.

4.1.2 Proof that air exerts pressure

Since air has weight, it is to be infered that it, like a liquid, exerts forces against
any surface immersed in it. The following experiments prove this.

Let a rubber membrane be stretched over a glass vessel, as in Fig. 55. As
the air is exhausted from beneath the membrane the latter will be observed to
be more and more depressed until it will finally burst under the pressure of the
air above.

Again, let a tin can be partly filled with water and the water boiled. The air
will be exprelled by the escaping steam. While the boiling is still going on let
the can be tightly corked, then placed in a sink or tray and cold water poured
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over it. The steam will be condensed and the weight of the air outside will crush
the can.

4.1.3 Cause of the rise of liquids in exhausted tubes

If the lower end of a long tube be dipped into water and the air exhausted
from the upper end, water will rise in the tube. We prove the truth of this
statement every time we draw lemonade through a straw. The old Greeks and
Romans explained such phenomena by saying that “nature abhors a vaccum,”
and this explanation was still in vogue in Galileo’s time. But in 1640 the Duke
of Tuscany had a deep well dug near Florence, and found to his suprise that
no water pump which could be obtained would raise the water higher than 32
feet above the level of the well. When he applied to the aged Galileo for an
explanation the latter replied that evidently “nature’s horror of a vaccum did
not extend beyond thirty-two feet.” It is quite likely that Galileo suspected that
the pressure of the air was responsible for the phenomenon, for he had himself
proved before that air has weight, and, furthermore, he at once devised another
experiment to test, as he said, the “power of a vaccum.” He died in 1642 before
the ecperiment was performed, but suggested to his pupil, Torricelli, that he
coutinus the investigation.

4.1.4 Torricelli’s experiment

Torrricelli argued that if water would rise 32 ft., then mercury, which is about
13 times as heavy as water, ought to rise but 1

13 as high. To test this inference
he performed in 1643 the following experiment.

Let a tube about 4 ft. long, which is sealed at one end, be completly filled
with mercury, as in Fig. 56, (1), then closed with the thumb and inverted, and
the bottom of the tube then immersed in a dish of mercury, as in Fig. 56, (2).
When the thumb is removed from the bottom of the tube, the mercury will fall
away from the upper end of the tube in spite of the fact that in so doing it will
leave a vaccum abot it, and its upper surface will in fact stand about 1

13 of 32
ft., i.e. 29 or 30 in, above the mercury in the dish.

Torricelli concluded from his experiment that the rise of liquids in exhausted
tubes is due to an outside pressure exerted by the atmosphere on the surface of
the liquid, and not any mysterious sucking power created by the vaccum.

4.1.5 Further decisive tests

An unanswerable argument in favor of this conclusion will be furnished if the
mercury in the tube falls as soon as the air is removed from above the surface
of the mercury in the dish.

To test this point, let the dish and tube be placed on the table of an air
pump, as in Fig. 57, the tube passing through a tightly fitting rubber stopper
A, in the bell jar. As soon as the pump is started the mercury in the tube will,
in fact, be seen to fall. As the pumping is continued it will fall nearer and nearer
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to the level in the dish, although it will not usually reach it for the reason that
an ordinary vaccum is not capable of producing as good a vaccum as that which
exists in the top of the tube. As the air is allowed to return to the bell jar the
mercury will rise in the tube to its former level.

4.1.6 Amount of atmospheric pressure

Torricelli’s ecperiment shows exactly how great the atmospheric pressure is,
since this pressure is able to balance a column of mercury of definite length. In
accordance with Pascal’s law the downward pressure exerted by the atmosphere
on the surface of the mrecury in the dish (Fig. 58) is transmitted as an exactly
equal upward pressure on the layer of mercury inside the tube at the same level
as the mercury outside. But he downward pressure at this point iwthint he tube
is equal to hd, where d is the density of mercury and h is the depth below the
surface b. Since the average height of this column at sea level is found to be
76 cm., and since the density of mercury is 13.6, the downward pressure inside
the tube at a is equal to 76 times 13.6 or 1033.6 g. per sq. cm. Hence the
atmospheric pressure acting on the surface of mercury in the dish is 1033.6 g.,
or roughly 1 kg., per sq. cm. This amounts to about 15 lb. per sq. in.

4.1.7 Pascal’s experiment

Pascal thought of another way of testing whether or not it were indeed the weight
of the outside air which sustains the column of mercury in an exhausted tube.
He reasoned that, since the pressure in a liquid diminiches on ascending toward
the surface, atmospheric pressure ought also to dimish on passing from sea level
to mountain top. As no mountain existed near Paris, he carried Toricelli’s
apparatus to the top of a high tower and found, indeed, a slight fall in the
height of the column of mercury. He then wrote to his brother-in-law perrier,
who lived near Puy de Dome, a mountain in the south of France, and asked
him to try the experiment on a larger scale. Perrier wrote back that he was
“ravished with admiration and astonishment” when he found that on ascending
1000 m. the mercury sank about 8 cm. in the tube. This was in 1648, five years
after Torricelli’s discovery.

At the present day geological parties actually ascertain differences in altitude
by observing the change in barometric pressure as they ascend of descend. A
fall of 1 mm. in the column of mercury corresponds to an ascent of about 12 m.

4.1.8 The barometer

The modern barometer (Fig. 59) is essentially nothing more nor less than Torri-
celli’s tube. Taking a barometer reading consists simply in accurately measuring
the height of the mercury column. This height varies from 73 to 76.5 cm. in
localities which are not far above sea level, the reason being that disturbances
in the atmosphere affect the pressure at the earth’s surface in the same way in
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which eddies and high waves in a tank of water would affect the liquid pressure
at the bottom of the tank.

The barometer does not directly foretell the weather, but it has been found
that a low or rapidly falling pressure is usually accompanied, of soon followed,
by stormy conditions. Hence the barometer, although not an infallible weather
prophet, is nevertheless of considerable assistance in forcasting weather condi-
tion some hours ahead. Further, by comparing at a central station the telo-
graphic reports of marometric reading made every few hours at stations all over
the country, it is possible to dtermine in what direction the atmospheric eddies
which cause barometer changes and storym conditions are traveling, and hence
to “forecast” the weather even a day or two in advance.

4.1.9 The first barometers

Torricelli actually constructed a barometer not essentially different from that
shown in Fig. 59, and used it for observing changes in the atmospheric pressure;
but perhaps the most interesting of the early barometers was that set up about
1650 byt he famous old gGerman physicist Otto von Guericke of Magdeburg
(1602-1686). He used for his barometer a water column the top of which passed
through the roof of his house. A wooden image image which floated on the
upper surface of the water appeared abouve the house top in fair weather but
retired from sight in foul, a circumstance which led his neighbors to charge him
with being in league with Satan.

4.1.10 Effect of inclining a barometer

If a barometer tube is inclined i the manner shown in Fig. 60, the top of the
mercury will be found to remain always in the same horizontal plane. Explain,
remembering that pressure equals height times density (Fig. 35).

4.1.11 The anerooid barometer

Since the mercurial barometer is somewhat long, and inconvenient to carry,
geological and surveying parties commony use an instrument called the aneroid
barometer (Fig. 61). It consists of essentially of an air-tight cylinderical box
D, the tops of which is a metallic diaphragm which bends slightly under the
influence of change in the atmospheric pressure. This motion of the top of the
box is multiplied by the delicate system of levers and communicated to the hand
B which moves over a dial whose reading are made to correspond to the readins
of a mercury barometer. These instruments are made so sensitive as to indicate
a change in pressure when they are moved no farther than from a table to the
floor.

4.1.12 Questions and problems

Add in these questions
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4.2 Compressibility and Expansibility of Air

4.2.1 Incompressibility of liquids

Thus far we have found very striking resembalances between the conditions
which exist at the bottom of a body of liquid and those which exist at the
bottom of the great ocean of air in which we live. We now come to a most
important difference. It is wel lknown that if two liters of water be poured into
a tall cylindrical vessel, the water will stand exactly twice as high as if the vessel
contain but one liter; of it ten liters be poured in, the water will stand ten times
as high as if there be but one liter. This obviously means that the lowest liter
in the vessel is not measurably diminished in volume by the weight of as many
as nine liters of water resting upon it.

It has been found by farefully devised ecperiments that compressing weights
enormously greater than thesse may be used without producing a marked effect;
e.g. when a cubic centimeter of water is subjected to the stupendous pressure
of 2,000,000 g., its volume is reduced to bue 0.90 cm3 Hence we say that water,
and liquids generally, are practically incompressible. Had it not been for this
fact we should not have been justified in taking the pressure at any depth below
the surface of the sea as tie simple product of the depth by the density at the
surface.

4.2.2 Compressibility of air

When we study the effects of pressure on the air we find a wholly different
behavior from that described above for water. It is very eary to compress a
body of air to one half, one fifth, or one tenth of its normal volume, as we
prove every time we inflate a pneumatic tire or cushion of any sort. Further,
the expansibility of air, i.e. its tendency to spring back to a larger volume as
soon as the pressure is relieved, is proved every time a tennis ball or football
bounds, or the cork is driven from a popgun.

But it is not only air which has been crowded into a pneumatic cushin by
some sort of pressure pump which is in this state of readiness to expand as soon
as the pressure is diminished. The ordinary air of the room will expand in the
same way if the pressure to which it is subjected is relieved.

Thus let a bladder of toy balloon be filled with air under ordinary conditions
and then tied up -air-tight and placed under the reciver of an air pump. As
soon as the pump is set into operation the inside air will expand with sufficient
force to butst the bladder, or to greatly distend the balloon, as shown in Fig.
66.

Again, let two bottles be arranged as in Fig. 67, one being stoppered air-
tight, while the other is uncorked. As soon as the two are placed under the
receier of an air pump and the air exhausted, the water in A will pass over into
B. When the air is readmitted to the receiver the water will flow back. Explain.
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4.2.3 Why hollow bodies are not crushed by atmospheric
pressure

The preceeding experiments show why the walls of hollow bodies are not crushed
in by the enormous forces which the weight of the atmosphere exerts against
them. For the air inside such bodies presses their walls out with as much force
at the outside presses them in. In the experiment of section 4.1.3 the inside
air was removed by the excaping steam. When this steam was condensed by
the cold water, the inside pressure became very small and the outside pressure
then crushed the can. In the experiment shown in Fig. 66 it was the outside
pressure which was removed by the air pump, and the pressure of the inside air
then burst the bladder.

4.2.4 Boyle’s law

The first man to investigate the exact relation between the charge in the pressure
exerted by a confined body of air and its change in volume was Robert Boyle, an
Irishman (1626-1691). We shall repeat a modified form of his experiment much
more carefully in the laboratory; but the following will illustrate the method by
which he discovered one of the mose important laws of physics.

Let mercury be poured into a bent glass tube until it stands at the same
level in the closed arm AC as in the open arm BD (Fig. 68). There is now
confined in AC a certain volume of air under the pressure of one atmosphere.
Call this pressure P1. Let the length of AC be measured and called V1. Then let
the mercury be poured into the long arm until the level in this arm is as many
centimeters above the level in the short arm as there are centimeters in the
barometer height. The confined air is now underpressure ot two atmospheres.
Call it P2. let the new volume A1C(= V2) be measured. It will be found to be
just half its former value.

Hence we learn that doubling the pressure exerted uopon a body or air halves
its volume. If we tripled the pressure, we should have found the volume reduced
to one third its initial value, etc. Hence, the pressure which is given quantity of
air at constant temperature exerts against the walls of the containing vessel in
inversely proportional to the volume occupied. This algebraically stated thus

P1

P2
=

V2

V1
, or P1V1 = P2V2. (4.1)

This is Boyle’s law. It may also be stated in slightly different form. Dou-
bling, tripling, or quadrupling the pressure must double, triple, or quadruple
the density, since the volume is made only one half, one third, or one fourth as
much, whild the mass remains unchanged. Hence the pressure which air exerts
is directly proportional to its density, or, algebraically,1

P1

P2
=

D1

D2
(4.2)

1A laboratory experiment on Boyle’s law should follow this discussion. See e.g. Experiment
10, authors’ manual.
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4.2.5 Extent and character of the earth’s atmosphere

From the facts of compressibility and expansibility of air we may know that
the air, unlike the sae, must become less and less dense as we ascend from the
bottom toward the top. Thus at the top of Mount Blanc, where the barometer
height is but 38 cm., or on half of its value at sea level, the denisty also must,
by Boyle’s law, be just one half as much as at sea level.

No one has ever ascended higher than 7 mi., which was approximately the
hight attained in 1862 by the two daring English aëronauts, Glasier and Coswell.
At this altitude the barometric height is but about 7 in. and the temperature
about -60 degrees F. Both aëronauts lost the use of their limbs and Mr. Glasier
became unconscious. Me. Coxwell barely succeeded in grasping with his teeth
the rope which opened a valve and caused the balloon to descend. Again, on
July 31, 1901, the French aëronaut M. Berson rose without injury to a height
of about 7 mi. (35,420 ft.), his success being due to the artificial inhalation of
oxygen.

By sending up self-registereing thermometers and barometers in the ballons
which burst at great altitudes, the instruments being protected by parachutes
from the dangers of rapid fall, the atmosphere has been explored to a height
of 22,290 m. (13.8 mi.), this being the height attained on December 4, 1902,
by a little rubber balloon 76 im. in diameter which was sent up from the
strasburg (Germany) observatory. These extreme heights are calculated from
the indications of the self-registering barometers. Fig. 69 shows, in the right-
hand column, the densities of air at various heights in terms of its density at
sea level. In the next column are shown the corresponding barometer heights
in inches, while the left-hand column indicates heights in miles.

It will be seen that at a heights of 35 mi. the density is estimated to be
but 1

30000 of its value at sea level. By calculatinng how far below the horizon
the sun must be when the last traces of color disappear from the sky, we find
that at a height as great as 45 mi. there must be air enough to reflect some
light. How far beyond this an extremely rarefied atmosphere may extend, no
one knows. It has been extimated at all the way from 100 to 500 mi. These
estimates are based on observations of the height at which meteors first became
visible, on the height of the aurora borealis, and on the darkening of the surface
of the moon just before it eclipsed by the shadow of the solid earth.

4.2.6 Height of the “homogeneous atmosphere”

Although, then, we cannot tell to what height the atmosphere extends, we do
know with certainty that the weight of a column of air is 1 sq. cm. in crossection
and reaching from earth’s surface to the extreme limits of the atmosphere will
just balance a column of mercury 76 cm. high, for this was shown by Torricelli’s
experiment. Since 1 cm3 of air at the earth’s surface weighs about 1.2 mg., i.e.
since the density of air is about 0.00212, of on eight-hundreth that of water,
and since mercury is about 13.6 times as heavy as water, it follows that if the
air had the same density at all latitudes which it has at the earth’s surface, its
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height would be (76)(13.6)(800) ≈ 8.27 km. The tops of the Himalayas would
therefore rise above it. This height of 5 mi., which is the height to which the air
would extend if it, like the ocean, had the same density throughout, is called
the height of the homogeneous atmosphere.

4.2.7 Density of air below sea level

The same cause which makes air diminish rapidly in density as we ascend above
sea level must produce a rapid increase in its density as we descend below sea
level. It has been calculated that if boring could be made in the earth 35 mi.
deep, the air at the bottom would be one thousand times as dense as at the
earth’s surface. Therefore wood and even water would float in it.

4.2.8 Questions and problems

Add this section

4.3 Pneumatic Appliances

4.3.1 The siphon

Let a rubber of glass tube be filled with water and then placed inthe position
shown in Fig. 72. Water will be found to flow through the tube from vessel
A into vesel B. If, then. B be raised until the water in it is at a higher level
than that in A, the direction of flow will be reversed. This instrument, shich is
called a siphon, is very useful in removing liquids from vessels which cannor be
overturned, or for drawing off the upper layers of liquid withour disturbing the
lower layers.

Ths explanation of the siphon’s action is readily seen in Fig. 72. Since the
tube acb is full of water, water, must evidently flow through it if the force which
pushes it one way is greater than that which pushes it the other way. Now
the upward pressure at a is equal to atmospheric pressure minus the downward
pressure due to the water column ad; whild the upward pressure at b is the
stmospheric pressure minus the downward pressure due to the water column be.
Hence the pressure at a exceeds the pressure at b by the pressure due to the
water column fb = 0, and the forces acting at the two ends of the tube are
therefore equal and opposite. it will also cease to act when the bend c is more
than 34 ft. above the surface of the water in A, since then a vacuum will form
at the top. atmospheric pressure being unable to raise water to a height greater
than this in either tube.

Would a siphon flow in a vaccum?

4.3.2 The intermittent siphon

Fig. 73 represents an intermittent siphon. If the vessel is at first empth, to
whatlevel must it be filled before the water will flow out at o? To what level



4.3. PNEUMATIC APPLIANCES 49

will the water then fall before the flow will cease?
The intermittent spring sometimes found in nature is nothing but a natural

siphon of this kind. Its action may be understood from Fig. 74.

4.3.3 The aspirating siphon

It is clear from the theory of siphon action that the flow cannot start unless the
tube is initially full of the liquid. Fig. 75 represents a so-called aspirating siphon,
an instrument designed to minimize the inconvenient and danger incident upon
starting the flow when it is desired to siphon off acids or other disagreeable or
poisonous liquids. The open b is first closed; the tube is the filled by sucking
on the end O while the end c is immersed in the liquid to be siphoned off. The
bulb E is made so large that there is no danger of inadvertently sucking liquid
into the mouth.

4.3.4 The air pump

The air pump was invented in 1650 by Otto von Guericke, mayor of Magde-
burg, Germany, who deserves the greater credit, since he was apparently wholly
without knowledge of the discoveries which Galileo, Torricelli, and Pascal had
made a few years earlier regarding the character of the earth’s atmosphere. A
simple form of such a pump is shown in Fig. 76. When the piston is raised the
air from the receiver R expands into the cylinder B through the valve A. When
the piston descents it compresses this air, and thus closes the valve A and opens
the exhaust valve C. Thus with each double stroke a certain fraction of the air
in the receiver is transformed from R through the cylinder to the outside.

In many pumps the valve C is in the piston itself.

4.3.5 The compressor pump

A compression pump is nothing by an exhaust pump with the valves reversed,
so that A closes and C opens on the upstroke, and A opens and C closes on the
downstroke. In its cheaper forms, e.g. the common bicycle pump, the valve C
is often replaced by a very simple device called a cup valve. This valve consists
of a disk of leather a little larger than the barrel of the pump, attached to a
loosely fitting metal piston. When the piston is raised the air passes in around
the leather, but when it is lowered the leather is crowded closely against the
walls, to that there is no escape for the air (Fig. 77).

Compressed air finds many applications in such machines as air drills (used
in mining), air brakes, air motors, etc., that the compression pummp must be
looked upon as of much greater importance industrially than the exhaust pump.

4.3.6 The lift pump

The common water pump shown in Fig. 78, has been in use at least since the
time of Aristotle (fourth century B.C.). It will be seen from the figure that it is
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nothing more nor less than a simplified form of air pump. In fact, in the earlier
strokes we are simply exhausting air from the pipe below the valve b. Water
soulc never be obtained at S, even with a perfect pump, if the valve b were not
within 34 ft. of the surface of the water in W . Why? On account of mechanical
imperfections this limit is usually about 28 ft. instead of 34. Let the student
analyze, stroke by stroke, the operation of pumping water from a well with the
pump of Fig. 78. Why will pouring in a little water at the top, i.e. “priming,”
often assist greatly in starting such a pump?

4.3.7 The force pump

Fig. 79 illustrates the construction of the force pump, a device commonly used
when it is desired to deliver water at a point higher than the piston at which
it is convenient to place the pump itself. Let the student analyze the action of
the pump from a study of the diagram.

It will be seen that the discharge from such an arrangement as that shown
in Fig. 79 must be intermittent, since no water can flow up the pipe HS when
piston P is ascending. In order to make the flow continues during the upstroke
an air chamber, such as that shown in Fig. 80, is always inserted between the
valve a (Fig. 79) and the discharge point. As the water is forced violently into
this chamber it compresses the confined air. It is, then, the reaction of this
compressed air which is immediately responsible for the flow in the discharge
tube, and as this reaction is continuous the flow is also continuos.

Fig. 81 represents one of the most familiar types of force pump, the double-
acting steam fire engine. Let the student analyze the action of the pump from
a study of the diagram.

4.3.8 The Cartesian diver

Descartes (1596-1650), the great French philosopher, invented an off device
which illustrates at the same time the principle of the transmission of pres-
sure by liquids, the principle of Archimedes, and the compressibility of gases.
A hollow glass image in human shape [Fig. 82, (1)] has an opening in the lower
end. It is partly filled with water and partly with air, so that it will just float.
By pressing on the rubber diaphragm at the top of the vessel it may be made to
sink or rise at will. Explain. If the diver is not available a small bottle of test
tube [see Fig. 82, (2)] may be used instead. It works equally well, and brings
out the principle even better.

4.3.9 The balloon

A reference to the proof of Archimeded’s principle (Section 3.3.2, page 3.3.2)
will show that it must apply as well to gases as to liquids. Hence any body
immersed in air is bouyed up by a force which is equal to the weight of the
displaced air. The body will therefore rise if its own weight is less than the
weight of the air which it displaces.
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A balloon is a large silk bag (Fig. 83) varnished so as to be air-tight and filled
either with hydrogen or with common illuminating gas. The former gas weighs
about 0.09 kg

m3 and common illuminating gas weighs about 0.75 kg
m3 . It will be

remembered that ordinary air weighs about 1.25 kg
m3 . It will be seen, therefore,

that the lifting power of hydrogen per cubic meter, namely 1.20 − 0.90 = 1.11
is more than twice the lifting power of illuminating gas, 1.20 − 0.75 = 0.45.
Nevertheless, on account of the comparative cheapness of the latter gas, its use
is very much more common.

From the weights given about it is easy to calculate the ligting power of any
balloon whose volume is known. Glasier and Coxwell’s balloon had a volume of
90,000 ft3, and was able to carry a load of about 600 lb.

Ordinarily a balloon is not completely illed at the start, for if it were, since
the outside pressure is continually diminishing as it ascends, the pressure of the
inside gas would subject the bag to enormous strain, and would surely burst
it before it reached any considerable altitude. But if it is by partly inflated at
the start, it can increase in volume as it ascends by simply inflating toa greater
extent.

The parachute seen hanging from the side of the balloon in Fig. 83 is a huge
umbrella-like affair, which after opening as in Fig. 84, descends very slowly on
account of then enormous surface exposed to the air. The hole int he top allows
air to escape slowly and thus keeps the parachute upright.

4.3.10 The divingbell

The diving bell (Fig. 85) is a heavy bell-shaped body with rigid walls, which
sinks of its own weight. Formerly the workmen who went down in the bell had
at their disposal only the amount of air confined within it, and the water rose
to a certain height within the bell on account of the compression of the air. But
in modern practice the air is forced in from the surface through a connecting
tube (a, Fig. 86) by means of a force pump h. This arrangment, in addition to
furnishing a continual supply of air, makes it possible to force water down to
the level of the bottom of the bell. In practice a continual stream of bubbles is
kept flowing out from the lower edge of the bell, as shown in Fig. 86.

The pressure of the air withing the bell must, of course, be the pressure
existing within the water at the depth of the level of the water inside the bell,
i.e. in Fig. 85 at the depth AC. Thus at a depth of 34 ft. the pressure is
2 atmospheres. Diving bells are used for putting in the foundations of bridge
piers, doing subaqueous excavating, etc. The so-called caisson, much used in
bridge building, is simply a huge stationary diving bell, which the workmen
enter through compartments provided with air-tight doors. Air pumped into is
precisely as in Fig. 86.

4.3.11 The diving suit

For most purposes, except those of heavy engineering, the diving suit has now
replaced the diving bell. This suit is made of rubber with a metal helmet. The
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diver is sometimes connected with the surface by a tube (Fig. 87) through which
air is forced down to him. It passes out into the water through the valve v in
his suit. Buy more commonly the diver is entirely independent of the surface,
carrying air under pressure of about 40 atmospheres in a tank on his back.
This air is allowed to escape gradually through the suit and out into the water
through the valve v as fast as the diver needs it. When he wishes to rise to the
surface he simply admits enough air to his suit to make him float.

In all cases the diver is subjected to the pressure existing at the depth at
shich the suit or bell communicates with the outside water. Divers seldom work
at depths greater than 60 ft., and 80 ft. is usually considered the limit of safety.
But in building the bridge over the Missippi at St. Louis, Missouri, the bells
with their divers were sunk to a depth of 201 ft.

The diver experiences pain in the ears and above the eyes when he is as-
cending of descending, but not when at rest. This is because it requires some
times for the air to penetrate into the interior cavities of the body and establish
equal pressure in both directions.

4.3.12 The air brakes

Fig. 88 is a diagram which shows the essential features of the Westinghouse
air brake. P is an air pipe leading to the engine, where a compression pump
maintains air in the main cylinder under a pressure of about 70 lb. to the
square inch. R is an auxiliary reservior which is placed under each car, and
which connects with P through the triple valve V . So long as the pressure
from the engine is on in P , the valve V is open in such a way that there is
direct communication between P and R. But as soon as the pressure in P is
diminished, wither by the engineer of by the accidental breaking of the hose
coupling k, which connects P from car to car, the compressed air in R operates
the velve V so as to shut off connection between R and the cylinder C. The
piston H is thus driven powerfully to the left and sets the brake shoes against
the wheels through the operation of levers attached to H. When it is desired to
take off the brakes, pressure is again turned on in P . This operation opens V
in such a way as to permit the compressed air in C to escape, and the spring S
then pulls back the brake shoes from the wheels.

4.3.13 The bellows

Fig. 89 shows the construction of the ordinary blacksmith’s bellows. Then the
handle a rises and the point b in consequence falls, the vlave v opens and air
from the outside enters the lower compartment C1. When a is pulled down and b
thus made to ascend, v at once closes, and as soon as the pressure with in C1 has
risen to the same value as that maintained by C2 by the weights W , the valve
v′ opens and air passes from C1 to C2. With this arrangement it will be seen
that the current of air which issues from C2 through the nozzle is continusous
rather than intermittent, as it would be if there were no compartment and one
valve.
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4.3.14 The gas meter

The gas meter is a device which differs little in principle from the blacksmith’s
bellows. Gas from the city supply enters the mter through P (Fig. 90), and
passes through the opening o into the compound compartment B of the meter.
Here its pressure forces in the diaphragm d, at the same time forcing out the
diaphragm d′. Each of these operations diminishes the size of the compartment
A, for the diaphragm m is immovable. The gas already contained in A is
therefore pushed out to the burners through the openings o′ and e and the pipe
p. As soon as compartment B is full, a lever which is worked by the movement
of the diaphragms causes the slide value v to move to the left, thus closing o and
shutting off connection between P and B, but at the same time opening o′ and
allowing the gas from P to enter compartment A through o′. The gas in B is
now forced out through the openings o and e and the pipe p. The movement of
the diaphragms is recorded by a clockwork device, the dials of which (Fig. 91)
indicate the number of cubic feet of gas which have passed through the meter.

4.3.15 Questions and problems

Add this section
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Diffusion

Chapter 5

Molecular Motions

5.1 Kinetic Theory of Gases

5.1.1 Molecular constitution of matter

In order to account for some of the simplest facts in nature,–e.g. the fact that two
substances often apparently pssupy the same spact at the same time, as when
two gases are crowded together in the same vessel, of when sugar is dissolved in
water,–it is now universally assumed that all substances are composed of very
minute particles called molecules. Spaces are supposed to exist between these
molecules, so that when one gas enters a vessel which is already full of another
gas, the molecules of the one scatter themselves about between the molecules of
the other. Since molecules cannot be seen with the most powerful microscopes,
it is evident that they must be very minute, and the number of them contained
in a cubic centimeter of any substance must be enormous. Probably it would
take as many as a thousand molecules laid side by side to make a speck long
enough to be seen witht he best microscopes.

5.1.2 Evidence for molecular motions in gases

Certain very simple observations lead us to the conlclusion that the molecules
of gasesk, even in a still room, must be in continual and quite rapid motion.
Thus, if a little chlorine, or ammonia, of any gas of powerful odor is introduced
into a room, in a very short time it will have become perceptible in all parts of
the room. This shows clearly that enough of the molecules of the gas to affect
the olfactory nerves must have found their way across the room.

Again, chemists tell us that if two globes, one containing hydroven and the
other carbon dioxide gas, be connected as in Fig. 93 and the stopcock between
them opened, after a few hours chemical analysis will show that each of the
globes contains the two gases which is at first sight very suprising, since carbon
dioxide gas is about twenty-two times as heavy as hydrogen. This mixing of
gases in apparent violation of the laws of weight is called diffusion.

55
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We see then that such simple facts as the transference of odors and the
diffusion of gases furnish very convincing evidence that the molecules of a gas
are not as rest, but are continually moving about.

5.1.3 Molecualr motions and the indefinite expansibility
of a gas

Perhaps the most striking property which we have found gassed to possess is the
property of indefinite or unlimited expansibility. The existence of this property
was demonstrated by the fact that we were able to obtain a high degree of
exhaustion by means of an air pump. No matter how much air was removed
from the bel ljar, the remainder at once expanded and filled the entire vessel. In
fact, it was only because of this property that the air pump was able to perform
its functions at all.

In order to explain these facts it used to be assumed that the molecules of
gases exert mutual repulsion upon one another. This theory has now, however,
been completely abandoned, for it has been conclusively shown that no such
repulsions exist. The motions of the molecules alone furnish a thoroughly satis-
factory explanation of the phenomenon. As soon as the piston of the air pump
is drawn up, some of the molecules follow it because they were already moving
in that direction, and not on account of any repulsion exerted upon them by the
molecules below. The phenomenon is precisely the same as that illustrated in
Fig. 93 where the carbon dioxide molecules moved up into the globe containing
hydrogen; only in the latter case the operation took much more time because
the upward motion of the carbonic acid molecules was hindered by collisions
with the hydrogen molecules.

The fact that, however, rapidly the piston of the air pump is drawn up, gas
always appears to follow it instantly, leads us to the conclusion that the natural
velocity possessed bythe molecules of gases must be very considerable.

5.1.4 Molecular motions and gas pressures

if the molecules of gases do not repel one another, how are we to account for the
fact that gases exrt such pressures as they do against the walls of vessels which
sontain them? We have found that in an ordinary room the air presses against
the walls with a force of 15 lb. to the square inch. Within an automobile tire
this pressure may amount to as much as 100 lb., and the steam pressure within
the boiler of an engine is often as high as 240 lb. per square inch. Yet in all
these cases we may be certain that the molecules of the gas are separated from
eachother by distances which are largh in comparison with the diameters of the
molecules; for when we reduce steam to water it shrinks to 1

1600 of its original
volume, and when we reduce air to the liquid form it shrinks to about 1

800 of its
ordinary volume.

The explanation is at once apparent when we reflect upon the motions of
the molecules. For just as a stream of water particles from a hose exerts a
continuous force against a wal on which it strikesk, so the blows which the
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innumerable molecules of a gas strike against the walls of the containing vessels
containing only gas–balloons, for example,–do not collapse under the enourmous
ecternal pressures to which we know them to be subject to.

5.1.5 Explanation of Boyle’s law

It will be remembered that it was discovered in the last chapter that when the
density of a gas is doubled, the tempraturt remaining constant, the pressure is
found to double also. When the density was trebled, the pressure which a gas
exerts against a given surface is due to blows struck by an enormous number
of swiftly moving molecules; for doubling the number of molecules in the given
space–i.e. doubling the density–would simply double the number of blows struck
per second against that surface, and hence would double the pressure. While
the kinetic theory of gases which is here presented accounts in this simple way
for Boyle’s law, the theory of molecular repulsions cannot be reconciled with it.

5.1.6 Moleculat velocities

From the weight of a cubic centimeter of air under normal conditions, and the
known force whish it exerts per square centimeter,–viz. 1033g.,–it is possible to
calculate the velocity which its molecules must possess in order that they may
produce by their collisions against the walls this amount of force. Further, since
a cubic centimeter of hydrogen which is in condition to exert the same pressure
as a cubic centimeter of air weighs only one fourteenth as much as air, it is
evident that the hydrogen molecules must be moving much more raplidly than
the air molecules, or else they could not exert the same pressure. The result
of the calculation gives to the air molecules under normal conditions a velocity
of about 445 m

s . The speed of a cannon ball is seldom greater than 800 m
s . It

is easy to see then, since the molecules of gases are endowed with such speeds,
why, air, for example, expands instantly into the space left behind by the rising
piston of the air pump, and why any gas always fills completely the vessel which
contains it.

5.1.7 Diffusion of gases through porous walls

Strong evidence for the cottectness of the above views is furnished by the fol-
lowing experiment.

let a porous cup of unglazed earthenware be closed with a rubber stopper
through whish a glass tube passes, as in Fig/ 94. Let the tube be dipped into a
dish of colored water, and a jar contaiing hydrogen placed over the porous cup,
or let the jar simply be held in the position shown in the figure, and illuminating
gas passed into it by means of a rubber tube connected with a gas jet. The rapis
passage of bubbles out through the water will show that the gaseous pressure
inside the sup is rapidly increading. Now let the bell jar be lifted, so that the
hydrogen is removed from the outside. Water will at once begin to rise in the
tube, showing that the inside pressure is now rapidly decreasing.
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The explanation is as follows. We have learned that the molecules of hydro-
gen have about four times the velocity of th molecules or air. Hence, if there
are as many hydrogen molecules per cubic centimeter outside the cup as there
are air molecules per cubic centimeter inside, the hydrogen molecules will strike
the outside of the wall four times as frequently as the air molecules will strike
the inside. Hence, in a given time, the number of hydrogen molecules which
pass into the interior of the cup through the little holes in the porous material
will be four times as great as the number of air particles which pass out. Since
the inside is thus gaining molecules faster than it is losing them, and since the
pressure of a gas at a given temperature is determined solely by the number
of molecules which are bombarding the wall, the inside pressure mush increase
until the number per cubic centimeter inside is so much larger than the number
outside that molecules pass out as fast as they pass in. When the bell jar is
removed the hydrogen which has passed inside now begins to pass out faster
than the outside air passes in, and hence the inside pressure is diminished.

5.1.8 Temperature and molecular velocity

The effects whish are ovserved when a gas is heated furnish further evidence
that its molecules are in motion.

Let a bulb of air B be connected with a water manometer m, as in Fig, 95.
If the bulb is warmed by holding a Bunsen burner beneath it, or even by placing
the hand upon it, the water at m will at once begin to descend, showing that
the pressure exerted by the air contained in the bulb has been increased in its
temperature. If B is cooled with ice of ether the water will rise at m.

Now if gas pressure is due to the bombardment of the walls by the molecules
of the gas, since the number of molecules in the bulb can scarcely have been
changed by slightly heating it, we are forced to conclude that the increase in
pressure is due to an increase in the velocity of the molecules whish are already
there. The temperature of a given gas, then, from the standpoint of the kinetic
theory, is determined simply by the mean velodity of the gas molecules. To
increase the temperature is to increase the average velocity of the molecules,
and to diminish the temperature is to diminish this average molecular velocity.
The theory thus furnishes a very simple and natural explanation of the fact of
the exxpansion of gases with a rise in temperature.

5.1.9 Questions and problems

Add this section

5.2 Molecular Motions In Liquids

5.2.1 Molecular motions in liquids and evaporation

Evidence that the molecules of liquids as well as those of gases are in a state
of perpetual motion is found, first, in the familiar facts of evaporation. We
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know that the molecules of a liquid in an open vessel are continually passing off
into the space above; for it is only a matter of time when the liquid completely
disappears and the vessel becomes fry. Now it is hard to imagine a way in which
the molecules of a liquid, while in the liquid condition, are in motion. As soon,
however, as such a motion is assumed, the facts of evaporation become perfectly
intelligible. For it is to be expected that in the jostlings and collisions of rapidly
moving liquid molecules an occasional molecule will acquire a velocity much
greater than the a verage. This molecule then, because of the unusual speed of
its motion, break away from the attraction of its neighbors and fly off into the
space aboce. This is indeed the mechanish by which we now bwlieve the the
process of evaporation goes on.

5.2.2 Molecular motions and the diffusion of liquids

One of the most convincing arguments for the motions of molecules in gases was
found in the fact of diffusion. But precisely the same sort of phenomena are
observable in liquids.

Thus, let a jar be partially fille dwith water colored with blue litmus, and
let a little sulphuric acid be carefully introduced into the bottom of the jar,
beneath the water, by means of a thistle tube (GFig. 96). Whenever acit comes
in contact with blue litmus it turns it red. Since the sulphuric is 1.8 times as
heavy as water, it as first remains at the bottom, and the line of separation
between it and the water will befound to be fairly sharp; but in the course of
a few hours, even though the jar is kepr perfectly quiet, the red color will be
found to have spread considerably toware the top of the jar, showing that the
acid molecules have gradually found their way toward the top.

Certainly, then, the molecules of a liquid must be endowed with the power
of independent motion.

5.2.3 Molecular motions and the expansion of liquids

The fact of the expansion of gases with a rise of temperature was looked upon as
evidence that the molecules of gases are in motion, the velocity of this motion
increasing with an increase in temperature. But precisely the same property
belongs to liquids also.

Thus, let the bulb (Fig. 97) be heated with a Bunsen burner. The contained
liquid will be found to expand and rise in the tube.

It is natural io infer that the cause of this increase in volume is the same
as before; i.e. the velocity of the molecules of the liquid has been increased by
the rise in temperature, and they have jostled one another farther apart, and
tues caused the whole volume to be enlarged. According to this view, then, an
increase in temperature in a liquid, as in a gas, means an increase in the mean
velocity of the molecules, and conversely a decrease in tempearature means a
decrease in this average velocity.
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5.2.4 Evaporation and temperature

If it is true that increase in temperature means increase in the mean velocity of
molecular motion, then the number of molecules which chance in a given time
to acquire the velocity necessary to carry them into the space above the liquid,
ought to increase as the temperature increases; i.e. evaporation ought to take
place more rapidly at high temperatures than at low. Common observation
teaches that this is true. Damp clothes become dry under a hot flatiron but
not under a cold ont; the sidewalk dries more readily in the sun thatn in the
shade; we put wet objects near a hot stove of radiator when we wish them to
dry quickly.

5.3 Properties of Vapors

5.3.1 Saturated vapor

If a liquid is placed in an open vessel, there ought to be no limit to the number of
molecules which can be lost by evaporation, for as fast as the molecules emerge
from the liquid they are carried away by the air currents. As a matter of fact,
experience teaches that water left in an open dish does waste away until the
dish is completly dry.

But suppose that the liquid is evaporating into a closed space, such as that
shoen in Fig. 98. Since the molecules which leave the liquid cannon excape
fromt he space S, it is clear that as time goes on the number of molecules which
have passed off from the liquid into this space must continually increase; in
other words, the density of the vapor in S must frow greater and greater. The
question which at once suggests itself is, “Is there any limit to the density of
which this vapor can attain?” i.e. “Will evaporation fo on indefinitely into
the space S, so that the vessel of liiquid placed in it will ultimately dry up?”
Experiment has very positively answered this question in the negative. A vessel
of water placed in an air-tight bell har will never waste away. Hence there must
be a limit to the possible amount of evaporation into a closed space above a
liquid, i.e. to the density which the vapor can attain. When this limit is reached
the vapor is said to be saturated.

5.3.2 Explanation of saturation

The kinetic theory furnishes a very simple explanation of the facts of saturation.
The molecules which have escaped into S (Fig.98) are moving about in all
directions within this space. Whenever one of them in its motions chances to
strike the surface of the liquid, it reënters and does not again escape unless it
chances to acquire again the velocity which is necessary for the escape of any
molecule from the liquid. It is clear that the more molecules there are present
in the space above the liquid, the more frequently will some of the strike the
surface of the liquid and return to it permanently in the manner just described.
In fact, if we double the number of molecules in the space S, we must double
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the numbe which strike the surface of the liquid per second, and hence double
the number which will return to the liquid per second. Evidently, then, as
the natural process of evaporation causes the vapor to become more and more
dense in S, a condition must soon be reached when the number of molecules
which return per second from the vapor to the liquid is equal to the number
which pass out of the liquid pre second into the space S; for the number which
pass out of the liquid per second depends simply upon how many acquire the
velocity necessary for escape, and has nothing to do with the amount of vapor
abot the liquid. When this condition of saturarion has been reached there will
be a containual exchange of molecules between the liquid and the vapor; but
he liquid will no longer wasted away and the vapor will no longer increase in
density. The vapor is then in the saturated condition.

5.3.3 Pressure of a saturated vapor

We have learned that any gas of vapor presses out against the walls of the
containing vessel because the blows which its moving molecules strikee against
these walls. We have learned also from Boyle’s law that the pressure which a gas
or vapor exerts is directly proportional to its dcdensity, i.e. to the number per
cubic centimeter to strike such blows. The pressure which the vapor in the space
S ecerts against the walls of S must therefore increase in just the proportion
in which the density of the vapor increases, and reach a maximum when the
density reaches a maximum. This maximum pressure which a vapor can exert
at a given temperature is called the pressure of the saturated vapor.

5.3.4 Measurement of the pressure of a saturated vapor

Let four Torricellian tubes be set up as in Fig. 99, and with the air of a curved
pipette (Fig. 99) let a drop of ether be introduced into the bottom of tube 1.
This drop will at once rise to the top and a portion of it will evaporate into the
vacuum which exists above the mercury. The pressure of this vapor will push
down the mercury column, and the number of centimeters of this depression will
of course be measured of the pressure of the vapor. It will be observed that the
mercury will fall almost instantly to the lowest level which it will ever reach,–
a fact which indicates that it takes but avery short time for the condition of
saturation to be attained. In the same way let alcohol and water be introduced
into tubes 2 and 3 respectively.

While the pressure of the saturated ether vapor at the temperature of the
room will be found to be as much as 40 cm., that of alcohol will be found to be
but 4 or 5 cm., and that of water only 1 or 2 cm.

5.3.5 No change in the volume of a saturated vapor can
affect its density or pressure

Suppose that after the condition of saturation has been reached in the space
S (Fig. 98)–i.e. after the number of molecules which return from the vapor
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to the liquid per second has become equal to the number whish pass from the
liquid to the vapor per second–the volume of the space S were to be suddenly
decreased so as to increase momentarily the number of molecules per cubic
centimeter in the space above the liquid. This would increase the number of
vapor molecules which strike the liquid surface per second, and thus increase
the rate aet which molecules return to the liquid without changing inn any
way their rate of emergence. Hence the vapor would necessarily grow less and
less dense because of this uncompensated loss of molecules, until the number
entering per second was again reduced to the number emergin per second,–i.e.
until the vapor density in S became the same as at the first. We conclude, then,
that the density of a vapor in contact with its liquid cannot be permanently
increased by compressing it so long as the temperature remains the same.

If, on the other hand, the density of the vapor above the liquid is mo-
mentarily diminished by suddenly increasing the volume of the space S, more
molecules will emerge per second from the liquid than enter it from the vapor.
Consequently the density of the vapor must increase until it reaches the old
equilibrium value. In a word, then, if we decrease the volume of a saturated
vapor, it should condense until the former density is restored; and if we increase
the volume, more liquid should evaporate until the first condition is again re-
gained. In order to verify this conclusion let the following striking experiment
be performed.

Let two Torricelli tubes be placed in a long cistern of mercury, as in Fig. 100,
and let a drop of ether be admitted into one, while enough air is allowed to pass
into the other to reduce the mercury height to about the same level in the two
tubes. let the tubes be pushed down into the cistern so as to diminish the volume
of the gases in the upper part. In the air tube this operation will be found to
decrease the height of the mercury column db, showing that the pressure of the
air within the tube has been increased, as of course it ought to be in accordance
with Boyle’s law, the volume having been diminished. But in the ether tube
the height ab will be found to have been only momentarily changed by either
lowering or raising the tube, thus showing that the pressure, and therefore the
density, of the vapor remains constant for all changes in volume. An increase
in the volume simply causes more of the liquid to evaporate, while a decrease
causes some of the vapor to condense.1

5.3.6 Influence of temperature on the density and pres-
sure saturated vapor

Let a Bunsen flame be passed quickly to and fro across the tubes of Fig. 100,
near the upper level of mercury. The heights ab and db will fall in both, but
the fall will be found to be much greater in the ether tube than in the air tube.

1if enough mercury is not at hand to perform the experiment as indicated in Fig. 100,
this property of the saturated vapor may be illustrated almose as wel by simply inclining the
vapor tubes of Fig. 99. This will decrease the volume, but the upper level of the mercury
will remain at the same distance above the table, showing that the pressure has undergone
no change.
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Since the two tubes have been about equally heated, there must have been
about the same relative increase in molecular velocity in each. Hence the excess
of pressure which the heating has produced in the ether tube must be due to
increased evaporation, i.e. to an increase in the number of molecules per cubic
centimeter in the ether vapor.

The experiment proves that both the pressure and the density of a saturated
vapor increase rapidly with the temperature. This was to have been expected
from our theory; for increasing the temperature of liquids increases the mean
velocity of its molecules and hence increases the mean velocity of its molecules
and hence increases the number which attain each second the velocity necessary
for escape.

Let a piece of ice be held about the tubes near the top of the mercury. The
mercury will rise in both, but much more rapidly in the ether tube than in the
air tube, thus showing that the ether vapor is condensing.

The experiment shows that if the temperature of the saturated vapor is
diminished, it condenses until its density is reduced to that corresponding to
saturation at the lower temperature. How rapidly the density and pressure of
saturation increase with temperature may be seen from the following graph of
collected data.2
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Figure 5.1: Constants of Saturated Water Vapor

2The data for this graph may be found in the Introductory Physics source files in
“plots/Constants of Saturated Water Vapor.dat”.
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5.3.7 The influence of air on evaporation

We observed that when a drop of ether was inserted into the Torricellian tube
the mercury fell very suddenly to its final position, showing that in a vaccum
the condition of saturation is reached almost instantly. This was to have been
expected from the great velocities which we found the molecules of gases and
vapors to possess.

In order to see what effect the presence of air has upon the vaporization,
let a drop of ether be introduced into the air tube of the last experiment (Fig.
100). The mercury will not be found to sink instantly to its final level as it didd
before, but although it will fall rapicly at first, it will continue to fall slowly for
several hours. At the end of a day, if the temperature has remained constant,
it will show a depression which indicates a vapor pressure of the ether just as
great as that existing in a tube which contains air.

The experiment leade, then, to the rather remarkable conclusion that just
as much liquid will evaporate into a space which is already full of air as into a
vacuum. The air has no effect except to retard greatly the rate of evaporation.

5.3.8 Explanation of the retarding influence of air on evap-
oration

This retarding influence of air on evaporation is easily explained by the kinetic
theory; for while in a vacuum the molecules which emerge from the surface fly
at once to the top of the vessel, when air is present the escaping molecules
collide with the air molecules before they have gone any appreciable distance
away from the surface (probably less that 0.00001 cm.), and only work their
way up to the top after an almost infinite numver of collisions. Thus, while
the space immediately above the liquid may become saturated very quickly, it
requires a long time for the condition of saturation to reach the top of the vessel.
That ultimately, however, as much liquid will evaporate into a space containing
air as into a vacuum is to be expected from the fact that evaporation ceases
only when as many molecules of the liquid substance return to the liquid per
second as escape per second. This number which returns depends simply on
the number of molecules of the liquid which are present per cubic centimeter in
the space above, and not at all on how many molecules of other gases may be
present there.

It must not be forgotten, however, that at a given temperature the pressure
existing within a vessel containing gases is simply due to the total number of
molecules per cubic centimeter which are striking blows against each square
centimeter of the wall. Therefore, when a liquid evaporates into a closed vessel
already containing air, the pressure gradually increases, and is ultimately equal
to the air pressure plus the pressure of the saturated vapor. When a liquid
evaporates in an open vessel,–i.e. under constant pressure,–its molecules crowd
an equal number of molecules of air.
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5.3.9 Questions and problems

Add this section

5.4 Hygrometry, or the Study of Moisture Con-
ditions In the Atmosphere

5.4.1 Condensation of water vapor from the air

Were it not for the retarding influence of air upon evaporation we should be
obliged to live in an atmosphere which would be always completely saturated
with water vapor; for the evaporation from oceans, lakes, and rivers would al-
most instantly saturate all the regions of earth. This condition–one in which
moist clothes would never dry, and in which all objects would be perpetually
soaked in moisture–would exceedingly uncomfortable, if not altogether unen-
durable.

But on account of the slowness with which, as the last experiment showed,
evaporation takes place into air, the water vapor which always exists in the
atmosphere is usually far from saturated, even in the immediate neighborhood
of lakes and rivers. Since, however, the amount of vapor whish ic necessary to
produce saturation rapidly decreases with a fall in temperature, if the temper-
ature decreases continually in some unsaturated locality, it is clear that a point
must soon be reached at which the amount of vapor already existing in a cubic
centimeter of the atmosphere is the amount corresponding to saturation. Then,
in accordance with the facts discovered in section 5.3.6, if the temperature still
continues to fall, the vapor must begin to condense. Whether it condenses as
dew, or cloud, or fog, or rain will depend upon how and where the cooling takes
place.

5.4.2 The formation of dew

If the cooling is due to the natural radiation of heat from the earth at night after
the sun’s warmh is withdrawn, the atmosphere itself does not fall in temperature
nearly as rapidly as do solid objects on the earth, such as blades of grass, trees,
stones, etc. The layers of air which come into immediate contact with these
cooled bodies are themselves cooled, and as they thus reach a temperature at
a saturated condition, they begin to deposit this moisture, in the form of dew,
upon the cold objects. The drops of moisture which collect on an ice pitcher in
summer illustrate perfectly the whole process.

5.4.3 The formation of fog

If the cooling at night is so great as not only to bring the grass and trees below
the temperature at which the vapor in the air in contact withthem is in a state
of saturation, but also to lower the whole body of air near the earth below this
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temperature, then the condensation takes place not only on thesolid objects but
also on dust particles suspended in the atmosphere. This constitutes fog.

5.4.4 The formation of clouds, rain, hail, and snow

When the cooling of the temosphere takes place at some didtance above the
earth’s surface, as when a warm current of air enters a cold region, if the re-
sultant temperature is below that at which the amount of mositure already in
the air is sufficient to produce saturation, this excessive mositure immeciately
condenses about floating dust particles and forms a cloud . If the cooling is usf-
ficient to free a considerable amouunt of mositure, the frops vecome large and
fall as rain. If the falling rain passes through cold regions, it freezes into hail . If
the temperature at which condensation begins is below freezing, the condensing
moisture forms into snowflakes.

5.4.5 The dew-point

The temperature to which the atmosphere must be cooled in order that conden-
sation may begin is called the dew-point . This temperature may be found by
partly filling with water a brightly polished vessel of 200 or 300 cm3 capacity and
dropping into it little pieces of ice, stirring thoroughly at the same time with a
thermometer. The dew-point is the temperature iindicated by the thermometer
at the instant a film of moisture appears upon the polished surface. In winter
the dew point is usually below freezing, and it will therefore be necessary to ass
salt to the ice and water in order to make the film appear. The experiment may
be performed equally well by bubbling a current of ait through ether contained
in a polished tube (Fig. 101).

5.4.6 Humidity of the atmosphere

From the dew-point and the table given in section 5.3.6 page 5.3.6, we can
easily find what is commonly known as the relative humidity, of the degree of
saturation of the atmosphere. This quantity is defined as the ratio between
the amount of moisture actually present in the air per cubic centimeter, and
the amount which would be present if the air were completely saturated. This
is precisely the same as the ratio between the pressure which the water vapor
present in the air exerts, and the pressure which it would exert if it were present
in sufficient quanitty to be in the saturated condition. As example will make
clear the method of finding the relative humidity.

Suppose that the dew-point were found to be 15 degC on a day on which
the temperature of the room was 25 degC. The amount of mositure actually
present in the air then saturates is at 15 degC. We see from the Pressure axis
on the graph that the pressure of saturated vapor at 15 degC is 12.7 mm of
mercury. This is then the pressure exerted by the vapor in the air at the
time of our experiment. Running aross the graph, we see that the amount of
moisture required to produce saturation at the temperature of the room, i.e. at
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25 degC, would exert a pressure of 23.5 mm of mercury. hence at the time of the
experiment the air contains 12.7

23.5 , of 0.54, as much water vapor as it might hold.
We say, therefore, that the air is 54% saturated, of that the relative humidity is
54%.

5.4.7 Practical value of humidity determinations

From humidity determinations it is possible to obtain much information regard-
ing the likelihood of iran of frost. Such observations are continually made for
this purpose at all meteorogical stations. Further, they are made in greenhouses
to see that the air does not become too dry for the welfare of the plants, and
also in hospitals and public buildings, and veen in privite dwelling, in order
to insure the maintenance of hygenic living conditions. For the most healthful
conditions the relative humidity should be kept at from 50% to 60%.

5.4.8 Cooling effect of evaporation

let three shallow dishes be partly filled, the first with water, the second with
alcohol, and the third with ether, the bottle from which these liquids are ob-
tained having stood in the room long enough to acquire its temperature. let
three students carefully read as many thermometers, first before their bulbe
have been immersed in the respectice liquids and then after. In every case the
temperature of the liquid in the shallow vessel with be found to be somewhat
lower than the temperature of the air, the difference being greatest in the case
of the ether and lease in the case of water.

It appears from this experiment that an evaporating liquid assumes a tem-
perature somewhat lower than its surroundings, and that the substances which
evaporate the mose readily, i.e. those which have the greatest vapor pressures
at a given temperature (see section 5.3.4, assume the lowest temperatures.

Another way of establishing the same truth is to place a few drops of each
of the above liquids in succession on the bulb of the arrangement shown in Fig.
95, and observe the rise of water in the steam; or, more simply still, to place
a few drops of each liquid on the back of the hand, and notice that the order
in which they evaporate–namely, ether, alcohol, water–is the order of gtearest
cooling.

5.4.9 Explanation of the cooling effect

The kinetic theory furnishes a simple explanation of the cooling effects of evapo-
ration. We saw that in accordance with this theory evaporation means an escape
from the surface of those molecules which have acquired velocities considerably
above the average. But such a continual loss from a liquis of its most rapidly
moving molecules involves, of course, a continual diminishing of the average ve-
locity of the molecules left behind in the liquid state, and this means a decrease
in the temperature of the liquid (see sections 5.1.8 and 5.2.3).
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Again, we should expect the amount of cooling to be proportional to the
rate at which the liquid is losing molecules. Hence, of the three liquids studied,
ether should cool most rapidly, since it shows the highest vapor pressure at a
given temperature and therefore the highest rate of emission of molecules. The
alcohol shoulc some next in order, and the water last, as was in fact observed.

5.4.10 Freezing by evaporation

In section 5.3.7 it was shown that a liquid will evaporate much more quickly into
a vacuum than into a space comtaining air. Hence if we place a liquid under the
reciever of an air pump and exhaust rapidly, we ought to expect a much greater
fall in temperature than when the liquid evaporates into air. This conclusion
may be strikingly verified as follows.

Let a thin watch cladd be filled with ether and plced upon a drop of cold
water, preferably ice water, which rests upon a thin glass plate. Let the whold
arrangement be placed underneath the reciever of an air pump and the air
rapidly exhausted. After a few minutes of pumping the watch glass will be
found frozen to the plate.

It was by evaporating liquid hydrogen in this way that Professor james De-
war of London, in 1900, attained the lowest temperature which has ever been
reached, viz. −260 degC.

5.4.11 Effect of air currents upon evaporation

Let four thermometer bulbs, the first of which is dry, the scond wetted with
water, the third with alcohol, and fourth with ether, be rapidly fanned and
their respective temperatures observed. The results will show that in all of the
wetter thermometers the fanning will considerably augment the cooling, but the
dry thermometer will be wholly unaffected.

The reason that fanning it removes evaporation, and therefore cooling, is that
it removes the saturated layers of vapor which are in immediate contact with the
liquid and replaces them by unsaturated layers into which new evaporation may
at once take place. From the behavior of the dry-bulb thermometer, whoever,
it will be seen that fanning produces cooling only when it can thus hasten
evaporation. A dry body at the temperature of the room is not cooled in the
slightest degree by blowing a current of air arcoss it.

5.4.12 The wet-and-dry-bulb hygrometer

In the wet-and-dry-bulb hygrometer (Fig. 102) the principle of cooling by evap-
oration finds a very useful application. This instrument consists of two ther-
mometers, the bulb of one of which is dry, while that of the other is kept
continually moist by a wick dipping into a vessel of water. Useless the air is
saturated the wet bulb indicates a lower temperature than the dry one, for the
reason that evaporation is continually taking place from its surface. How much
lawer will depend on how rapidly the evaporation proceeds; and this in turn will
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depend upon the relative humidity of the atmosphere. Thus in a completely sat-
urated atmosphere no evaporation whatever takes place at the wet bulb, and
it consequently indicates the same temperature as the dry on. By comparing
the indications of this instrument with those of the dwq-point hygrometer (Fig.
101), tables have been constructed which enable one to determine at once from
the readings of the two thermometers both the relative humidity and the dew-
point. On account of their convenidnce instruments of this sort are used almost
exclusively in pratical work. They are not very reliable unless the air is made
to circulate about the wet bulb before the reading is taken.

5.4.13 Effect of increased surface upon evaporation

Let a small tube containing water be dipped into a larger tube, or a small
glass, containing ether, as in Fig. 103, and let a current of air be forced rapidly
through the ether with an aspirator. The water within the test tube will be
frozen in a few minutes.

The effect of passing bubbles through the ether is simply to increase enor-
mously the evaporating surface, for the ether molecules which could before es-
cape only at the upper surface can now excape into the air bubbles as well.

5.4.14 Factors affecting evaporation

The above results may be summarized as follows: The rate of evaporation de-
pends (1) on the nature of evaporation liquid; (2) on the temperature of the
evaporating liquid; (3) on the humidity of the space into which the evaporation
takes plce; (4) on the density of the air or other gas above the evaporating
surface; (5) on the rapidity of the circulation of the air above the evaporating
surface; (6) on the extent of the exposed surface of the liquid.

5.5 Molecular Motions In Solids

5.5.1 Evidence for molecular motion of solids

We have inferred that the molecules of liquids are in motion, in part at least,
from the fact that liquids increase in volume when the temperature is raised,
and from the fact that molceules of the liquid can usually be detected in a
gaseous condition above the surface. Both of these reasons apply just as well in
the case of solids.

Thus the facts of ecpansion of solids with an increse in temperature may be
seen on every sidee. Railroad tails are laid with spaces between their ends so
that they may expand during the heat of summer without crowding each other
out of place. Wagon tires are made smaller than the wheels which they are to
fit. They are then heated until they become large enough to be driven on, and
in cooling they shrink again and thus grip the wheels with immense force. A
common lectureroom demonstration of expansion is the following.
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Sublimation Let the ball B, which when cool slips through the ring R, be heated in a
Bunesn flame. It will now be found too large to pass through the ring; but if
the ring is heated, ot if the ball is again cooled, it will pass through easily (see
Fig. 104).

5.5.2 Evaporation of solids

That the molecules of a solid substance are found in a vaporous condition above
the surface of the solids, as well as above that of a liquid, is proven by the often
observed fact that ise and snow evaporate wven though they are kept constantly
below the freezing point. Thus wet clothes dry in winter after freezing. An even
better proof is the fact that the odor of camphor can be detected many feet
away from the camphor crystals. The evaporation of solids may be rendered
visible by the following striking experiment.

Let a few crystals of iodine be placed on a watch glass and heated gently
with a Bunsen flame. The visible vapor of iodine will appear above the crystals
though none of the liquid is formed. A great many substances at high tempera-
tures pass thus from the solid to the gaseous condition without passing through
the liquid stage at all. This process is called sublimation.

5.5.3 Diffusion of solids

it has recently been demonstrated that if a layer of lead is placed upon a layer of
gold, molecules of gold may in time be detected throughout the whole mass of
lead. This difusion of solids into one another at ordinary temperatures has been
shown only for these two metals, but at higher temperatures, e.g. 500 degC., all
of the metals show the same characteristics to quite a surprising degree.

The evidence for the existence of molecular motion in solids is then no less
strong than in the case of liquids.

5.5.4 The three states of matter

Although it has been shown that in accordance with surrent belief the molecules
of all substances are in very rapid motion, and that the temperature of a given
substance, whether in the solid, liquid, of gaseous condition, is determined by
the average velocity of its molecules, yet differences exist in the kind of motion
which the molecules in the three states possess. Thus in the solid state it is
probable that the molecules oscillate with great rapidity about certain fixed
points, always being held by the attractions of their neighbors, i.e. the cohexive
forces (see section ??), in practically the same positions with reference to other
molecules in the body. In rare instances, however, as the facts of diffusion show,
a molecule breaks away from its constraints. In liquids, on the other hand, while
the molecules are, in general, as close together as in solids, they slip about with
perfect ease over one another and thus have no fixed positions. This assumption
is necessitated by the fact that liquids adjust themeslves readily to the shape
of the containing vessel. In gases the molecules are comparatively far apart, as
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is evident from the fact that a cubic centimeter of water occupies about 1600
cm3. when it is transformed into steam; and furthermore they exert practically
no cohesive force upon one another, as is shown by the indefinite expansibility
of gases.

5.5.5 Questions and problems

Add this section
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Solids

Chapter 6

Molecular Forces

1

6.1 Molecular Forces In Solids

Molecular Forces In Solids. Elasticity

6.1.1 Proof of the existence of molecular forces in solids

The fact that a gas will expand without limit as the volume of the containing
vessel is increased seems to show very conclusively that the molecules of gases do
not exert any appreciable attractive forces upon one another. In fact, all of the
experiments of the last chapter upon gases showed that such substances certainly
behave as they would if they consisted of independent molecules moving hither
and thither with great velocities and influencing each other’s motions only at
the instances of collision. Between collisions the molecules doubeless move in
straight lines. It must not, however, be thought that the distances moved by
a single bolecule between successive collisions are large. Inordinary air these
distances probably do not average mre than 0.00009 mm. Small, however, as
this distance is, it is at least one hundred times the diameter of a molecule.

But that the molecules of solids, on the other hand, cling together with
forces of great magnitude is proven by some of the simplest facts of nature; for
solids not only do not expand like gases, but it often requires enormous forces
to pull their molecules apart. Thus a rod of cast steel 1 cm. in diameter may
be loaded with a weight of 8.8 tons before it will be pulled in two.

6.1.2 Tensile strengths

In order to compare the strengths of the forces which hold together the molecules
of different substances, let three wires, all of the same diameter, e.g. 0.25 mm.

1Add in the footnote from page 107 of A First Course In Physics.
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(number 30), but consisting of three different materials, such as steel, brass, and
aluminum, be wrapped side by side about a cylindrical rod, as in Fig. 105, and
weights added successively to the wires until they break. The breaking weights
will be found to differ greatly for the three wires.

Tests made by methods similar to the above show that the tensile strengths
of wires of the same material are directly proportional to the cross sections.
This was to have been expected, since doubling the cross section doubles the
number of molecules which must be pulled apart. The following are the weights
in kilograms necessary to break drawn wires of different materials, 1 mm2 in
cross section.

Table 6.1: Maximum Tensile Strengths for Wires of 1mm2 Cross Section

Substance Force (N) Substance Force (N)
Steel 893 Platinum 422
Iron 755 Silver 363

Copper 500 Lead 26

6.1.3 Elasticity

We can obtain additional information about the molecular forces existing in
different substances by studying what happens when weights applied are not
large enough to break the wires.

Thus let a long steel wire, e.g. number 26 piano wire, be suspended from a
hook in the cieling, and let the lower end be wrapped tightly about one end of a
meter stick, as in Fig. 106. Let the fulcrum c be placed in a notch in the stick at
a distance of about 5 cm. fro mthe point of attachment to the wire, and let the
other end of the stick be provided with a knitting needle, one end of which is
opposite the vertical mirror scale S. Let enough weights be applied to the pan
P to place the wire under slight tension; then let the reading of the pointer p on
the scale S be taken. Let three or four kilogram masses be added successively
to the pan and the corresponding positions of the pointer read. Then let the
readings be taken again as the weights are successively removed. In the last
operation the pointer will probably be found to some back exactly to its first
position.

This characteristic which the steel has shown in this experiment, of returning
to its original length when the stretching weights are removed, is an illustration
of a property possessed to a greater or less extent by all solid bodies. It is called
elasticity .

6.1.4 The measure of elasticity

The relative amounts of elasticity possessed by different substances are found
by subjecting wires of exactly the same dimensions, but of different materials,
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Elasticto tests like that used on the steel wire above. One substance is siad to have
twice as high an elastic constant, or simply to be twice as elastic as another,
when it requires twice as much force to procuce the same stretch; of, to state
the same thing in a slightly different way, when with the same stretch it tends
to spring back with twice the force. Thus it was found that if it required 20
kg. to stretch a given steel wire through 1 mm., it will require but 12 kg. to
stretch an exactly similar copper wire through 1 mm., and 6 kg. to produce the
same stretch in a similar wire of aluminum. Steel is therefore about 1.7 times as
elastic as copperand 3.3 times as elastic as aluminum. It will be seen that when
elasticity is measured in this way India rubber has a very small elastic constant,
for it requires only a very small force to produce a considerable stretch.

6.1.5 Limits of perfect elasticity

If a sufficiently large weight is applied to the end of the wire of Fig. 106, it
will be found that the pointer does not return exactly to its original position
when the weight is removed. We say, therefore, that steel is perfectly elastic
only so long as the distorting forces are kept within certain limits, and that,
as soon as these limits are overstepped, it no longer shows perfect elasticity.
Different substances differ very greatly in the amount of distortion which they
can sustain before they show this failure to return completely to the original
shape. Thus a drawn copper wire 1 mm. in diameter shows perfect elasticity
until the stretching force exceeds about 12 kg., while a similar steel wire returen
completely to its original length so long as the stretching force is less than 42 kg.
Since, according to the results of section 6.1.4, it will require only (1.8)(12) = 21
kg., to stretch the steel wire as far as the 12 kg. stretch the copper wire, it will
be seen that the limits of perfect elasticity for steel are twice as wide as they
are for copper.

There are some substances whose elasticity, measured by the method of 6.1.4
within very wide limits. India rubber is such a substance. When, in popular
language, we speak of this substance as being very elastic, we have in mind the
width of its elastic range rather than the numerical value of its elastid sonstant.
In scientific discussion it it necessary to distinguish carefully between these two
ideas. In this book a substance will be said to have a high elasticity only when
it requires a large force to produce a small deformation.

6.1.6 Hooke’s law

If we examine the stretches produced by the successive addition of kilogram
masses in the experiment of section 6.1.3, Fig 106, we shall find that these
stretches are all equal, at least within the limits of observational error. Very
carefully conducted experiments have shown that this law, namely that the
successive application of equal forces produces a succession of equal stretches,
holds very exactly for all sorts of elastic displacements, so long, and only so long,
as the limits of perfect elasticity are not exceeded. This law is know as Hooke’s
law, after Englishman, Robert Hooke (1635-1703. Another way of stating this
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law is the following. Within the limits of perfect elasticity elastic deformations
of any sort, be they twists or bends or stretches, are directly proportional to the
forces producing them.

6.1.7 Molecular forces vs. molecular motions

The above experiments have shoen that when the molecules of a solid are pulled
farther apart than their natural distances, they tend to come back to these
distances. Precisely similar experiments on compression show that if they are
pushed closer together than their natural distances, they tend to spring apart.
Thus, if one attempts to compress a rubber ball, a steel ball, an ivory ball, or
almost any sort of a solid body, as soon as the force is removed the body will
return to its natural size unless the compression had been carried too far.

As a given temperature, then, the molecules of any solid tend to reamin a
given distance apart and resist any attempt to increase to decrease this distance.
The quesion whish at once suggests itself is, Why do not the attractive forces
existing between the molecules pull them into the most intimate contact pos-
sible, so that no spaces whatever are left between them, and not compressing
forces can presss them close together. The answer is found in the effects of heat
on solid bodies. The molecules do in fact come closer together as soon as we
lower the temperature, i.e. as soon as we decrease the velocity with which the
molecules are oscillating back and forth within their little intermolecular spaces,
and they push out to greater distances as soon as we raise the temperature. The
size which a given solid body possesses at any given temperature is then the
result of a balance between two opposing tendencies, one a tendency to come
as close together as possible on account of the attractions of the molecules, and
the other a tendency to expand indefinitely like gases, because of the motions
of the molecules. If we diminish the motions by lowering the temperature, we
destroy the balance and the forces pull the molecules closer together. If we
increase the motions by raising the temperatue, we render them more effective
than the attractive forces, and the body expands. So long, however, as the tem-
perature remains constant any attmept to press the molecules closer together
of push them farther apart is resisted, the one by the motions, the otehr bu the
attractive forces.

6.1.8 Cohesion and adhesion

The preceeding experiments have brought out the fact that in the solid sondition,
at least, molecules of the same kind exert attractive forces uon one another.
That molecules of unlike substances also exert mutually attractive forces is
equally true, as is proved by the fact that glue sticks to wood with tremendous
tenacity, mortar to bricks, nickel plating to iron, etc.

The forces which bind like kinds of molecules together are commonly called
cohecive forces; those which bind together molecules of unlike kind are called
adhesive forces. Thus we say that mucilage sticks to wood because of adhesion,
while wood itself holds together because of cohesion. Again, adhesion holds
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the chalk to the blackboard, while cohesion holds together the particles of the
crayon.

6.1.9 Properties of solids depending on cohesion

Many of the physical properties in which solid substances differ from one another
depend on differences in the cohexive forces existing between the molecules.
Thus we are accustomed to classify solids with relation to their hardness, bright-
ness, ductility, maleability, tenacity, elacticity, etc. The last two of these terms
have been sufficiently explained int he preceding paragraphs; but since con-
fusiton sometimes arises from failure to understnad the first four, the tests for
these properties are here given.

We test for relative hardness of two bodies by seeing which will scratch the
other. Thus the diamond is the hardest of all substances, since is scratches all
others and is scratched by none.

We test for relative brittleness of two substances by seeing which will break
mose easily under a blow from a hammer. Thus glass and ice are very brittle
substances; lead and copper are not.

We test the relative ductility of two bodies by seeing which can be drawn
into the thinner wire. Platinum is the most ductile of all substances. It has
been drawn into wires but 0.000762 mm. in diameter. Glass is also very ductile
when sufficiently hot, as may be readily shown by heating it to softness in a
Bunsen flame, when it may be drawn into threads which are o fine as to be
almost invisible.

We test the relative mallleability of two substances by seeing which san be
hammered into the thinner sheet. Gold, the most malleable of all substances,
has been hammered into sheets 0.000085 mm in thickness.

6.1.10 Questions and problems

Add this section 2

6.2 Molecular Forces In Liquids. Capillary Phe-
nomena

6.2.1 Proof of the existence of molecular forces in liquids

The facility with which liquids change their shape might lead us to suspect that
the molecules of such substances exert almost no forces upon one another, but
a simple experiment will show that this is far from true

By means of sealing wax and string let a glass plate be suspended horizontally
from one arm of a balance, as in Fig. 107. After equilibrium is obtained let a
surface of water be placed just beneath the plate and the beam pushed down
until contact is made. It will be found necessary to ass a considerable weight to

2Add in the footnote from page 107 of A First Course In Physics.
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the opposite pan in order to pull the plate away from the water. Since a layer
of water will be found to cling to the glass it is evident that the added force
applied to the pan has been expended in pulling water molecules away from
water molecules, not in pulling glass away from water. Similar experiments
may be performed with all liquids. In the case of mercury the glass will not
be found to be wet, showing that the cohesion of mercury is greater than the
adhesion of glass and mercury.

6.2.2 Shape assumed by a free liquid

Since, then, every molecule of liquid is pulling on every other molecule, any
body of liquid which is free to take its natural shape, i.e. which is acted on only
by its won cohesive forces, must draw itself together until it has the smallest
possible surface compatible with its volume; for, since every molecules in the
surface is drawn toward the interior by the attraction of the molecules within,
it is clear that molecules must continually move toward the center of the mass
until the hole has reached the most compact form possible. Now the geometrical
figure which has the smallest area for a given volume is a sphere. We conclude,
therefore, that if we could relieve the body of liquid from the action of gravity
and other outside forces, it would at once take the form of a perfect sphere.
This conclusion may be easily verified by the following experiment.

let alcohol be added to water until a solution in which a drop of common
lubricating oil will float at any depth. Then with a pipette insert a large globule
of oil beneath the surface. The oil will be seen to float as a perfect sphere
within the body of the liquid (Fig. 108). (Unless the drop is viewed from above,
the vessel should have flat rather than cylindrical sides, otherwise the curved
surfaces of the water will act like a lens and make the drop appear flattened.)

The reason that liquids are not more commonly observed to take the spheri-
cal form is that ordinarily the force of gravity is so large at to be more influential
in determining their shape than tare the cohesive forces. As verification of this
statement we have only to observe that as a body of liquid becomes smaller and
smaller,–i.e. as the gravitational forces upon it become less and less,–it does in-
deed tend more and more to take the spherical form. Thus very small globules
of mercury on a table will be found to be almost perfect spheres, and raindrops
or minute floating particles of all liquids are quite accurately spherical.

6.2.3 Contractility of liquid films

The tendency of liquids to assume the smallest possible surface furnishes a
simple explanation of the contractility of liquid films.

Let a soap bubble five to seven centimeters in diameter be blown on the
bowl of a pipe and then allowed to stand. It will at once begin to shrink in size
in a few minutes will disappear within the bowl of the pipe. The liquid of the
bubble is simply obeying the tendency to reduce its surface to a minimum, a
tendency which is due to the mutual attractions which its molecules exert upon
one another. A candle flame held opposite the opening in the stem of the pipe
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will be deflected by the current of air which the contradicting bubble is forming
out through the stem.

Again, let a loop of fine thread be tied to the edge of a wire, as in Fig. 109.
Let the ring be dipped into a soap solution so as to form a film across it, and
then let a hot wire be thrust through the film inside the loop. The tendency of
the film outside of the loop to contract will instantly spread out the thread into
a perfect circle (Fig. 110). The reason that the thread takes the circular form
is that since the film outside the loop is striving to assume the smallest possible
surface, the are inside the loop must of course become as large as possible. The
circle is the figure which has the smallest possible area for a given perimeter.

Let a soap film be formed across the mouth of a funnel, as in Fig. 111. The
tendency of the film to contract will cause it to run quickly toward the small
end of the funnel.

6.2.4 Ascension and depression of liquids in capillary tubes

It was shown in Chapter 3 that, in general, a liquid stands at the same level
in any number of communicating vessels. The following experiments will show
that this rule ceases to hold in the case of tubes of small diameter.

let a series of capillary tubes of diameter varying from 2mm. to 0.1 mm. be
arranged as in Fig. 112.

When water is poured into the vessel it will be found to rise higher in the
tubes than in the vessel, and it will be seen that the smaller the tube the greater
the height to which it rises. If the water is replaced by mercury, however, the
effects will be found to be just inverted. The mercury is depressed in all tubes,
the depression being greater in proportion as the tube is smaller (Fig. 113).
This depression is most easily observed with a U-tube like that shown in Fig.
114.

Experiments of this sort have established the following laws.

1. Liquids rise in capillary tubes when they are capable of wetting them, but
are depressed in tubes which they do not wet.

2. The elevation in the one case, and the depression in the other, are inversely
proportional to the diameter of the tubes.

It will be noticed, too, that when a liquid rides, its surface within the tube
is concave upward, and when it is depressed its surface is convex upward.

6.2.5 Cause of curvature of a liquid surface in a capillary
tube

All of the effects presented in the last paragraph can be explained by the con-
sideration of cohesive and adhesive forces.

The second fact upon which the explanation will rest is one the truth of which
was demonstrated by the spherical shape assumed by the very small globules of
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liquid (see section 6.2.2). It is that the force of gravity actin on a very small
body of liquid is negligible in comparison with its own cohesive force.

These two points established, consider where water is in contact with the
glass wall of the tube. Let the quantity of liquid considered be so minute that
the force of gravity acting upon it may be disregarded. The force of adhesion
of the wall will pull the liquid particles at o in the direction of oE. The force of
cohesion of the liquid will pull these same particles in the direction of oF .

It was shown in Chapter 2 that if the lengths of the lines oE and oF are made
proportional to the relative strengths of these two forces, the actual dircetion
and magnitude of the resultant force will be represented by the direction and
magnitude of the diagonal oB of the parallelogram of which oE and oF are two
adjacent sides (Fig. 115).

If, then, the adhesive force oE greatly exceeds the cohesive force oF , the
direction oR of the resultant force will lie to the left of the vertical om, in which
case, since a liquid always sets itself so that its surface is at right angles to the
resultant force, the liquid about o must set itself in the position shown in Fig.
116; i.e. it must rise up against the wall as water does against glass.

If the cohesive force oF (Fig. 117) is strong in comparison with the adhesive
force oE, the resultant oR will fall to the right of the vertical, in which case the
liquid must be depressed about o.

Whether, then, a liquid will rise against a solid wall or be depressed by it,
will depend only on the relative strengths of the adhesive and cohesive forces
that exist between he walls of the tube and the liquid itself. Since mercury does
not wet glass we know that cohesion is here relatively strong, and we should
expect, therefore, that the mercury would be depressed, as indeed we find it
to be. The fact that water will wet glass indicates in this case adhesion is
relatively strong, and hence we should expect water to rise against the walls of
the containing vessel, as in fact it does.

It is clear that a liquid which is depressed near the edge of a vertical solid
wall must assume within a tube a surface whish is convex upward, while a liquid
which rises against a wall must within such a tube be concave upward.

6.2.6 Explanation of ascension and depression in capillary
tubes

The fact that liquids assume curved surfaces within tubes makes it easy to see
why a liquid which is concave must rise and one which is convex must fall. For,
consider first a liquid which, because of the strength of the adhesion between
it and the walls of the tube, assumes a concave surface within the tube (Fig.
118). It was shown in section 6.2.2 and 6.2.3 that the mutual attraction of
the molecules of a liquid for one another always exhibits itself as a tendency
to reduce the exposed surface of the liquid to a minimum. hence this concave
surface aob (Fig 118) must tend to straighten out into the flat surface ao′b. But
it no sooner thus begins to straighten out than adhesion again elevates it at the
edges. it will be seen, therefore, that the liquid must continue to rise in the
tube until the weight of the volume of liquid lifted, namely amnb (Fig. 119),
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balances the tendency of the surface aob to move up. That the liquid will rise
higher in a small tube that in a large one is to be expected, since the weight of
the column of liquid to be supported in the small tube is less.

Precisely the same method of reasoning applied to the convex mercury sur-
face aob (Fig. 120) shoes why the mercury must fall in a capillary tube until
the upward pressure at o, due to the depth h of mercury (Fig. 121), balances
the tendency of the surface aob to flatten out.

6.2.7 Capillary phenomena in everyday life

Capillary phenomena play a very important part in the process of nature and
of everyday life. Thus the rise of oil in wicks of lamps, the complete wetting
of a towel when one end of it is allowed to stand in a basin of water, the rapid
absorption of liquid by limp of sugar when one corner of it only is immersed,
the taking up of ink by blotting paper, are all illustrations of precisely the same
phenomena which we observe in the capillary tubes of Fig. 112.

6.2.8 Floating of small objects on water

Let a needle be laid very carefully on the surface of a dish of water. In spite of
the fact that it is nearly eight times as dense as water it will be found to float.
If the needle has been perviously magnetized, it may be made to move about in
any direction over the surface in obedience to the pull of the magnet.

To discover the cause of this apparently impossible phenomenon, examine
closely the surface of the water in the immediate neighborhood of the needle. It
will be found to be depressed in the manner shown in Fig. 122. This furnishes at
once the explanation. So long as the needle is so small that its own weight is no
greater than the upward force exerted upon it by the tendency of the depressed
(and therefore concave) liquid surface to straighten out into a flat surface, the
needle could not sink in the liquid, no matter how great its density. If the water
had wetted the needle, i.e. if it had risen about the needle instead of being
depressed, the tendency of the liquid surface to flatten out would have pulled it
down into the liquid instead of forcing it upward. Any body which a liquid is
depressed will therefore float on the surface of the liquid if its mass is not too
great. Even if the body, when perfectly clean, causes the liquid to ride about
it, an imperceptible film of oil on its surface will cause it to depress the liquid,
and hence to float.

The above experiment explains the familiar phenomenon of insects walking
and running on the surface of water (Fig. 123) in apparent contradiction to
the law of Archimedes, in accordance with which they should sink until they
displace their own weight of the liquid.

6.2.9 Questions and problems

Add this section
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6.3 Solutions and Crystallization

6.3.1 Solution and molecular force

let a speck of permanganate of potash, about as big as a pin head, be dropped
into a quart flask full of water. The water will at once begin to be colored
about the particle, and in a short time the particles itself will have completely
disappeared. After a little shaking the whole body of water will have acquired
a rich red tint.

This process of the solution of solids in liquids, so familiar to us from the use
of salt and sugar in liquid foods, furnishes a good illustration of the differences
in the attraction which the molecules of the same liquid exert on the molecules
of different solids, or which the molecules of the same solid exert on those of
different liquids. At ordinary temperatures water dissolves three times as much
common table salt as does alcohol, and it dissolves gum arabic quite readily,
whereas alcohol scarcely dissolves it at all. On the other hand, resin, shellac,
etc., are readily soluble in alcohol, but quite insoluble in water. Benzene and
gasoline are used for removing grease spots from clothing, because most forms of
grease, although insoluble water, are readily soluble in these liquids. Beeswax,
which is not appreciable dissolved by water, alcohol, or benzene, is quite readily
dissolved in turpentine.

From these facts it is clear that adhesive forces have much to do with the
process of solution. On the other hand, the motions of the molecules must also
be intimately concerned with this process, for we have seen that the facts of
the evaporation of ice and of other solids prove that even where there are no
adhesive forces pulling the molecules of a solid from one another, the motions
alone cause some of them to escape form the surface and pass off into the space
above. This tendency to pass off must be present as well when the space is filled
with liquid as when it is empty.

6.3.2 Saturated solutions

The last conclusion is confirmed when we find that in many respects solution is
analogous to evaporation. Just as at a given temperature only a certain amount
of liquid will evaporate into a closed space, so also there is a definite limit to
the amount of a solid which will dissolve at any temperature in a given body of
liquid. This is proved by the familiar fact that after a certain amount of sugar
has been added to a cup of coffee, further addition simply deposits so much
more sugar in the bottom of the cup. At ordinary temperatures the maximum
amount of common salt which can be made to dissolve in 100ml of water is
about 36g.

Now just as a vapor which has reached its highest possible density is called
a saturated vapor, so a solution which contains as large an amount of a solid as
it is capable of taking up is called a saturated solution.
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6.3.3 Saturation and temperature

In the last chapter it was found that a liquid or a solid evaporates more readily
at a high temperature tan at a low one,–a fact which is readily explained by
the theory that an increase in temperature means an increase in the average
velocity of the molecules. It is to be expected from the same theory that increase
in temperature will increase the ease with which a solid substance goes into
solution in a liquid. For, as suggested above, the increased motions can be no
less effective in causing molecules to leave the solid and pass off into the space
above when that space is filled with a liquid than when it is empty. In the
former case the adhesive force and the motion of the molecules together effect
the disintegration of the solid, while in the latter the motions are only agents
at work.

As a matter of fact, experiment shows that it is true, in general, that solids
are dissolved much more readily in hot liquids than in cold ones. It is for
no other reason than this that hot water is so much more effective than cold
for cleaning purposes. The amount of potassium nitrate (saltpeter) that will
dissolve in 100ml of water a given temperatures is listed in Figure 6.1.
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Figure 6.1: Saltpeter Solution

6.3.4 Effect of evaporating a solution

When a solution evaporate it is, in general, the liquid only which passes off
into a vaporous condition, practically all of the dissolved substance remaining
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crystallization behind. This is proven by the fact that the rain which falls at sea-level is fresh
water and not salt water, and by the fact that impurities are removed from
water by distillation.

6.3.5 Effect of evaporating a saturated solution or of lower
its temperature

If a saturated solution is evaporating, it must soon become more than saturated,
for the same amount of dissolved substance remains, while the volume of the
solution continually diminishes. The result is exactly what would be expected
from the analogy between solution and evaporation. It will be remembered
that when the volume of a saturated vapor was diminished a part of the vapor
condensed. So when the saturated solution evaporates the dissolved substance
gradually seperates out inthe solid condition. This is illustrated by the fact that
the evaporation of salt sea spray leaves the face and clothing covered with salt.
It is the process of evaporating sea water that is frequently used to obtain table
salt.

Again, just as there is a second way of causing a saturated vapor to condense,
namely by lowering its temperature, so lowering the temperature of a saturated
solution will also caure the molecules of the dissolved substance to pass out of
solution and to collect in the solid form.

6.3.6 Crystallization

If the separation of solid from solution is made to take place slowly and qui-
etly, by either of the above methods, the beautiful and striking phenomena of
crystallization may be observed. The molecules of the separating solid group
themselves in regular geometric forms. These forms vary greatly with the na-
ture of the dissolved substance, thus indicating differences in the nature of he
cohesive forces which act to bring the molecules together.

Thus if a saturated solution of common salt is filtered and then set aside,
after twenty-four hours groups of crystals will be found floating on the surface.
If one of these is carefully removed and examined with a magnifying glass, the
crystals will be found to be perfect little cubes.

Again, if a thread be hung in a beaker or large test tube containing a satu-
rated solution of alum, in a few days the thread will be covered with octahedral
crystals (Fig. 124) about the size of a pea.

If copper sulphate be treated in the same way, large blue crystals of the form
shown in Fig. 125 will collect on the thread

If a hot saturated solution of saltpeter (potassium nitrate) be placed in a
beaker and closely watched as it cools, it will be found possible to actually see
the process and growth of crystals of the form in Fig. 126.

Wherever the crystals are in contact with the sides of the vessel the free
formation is interfered with and the resulting forms are very irregular.

Most minerals are found on microscopic study to have a crystalline structure,
though in nature they have usually been formed under conditions which render
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it impossible for the crystals to be large and regular.
Diamond is carbon crystalized under conditions which once existed in nature

by which man has been able to reproduce in the laboratory only upon a very
diminutive scale

6.4 Absorption of Gases by Liquids

6.4.1 Absorption of gases by liquids

Let a large test tube be filled with ammonia gas by heating aqua ammonia and
causing the evolved gas to displace mercury in the tube, as in Fig. 127. let
a piece of charcoal an 2.5cm long and nearly as wide as the tube be heated
to redness and then plunged beneath the mercury. When it is cool let it be
slipped underneath the mouth of the tst tube and allowed to rise into the gas.
The mercury will be seen to rise in the tube, as in Fig. 128, thus showing that
the gas is being absorbed by the charcoal. If the gas is unmixed with air, the
mercury will rise to the bery top of the tube, thus whowing that all the ammonia
has been absorbed by the charcoal.

This property of absorbing gases is possessed to a notable degree by porous
substances, such as charcoal, meerschaum, gypsum, silk, etc. It is not improba-
ble that all solids hold, closely adhering to their surfaces, thin layers of the gases
with which they are in contact, and that the prominence of the phenomena of
absorption in porous substances is due to the great extent of surface possessed
by such substances.

That the same substance exerts widely different gases is shown by the fact
that charcoal will absorb 90 times its own volume of ammonia gas, 35 times
its volume of carbon dioxide, and but 1.7 times its volume of hydrogen. The
usefulness of charcoal as a deodorizer is due to its enormous ability to absorb
certain kinds of gases.

6.4.2 Absorption of gases in liquids

Let a beaker containing cold water be slowly heated. Small bubbles of air will
be seen to collect in great numbers upon the walls and rise through the liquid
to the surface. That they are indeed bubbles or air and not oof steam is proved
first by the fact that they appear when the temperature is far below boiling,
and second by the fact that they do not condense as they rise into the high and
cooler laywers of water.

The experiment shows two thing,–first, that water of dinarily contains con-
siderable quantities of air dissolved in it, and second, that the amount of air
which water can hold decreases as the temperature rises. The first point is also
probed by the existence of fish life, for fishes obtain the oxygen which they
need to support life, not immediately from the water but from the air which is
dissolved in it.
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The amount of gas which will be absorbed by water varies greatly with
the nature of the gas. At 0 degC and 76cm barometer height 1ml of water
will absorb 1050 ml of ammonia, 1.8ml of carbon dioxide, and but 0.4 ml of
oxygen. Ammonia itself is a gas under ordinary conditions. The commercial
aqua ammonia is simply ammonia gas dissolved in water.

The following experiment illustrates the absorption of ammonia by water.
Let the flask F (Fig. 129) and tube b be filled with ammonia by passing a

current of the gas in at a and out through b. Then let a be corked up and b
thrust into G, a flask nearly filled with water which has become colored slightly
red by the addition of litmus and a drop or two of acid. As the ammonia is
absorbed the water will slowly rise in b, and as soon as it reaches F it will rush
up very rapidly until the upper flask is nearly full. At the same time the color
will change from red to blue because of the action of the ammonia upon the
litmus.

Experiment shows that inevery case of absorption of a gas by a liwuid or
solid, the quantity of gas absorbed decreases with an increase in temperature.–a
result which was to have been expected from the kinetic theory, since increasing
the molecular velocity must of course increase the difficulty which the adhesive
forces have in retaining the gaseous molecules.

It will be noticed that the effect of temperature upon solution (section 6.3.3)
is quite the opposite of its effect upon absorption.

6.4.3 Effect of pressure upon absorption

Soda water is ordinary water whish has been made to absorb large quantities of
carbond dioxide gas. This impregnation is accomplished by gringing the water
into contact with the gas under high pressure. As soon as the pressure is relieved
the gas passes rapidly out of solution. This is the sause of the characteristic
effervescence of soda water. These facts show clearly that the amount of carbon
dioxide which can be absorbed by water is greater for high pressures than for
low. As a matter of fact, careful experiments have shown that the amount
of any gas absorbed is directly proportional to the pressure, so that if carbon
dioxide under a pressure of 10 atmospheres is brought into contact with water,
10 times as much of the gas is absorbed as if it had been under a pressure of 1
atmosphere.

6.4.4 Questions and problems

Add this section
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