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Abstract

This paper is the result of a mid-curriculum project carried out at The Technical
University of Denmark. It is about the design and construction of an onboard computer
for a student picosatellite. The paper describes how the requirements of the computer
affect the choice of components and the overall design. Furthermore, the choice of a
debug interface and the effects of space radiation are discussed.
As the construction of the onboard computer is not yet complete, the future plans of the
project are described.
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The DTUsat

This paper is about the construction of an onboard computer for a student satellite, which is being
built at The Technical University of Denmark.

The satellite is categorised as a picosatell ite, which refers to the small size
of the satellite. Commercial satellites are, although varying in size, usually
quite big and weighing in the range of 1000 kg’s. Our satellite is restricted
to 1 kg and a size of 10×10×10 cm – and is therefore referred to as a
cubesat. Because of its small size and low weight, many cubesats can be
placed in the same launch as secondary payloads. In our case, there will
probably be one or two commercial satellites as primary payloads and 16
cubesats as secondary payloads. Because of our secondary status, we have
no influence on the orbit our satell ite will have, we have to do with
whichever orbit the companies of the primary payloads select. It seems
that a polar orbit (north-south) in a height of about 600 km is likely. As the
exact orientation and height of the orbit is not of the greatest importance to
us, this will do fine.

Because of the relatively humble conditions mentioned above, the price of getting the satellite in
space is very low compared to the prices of commercial satellite launches. This is a key factor
allowing us to dream of our own satell ite in space.

In addition to the restrictions on size and weight there is a range of other specifications described in
“Cubesat – Design Specifications Document” , which can be found at Stanford University’s internet
pages1. These specifications primarily concern the exact measurements and shape of the satell ite, so
that it can be ejected successfully from the spacecraft without interfering with the other cubesats. It
also specifies requirements of robustness, in order not to have bits and pieces tumbling about during
the launch and ejection of the cubesat.

Time of launch is yet to be determined, but our goal is to have a computer ready for implementation
in the satell ite in the summer of 2002. This wil l give opportunity to have a launch in the fall of 2002
or the spring of 2003.

As building a satell ite is a very big project, the various tasks of designing the different parts have
been assigned to different groups. The satellite has been divided into the following parts that will be
constructed by one group each:

• Mechanical Design and Construction
• Power
• Onboard Computer (our group)
• Onboard Software
• Radio Communication Hardware
• Communication Software
• Satellite Antenna

                                               
1 http://ssdl.stanford.edu/cubesat/specs-1_files/CubeSat Developer Specifications.pdf

Picture of a cubeSat
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• Ground Station Software
• Attitude Control and Determination
• Camera Payload
• Tether Payload
• System Engineering

The satellite has two payloads: a camera and a tether. A tether is a device that can change the orbit
of the satellite. It is done by rolling out a long live wire in the magnetic field of earth, which will
assert a force on the satellite.

As it is imperative that the different parts function together, communication between the groups is
of outmost importance. Budgets have to be made, interfaces have to be defined and the knowledge
contained in the groups has to be shared in the best possible way in order to hope for a successful
satellite. To help communications a system-engineering group has been formed, consisting of
minimum one person from each group. This group meets once a week to discuss various issues,
progresses and setbacks.
Furthermore, a homepage has been created for sharing of information and files. It can be found at
the address: www.dtusat.dtu.dk

The different groups have different levels of involvement. Some groups design their part in a small
project rated as a 5-point course, some as a 10-point course and some as a 15-point mid-curriculum
project (Polyteknisk midtvejsprojekt). The three of us have chosen to let this project be our mid-
curriculum project. This means that we have spend three days a week working on the onboard
computer during this semester. All groups have a supervisor affiliated, who administers and
evaluates the course, but it has been a student project from the start and it is meant to be the ideas of
the students that are realized in the project.

Why is a Computer Needed in a Satellite?
The satellite could be designed, so that each part was intelligent, enabling them to accomplish their
tasks and communicate without a distinct central computer. This would imply that all parts would
need to have some sort of circuitry to perform intelligent decisions, e.g. microcontrollers and
memories. This solution would be very costly in terms of developing time, powerdissipation, and
space compared to a solution with only one centralized and more powerful computer. Furthermore,
internal communication could turn out to be problematic with numerous microcontrollers. So there
are many advantages in having an onboard computer (OBC). One disadvantage with an OBC is that
the different parts rely heavily on one and another. A fatal error in the computer will mean that
nothing will function. Furthermore, one can fear that if one of the parts fail, it might jam the entire
satellite.
To prevent total failure in case of this disaster, the radio group are designing the radio to be partly
autonomous. This means that basic communication with the satellite will be possible without an
operating onboard computer.

The OBC will be the part controlling the functions of the satellite. It will have an operating system
installed that will manage the programs, which handle various tasks. For example, a program will
perform attitude control (attitude is changed by a mechanical mechanism). This program will read
the status of the attitude sensors and then regulate the attitude via actuators. Running a program like
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this on a computer instead of making an attitude control system of traditional components for
regulation like operational amplifiers, greatly improves the flexibility of the system.

Criterias of Success
In the satellite project there has been made a list of objectives from which we can determine our
level of success. These are the prioritised objectives:

���
 That all groups learn something

2. To finish and document all the different modules, so others, e.g. future designers of DTU
satellites, can use them

3. To put a satellite into space
4. To receive a beacon signal, telling that the satellite is up and that something works in space
5. To receive a smart-beacon-signal from the on-board computer that sends more information

to earth
6. To establish two way-communication with the satellite
7. To obtain three dimensional attitude control
8. To deploy two specific payloads

In our group, we have a similar list of objectives, being:

1. We learn something
2. To obtain experience in the process of an engineering project
3. A functioning test computer
4. A flight model computer that does not exceed any budgets (power, dimensions and

durability)
5. A computer that works in space

Without giving away the plot we can say, that the first three criteria have been met, leaving us at
least partially successful.
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System Overview

As mentioned earlier the computer has to perform several different tasks. The most important are:

• Regulation of attitude
• Communication with earth
• Measurements of analogue values e.g. temperature, battery voltage, and tether current
• Payload specific tasks: Tether deployment and control of camera

Each of these has different demands concerning the OBC. The fact that the computer has to operate
in space also implies that the system has to be designed in a special way. In this section we will
describe how these demands affect the design of the OBC. We will describe which blocks the
computer must be build from, but not which chips we choose to use, as this will be covered in a
later section. The system described in this section is depicted in the following figure:
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The one thing that probably limits the design of the OBC the most, is the space-operating demand.
As no one will be able to reset the processor manually in the case of a software malfunction, the
system must be able to do this by itself. The way this is done is to use a watchdog timer. The timer
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is increased on a regular basis (typically it is clocked by the master clock) and when it reaches a
certain value, it resets the processor. Of course this is not what we want when the computer is
working correctly. Therefore a part of the software must reset the watchdog before it reaches the
reset value. This is done when the software is working correctly, but if it gets trapped in a deadlock
the watchdog is not reset, and therefore it resets the system. The watchdog can either be build-in in
the processor or it can be a separate unit as shown in the figure.

When studying the figure you will find three different types of memory: ROM, flash, and RAM.
These three types are also chosen because of the space-operating nature of this computer. In space,
the radiation may lead to bit-flips in memory after which the software may do unpredictable things.
The watchdog will obviously reset the processor if this happens, and the processor starts loading the
boot-software. It is essential that this software always works correctly, and therefore it must be
stored in a memory, where bit-flips do not occur. Some types of ROM (read only memory) have
this feature.
The flash wil l be used to store the operating system and other software. Some of this software could
be stored in ROM, but as it might be necessary to change parts of it, when the OBC is in space, it
will be stored in flash.
The RAM will be used as a temporary memory when the programs run, and as a place where
measured values can be stored. As both flash and RAM suffer from bit-flips it might be desired to
have some error detection and correction circuitry (EDAC) between these memories and the
processor.

In order to communicate with earth the OBC must be connected to a radio. The radio sends and
receives data serially. The easiest way to implement this is to use an UART. The UART converts
between serial and parallel data and also handles the serial timing. The UART is build-in in many
processors, but can also be a separate unit.

The OBC has a number of different interfaces to other parts of the satell ite – both analogue and
digital. Since some processors may not be able to supply very much current it might be necessary to
insert drivers between the digital interfaces and the processor. It has yet not been decided if the
A/D- and D/A-converters will be placed on the OBC-board or if they wil l be placed on other
boards. In a later section (”Future Development”) we will describe a likely placement of these.

The A/D converters described above will among other things do measurements of sun intensity and
magnetic fields. Depending of these values control signals must be sent to the attitude control
actuators. The actuators must be supplied with pulse width modulated signals (PWM), and therefore
a PWM-controller must be included in the design either on the OBC-board or on the attitude board.
Another solution is to generate the PWM-signals using software.

Depending on which processor is chosen we may have to add a real time clock (RTC) to the board,
but if the processor has enough timers, this can also be implemented in software. The purpose of the
real time clock is to make it possible to schedule tasks.

One last thing of special interest is shown on the figure: The debug interface. The purpose of this is
to make it possible to find and correct errors in the hard- and software design. It also makes it
possible to upload new software to the flash. It consists of measuring points for important signals
and some sort of interface to the processor and the flash.
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Requirement Specification

In order to have a complete and fully functional satellite, it is imperative that all groups comply
with a set of specifications, so that the resources in terms of space and power are used in the best
manner without exceeding the budgets. The different groups, who individually have made
preliminary budgets for their own parts, have formed these specifications and budgets. These
budgets have been summed up in system-engineering perspective, mainly by the power- and the
mechanics group, in order to have an idea of whether or not they are realistic. The final measures,
weight constraints etc. are still to be determined, but below the present guidelines are listed.

• Resources – Three types of memory must be present:
o ROM – minimum 8 KB
o Flash – minimum 128 KB
o RAM – minimum 512 KB

• Architecture
o A number of A/D – D/A converters must be present
o The CPU must have individually controllable I/O pins
o The CPU must have a watch-dog to handle mal-function

• Power
o There will be about 1W available for all systems in the satellite, so this is an absolute

maximum

• Size
o There will be room for a board of 6×6 cm

• Radiation - The computer must be prepared for two types of impact from radiation
o Latch-up
o Long term effects (must withstand minimum 2 KRad)

• C or ADA compiler must be available for the processor

• Desired features:
o The software groups would greatly appreciate a processor with the following two

characteristics:
�  32 bit architecture
�  MMU (memory managing unit)

o Use of ball-grid-array (BGA) IC’s means diff icult soldering process. Because of this
we would very much like to avoid BGA components

o Preferably the C or ADA compiler must be available at a low cost or free of charge

• The components must be able to function within the temperature range 0-40°C. However, a
wider temperature range will be preferred
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Choice of Components

Satellites are normally extremely expensive and account for years of development. To improve the
odds for success, it is custom to choose components of great reliability for satellites. To be
absolutely sure of reliability, it is not uncommon to buy components that have actually been tested
in space. This form of certainty is very expensive – for example, we found that the price of a space-
tested 8 KB memory block was Dkr 13.000.
A cheaper alternative is to choose a kind of component that has been used in space before. Another
component just like it will probably work in space too. The only problem with this alternative is,
that development of satellites is a long process, and when you find a component that has been
successfully used in space, it is most likely more than two or three years old. In these days, where
new and better technologies revolutionize the chip-marked every other day, it is very tempting to
choose new and more powerful components for your design. Since our satellite is build primarily
for educational purposes, all groups in the satellite project have agreed to yield to this temptation.
The way we see it, a university is the perfect place for such experiments. Furthermore, we will
perform tests to verify that the components do not collapse with the first signs of space radiation.

As the section “System Overview” showed, the computer consists of various components –
processor, RAM, oscillator etc. The abilities of the computer and fulfilment of the requirement
specification is, of course, highly dependent on the choice of components. Because of this, these
choices have been made after many considerations.

The Processor
We need a processor for the computer that can execute the onboard programs in a reasonable way.
The compulsory tasks of the satell ite (power control, communication, attitude control etc.) could be
managed by a quite humble processor or microcontroller. Processors and microcontrollers from a
few years back would do the job with no problems and we could choose a very reliable one.
Nevertheless, we examined both new and old processors because of the above argumentation on
why to take a chance on newer products.
We found that newer processors have made drastic improvements on power consumption even
though the speed of the processors has greatly increased. In other words, we can have a 32-bit
processor, which will please the software groups very much, that uses less power than an older and
less powerful 16-bit processor. So, from the beginning the search for a processor has been narrowed
down to a search for a low-power 32-bit processor.

Which characteristics did we look for?
In order to choose the perfect (or at least the best) processor, we have evaluated the different
processors in different categories and summed up the information in the table below. The different
categories have different weights, as they are not equally important. In some categories, the rating
has been made from a reference value, which we have set from the average specification of the
component. The categories are:
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• Power consumption
As we only have a maximum of 1W available to all systems in the satellite, it is of outmost
importance that the processor has low power consumption. The different companies have
specified their numbers in different ways, for instance Atmel states the power consumption
relatively to the frequency applied to the processor, as this is variable. Others state it at a
fixed frequency but here the workload (which also has influence on power consumption)
varies. Furthermore, we have been told by MIPS (see ”External Contacts”), that these
figures very often are exaggerated in the direction that serves them!
This means that comparison between the different competitors is not straightforward and has
to be made carefully.

Power consumption has been given top weight of 5.

• Temperature range
The temperature will differ significantly depending on the location of the satellite. In the
sunny side of earth, the surface facing the sun will be very warm and in the shadow of earth,
everything will get very cold. By taking the different materials, weight, size and so on into
account, the temperature range can be calculated. The problem is that the satell ite project is
in lack of a group performing these calculations. This means that we have had to make an
educated guess on the temperature range based on similar satellite projects. The range has
been set to 0°C - 40°C for normal operation. But in special cases the temperature might
exceed this range in both directions, which is why we would like to have components with
great temperature tolerances. Luckily, it is normal for military/industrial components to be
operational from -40°C to 80°C, which we believe is sufficient.

Temperature range has the weight of 5.

• Placement of pins
In ball grid array (BGA) components the pins are distributed underneath the chip. This
means that soldering cannot be done with a traditional soldering iron. Typically, BGA chips
have soldering paste applied to the pins from the factory. To solder the chip you have to
warm up the paste in an oven.
Checking for short circuits and dead connections is quite tricky and furthermore we do not
know anyone with experience with BGA components. Because of this, we would like to
have the components in packages where the pins are located along the edges (for example
TSOP) so ordinary soldering can be used to attach the components to the PCB.

Placement of pins has the weight of 5.

• Number of pins
Even if the pins are situated along the edges of the component, soldering can be very tricky
if there are hundreds of them on a small chip. In order to reduce the number of soldering
errors a relatively small amount of pins is preferred.

Number of pins has the weight of 3.
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• Number of I/O pins
All parts of the satellite need access to the processor via the I/O pins (in/out pins) of the
processor. Though we would like to have a reduced number of total pins, it is preferable to
have as many general-purpose I/O pins as possible.

Number of I/O pins has the weight of 3.

• Scalable clock frequency
Most processors run at a fixed speed, but some processors can be fed by a scalable clock
signal. This means that it can run whichever frequency you would prefer up until a
maximum frequency. This feature would be very nice to have in the satellite, as it would
enable us to slow the computer down and save power in situations where great speed in
program execution is not needed.

Scalable clock frequency has the weight of 4.

• Availability
Far from all processors are in stock at Danish electronic resellers (like Arrow and Farnell). If
a component is not in stock, it has to be shipped from the manufacturer’s headquarters (this
is often in the Far East), which normally takes 8 to 9 weeks. In our case this is far too long,
as the mid-curriculum project is carried out in 13 weeks. This makes availabil ity very
important.

Availabil ity has the weight of 5.

We have also compared the processors on a few other subjects like space rating, supply voltage,
onchip memory and some extra features. By space rating, we mean whether or not the processor has
been tried in space before. The supply voltage is included, as it is preferable to run a standard
supply voltage (like 3,3 Volt), which also can be used for other parts of the computer instead of
having numerous supply voltages. Onchip memory is a nice feature as it is often very fast compared
to external memory. Also if a program runs solely in onchip memory, the external memory can go
to stand-by status, which consumes less power.
Comparisons are made on basis of the datasheets of the different components.
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Temperature
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# of pins
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tecture
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Onchip
memory
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Other
features
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TOTAL
 

Reference <1W -40-80 C edges 100 32 bit   3.3V      

Weight 5 5 5 3 2 3 1 2 1 4 2 5  

              

Motorola:              

MCF5206e --- (400mW) + + 0 (160) + 0 - + - - +  -5

MMC2001 + (80mW) + + + (144) + ++ (30) - + +++ - +++ ---- 12

              

Atmel (ARM):              

AT91M40800 +++ (4mW/MHz) + + + (100) + ++ (32) - + - +++ + +++ 73

AT91M40807 +++ (4mW/MHz) + + + (100) + ++ (32) - + + +++ + --- 45
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Hitachi:              

SH7709A + (80mW) - (-20-75C) + -- (208) + ++ - + - - +  5

H8/3334V -- (180mW) + + + (80) - (16 bit) - (16) - + + - ++  0

MIPS:              

V850, NEC ++ (50mW) + + + (100) + + - + - - + ---- 11

TinyRISC, LSI              

              

Intel:              

StrongARM: -- (300mW) --- (0-70C) + + (144) + ++ (32) - + - + +  -3

              

Siemens:              

TC1775  + ---- --- (350) + +++ (100) - + + + +++  4

c167CS -- (100-500mW) + + + (144) + +++ (111) - + + + ++  24

              

Microchip:              

PIC16F877 +++ (20 mW) + + ++ (40) --- (8 bit) --- (10) + + + + ++  31

PIC16C77 +++ (20mW) + + ++ (28) --- (8 bit) --- (10) + - + + ++  27

Choice of Processor
As the table shows the winner is: Atmel AT91M40800. The score of the Atmel shows that it has
many nice qualities and features.
Where it not for lack of availabil ity, we would have preferred the R40807 version of the Atmel
processor because of its presence of onchip memory. However, if it cannot be supplied it is not
worth betting on.
The table does not do justice to the MIPS processors we were introduced to at our visit at MIPS.
The reason they are not fairly represented in the table is, that MIPS processor mostly are used as
processor cores in larger system-on-chip systems, which have too many unusable features and
thereby too high power consumption for our needs. However, MIPS (the company) are in
possession of “clean” processor chips without all the unnecessary features. These processors seem
to meet the high standards of the Atmel processors. Furthermore, they include something called
“memory management unit” (MMU), which is something the software groups are very interested in.
A MMU ensures that different programs (processes) cannot accidentally perform memory writes in
forbidden areas of memory, which leads to program errors and system crashes. Unfortunately,
MIPS only use ball grid array (BGA) packages, which is why we did not investigate the
possibilities of these processors futher.

In spite of the above, we feel that we have chosen a very capable and powerful processor that fulfils
our needs. The lack of a large onchip memory can be counterbalanced with external memory and
the lack of an MMU simply means that the software groups cannot write their program
thoughtlessly (which we are sure they would not have done anyway…).
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The RAM
The computer needs RAM as working-memory in the execution of programs. There are generally
two types of RAM: Dynamic and static. Dynamic RAM (DRAM) is characterized by its need for a
clock in order to dynamically update the contents of the RAM in each clock cycle. You can clock
dynamic RAMs with very high frequencies – for example 100 MHz. The expense of this capabil ity
is that dynamic RAM consumes more power, and since we plan to run at low frequencies (which
lowers the power consumption) we turned to look at static RAM. Static RAM (SRAM) is not
refreshed in each clock cycle (hence the name) and communications are performed by a relatively
simple protocol (for further information see section on ”Timing Analysis” ). Power consumption of
static RAMs is quite low, which is very important as the RAM wil l be active at almost all times.
To compare the possible choices of static RAM we looked at the following categories:

• Size
As the requirement specification states a minimum of 512 KB is needed – preferably 1 MB.
1 MB would be very good, as it would allow the computer to store more than a single
picture from the camera.
The size is stated so the organization of the RAM is shown. As 16 data lines are available
from the processor the optimal width of the RAM is 16 bits. (512K times 16 bit equals 1
MB – 512K times 8 bit equals 512 KB and so on)

• Supply voltage
A supply voltage of 3.3 Volt is preferred as this is the supply voltage of the other processor.

• Active current / Stand-by current / Power dissipation
Active current is the current drawn during reads and writes, stand-by current is the current
drawn when the component is passive. Power dissipation is calculated by multiplying active
current and the supply voltage.

• Number of pins / Availability / Price
These categories were investigated in order to be sure they did not make the use of the
component impossible.

Manufactor No Size Voltage Active Current Standby Current Power Diss. Pins Availability

Samsung K6F8016V3A 512x16 3.0-3.6 4mA 0.5uA  44 yes

G-Link GLT6400M16 64x16 2.2-2.7 50mA 15mA/5mA  44  

Alliance AS6VA25616 256x16 2.7-3.3   132mW 44  

IXYS PDM31096LL 512x8 3.0-3.6   65mW 32 Preliminary

IXYS PDM21096LL 512x8 2.4-3.0   65mW 32 No

Alliance 7C254096LL 512x8 2.3-3.0   90mW 44  

Brilliance BS62XV4000  1.2-2.4 15mA 0.25uA    

G-Link GLT6400M08 256x8 2.2-2.7 45mA 15mA/5mA  32  

ISSI IS62VV25616L/LL 256x16 1.65-1.95 36mA 9uA  44 yes

As the table shows, the Samsung RAM has very nice qualities in both size, supply voltage and
power consumption. Furthermore, the price of the components is $13, which makes it affordable. So
the Samsung RAM is our choice.
Unfortunately it is only availably from international resellers, which means that delivery wil l take
8-9 weeks. As mentioned before 8-9 weeks is too long in a project like ours. Because of this, we are
using a bit older 512KB version of the Samsung RAM in our first version of the computer, as this is
available from Danish resellers. The big advantage in using another Samsung RAM is that it has the
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exact same pin configuration as the new K6F8016U3A mentioned in the above table. During the
spring we will be able to order the new RAM, wait 8-9 weeks and implement it in a new version of
the computer without having to change the design of the computer board. Both the new and older
RAMs have propagation delays of 70 ns (corresponding to 14 MHz).
The older Samsung RAM we are using now has the following characteristics:

Manufactor No Size Voltage Active Current Standby Current Power Diss. Pins Availability Price

Samsung K6T4016V3B 256x16 3.0-3.6 60mA 15uA  44 yes ~13$

Static RAMs are developing very fast in these days. New technologies allow the power
consumption to drop and the size to increase. The reason why the new Samsung K6F8016V3A is
not available in Denmark is that it has only just been released internationally, but during the spring
it will probably become available domestically, which means that we might not have to wait the 8-9
weeks mentioned above.

The Flash
Flash memory is needed to store the operating system and various programs in the satellite – its role
is similar to a hard disk of an ordinary desktop computer.
The selection of available flash memories is not as big as it is the case with processors and RAM.
Comparison of the ones available is primarily made on power consumption, size and packaging (we
cannot use BGA components).
The flash memory Am29LV017D from AMD meets our demands easily:

• It has a size of 2 MB (the minimum requirement is 128 KB!)
• Supply voltage is 3.3 V and it uses 9 mA read current, 15 mA write current and 200 nA in

stand-by mode
• The propagation delay of reads and writes is 120 ns (8.3 MHz)
• It was available from Arrow, Denmark

The flash wil l only be used during boot of the computer, updates of onboard software and possibly
in special cases of data storage. This means that most of the time it will only consume 200 nA × 3.3
V = 660 nW, which is extremely low. Furthermore, its vast size can turn out to be useful.

Instead of a flash we could have chosen to use an E2PROM, which has similar qualities. With an
E2PROM it is possible to rewrite a single byte at any address. This is a big advantage compared to a
flash where you have to erase an entire sector at a time (in our case 64 KB). This would make
modifications in onboard software easier and faster.
But it seems that development is done primarily in flash’es as flash’es consume significantly less
power than E2PROM’s and at the same time can store greater amounts of data. Because of this we
chose a flash.
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External Contacts

As building an onboard computer for a satell ite is not a standard assignment on DTU, we have also
had input from outside DTU – both in terms of design ideas and funding. Here is a list of the
people/companies who are contributing to the project:

The final printed circuit board for the computer has to be made professionally by a company
with the equipment and expertise to produce it in 4-layers. Four layers will be necessary in order
not to exceed the specifications on the size of the board, but a PCB like this is rather expensive.
We have had contact to Martin R. Jørgensen, who is in the sales department of Elcon2. Elcon
makes PCB’s and is specialized in small quantitative productions, for example proto-type
PCB’s. This fits our needs perfectly and furthermore Elcon has offered to produce our PCB free
of charge, as it is a student project. We have visited Elcon in Horsens, Denmark, where we saw
the production facilities and made arrangements for the actual production of our board.

Jimmy Malmkvist is running PowerCAD3 (a one-man company). He is a professional in the
area of routing PCB’s – he has several years of experience. Jimmy has offered us to either help
us make or do the entire routing of the final board free of charge. This is a great opportunity for
us, because it might prevent many problems in the process of producing the board (at Elcon),
since he knows exactly how they want the details of the PCB specified.

We have had Jimmy evaluate if it is possible to compress our present design to the size of 6×6
cm in a 4-layer PCB. Even after adding components for latch-up protection and possibly error-
detection of memory accesses, Jimmy believes it is possible. The reason for this is that we will
have two extra layers and we will be able to narrow the signal lines and vias.

As mentioned the computer will be designed with a processor from Atmel4 because of its great
features, low power consumption etc. After the processor-choice had been made, we contacted
Atmel to let them know of our project. Atmel found it interesting and has supplied us with an

                                               
2 www.elcon.dk
3 www.powercad.dk
4 www.atmel.com
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evaluation board for the processor and 20 processors free of charge. We have used the
evaluation board for comparisons with our own board, and the 20 processors are necessary in
order to have specimens for the test boards, the radiation tests and the final boards.

 

Peter Davidsen works as an engineer at Terma5. We were introduced to Peter during an
introductory course this summer, where he gave a lecture on digital design. He was a part of the
team designing the computer for the successful ”Ørsted” satell ite. In the beginning of the project
Peter contributed with ideas to the design of the computer – mainly regarding mechanisms to
solve problems with radiation. These ideas have not been realized yet, but when we move
forward in the project during the spring, this area will be very important.

MIPS6 processors have many interesting features, so in the process of choosing the processor
for the computer we contacted MIPS, who are situated in Ballerup, Denamrk. MIPS found the
project of great interest and offered to supply us with processors, testboards and support on
these processors in case of questions in the process of creating the design. The possibil ity of
technical support on a processor is quite unique, as support is not available from ordinary
resellers (like Arrow or Farnell). Unfortunately, we had to turn down MIPS in an early stage,
because all MIPS processors are in ball grid array (BGA) packages. BGA components would
make it impossible (or very hard) to produce test boards ourselves, which would mean, that we
would have had to change our entire approach to the problem (all soldering would have had to
be made professionally, which would be very expensive and time consuming).

We would like to take the opportunity to thank all of these companies for their help. Without them,
a student project like this would be hard to complete – especially financially. Furthermore, we have
been introduced to the companies, given insight to their business and learned something about what
it would be like to work as an engineer in such a company. This has been a very exciting and
positive experience.

                                               
5 www.terma.dk
6 www.mips.com
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Component Description

CPU Description
As mentioned we have chosen an AT91M40800 from ATMEL as CPU. The AT91M40800 is a 32-
bit RISC processor built on an ARM Thumb core (ARM7TDMI)

“Designers can use both 16 bit Thumb and 32 bit ARM instructions sets and therefore have the flexibilit y to emphasise
performance or code size on a sub-routine level as their applications require.”7

The ARM core is widely used in several processors. Since all the processors, which use the same
core, use the same instruction set compilers are easier to find. The fact that the processor can
execute both 16 bit instructions and 32 bit instructions, gives an opportunity to use the fast and less
power demanding 16-bit data width whenever possible.

All the CPU functions are set-up by writing to the different internal control registers of the CPU.

Memory
The AT91M40800 only has 8KB of internal RAM. The internal RAM is usually used for the stack
memory because it usually is faster than the external memory and has a 32-bit data width.
The CPU has a maximum of 64MB memory address space, which is more than sufficient for this
project.
The external memory is mapped after restart of the processor. Placing the remapping software on
address 0x0 in non-volatile memory does this. The remapping software contains the information for
the CPU about the different kinds of memory modules connected to the CPU, such as how fast the
memory is and what chip-select it is connected to.
The external memory can have a 16-bit data width or 8-bit data width. To determine whether the
boot memory is 16-bit or 8-bit the BMS pin is held low or high 10 clock cycles before reset is
released.

I/O lines
The processor has several programmable I/O pins – 32 in total. 6 of these pins are dedicated as
general-purpose I/O-pins, the rest are multiplexed with other functions such as USART, chip-
selects, external interrupts and timer/counter signals.

Timers/Counters
AT91M40800 has 3 timers/counters, which all have a resolution of 16 bits. All 3 timers have a
waveform mode that allows each timer to generate two PWM8 signals, both with the same
frequencies.

USART
USART means Universal Synchronous/Asynchronous Receiver Transmitter, which is a serial
communications device.
                                               
7 Quote from http://www.arm.com/armtech/Thumb
8 PWM (Pulse Width Modulation) This option is needed by the attitude group to control the solenoids in the satellite.
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There are two build-in USARTs in the AT91M40800. They can be configured to work in either
synchronous or asynchronous modes and the baud rate is selected as a division of the master-clock.

Tri State Option
The CPU has a feature that puts all output pins in tri-state mode; holding NTRI low during the last
10 cycles before reset is released does this. This feature can be very good for error detection. This is
because it completely disables the CPU from the rest of the components on the board.

Watchdog
The CPU has a build-in watchdog. The watchdog is capable of making both an internal reset and
sending an external signal, holding the watchdog dedicated pin NWDOVF low for 8 master clock
cycles. This external signal could be used to notify external components that the processor has been
reset.

Power Features
The power dissipation of the CPU is directly proportional to the speed of the master clock. When
using external memory and a 3.3V supply the power consumption is 3.77 mW/MHz9. However, as
mentioned before10, this number should be taken lightly because the manufactures embellish the
facts a little with these competitive numbers.
This means that it is possible to select at clock frequency that complies with the amount of power
available on the satell ite. It is possible to use a voltage supply between 1.8V-3.6V, though it is only
possible to use a 16MHz or less clock frequency for 1.8V.
There are also other power features. It is possible to shut down the parts of the processor that are
unused and thereby save power.

Package
The processor is available in a 100-lead, Thin Quad Flat Pack (TQFP). This means that it is a
100pin thin surface mounted component with outer dimensions of 16mm per side.

JTAG/ICE
The JTAG/ICE feature that the AT91M408000 possesses is quite significant and will be discussed
in a later section (“The JTAG/ICE”).
                                               
9 See “AT91M40800 Electrical Characteristics” (http://www.atmel.com/atmel/acrobat/doc1393.pdf)
10 See section on ”External Contacts”
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Flash
The flash component we have selected is an Am29LV017D from AMD11. It is able to use a voltage
supply from 2.7V-3.6V. The Am29LV017D has a capacity of 2M×8 bit (=2 MB).
The Flash only has a databus width of 8-bit. The control signals for the flash are:

• CS - Chip Select
• WE - Write Enable
• OE - Output Enable
• RESET - Hardware reset
• RY/BY - Ready/Busy output

The RY/BY is used as a hardware detection to see whether or not an embedded algorithm is in
progress or complete. RY/BY is an open-drain output and it is therefore possible to connect several
together with a pull-up resistor in parallel. This is useful when several flash components are
connected to the same CPU and the CPU only has one pin dedicated to detect whether or not the
memory module is finished or not. The algorithms for the read and write process for the flash will
be discussed in the software section of this report.

RAM
The RAM module we have selected for the testboard is not the same kind as the type that we intend
to use on the flight-board but it is similar in the design. It is the type K6T4016U3B and is
manufactured by Samsung12. It has a capacity of 256Kx16 bit. The K6T4016U3B is controlled by 5
control signals:

• CS - Chip Select
• WE - Write Enable
• OE - Output Enable
• UB - Upper Byte
• LB - Lower Byte

The UB and LB signal are used for selecting upper or lower part of the databus. This allows the
circuit to save power when it only is required to access 1 byte.

Boot PROM
Since the first board that we are to make is a test board that will be used as a development tool for
the satellite, it is not convenient with a ROM that only can be programmed once. Therefore we have
decided to use a flash-component to simulate the boot ROM. To avoid making more drivers than
necessary we will use a flash of the same kind as the flash for the flight-board even thought it is
about 2000 times larger than the boot ROM will be on the flight-board.

                                               
11See http://www.amd.com/us-en/FlashMemory/ProductInformation/0,,37_1447_1623_1468,00.html
12 See http://www.samsungelectronics.com/semiconductors/SRAM/SRAM.htm
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Power Monitor
To ensure that the CPU does not begin to interact with external devices such as flash etc. before the
supply voltage has reached a fixed threshold, we have included a power monitor in the design. It is
connected to the reset pin of the processor, which it holds low until an acceptable supply voltage is
present. The component we have selected for power management is a MAX811T. The MAX811T
has a threshold at 3.08V before it releases the reset signal. It also supports and debounces a manual
reset button. This component will only be used on the flight-board if the power group does not
deliver a “power good” signal.

RS232 Transceiver
Since it is a test board that we are making we want to be able to test the two build-in USARTs. For
this purpose we need a transceiver device to convert the 3.3V logic from our CPU’s USART
dedicated pins to the ±12V that is used on a PC’s serial port13. The component we have found for
this task is a MAX3223. The MAX3223 is designed to convert from 3.3V logic to standard RS232
logic and has support for 2 transmit channels and 2 receive channels, corresponding to 2 USARTS.

                                               
13 RS232
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Programming the Flash

The boot memory on the test computer is a flash component. It is necessary to program this module
with the software to remap the memory connected to the CPU and software to upload new software
to other memory components.

For this task we have explored several solutions.
• One way to program a flash component is to buy a programming device like the ones for

programming PLDs14. But it would also require an interface capable of connecting our SMD
component to a burning device, which is quite expensive and difficult to find.
Another problem would be how to reprogram the flash after it was mounted. This could
however be solved by applying a plug consisting of all the connections from the flash, on
our board, and then use a probe between the programmer and computer-board.
Then the next problem would be: How not to interfere with the other components on board.
But since it is only the CPU that could cause problems and not the RAM or the other flash-
component, it could be solved with the tri-state15 option that is available on the CPU.

• Another way of programming the flash could be by making a programmer with the use of a
microcontroller and then make the interface to the onboard flash as described above. The
only problem is that this would be a very time consuming task because it also would require
us to write the software for the microcontroller.

• The last option that we thought of was to use the embedded JTAG16 interface. This could
enable us to control the CPU and via the CPU program the flash. When considering the PCB
design the JTAG solution would be much easier than the other solutions because it would
not require the connective plug with connections to all the 36 pins on the boot flash. The
JTAG would consist of a plug with only 4 connections to the 4 dedicated pins on the CPU
(and a few capacitors and resistors) that constitute a standard JTAG output.

The JTAG is clearly the best way to program the boot-flash and will also provide other debug
possibilities. Therefore have we decided to rely on this solution.

The JTAG/ICE
According to the last section we chose to use the JTAG/ICE feature of the processor for
programming the flash. In this section we will provide a short description of what the JTAG/ICE is,
how it works, and what it is capable of.

The standard
JTAG is short for “Joint Test Action Group”. As indicated by the name, JTAG is a standard
proposed by a number of vendors of integrated circuits. Actually the correct name of the standard is
IEEE 1149.1, as it has become an official IEEE standard.

                                               
14 Programmable Logic Devices
15 See the section “Tri State option”
16 See the section ”JTAG”
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The purpose of the standard is to make a simple common interface for testing integrated circuits. It
describes how a serial interface can be used to get data in and out of an integrated circuit, and
describes the protocol the IC must implement in order to be compliant with the standard. The
physical interface consists of 4 digital lines: TCK, TDI, TDO and TMS. As the interface is
synchronous a clock TCK is required. The test-hardware must supply this clock. Data is shifted in
serially using the TDI, and the result is returned using TDO. The TMS signal, which must be
supplied by the test-hardware,
controls an internal state machine of
the device being tested. The purpose
of this state machine is to control,
what the applied serial stream of
data is, and where it must go. The
state machine is depicted in the
figure to the right. Without going
into much detail, it shows that the
TMS controls the next state. It also
shows, that two different vertical
lines of boxes are almost equal. The
purpose of the left column is to
insert data into a register called the
data-register (DR), and the right one
to insert data into an instruction
register (IR). With the correct data
inserted into these registers the user
can take control over the IC being
tested.
By using the instruction-register it is among other things possible to halt the execution of a program
(if the IC is a processor), ask the IC to do a self-test, and ask the IC for an identification code. It is
also possible to select different so-called scan chains.
A scan chain is actually a serial shift-register. The scan chain is used as the data-register mentioned
earlier. The easiest way to explain what is can be used for is to look at an example, namely the
processor we have chosen to use.

In the figure to the left it can be seen that the processor has 3 scan
chains. Look at the “Scan chain 0” . It surrounds the processor-core.
Each shift register cell of this chain is multiplexed with a signal
controlli ng the core signal (i.e. the address bus and the databus). If we
set the mux’es, so that the shift registers and not the normal control
signals are connected to the core, we are actually able to load
instructions into the core. If we let this instruction be a request to store
the value of a register in the RAM, the value is written to the databus-
interface of the core, but as this interface is connected to the shift

register by the mux, the data is not written in RAM, but in the shift register. By shifting these data
out we are actually able to see the contents of the registers. In this way it is possible to get data in
and out of the processor. By changing if it is the shift register or the normal control signals that are
connected to the core, one can also read from and write to the RAM. This is what we make use of,
when we load a program into the RAM.
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As mentioned the instruction register (IR) of the JTAG interface can be used to select different scan
chains. In the previous figure it can be seen that our processor has a scan chain (no. 2) which
connects to an ICEBreaker. ICE is short for “In Circuit Emulation” . The ICEBreaker makes it
possible to set breakpoints, that automatically halts the processor if for example an attempt was
made to read from a specific memory address. In this way it is possible to use some debugging
software at a host computer that downloads a program into the memory of the target processor and
executes it. If a breakpoint is reached the debugging software can show this to the user and show
the contents of all registers etc. This is a very powerful debugging facil ity.

Our JTAG interface
As can be seen from the above, only 4 signals are required in the JTAG. Therefore it is quite simple
to connect a device to a host computer using this interface. The simplest way is probably to use the
parallel port of a desktop computer. Commercially available devices can be bought to make this
connection. An example of such a device is the Wiggler manufactured by Macraigor Systems17. We
decided however to build our own interface, as we found a schematic of a device on the Internet
that is pin compatible with the Wiggler. The nice thing about this is, that the software available for
the Wiggler can be used with the device we build.

The schematic found at http://sourceforge.net/projects/jtag-arm9 is shown above. PL1 is the
parallel port connector and PL2 is the JTAG connector. In between those two a 74HC244 IC has
been added. The purpose of this is to do a voltage level conversion from the 5V of the parallel port
to the 3.3V of our processor. The supply voltage for the IC is taken from the JTAG interface.
Therefore our test-board must supply this voltage. The 16 GND connection in the JTAG interface
(PL2) serve as shielding lines.

                                               
17 http://www.macraigor.com/
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Design Description

We have decided to make a testboard with extra debug possibilities and with some simple test
interfaces. The board’s primary function is to show whether or not we have understood the
datasheets properly and to locate logical errors in the design. The following components is used in
the design:

• AT91M40800 – CPU
• 2 × Am29LV017D – Flash
• K6T4016U3B – RAM
• MAX811T – Power monitor
• 2 × LP2981 – Voltage regulator
• IQXO-71 – Clock generator at 12.288 MHz
• MAX3223 – Serial transceiver
• JTAG/ICE plug
• I/O connection plug

Since all of the components are described in the “Component Description” section we will
concentrate on how to connect the components correctly in this section. The CPU is by far the most
complicated of all the components and it is the central component binding all components together.

The CPU Connections
The pins on the CPU basically have 5 types of functions and some of the pins have more than one
function. The 5 types are:

• Voltage supply
• CPU control
• External memory control
• I/O – Input/Output
• JTAG/ICE

Voltage supply
On the CPU there are 10 GND pins, 6 VDDIO pins, and 3 VDDCORE pins. The VDDIO gives
voltage supply to the I/O-lines and VDDCORE supplies the CPU-core.

In the design of the evaluation-board18, made for this processor by ATMEL, the VDDCORE and
VDDIO are connected as one net. The evaluation-board has 4 layers and uses 2 layers for power
planes and 2 layers for signals.
But since our board is a 2-layer board we have to mix the power lines and the signal li nes in the
same layers, which means that we cannot be sure that our supply wil l be as steady, as in the case of
the evaluation board. To improve the supply voltages, we have decided to separate the two nets as
close to the voltage supply as possible. Placing a jumper between the VCC and VDDIO and one

                                               
18 See http://www.atmel.com/atmel/acrobat/doc1706.pdf page 6-8
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between VCC and VDDCORE does this. Since none of the datasheets describe how to place
decoupling capacitors and what size they should be, we have once again looked in the manual for
the evaluation-board. On the evaluation-board they have used four 100nF capacitors, one for each
side of the board. Because of this we have decided to also use 100nF-decoupling capacitors.
However in our design we will use 9 capacitors, 3 close to VDDCORE and 6 close to VDDIO, just
to be safe.

Since the computer is to operate in space, some considerations about how to handle a latch-up are
necessary. A latch-up can occur when a proton hits a CMOS component and causes short-circuit
between the layers inside the component. A latch-up can destroy a component completely and it is
therefore important to protect the CMOS components. It is fairly easy to detect a latch-up because it
causes the component to draw a lot of current. When this happens it is vital to turn off the power for
a short period of time. But when power is turned off in one subsystem it is difficult to predict how
all the others subsystems react. The easiest solution to this problem is to turn off the whole satellite
and then reboot all once again. Since a latch-up is to turn the entire satellite off the latch-up
protection task has been delegated to the “Power Group”. Because of this there are not implemented
any latch-up protection in the design of the test-computer. It is however still not known what and
how the “Power Group” will implement to ensure latch-up protection.

CPU Control
The CPU samples some information about the boot mode, 10 master clock cycles before NRST
(reset) is released. The 2 pins that are sampled are BMS and NTRI. These two pins also have other
functions after the boot sequence is over. It is therefore evident that the applied signal must be
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does this according to the datasheet19 for the processor. In our design we have an 8-bit data width
for the boot flash and therefore BMS is set to logic 120 during boot. The NTRI provides an option
for all the outputs of the processor to be disabled and enter tri-state. To be able to use this option
during error detection of the board we have included a jumper that selects between logic 1 and logic
0.
The NRST pin is connected to a power monitor (MAX811T) that pulls NRST low until the power
supply is stable above 3.08V. The power monitor is also connected to a manual reset button so that
it delivers a denounced reset when the reset button is pressed.  The most important reason to apply
this MAX811T to the design is to prevent the CPU from trying to read from the external devices,
before they have the power supply they need. Only the CPU can operate at 1.8V. The reset signal is
also connected to the two flash modules to make sure they are in a known state after reset. Another
vital input signal to the CPU is the master clock, MCKI. A crystal oscillator of the type IQXO-71 at
12.288 MHz creates the clock signal. The IQXO-71 is a simple component to implement, as it only
requires a voltage supply and 2 capacitors. The IQXO-71 also has an enable/disable option but it is
unused in this application. The frequency of the oscillator is selected so that the baud rate on the
USART can be exact set up to the standard speeds used for serial communication, and because it
gives a reasonable proportion between calculating speed and power dissipation.

                                               
19 See http://www.atmel.com/atmel/acrobat/doc1354.pdf top page 9.
20 See http://www.atmel.com/atmel/acrobat/doc1354.pdf table 3.
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External Memory Control
The CPU has 3 external memory components to control, one RAM module and two flash modules.
(One of the flash modules will be replaced by at ROM on the flight-board)
The CPU is connected to the external memories via the databus, the addressbus and some control
signals. The addressbus is only used from A0 to A20. The used width of the addressbus is
determined by the size of the largest memory module, which is the flash that has a capacity of 2 MB
= 221 bytes. The RAM and the two flash modules share these address lines as well as the data lines.
But since they do not all have the same amount of memory they do not need an equally amount of
address lines.
The RAM is connected so that half-word (one byte) access is also possible. Connections are shown
in the figure below. The reason why it appears that A0 on the CPU is unused is that NLB is
multiplexed with A0.

D0  - D7
D8  - D1 5
A1  - A1 8

NLB
NUB

NWE/NWR0
NO E

NC S0
NWAIT

D0  - D7

A0  - A1 7
LB
UB
WE
O E
C E

D8  - D1 5

1

AT9 1 M 4 0 8 0 0 K6 T4 0 1 6 U3 B 

C PU RAM
The connections between the RAM and the CPU

The two flash components are a bit different from the RAM since they only have an 8-bit data bus.
The flash has an output pin called RY/BY. This pin is used as hardware detection to see if the
component is active erasing or programming. This pin corresponds to the NWAIT on the CPU
which adds wait states to the read or write cycle when pulled low. However it might be possible that
the flash is so slow that it is better to use an interrupt pin instead of NWAIT so that the processor
can work while the flash works in the background. We have however decided not to connect the
pins because the detection can be done by software instead and to keep the design as simple as
possible. The connection may be used in a later version of the computer.

D0  - D7
D8  - D1 5
A0  - A2 0

NWE/NWR0
NO E

NC S0
NWAIT

D0  - D7
 
A0  - A2 0
WE
O E
C E
RY/BY1

AT9 1 M 4 0 8 0 0 Am 2 9 LV0 1 7 D

C PU F la sh
The connection between the CPU and the boot-flash
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The connections for the other flash module are the same as show in the figure of the boot-flash, the
only difference is that NCS0 is changed to NCS1.

I/O – Inpu t/Output
As mentioned, the processor contains 32 programmable I/O lines, but only 6 of these are dedicated
general-purpose I/O lines. The rest of the I/O lines are multiplexed with other functions.
One of the hardware supported I/O functions is the USART. The CPU has two built-in USARTs.
The USARTs can run in both a synchronous mode and an asynchronous mode. Since the USART
on the satell ite will be used for the connection to the radio, and the radio will be designed to use
asynchronous mode, this is also the mode that we will use. The serial communication in the satellite
will be conducted at the levels 0V and 3.3V. These are not convenient voltage levels for testing the
computer through a standard PC’s serial port. To convert the levels to standard RS-232 (to which
the serial port of a PC comply) we use a MAX3223. The MAX3223 is a dual RS-232 transceiver
similar to the popular MAX232 apart from a few extra features such as autoshutdown and
enable/disable. But more importantly the MAX3223 is able to use a power supply down to 3V and
not 5V as the MAX232.
The two RS-232 adjusted outputs from the computer are connected to two DB9 female plugs for
easy connection to a PC.
To be able to use the board for evaluation of hardware-near software, where software controls I/O
pins, we have added a plug with connections to all the unused I/O pins, GND and VCC. This makes
it possible to construct a suitable interface and connect it to the test computer. VCC on the plug is
delivered from a voltage regulator that is not used on the board for any other applications. The
reason to use a dedicated voltage regulator is to ensure that an external device can’t interfere with
the computer’s voltage supply. For test purposes we have made a small extension-board21 with 8
LEDs and 4 buttons that fits this plug.

JTAG/ICE
As discussed in the  “Component Description” section we use a JTAG interface to program the
boot-flash and as a debug option. To ensure that we can use the board with a commercial
JTAG/ICE22 we will follow the standard interface description, which can be found on www.at91-
forum.com23. To make sure that the JTAG interface will not affect the processor when it is
unplugged all the input pins are pulled high. The JTAG connection design is basically the same as
on ATMEL’s evaluation board so that the two are compatible with the same interface.

Timing Analysis
The speed of a component will always be limited. The maximum speed of our processor is 40 MHz
(at 3.0 V power supply), which means that every clock cycle must at least have a length of
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21 See Appendix B
22 ICE In Circuit Emulation
23 More precisely here: http://www.at91-forum.com/viewfaq.php3
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The reason for this minimum time is that all transitions inside the chip have to be able to complete
before the next clock cycle. In our computer, we run the processor at 12.288 MHz, which gives a
cycle time of

ns
s

4.81
10288.12

1
16

=
⋅ − .

The same limitations exist in memory components. Time is needed in order to either read or write a
value. Our RAM has a propagation delay of 70 ns for both reads and writes, which means that it
takes 70 ns from the RAM receives a request until the task is completed. The flash is a bit slower
and has a propagation delay of 120 ns.
Communication between processor and memory is generally done in the following way:

• The processor asserts these signals:
o The chip select (CS / NCS) of the relevant memory component
o The address of the data of interest
o Output enable (OE / NOE) is deasserted in case of a read
o Write enable (WE) is deasserted in case of a write

• When the memory component has CS, the address and either OE or WE, it performs the
desired memory access.

• When the data has been either read or written, the databus is released along with the address
bus and the other signals

In order to know when data is ready from a read operation or when data has been written in a write
operation, the processor has to be set up to comply with the speed of the memory. This is done by
inserting wait states in the communication mentioned above. Inserting a wait state means that the
control signals are held for one extra clock cycle, so that the memory component has time to
complete.
To determine if it is necessary to insert one or more wait states we have to investigate the timing in
greater detail , which wil l follow.

The RAM
The diagram below shows the timing of the different signals in a read operation. In this diagram a
single wait state has been inserted. If it had not been there, the processor would have tried to read
data from the databus at the time marked with “Read cannot complete here”. This would have
resulted in an unsuccessful read operation, as there are no valid data on the databus at that time.
But with the wait state inserted the signals are held one extra clock cycle, which allows the RAM to
complete the access and place the correct data on the databus for the processor to read.
All timing data is stated in the electrical characteristics datasheet for the processor24 and the
datasheet for the RAM.25

The timing values for the processor depend on the speed and supply voltage of the processor. In the
Atmel datasheet values are specified for the processor running at 40 MHz with 3.0 V, 33 MHz with
2.7 V and 16 MHz with 1.8 V. As 16 MHz is the speed closest to the speed we are running, we have
chosen these values for our analysis.
All values in the diagram are in ns.

                                               
24 http://www.atmel.com/atmel/acrobat/doc1393.pdf
25http://samsungelectronics.com/semiconductors/SRAM/Low_Power/Low_Power_&_Low_Voltage/
4M_bit/K6T4016U3B/K6T4016V(U)3B.PDF
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Timing of read access in RAM

In our first tests of the computer we inserted as many wait states as possible to make sure that the
memory had enough time. Extra wait states can never cause errors in the communication, as it is the
processor’s release of chip select (NCS) and output enable (NOE) that triggers the RAM to release
the databus. Until then RAM will hold the correct data on the databus.
Nevertheless, the insertion of extra wait states slows down the communication between the
processor and the RAM.

The timing of writes to RAM is very similar to the one of reads. The only difference is that the
processor deasserts write enable (NRW) instead of output enable (NOE). As mentioned above the
propagation delay of the RAM in case of writes is 70 ns, just as it was with reads. This means that
insertion of a single wait state also is sufficient in write operations.

The Flash
Determination of the required number of wait states in flash-memory accesses is done just like with
RAM accesses. The timing of a read operation can be seen in the diagram below.
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Timing of read access in flash

In the diagram two wait states have been inserted and, as data is ready at the time the processor
reads from the databus, the timing demands are met.
As the diagram shows, it is very close that a single wait state would have been enough – data is
ready at the second negative edge of the clock. But the processor demands a setup time of 15ns
before the clock edge, where data also has to be stable, which it is not. So to be on the safe side two
wait states are inserted.

PCB Layout
To ensure that the logical design of the computer is correct we have decided to make a large test
board with several measuring points and test options.

Self-Production capabilities
This project is a student project with no commercial value and we have therefore a limited budget.
Because of this we decided to make the first physical version of the test board ourselves. The
process of making a PCB26 goes like this:

1. Make a print of the design on a transparent paper
2. I lluminate a light sensitive PCB with the transparent paper in front
3. After the illumination the board is developed and the tracks appear
4. The board is then placed in an acid that removes the unwanted cobber

                                               
26 PCB stands for “Printed Circuit Board”
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5. Clean the PCB and put it in a pewter dissolution
6. Drill the holes

Since our production method is a little primitive compared to the professional manufactures, there
are some limitations to the design:

• Only two layers are available
• The vias27 must be larger than 50mil 28

• Vias must be assembled manually
• Vias cannot be placed under SMD components
• Tracks must be at least 8mil

Though there are disadvantages there are also some advantages. Since it is a test board it is good to
have as many test points as possible to help with the error detection, and all the vias serve as test
points. It is also an advantage that there only are two layers when an error is found in the design and
needs to be corrected. This will not always be possible if the error is located in a mid layer.

Using Protel 98se and Protel 99se
We have used Protel 98se and Protel 99se to make the PCB design. During this process we have
found that both programs are quite unstable but it seems that the ’99 edition is a little better at some
points.
One of the biggest advantages in ’99 is that it is possible to define different width constraints for
groundplanes (polygonplane) and the rest of the board. This is useful, because otherwise the space
between the groundplane and the tracks will be as narrow as the distance between the legs on the
most compact component, witch will increase error possibil ities significantly.
Another great improvement in 99’ is that it is possible to set a preferred and a minimum track width
for the autorouter. This assures that the router uses a wider track wherever possible.
The last improvement we like to mention is that the net name is labelled on the tracks which makes
orientation easier when a part of the board is viewed close up.
We wil l recommend the 99’ edition for similar projects in the future.

Board Size
Since the computer is supposed to fit into a pico-satellite, the board proportion has to follow some
guidelines. The group handling the mechanical design of the satellite sets these guidelines. However
the mechanical design is not complete yet so the final guidelines are still not available. We do know
that the size of the computer board is expected to be about 60mm × 60mm. But since we need to
build a test board first we have decided to build it the size that makes the routing easiest, which is
164mm × 154mm.

Component Footprint Choice
In the design we have two kinds of components: The components, which only have a test purpose,
and the components that also will be needed for the flight-board. Since it is not necessary to make
the testboard very compact, we have decided that the components used only for test purposes does
not have to be SMD mounted components. This reduces the error possibilities significantly. The
                                               
27 A via is a connection from one layer to another
28 1mil = 0.025mm
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components that will be used for the flight-board, is however mostly SMD components. This is
because they are smaller and they do not take up space on both sides of the board.

Track
The minimum size for the track width is dictated by the component with the smallest footprint. The
pins on the processor are only 8.6mil, and therefore 8.6mil is the smallest track width that is used.
For the power supply we have decided to use 25mil to ensure that the different components gets a
steady supply. For all other wires we have used 13mil width. This corresponds with the size of the
pins on the RAM.

Via
We have to manually assemble the vias, which is done in the following way:

1. Drill a hole in the wanted via pad
2. Insert a small piece of wire in the hole
3. Solder the wire on both sides of the PCB

With this procedure one can see why the via-pad must have a minimum size of 50mil in diameter.
The large size of the vias makes the routing much harder and forces a larger distance between the
components because it takes 5 times as much space to make a connection to the other side of the
board. Fortunately, the vias will be much smaller on the professionally made PCB for the flight-
board. During the error detection removing a via has been an easy way of isolating short circuits on
the board.   

Component Placement
In this design the databus and addressbus constitute a large part of the connections. To prevent that
too many tracks has to cross each other the components are placed so that it is possible to connect
the two busses without any lines crossing. This is illustrated on the figure below where the two
flash-components, which share all lines except the chip-select signal.

Footprint and connections between the two flash-components.
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Routing
When we started with this design we encountered some problems with the cauterization of the PCB
board. If the tracks were too close the acid couldn’ t get trough. Because of this we decided to make
as large distances as possible between the tracks.  Since Protel’s auto router had problems with our
design and found it impossible to route, we had to route the whole board by hand. When a board is
routed manually, it makes it easier to error detect because the logic in the paths of the tracks is more
obvious and there are fewer connections sent on long devious tours.
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The Software

Background
The primary goal in this project has been to develop a working computer for the satellite. Even
though we have been very careful in the design process it is most unlikely that the hardware (the
PCB) does not contain errors, and even then the physical manufacturing may lead to errors, which
we need to know about. This includes bad solderings, short-circuits, and tracks that are broken as a
consequence of the way we make the PCB.
In order to verify our hardware design we therefore need some software, which can help us in the
debugging and test of the hardware.

The software this section covers is only written to be used during the design and verification of the
hardware. The software that will run on the computer, when it operates in space, is designed and
written by other groups of the satell ite project. As mentioned in the beginning, groups covering
bootstrap, protocols, and overall software architecture exist. The last group has proposed that the
computer will run an embedded operating system called eCos29. eCos is an open source operating
system and thereby it is not only free of charge, the source code is also available.
Even though the following software is written primarily for tests, parts of it may be used in the
flight software, as eCos does not contain low level drivers for all the parts the computer is build of.
These drivers can be based on the following, as this is very low level.

We have written 4 different small programs:

• blink - The purpose of this program is to verify that we are able to compile and link a
program that can be downloaded and run on the computer. It is very small and can be run
from the internal memory of the processor, so that the external bus interface is not needed
to be working probably - It can however also be run from the external RAM, in order to
verify that this is functional.

• flash - This program is used to program the onboard flash. As the flash is soldered to the
board, it has to be programmed using the processor. Parts of this program may be used on
the computer, when it operates in space.

• Boot - This is a simple program written in assembler. All it does is a remap of the memory,
and then it calls another program.

• usart - This program sets up the processor, so that serial communication can be performed.

All of the programs with exception of the boot-program are written in the C language. The reason
for choosing C is, that it is quite easy to write programs, which interact with hardware, because it is
possible to work with addresses. Another reason is that we have access to at compiler, which can
generate machine code for the ARM core.  The compiler we use is the “gnu”-compiler30. This
compiler has the advantages that it is free and it is known to produce quite well optimised code.

                                               
29 http://sources.redhat.com/ecos/
30 http://www.gnu.org/
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Compilation and Linking of Programs
Because the compiler has to generate programs that will run on our embedded system, it must be set
up in a special way. This section provides a small description of what is needed to make it generate
binary files, which can be downloaded and executed on the computer. We have included this
section because some of the things needed are hardware specific.

We have set op the compiler (actually compiled it) to generate code for the arm-elf-target. This
means that the compiler will generate 32-bit machine code. We do not use the thumb-mode31 of the
processor.

Compil ing C programs is straightforward if you are familiar with the C-compiler gcc.  The only
thing needed is to issue the following command:

   arm-elf- gcc –c file.c

A lot of options can be given to the compiler, but it will be out of the scope of this rapport to list
them here. The important thing is that the command will generate a binary file named file.o. The
reason for mentioning the compiler command at all is, that the code generated (.o) will not run
directly on the processor. The problem is, that the .o-file doesn’t contain any information about
where in memory the program must be run.

In order to provide this information we must use the linker tool. This tool assembles different .o-
files and makes them run in a specific place in memory. A “linker script” controls the tool. The one
we use is listed in appendix E. The script makes the program run from address 0x02000000. This is
where we have mapped the external RAM. This value can of course be changed to something else.
With this linker script the linking can be done using the following command:

   arm-elf- ld -T ldscript -o out.elf file.o

The output of this command is a file named out.elf. This file can be downloaded and run on the
target.

There is one thing about the above linker script that the user needs to know. As it is very simple, it
does not contain all the symbols needed to generate a working program. This means that the user
will have to insert the following function in the C-source, otherwise the linker will exit with an
error:

   void __ gccmain() {
   }

When a program written in C is compiled, every call to a function is done by pushing the arguments
of the function to the stack before branching to the address of the function. Therefore it is needed to
set up the stack-pointer of the processor before the main-routine of the C-program is executed. We
do this with a program written in assembler. The program is shown in appendix F. The program sets
up the pointer to a place in memory after the program code. The linker script controls the exact
place. The assembler code is assembled with the command:

                                               
31 See section on CPU in ”Component description”
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  arm-elf-as -c -o crt0.o crt0.S

To sum up, the following commands are needed to generate a program, which can be run on our
computer (note that the crt0.o is added to the linker command):

   arm-elf-as -c -o crt0.o crt0.S
   arm-elf- gcc –c file.c
   arm-elf- ld -T ldscript -o out.elf crt0.o file.o

Both the linker script and the program setting up the stack was included with the binary gcc-
package available at www.ocdemon.com. We have only made small changes in these sources to
affect the size and placement of our RAM.

After this short introduction to the compiler tools we are ready to look at the 4 different test-
programs.

The blink Program
As mentioned earlier the purpose of the blink program is to test that the processor is working
properly. In appendix G we have included the source code for the program. The program sets up the
processor, so that the lower 8 I/O-pins of the processor (P0-P7) are outputs. This is done using the
following two lines:

PIO_PER = 0xff;
PIO_OER = 0xff;

The PIO_PER register controls whether the individual pins are connected to an internal device or to
the PIO-bus. The PIO_OER controls whether a pin is an input or an output. Therefore, by writing the
value 0xFF  to the registers, the 8 lower I/O-pins get connected to the PIO and are set as outputs.
The registers are defined as follows:

#define PIO_PER *(volatile unsigned int*)(0xFFFF0000)

What is important in this line is the volatile -keyword. This makes sure, that the compiler does
make machine code that executes this line. If it was omitted, the compiler may chose not to generate
the required code, if it finds, that the line does not do anything. The 0xFFFF0000  is the address of
the PIO_PER register.

By setting the individual bits in PIO_SODR or PIO_CODR-registers the corresponding output can be
turned on or off. The fact that two different registers are used to set and reset a bit, is actually a neat
feature of the processor. Most other processors only have one register for this. If you want to set a
single bit in a register without changing the others in such a processor, three commands are needed
(read, or, write). On the Atmel processor only one command is needed to do the same, which not
only makes the code smaller but also run faster.

The remaining of the blink program sets and resets different outputs making the LEDs connected to
the corresponding pins of the processor flash. This produces a nice light-show on our extension-
board.
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As this is all the program does, it is very small. This make is perfect as the first tests-program, as it
can be run from internal RAM, external RAM and flash.

The flash Program
As mentioned earlier we use the JTAG feature of the processor to download code into the RAM of
the processor. Even though the flash is mapped to the external bus interface in the same way as the
RAM, the JTAG is not able to write to the flash directly. This is because the flash requires a special
algorithm for programming. Therefore, we have developed a program that can be downloaded to the
RAM where it is executed. This program takes care of programming the flash. This seems to be the
way commercially available JTAG flash-programmers works. An example of such a program is the
“Flash programmer” available at www.macraigor.com for the price of £500.

In order to have the data, which is to be programmed to the flash, included in our program, we use
at small program called gen_progfile available at http://www.ahare.btinternet.co.uk/. This converts
the binary data of a file into a c-array and writes the result in prog_array.c. This file is then included
in our flash-program, and thereby we have access to the data.

The flash has an embedded programming algorithm, but because of
the way the flash is made, it is only able to change one’s into zeros.
Therefore the address being programmed must be erased (i.e. all bit
set to one’s) before the wanted value is written into the address. To
do this the flash features an embedded erase algorithm. This
algorithm erases an entire sector, i.e. 64KB of data are erased. In
order to make use of the embedded algorithm the processor must do,
what is depicted in the figure to the right32. In appendix H the source
code for our implementation can be seen.

The first step is to issue the  “Sector Erase Command Sequence”
This command sequence consists of 6 values that must be written to
the sector. This is what happens in the following lines:

*flash = FLASH_Unlock_first;
*flash = FLASH_Unlock_second;
*flash = FLASH_Unlock_sector_erase;
*flash = FLASH_Unlock_first;
*flash = FLASH_Unlock_second;
*sect_adr = FLASH_Sector_erase;

Next the processor must read from the sector to determine if the data has changed to the value 0xFF.
If this is the case, then the erasing has completed – otherwise the embedded algorithm is still i n
progress.
As the algorithm may never end, if the value read does not change to 0xFF, we have included a
timeout; just to make sure the loop stops.  This makes the algorithm look like:

while (--timeout > 0) {
if (*sect_adr == 0xFF ) break;

                                               
32 AM29LV017D datasheet page 19



38

}

To make sure the entire sector has been erased, we test if all
values in the sector have been set to 0xFF. This should always be
the case when the embedded algorithm is finished, but the
radiation from space may destroy some memory cells making it
impossible to erase them. Therefore this check has been added.

The writing of a value to an address in the flash can now be done.
The way is quite similar to the way the erasing was done. A
command sequence must be issued, the processor must wait until
the writing has finished, and the data must be verified. The
algorithm the processor must follow is depicted to the right33.
Our implementation of this algorithm can be seen in the
appendix.

In order to see what happens when our flash-programmer runs on
the board, we use the LEDs on the extension board. The way they are used is quite similar to the
way they were used in the blink-program.

The boot Program
The boot program is shown in Appendix I. We have not written this program ourselves, but only
made some small changes to some code included with the gen_progfile mentioned above. The
original code does a remap of the external bus interface and then goes into an infinite loop. We
changed the remap values to the ones used by our RAM and flash, and instead of just making a
infinite loop, we jump to an address in the flash (the value of PtProg, 0x01010000), so that the
program in this address is run after the remap.

The USART Program
The last program is the USART program. It was written to have a way of testing if the serial
communication is working correctly. The serial port 0 on the board must be connected to a desktop
computer. The program sets up the USART of the processor, and wait until it receives something (a
character from the computer). Then it sends back the received value+1, and the received value+2.
Typing A in a serial terminal on the desktop computer returns BC, typing 5 returns 67 etc.

The USART is set up with:

/* Initialize the channel */
PIO_PDR = ( PIOTXD0 | PIORXD0 ) ;

  US0_MR = ( US_ASYNC_MODE | US_CHMODE_NORMAL ) ;
  US0_BRGR = 80; /* baud rate */

/* Start channel */
  US0_CR = ( US_RXEN | US_TXEN );

                                               
33 AM29LV017D datasheet page 17
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The first line makes sure the TX0 and RX0 of pins are connected to the internal USART. Then the
mode of the USART0 is set to asynchronous, and US_CHMODE_NORMAL makes the USART operate
without any local/remote loopback.

Writing 80 to US0_BRGR (the baud rate generator) sets the baud rate to 9600 bps. Since the USART
is to operate in asynchronous mode, the baud rate is calculated as34:

80CD9600
CD16

Mhz 882.12

CD  16

Clock Selected
  rate Baud =⇒=

×
=

×
=

Finally, we start the channel by enabling the RX and TX signals.

Then we start waiting to receive something. This is done by:

value = US0_RHR;

The program ‘hangs’ at this line until something is received. The USART could be set to generate
an interrupt when data is received, but in this simple program we do not make use of this feature.

Finally we want to show how data is sent:

/* Send byte */
US0_THR = value + 2;

/* Wait Tx ready */
for (; (US0_CSR & 2) == 0;);

When something is written to the US0_THR register it is instantly sent out. In order to know when all
data is sent, we look at bit 1 of the US0_CSR-register, which is 1, when all data is sent.
The complete source code can be seen in appendix J.

                                               
34 AT91 ARM Thumb microcontrollers manual page 98.
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Test and Verification

Even though much care was taken in the process of making the schematic for the system, producing
the PCB, and soldering components, the board did contain some small errors. Using the programs
just described we were able to find and correct these errors at our board. In this process the JTAG
interface was a great help, as we could write and read values to the RAM and use the information
gained to find the soldering errors we had in our databus.
It was nice that the evaluationboard supplied by Atmel gave us the possibility to test the software
before we downloaded it to our own board. This way it was possible to exclude software errors.

After finding and correcting these errors we were able to make some measurements concerning how
much power the board requires. As the design of the OBC has yet not been finished (e.g. A/D and
D/A converters are missing) these values are not the final ones, but as the most power consuming
components are included on the current board, the values make it possible to verify if the OBC can
be made using an acceptable amount of power.
The measurements were made without the JTAG cable and the extension board attached to the test
board. This way only the current drawn by the processor, flash, RAM, oscill ator, and voltage
supervisor are included.
We have made two measurements: One with a program running in RAM, and one with a program
running in FLASH. The program running was the blink program described above.

Program running in RAM Program running in flash
Current 47 mA 39 mA
Power (at 3.3 V) 155.1 mW 128.7 mW

As can be seen the values are far below the required value (1W). We therefore believe that even
though more components are added, the power consumption of the OBC will still not go beyond a
critical value, but it will most likely be close when all subsystems are connected. One problem
exists with the measured values: They may (and most likely will ) change when the components are
irradiated. Unfortunately, information on component degradation is not something that can be found
in a datasheet, and therefore we have to do some tests concerning radiation ourselves. The next
section (”Radiation in space”) will cover this topic.
The power consumption of the computer running programs in RAM will be lowered, when we
replace the RAM with the newer version.
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Radiation in Space

Radiation in space is generated by particles emitted from a variety of sources both within and
beyond our solar system. The nature of the radiation differs in place and time. Some places our
satell ite might cross a so-called “solar wind” , which is a burst of particles (mostly protons and
electrons) emitted from the sun, and here radiation will be substantial. At other places radiation will
be very light. The single particles also vary in the amount of
energy they possess. High-energy particles are more dangerous to
our circuitry than low-energy particles (often referred to as back-
ground radiation), as they penetrate deeper into the components
and cause greater damage in case of colli sion. Much research is
carried out in making maps of intensities and different kinds of
radiation in space. Such a map is shown in the figure. The figure
shows that the radiation is not only depending on the sun but also
very much on the magnetic field of earth (magnetosphere). 35 As
further details of this area are quite complex and out of the scope
of this project, we will not discuss it further.

Radiation effects on a satellite like ours can be divided into three categories:

1. Single event effects
A single-event effect results from, as the term suggests, a single, energetic particle. If such a
particle hits one of our components, we might encounter three different errors:

• Bitflips (soft error)
This phenomenon causes the value of a specific bit to change. This wil l lead to
software malfunction. In order to avoid this malfunction we plan to implement error
detection and correction circuitry (EDAC) between the processor and the RAM/flash
(as mentioned in “System overview”). This wil l be able to correct most errors. In
case of substantial damage to the software, it might be necessary to reboot or even
upload new software from earth. The ROM has to be radiation-hard so that it does
not suffer from these bitflips.

• Latch-up (hard error)
We mentioned this kind of error in “Design
description” and that permanent damage can
be avoided  by turning off the power.
The picture shows part of a CMOS
component being hit by a high-energy
particle. This particle can either short-circuit
the source or drain to ground, which is located
in the bottom of the picture. The short circuit
arises because the particle creates a
conductive “tunnel” . A short-circuit will draw

                                               
35 http://www.eas.asu.edu/~holbert/eee460/spacerad.html

Radiation and magnetosphere
near earth

Particle colliding with a CMOS
component
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a lot of current and the component is very likely to take permanent damage if the
power is not turned off immediately.

• Burn-out (hard error)
In case of the power not being turned off at a latch-up, a burn-out can occur. A burn-
out can sometimes be seen by the human eye, as a burn-out means that the chip is
simply melted in the area of the latch-up. After this, the chip is useless.

2. Spacecraft charging
Spacecraft charging is a phenomenon caused by charged particles. For example: In a given
area, there might be a surplus of free electrons, which gradually wil l charge the entire
satell ite to a negative voltage. This voltage can be very high – up until tens of kilovolts.
However, if a common ground is used in the entire satellite, this is no problem. On the other
hand, it will be very dangerous if voltages like these are suddenly discharged to an isolated
component of the satellite. 36

Actually, the payload group designing the tether has been thinking about trying to use these
high voltages, as the tether requires a voltage of at least 100 V in operation. This way we
could save both room and weight, because a transformer would not be needed. But for now
it is just an idea.

3. Total ionizing doze
The total ionizing dose (TID), mostly due to electrons and protons, can result in device
failure. TID is measured in terms of the absorbed dose. The TID is calculated from the
trapped protons and electrons, secondary Bremsstrahlung photons, and solar flare protons.37

As TID increases, material degradation increases. Long-term exposure can cause device
threshold shifts, increased device leakage and power consumption, timing changes,
decreased functionality, etc.
In order to have an idea of how our components will react to these long-term effects, all
groups in the satellite project have sent samples of their components to Risø for tests. At
Risø the components will be exposed to different amounts of radiation: 0.9, 1.8, 4.5 and 9.0
kRad at 25.05 Rad/s. 2 kRad is the average amount of radiation we can expect in one year.
When the components come back from Risø, we can start to replace the existing
components on the board with the ones exposed to radiation. By doing this we will see
whether or not they still function and see the changes in their characteristics.

Hopefully, we will see that at least the ones exposed to only a little radiation still function
without characteristics like power consumption having changed too much.

The only thing that can be done to limit these long-term effects, is to place shielding
material around the components. This could for example be aluminium, which is both light
and well shielding. This kind of shielding will not stop any of the high-energy radiation that
causes latch-ups and bit-flips. During the spring, we will decide whether or not to implement
shielding, depending on the results of the Risø-tests.

                                               
36 http://www.hq.nasa.gov/office/codeq/relpract/1258jsc.pdf
37 http://www.eas.asu.edu/~holbert/eee460/spacerad.html
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Future Development

A number of things on our current board will have to change, before it can be sent into space. The
most obvious thing is the size. As mentioned earlier, the size of the current test-board is
164mm×154mm. The mechanics group has proposed a maximum size of 60mm×60mm excluding
space for connections to other subsystems. This means that our board must be reduced in size. In
the section about the PCB-layout we saw, that the current large size was due to at number of things:
Via-size, space between tracks, minimum track-size, and problems with the routing. Since the final
board is to be produced by professionals, these things change. The most important change is that we
are able to use a 4-layer board. Our plan is to use the two mid-layers for VCC and GND. This
means that these two nets are removed from the top and bottom layers. Because the two supply nets
are connected to all components, routing wil l become much simpler, as they do not cross the busses
anymore. Furthermore, the fact that the vias and tracks can be narrowed in makes it simpler to route
the remaining signals on the top and bottom layer. We therefore believe that the board can be made
much smaller, so that it indeed meets the requirements from the mechanics group. Jimmy
Malmkvist from PowerCAD also stated, that he did not se any problems reducing the size at our
meeting with him38.

As it can be seen by the previous discussion the current test-board only contains the necessary
components for a computer, which is operational. In the “System Overview”-section we saw that in
order to have the computer do something meaningful, it must be connected to other subsystems of
the satellite. One of the things that has been diff icult in this project was (and still is) to find out
exactly which connections are needed by these subsystems. At present time these specifications are
still not completed, but at the last system-engineering meeting, the following requirements were set.
The table shows how many outputs each system has, and how many inputs it requires.

Analogue Digital
Output Input Input Output In/output PWM Serial IRQ

ACDS39 15 6 3
Radio 2 1 1 3 2
Power 6 7 14 1
Camera40 5 5 1
Tether 2 2
Harness 2
Temperature 1
Sum 25 3 15 28 1 3 2 2

Summing up there are 28 analogue signals and 51 digital signals to the OBC board. The processor
only provides 32 digital signals, which even if none of them were used to control the ADCs and
DACs, is far too few. As the processor was chosen before we knew these numbers, we obviously
have to do something to reduce the signal count requirement. The good thing about limiting the
signal-count is that fewer connections in-between subsystems will be necessary, which reduces the
total space and weight used by interconnections.

                                               
38 See the External Contacts section.
39 As the attitude group were not present at the meeting, this may contain errors
40 These values are guesses, as the Camera group has not yet started their work
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At the system-engineering meeting we discussed how we could best do this limiting without
interfering with work already done by the groups. It was also considered if the changes would make
the satellite more intolerant to failures and if the changes would require more power etc.
By the following figure the result of this work is shown:
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When looking at the requirement table it can be seen that some systems (the ACDS and the power)
have a lot of analogue outputs. In order to limit this number of outputs, analogue multiplexers have
been added to each of these boards. If an 8 channel mux is used (as shown on the drawing) the total
connections to the computer can be as few as 6. 3 are used to connect each mux to an A/D-converter
on the OBC board (thin green lines). The muxes share the 3 other connections in parallel and use
this signal to control which input channel is selected (fat purple line). The A/D-converter on our
board needs to have a mux inserted, so that only one of the analogue signals from the muxes is
measured. On the drawing this is shown as a single block entitled  “SPI ADC with 8 CH MUX”.
This is because several single chip solutions exist that both have mux and converter. Some of these
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are controlled via SPI (a single wire bus), and therefore only one connection to the processor is
needed. Since only 3 of the analogue inputs of this ADC are used, 5 are left. This is enough to
connect the analogue signals from the remaining subsystems. Summing up 3 outputs and 1 in-
/output is needed to control the measuring of analogue signals in the satellite.

In order to limit the number of required digital li nes from the processor, an 8-bit wide bus has been
introduced in the drawing (the fat orange line). It connects the subsystems requiring a lot of digital
signals to the computer. On these systems an 8-bit latch/buffer is added. The purpose of those is to
make sure only one system uses the bus at a time. This buffer requires an enable signal, when it is to
control the bus. Therefore 6 dedicated digital outputs from the processor are connected to each of
the buffers. When something is to be read from or written to a specific subsystem, the enable line is
first driven low by the processor (assuming active low enable signal) and then the required value is
written to/read from the bus. When the enable signal goes high again the value on the bus is latched
in the subsystem, and the bus can be used for communication with other subsystems without
interfering with the current subsystem.
The introduction of a bus causes another problem. In some subsystems it is urgent to tell the
processor if anything changes on its output line. The power-board has such a demand. If for
example the power manager detects a latch-up in a subsystem, it is vital to tell the processor that the
manager has cut off the power to this subsystem. Therefore an “IRQ generator” has been added to
the power-board. The purpose of it is to generate a signal that can be used as an interrupt for the
processor. This interrupt must be generated, if any of the lines change state and therefore the IRQ
generator is probably something simple as an 8-input nor-gate
It can be seen from the requirement table, that only 3 DAC-lines are required. Instead of placing 3
DACs on our board, the same solution as described under the ADC are used. A “SPI DAC with 8
CH MUX” can be bought in a single chip. This means that the generation of the 3 analogue voltages
can be done with only 1 in-/output line from the processor.

Counting the required number of digital in- and outputs after these changes yield, that 32 lines are
required. This is exactly what is available on the processor. With the currently available
requirements for the different subsystems, it is therefore possible to connect all parts of the satellite
to the OBC. This implies that the chosen processor (and the computer in general) can fulfil the
requirements of the satellite.
Since the specification of the requirements for the subsystems is not yet final, changes in the
proposed design of the satellite interconnections may occur. This is especially true for the camera,
as the number of signals needed to control this is yet not known. The consequence of this is that
more I/O-lines may be needed from the processor, but at present time no more are available. It
might be necessary to make further optimisations in the way we connect the subsystems. One of
these could be to insert a latch controlling the 6 lines required to control the bus-buffers. This
optimisation would make 5 I/O-lines available on the processor.

We wil l conclude  this section by a short look at the physical interface with the other groups. As
mentioned 32 lines from the processor to other subsystems are needed. Also a number of wires from
the power-board to the other boards are needed. In addition some of the subsystems may have
connections in-between.
In the beginning of this section we stated, that the size of the PCB must be 60×60 mm excluding
space for connections to other subsystems. Therefore there will be added some space for these
connections. As the number of connections is quite high, different kinds of connectors are
considered: A slot like the PCI-slot known from the motherboard of a desktop computer (would
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require a connection board in the satellite), a flat cable with connectors (like the one connecting a
harddrive of a desktop computer to the motherboard), or maybe a socket that would make it
possible to stack the different PCBs on top of each other. The choice has not yet been made, as the
total number of connections will influence on which solution is best suited for our application. Also
things like robustness concerning vibrations must be considered.
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Conclusion

We have designed and produced a functioning computer for our satell ite. So far, the computer
complies with the requirement specification:

• It has sufficient memory resources
• The architecture of our design satisfy the needs in the satellite (we have a suff icient number

of I/O pins, a watch-dog, possibil ity of serial communication and so on)
• We have a power consumption of about 150 mW, which will become lower when we

implement the newer, low power RAM
• A flightboard with a dimension of 60mm×60mm will be possible because of our opportunity

to have the PCB professionally made free of charge
• We have C-compilers available for the processor free of charge

Furthermore, we have avoided the use of BGA components, which we believe has saved us a lot of
debugging time. When it comes to the wishes of the software groups, we have been able to fulfil the
request for a 32-bit processor but not the request for a MMU (memory managing unit).

There is one big question left from the requirement specification: Can our components cope with
the effects of the radiation in space? This will be answered during the spring, when our components
come back from Risø and we have the time to test them.
These tests are not all that has to be done in the spring:

• The RAM has to be exchanged
• The ROM must be found
• A/D converters must be added
• Shielding may have to be implemented
• Error detection and correction circuitry (EDAC) wil l be implemented
• Production of the PCB
• The interface between the subsystems has to be made

So there is still a lot of work to be done, but for now we feel very content with what we have
achieved and learned. Our choices of components and overall design seem to be reasonable.
With our JTAG and our flash driver we found a way to program the flash. The use of the JTAG
interface of the processor has generally been very positive. It is a very reliable interface and as
JTAG is a widely used standard, we will be able to use our knowledge and our homemade
“Wiggler” in other projects.

One of the greatest challenges has been to work with a big project (our computer) that is only part
of an even bigger project (the satellite). This has taught us the importance of communication
between the different groups in a big project, which will most certainly be useful when we get to
work as engineers in the future.
We believe that we have explored many different areas of the engineering world in this project; we
have had contact with many different companies, designed a system conceptually, found the
optimal parts for this system, build the system ourselves and tested the system via our own
software.



48

This process is typical for development of any kind of device and with this project, we feel that we
have been through all the steps.

Jonas Sølvhøj, c973442

_____________________________________

Malte Breiting, c973568

_____________________________________

Morten Briand Thomsen, c973709

_____________________________________
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Appendix C – PCB Layout of Onboard Computer
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Appendix D – PCB Layout of Extension-board
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Appendix E – Linker Script

SECTIONS
{

. = 0x02000000;

.text : { *(.text) }

. += 0x9000;

.data : { *(.data) }

. += 0x1000;

.bss : { *(.bss) }
__bss_start__ = .;
. += 0x1000;

/* __sbss_start = .; */
/* __sbss_end = .; */

__bss_end__ = .;
. += 0x1000;

PROVIDE (__stack = .);
_end = .;
.debug_info     0 : { *(.debug_info) }

   .debug_abbrev   0 : { *(.debug_abbrev) }
   .debug_line     0 : { *(.debug_line) }
   .debug_frame    0 : { *(.debug_frame) }
/*   .debug_str      0 : { *(.debug_str) } */
/*   .debug_loc      0 : { *(.debug_loc) } */
/*   .debug_macinfo  0 : { *(.debug_macinfo) } */
}
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Appendix F – Source of Stackpointer Setup

.externmain

.externexit

/* .text is used instead of .section .text so it works with arm-aout too.  */
.text
.code 32
.align 0

.global_mainCRTStartup

.global_start

.globalstart
start:
_start:
_mainCRTStartup:

/* Start by setting up a stack */
/*  Set up the stack pointer to end of bss */
ldr r3, .LC2
mov sp, r3

sub sl, sp, #512 /* Still assumes 512 bytes below sl */

mov a2, #0 /* Second arg: fill value */
mov fp, a2 /* Null frame pointer */
mov r7, a2 /* Null frame pointer for Thumb */

ldr a1, .LC1 /* First arg: start of memory block */
ldr a3, .LC2 /* Second arg: end of memory block */
sub a3, a3, a1 /* Third arg: length of block */

mov r0, #0 /*  no arguments  */
mov r1, #0 /*  no argv either */

bl main
bl exit /* Should not return */

/* For Thumb, constants must be after the code since only
positive offsets are supported for PC relative addresses. */

.align 0
.LC1:

.word __bss_start__
.LC2:

.word __bss_end__
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Appendix G – Source of blink

/* This is blink.c
 * A simple led-flasher for the OBC test-board
 * LEDs must be connected to P0-P7 */

#define PIO_PER *(volatile unsigned int*)(0xFFFF0000)
#define PIO_OER *(volatile unsigned int*)(0xFFFF0010)
#define PIO_SODR *(volatile unsigned int*)(0xFFFF0030)
#define PIO_CODR *(volatile unsigned int*)(0xFFFF0034)

int main() {
int i, dir = -1,lys;
int last;

PIO_PER = 0xff; /* PIO controls lower 8 bits */
PIO_OER = 0xff; /* Lower 8 bits are outputs */
PIO_SODR = 0xff; /* Turn on lower 8 bit, i.e. turn off the LEDs */

last = 1;
lys = 2;

while (1) {
PIO_CODR = lys; /* Turn on LED 'lys' */

for(i=0; i< 10000; i++) {
/* Flash LED 'last' while waiting */
if (i%10==0) PIO_CODR = last;
if ((i+9)%10==0) PIO_SODR = last;

}
 

PIO_SODR = lys; /* Turn off LED 'lys' */
last = lys;

if (dir==-1) {
lys = lys << 1;

} else {
lys = lys >> 1;

}

/* Change directon if limit reached */
if (lys == 256 || lys==1) dir =- dir;

}
}

/* main() returns to this function */
int exit() {

while(1);
}

/* Cheat gcc, so that it will compile the program */
void __gccmain(void) {
}
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Appendix H – Source of Flash Driver

/* This is prog.c
 * A flash-programmet for the amd29lv017D flash
 * The first programming adress is hard-coded into the main function */

#define FLASH_Unlock_first 0xAA
#define FLASH_Unlock_second 0x55
#define FLASH_Unlock_sector_erase 0x80
#define FLASH_Program 0xA0
#define FLASH_Sector_erase 0x30

#define FLASH_Sector_size        0x10000

#define BIT_3_MASK 0x08

#define FLASH_ERR_OK            0x00
#define FLASH_ERR_TIMEOUT      0x01
#define FLASH_ERR_VERIFY      0x02

#define TIMEOUT  50000

#define PIO_BASE    0xFFFF0000
#define PIO_PER       PIO_BASE + 0x00
#define PIO_OER       PIO_BASE + 0x10
#define PIO_SODR       PIO_BASE + 0x30
#define PIO_CODR         PIO_BASE + 0x34

#define LED_ALL 0xFF

extern unsigned char prog_array[];
extern long prog_array_size();

void led_on(int what) {
*(volatile int*)(PIO_CODR) = what;

}

void led_off(int what) {
*(volatile int*)(PIO_SODR) = what;

}

void led_init() {
*(volatile int*)(PIO_PER) = LED_ALL;
*(volatile int*)(PIO_OER) = LED_ALL;

}

int program_byte(void *adr, unsigned char byte) {
volatile unsigned char *flash = (volatile unsigned char *)FLASH_BASE;
volatile unsigned char *prg_adr = (volatile unsigned char *)adr;
int timeout = TIMEOUT;
int res = FLASH_ERR_OK;

/* Turn on the LEDs to indicate something happens */
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led_off(LED_ALL);
led_on(byte);

/* Write Program Command Sequence */
*flash = FLASH_Unlock_first;
*flash = FLASH_Unlock_second;
*flash = FLASH_Program;
*prg_adr = byte;

/* Data Poll and Verify */
while (--timeout > 0) {

if (*prg_adr == byte) break;
}

if (timeout < 0) res = FLASH_ERR_TIMEOUT;

return res;
}

int erase_sector(void *sect) {
volatile unsigned char *flash = (volatile unsigned char *)FLASH_BASE;
volatile unsigned char *sect_adr = (volatile unsigned char *)sect;
volatile unsigned char *adr;
int timeout = TIMEOUT;
int res = FLASH_ERR_OK;

/* Write Erase Command Sequence */
*flash = FLASH_Unlock_first;
*flash = FLASH_Unlock_second;
*flash = FLASH_Unlock_sector_erase;
*flash = FLASH_Unlock_first;
*flash = FLASH_Unlock_second;
*sect_adr = FLASH_Sector_erase;

/* Wait for erase timer to timeout */
while ( (*sect_adr & BIT_3_MASK) == 1 );

/* Data Poll from system */
while (--timeout > 0) {

if (*sect_adr == 0xFF ) break;
}

 
 if (timeout < 0) res = FLASH_ERR_TIMEOUT;

/* Verify data */
for (adr = sect_adr; adr < sect_adr + FLASH_Sector_size; adr++) {

if (*adr != 0xFF && res == FLASH_ERR_OK) {
res = FLASH_ERR_VERIFY;
break;

}
}

return res;
}

int main() {
int testarray[20];
volatile unsigned int i;
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int len;

led_init();

erase_sector((void*)0x01000000);

/* Flash the LEDs to indicate erasing finsihed */
led_on(LED_ALL);
for (i=0; i<500000; i++);
led_off(LED_ALL);

len = prog_array_size();

/* Do the programming */
for (i=0; i<len; i++) {

program_byte( (unsigned char*)(0x01000000+i), prog_array[i]);
}

/* Turn on every second LED to indicate programming has finished */
led_off(LED_ALL);
led_on(0xAA);

return 0;
}

void __gccmain() {
}

exit() {
while(1);

}
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Appendix I – Source of Bootstrap

.equ EBI_BASE,0xFFE00000

.global__main
__main:

.long InitReset /* reset */
undefvec:

.long undefvec /* Undef */
swivec:

.long swivec /* SW */
pabtvec:

.long pabtvec /* P abt */
dabtvec:

.long dabtvec /* D abt */
rsvdvec:

.long rsvdvec /* reserved */
irqvec:
/* ldr pc, [pc,#-0xF20] /* IRQ : read the AIC */
fiqvec:
/* ldr pc, [pc,#-0xF20] /* FIQ : read the AIC */

InitReset:

/*
 * Initialise the Memory Controller
 * ---------------------------------
 * Copy the Image of the Memory Controller
 */

mov sp,#0x1000

ldr r10, PtInitTableEBI/*get the address of the chip select register image */

movs r0, pc, LSR #20 /* pc > 0x100000 */

moveq r10, r10, LSL #12 /* Mask the 12 highest bits of the address */
moveq r10, r10, LSR #12

/* Load the address where to jump */
ldr r12, PtInitRemap /* get the real jump address ( after remap ) */

/* Copy Chip Select Register Image to Memory Controller and command remap */
ldmia r10!, {r0-r9,r11} /* load the complete image and the EBI base */
stmia r11!, {r0-r9} /* store the complete image with the remap command */

mov pc, r12 /* jump and break the pipeline */

InitRemap:
ldr r10, PtProg
mov pc, r10

PtProg:
.long 0x01010000

PtInitTableEBI:
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.long InitTableEBI            /* Table for EBI initialization */
PtInitRemap:

.long InitRemap               /* address where to jump after REMAP */

InitTableEBI:
.long 0x01002EFE
.long 0x10000000
.long 0x02003121
.long 0x40000000
.long 0x50000000
.long 0x60000000
.long 0x70000000
.long 0x00000001 /* REMAP command */
.long 0x00000006 /* 7 memory regions, standard read */
.long EBI_BASE  /* EBI Base address */
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Appendix J – Source of USART test

/* This is usart.c
 * A USART test program for the OBC test board
 *
 * The byte format is: start + 8 data (without parity) + 1 stop
 * The baud rate is counter is 80: 9600 bauds with MCKI = 12.288 MHz
 */

#include "parts/m40800/reg_m40800.h"

int main(void) {
unsigned int loop_count;

  unsigned int value;

/* Initialize the channel */
PIO_PDR = ( PIOTXD0 | PIORXD0 ) ;

  US0_MR = ( US_ASYNC_MODE | US_CHMODE_NORMAL ) ;
  US0_BRGR = 80; /* baud rate */

/* Start channel */
  US0_CR = ( US_RXEN | US_TXEN );
  for (loop_count = 1000; loop_count>0; loop_count--);

value = 'A';

while(1) {
/* Wait Tx ready */
for (; (US0_CSR & 2) == 0;);

/* Send byte */
US0_THR = value + 1;

/* Wait Tx ready */
for (; (US0_CSR & 2) == 0;);

/* Send byte */
US0_THR = value + 2;

/* Wait Tx ready */
fo r (; (US0_CSR & 2) == 0;);

        
/* Receive and check byte */
value = US0_RHR;

}

return(0);
}

void __gccmain() {
}

exit() {
while(1);

}


