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Chapter 1

Introduction

1.1 Scope of This Manual

The Physics Reference Manual provides detailed explanations of the physics
implemented in the Geant4 toolkit. The manual’s purpose is threefold:

• to present the theoretical formulation, model, or parameterization of
the physics interactions included in Geant4,

• to describe the probability of the occurrence of an interaction and the
sampling mechanisms required to simulate it, and

• to serve as a reference for toolkit users and developers who wish to
consult the underlying physics of an interaction.

This manual does not discuss code implementation or how to use the
implemented physics interactions in a simulation. These topics are discussed
in the User’s Guide for Application Developers. Details of the object-oriented
design and functionality of the Geant4 toolkit are given in the User’s Guide
for Toolkit Developers. The Installation Guide for Setting up Geant4 in
Your Computing Environment describes how to get the Geant4 code, install
it, and run it.

1.2 Definition of Terms

Several terms used throughout the Physics Reference Manual have specific
meaning within Geant4, but are not well-defined in general usage. The defi-
nitions of these terms are given here.
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• process - a C++ class which describes how and when a specific kind
of physical interaction takes place along a particle track. A given par-
ticle type typically has several processes assigned to it. Occaisionally
“process” refers to the interaction which the process class describes.

• model - a C++ class whose methods implement the details of an in-
teraction, such as its kinematics. One or more models may be assigned
to each process. In sections discussing the theory of an interaction,
“model” may refer to the formulae or parameterization on which the
model class is based.

• Geant3 - a physics simulation tool written in Fortran, and the prede-
cessor of Geant4. Although many references are made to Geant3, no
knowledge of it is required to understand this manual.

1.3 Status of this document

4.12.01 created by D.H. Wright
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Chapter 2

Monte Carlo Methods

The Geant4 toolkit uses a combination of the composition and rejection
Monte Carlo methods. Only the basic formalism of these methods is outlined
here. For a complete account of the Monte Carlo methods, the interested user
is referred to the publications of Butcher and Messel, Messel and Crawford,
or Ford and Nelson [1, 2, 3].
Suppose we wish to sample x in the interval [x1, x2] from the distribution
f(x) and the normalised probability density function can be written as :

f(x) =
n
∑

i=1

Nifi(x)gi(x) (2.1)

where Ni > 0, fi(x) are normalised density functions on [x1, x2] , and 0 ≤
gi(x) ≤ 1.
According to this method, x can sampled in the following way:

1. select a random integer i ∈ {1, 2, · · ·n} with probability proportional
to Ni

2. select a value x0 from the distribution fi(x)

3. calculate gi(x0) and accept x = x0 with probability gi(x0);

4. if x0 is rejected restart from step 1.

It can be shown that this scheme is correct and the mean number of tries to
accept a value is

∑

iNi.
In practice, a good method of sampling from the distribution f(x) has the
following properties:

• all the subdistributions fi(x) can be sampled easily;

4



• the rejection functions gi(x) can be evaluated easily/quickly;

• the mean number of tries is not too large.

Thus the different possible decompositions of the distribution f(x) are not
equivalent from the practical point of view (e.g. they can be very different
in computational speed) and it can be useful to optimise the decomposition.
A remark of practical importance : if our distribution is not normalised

∫ x2

x1

f(x)dx = C > 0

the method can be used in the same manner; the mean number of tries in
this case is

∑

iNi/C.

2.1 Status of this document

18.01.02 created by M.Maire.
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Chapter 3

Transportation

The transportation process is responsible for determining the geometrical
limits of a step. It calculates the length of step with which a track will cross
into another volume. When the track actually arrives at a boundary, the
transportation process locates the next volume that it enters.

If the particle is charged and there is an electromagnetic (or potentially
other) field, it is responsible for propagating the particle in this field. It does
this according to an equation of motion. This equation can be provided by
Geant4, for the case a magnetic or EM field, or can be provided by the user
for other fields.

The transportation updates the time of flight of a particle, utilising its
initial velocity.

Some additional details on motion in fields:
In order to intersect the model Geant4 geometry of a detector or setup,

the curved trajectory followed by a charged particle is split into ’chords seg-
ments’. A chord is a straight line segment between two trajectory points.
Chords are created utilizing a criterion for the maximum estimated distance
between a curve point and the chord. This distance is also known as the
sagitta.

The equations of motions are solved utilising Runge Kutta methods.
Runge Kutta methods of different can be utilised for fields depending on the
numerical method utilised for approximating the field. Specialised methods
for near-constant magnetic fields are under development.
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Part II

Particle Decay
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Chapter 4

Decay

The decay of particles in flight and at rest is simulated by the G4Decay class.

4.1 Mean Free Path for Decay in Flight

The mean free path λ is calculated for each step using

λ = γβcτ

where τ is the lifetime of the particle and

γ =
1√

1 − β2
.

β and γ are calculated using the momentum at the beginning of the step.
The decay time in the rest frame of the particle (proper time) is then sampled
and converted to a decay length using β.

4.2 Branching Ratios and Decay Channels

G4Decay selects a decay mode for the particle according to branching ratios
defined in the G4DecayTable class, which is a member of the G4ParticleDefinition
class. Each mode is implemented as a class derived from G4VDecayChannel
and is responsible for generating the secondaries and the kinematics of the
decay. In a given decay channel the daughter particle momenta are calcu-
lated in the rest frame of the parent and then boosted into the laboratory
frame. Polarization is not currently taken into account for either the parent
or its daughters.

A large number of specific decay channels may be required to simulate
an experiment, ranging from two-body to many-body decays and V − A to
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semi-leptonic decays. Most of these are covered by the five decay channel
classes provided by Geant4:
G4PhaseSpaceDecayChannel : phase space decay
G4DalitzDecayChannel : dalitz decay
G4MuonDecayChannel : muon decay
G4TauLeptonicDecayChannel : tau leptonic decay
G4KL3DecayChannel : semi-leptonic decays of kaon .

4.2.1 G4PhaseSpaceDecayChannel

The majority of decays in Geant4 are implemented using the G4PhaseSpaceDecayChannel
class. It simulates phase space decays with isotropic angular distributions in
the center-of-mass system. Three private methods of G4PhaseSpaceDecayChannel
are provided to handle two-, three- and N-body decays:
TwoBodyDecayIt()
ThreeBodyDecayIt()
ManyBodyDecayIt()

Some examples of decays handled by this class are:

π0 → γγ,

Λ → pπ−

and

K0
L → π0π+π−.

4.2.2 G4DalitzDecayChannel

The Dalitz decay

π0 → γ + e+ + e−

and other Dalitz-like decays, such as

K0
L → γ + e+ + e−

and

K0
L → γ + µ+ + µ−
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are simulated by the G4DalitzDecayChannel class. In general, it handles any
decay of the form

P 0 → γ + l+ + l−,

where P 0 is a spin-0 meson of mass M and l± are leptons of mass m. The
angular distribution of the γ is isotropic in the center-of-mass system of the
parent particle and the leptons are generated isotropically and back-to-back
in their center-of-mass frame. The magnitude of the leptons’ momentum is
sampled from the distribution function

f(t) = (1 − t

M2
)
3

(1 +
2m2

t
)

√

1 − 4m2

t
,

where t is the square of the sum of the leptons’ energy in their center-of-mass
frame.

4.2.3 Muon Decay

G4MuonDecayChannel simulates muon decay according to V −A theory. Ne-
glecting the electron mass, the electron energy is sampled from the following
distribution:

dΓ =
GF

2mµ
5

192π3
2ε2(3 − 2ε)

where: Γ : decay rate
ε : = Ee/Emax

Ee : electron energy
Emax : maximum electron energy = mµ/2

The momenta of the two neutrinos are not sampled from their V − A dis-
tributions. Instead they are generated back-to-back and isotropically in the
neutrinos’ center-of-mass frame, with the magnitude of the neutrino momen-
tum chosen to conserve energy in the decay. The two neutrinos are then
boosted opposite to the momentum of the decay electron. This approxima-
tion is sufficient for most simulations because the neutrino is usually not
observed in any detector.

Currently, neither the polarization of the muon or the electron is consid-
ered in this class.
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4.2.4 Leptonic Tau Decay

G4TauLeptonicDecayChannel simulates leptonic tau decays according to V −
A theory. This class is valid for both

τ± → e± + ντ + νe

and

τ± → µ± + ντ + νµ

modes.
The energy spectrum is calculated without neglecting lepton mass as

follows:

dΓ =
GF

2mτ
3

24π3
plEl(3Elmτ

2 − 4El
2mτ − 2mτml

2)

where: Γ : decay rate
El : daughter lepton energy (total energy)
pl : daughter lepton momentum
ml : daughter lepton mass

As in the case of muon decay, the energies of the two neutrinos are not
sampled from their V − A spectra, but are calculated so that energy and
momentum are conserved. Polarization of the τ and final state leptons is not
taken into account in this class.

4.2.5 Kaon Decay

The class G4KL3DecayChannel simulates the following four semi-leptonic de-
cay modes of the kaon:

K±
e3 : K± → π0 + e± + ν

K±
µ3 : K± → π0 + µ± + ν

K0
e3 : K0

L → π± + e∓ + ν
K0

µ3 : K0
L → π± + µ∓ + ν

Assuming that only the vector current contributes to K → lπν decays, the
matrix element can be described by using two dimensionless form factors, f+

and f−, which depend only on the momentum transfer t = (PK − Pπ)2.
The Dalitz plot density used in this class is as follows [1]:

ρ (Eπ, Eµ) ∝ f 2
+ (t)[A+Bξ (t) + Cξ (t)2]
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where: A = mK(2EµEν −mKE
′
π) +mµ

2(1
4
E ′

π − Eν)
B = mµ

2(Eν − 1
2
E ′

π)
C = 1

4
mµ

2E ′
π

E ′
π = Eπ

max − Eπ

Here ξ (t) is the ratio of the two form factors

ξ (t) = f− (t)/f+ (t).

f+ (t) is assumed to depend linearly on t, i.e.

f+ (t) = f+ (0)[1 + λ+(t/mπ
2)]

and f− (t) is assumed to be constant due to time reversal invariance.

Two parameters, λ+ and ξ (0) are then used for describing the Dalitz plot
density in this class. The values of these parameters are taken to be the
world average values given by the Particle Data Group [2].

4.3 Status of this document

10.04.02 re-written by D.H. Wright
02.04.02 editing by Hisaya Kurashige
14.11.01 editing by Hisaya Kurashige
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Electromagnetic Interactions
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Chapter 5

Particle Transport
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5.1 The Interaction Length or Mean Free Path

1) In a simple material the number of atoms per volume is:

n =
N ρ

A

where:

N Avogadro’s number

ρ density of the medium

A mass of a mole

2) In a compound material the number of atoms per volume of the ith

element is:

ni =
N ρwi

Ai

where:

N Avogadro’s number

ρ density of the medium

wi proportion by mass of the ith element

Ai mass of a mole of the ith element

3) The mean free path of a process, λ, also called the interaction
length, can be given in terms of the total cross section :

λ(E) =

(

∑

i

[ni · σ(Zi, E)]

)−1

where σ(Z,E) is the total cross section per atom of the process and
∑

i

runs over all elements composing the material.
∑

i
[niσ(Zi, E)] is also called the macroscopic cross section. The mean

free path is the inverse of the macroscopic cross section.

Cross sections per atom and mean free path values are tabulated during
initialisation.
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5.2 Determination of the Interaction Point

The mean free path, λ, of a particle for a given process depends on the
medium and cannot be used directly to sample the probability of an inter-
action in a heterogeneous detector. The number of mean free paths which a
particle travels is:

nλ =
∫ x2

x1

dx

λ(x)
, (5.1)

which is independent of the material traversed. If nr is a random variable
denoting the number of mean free paths from a given point to the point of
interaction, it can be shown that nr has the distribution function:

P (nr < nλ) = 1 − e−nλ (5.2)

The total number of mean free paths the particle travels before reaching the
interaction point, nλ, is sampled at the beginning of the trajectory as:

nλ = − log (η) (5.3)

where η is a random number uniformly distributed in the range (0, 1). nλ is
updated after each step ∆x according the formula:

n′
λ = nλ − ∆x

λ(x)
(5.4)

until the step originating from s(x) = nλ ·λ(x) is the shortest and this triggers
the specific process.
The short description given above is the differential approach to particle
transport, which is used in most simulation codes ([2],[1]).
In this approach besides the other (discrete) processes the continuous energy
loss imposes a limit on the stepsize too, because the cross sections depend of
the energy of the particle. Then it is assumed that the step is small enough
so that the particle cross sections remain approximately constant during the
step. In principle one must use very small steps in order to insure an accurate
simulation, but computing time increases as the stepsize decreases. A good
compromise is to limit the stepsize in Geant4 by not allowing the stopping
range of the particle to decrease by more than 20 % during the step. This
condition works well for particles with kinetic energies > 0.5 MeV, but for
lower energies it can give very short step sizes. To cure this problem a lower
limit on the stepsize is also introduced.
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5.3 Updating the Particle Lifetime

The proper and laboratory times of the particle should be updated after each
step. In the laboratory system:

∆tlab =
∆x

0.5(v0 + v)
(5.5)

where
∆x step travelled by the particle
v0 particle velocity at the beginning of the step
v particle velocity at the end of the step

This expression is a good approximation if the velocity is not allowed to
change too much during the step.

5.4 Status of this document

09.10.98 created by L. Urbán.
27.07.01 minor revisions by M. Maire
01.12.03 integral method subsection added by V. Ivanchenko
12.08.04 splitted and partly moved in introduction (mma)

Bibliography

[1] W.R. Nelson et al. the egs4 Code System. SLAC-Report-265, December
1985

[2] Geant3 manual, CERN Program Library Long Writeup W5013 (Octo-
ber 1994).

17



Chapter 6

Gamma Incident
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6.1 PhotoElectric effect

The photoelectric effect is the ejection of an electron from a material after
a photon has been absorbed by that material. It is simulated by using a
parameterized photon absorption cross section to determine the mean free
path, atomic shell data to determine the energy of the ejected electron, and
the K-shell angular distribution to sample the direction of the electron.

6.1.1 Cross Section and Mean Free Path

The parameterization of the photoabsorption cross section proposed by Biggs
et al. [1] was used :

σ(Z,Eγ) =
a(Z,Eγ)

Eγ
+
b(Z,Eγ)

E2
γ

+
c(Z,Eγ)

E3
γ

+
d(Z,Eγ)

E4
γ

(6.1)

Using the least-squares method, a separate fit of each of the coefficients
a, b, c, d to the experimental data was performed in several energy intervals
[2]. As a rule, the boundaries of these intervals were equal to the correspond-
ing photoabsorption edges.
In a given material the mean free path, λ, for a photon to interact via the
photoelectric effect is given by :

λ(Eγ) =

(

∑

i

nati · σ(Zi, Eγ)

)−1

(6.2)

where nati is the number of atoms per volume of the ith element of the
material. The cross section and mean free path are discontinuous and must
be computed ’on the fly’ from the formulas 6.1 and 6.2.

6.1.2 Final State

Choosing an Element

The binding energies of the shells depend on the atomic number Z of the ma-
terial. In compound materials the ith element is chosen randomly according
to the probability:

Prob(Zi, Eγ) =
natiσ(Zi, Eγ)
∑

i[nati · σi(Eγ)]
.
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Shell

A quantum can be absorbed if Eγ > Bshell where the shell energies are taken
from G4AtomicShells data: the closest available atomic shell is chosen. The
photoelectron is emitted with kinetic energy :

Tphotoelectron = Eγ −Bshell(Zi) (6.3)

Theta Distribution of the Photoelectron

The polar angle of the photoelectron is sampled from the Sauter-Gavrila
distribution (for K-shell) [3], which is correct only to zero order in αZ :

dσ

d(cos θ)
∼ sin2 θ

(1 − β cos θ)4

{

1 +
1

2
γ(γ − 1)(γ − 2)(1 − β cos θ)

}

(6.4)

where β and γ are the Lorentz factors of the photoelectron.
cos θ is sampled from the probability density function :

f(cos θ) =
1 − β2

2β

1

(1 − β cos θ)2
=⇒ cos θ =

(1 − 2r) + β

(1 − 2r)β + 1
(6.5)

The rejection function is :

g(cos θ) =
1 − cos2 θ

(1 − β cos θ)2
[1 + b(1 − β cos θ)] (6.6)

with b = γ(γ − 1)(γ − 2)/2
It can be shown that g(cos θ) is positive ∀ cos θ ∈ [−1, +1], and can be
majored by :

gsup = γ2 [1 + b(1 − β)] if γ ∈ ]1, 2] (6.7)

= γ2 [1 + b(1 + β)] if γ > 2

The efficiency of this method is ∼ 50% if γ < 2, ∼ 25% if γ ∈ [2, 3].

Relaxation

In the current implementation the relaxation of the atom is not simulated,
but instead is counted as a local energy deposit.
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6.2 Compton scattering

6.2.1 Cross Section and Mean Free Path

Cross Section per Atom

When simulating the Compton scattering of a photon from an atomic elec-
tron, an empirical cross section formula is used, which reproduces the cross
section data down to 10 keV:

σ(Z,Eγ) =

[

P1(Z)
log(1 + 2X)

X
+
P2(Z) + P3(Z)X + P4(Z)X2

1 + aX + bX2 + cX3

]

. (6.8)

Here,

Z = atomic number of the medium

Eγ = energy of the photon

X = Eγ/mc
2

m = electron mass

Pi(Z) = Z(di + eiZ + fiZ
2).

The values of the parameters can be found within the method which computes
the cross section per atom. A fit of the parameters was made to over 511
data points [1, 2] chosen from the intervals

1 ≤ Z ≤ 100

and

Eγ ∈ [10 keV, 100 GeV].

The accuracy of the fit was estimated to be

∆σ

σ
=

{

≈ 10% for Eγ ' 10 keV − 20 keV
≤ 5 − 6% for Eγ > 20 keV

Mean Free Path

In a given material the mean free path, λ, for a photon to interact via Comp-
ton scattering is given by

λ(Eγ) =

(

∑

i

nati · σi(Eγ)

)−1

(6.9)

where nati is the number of atoms per volume of the ith element of the
material.
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6.2.2 Sampling the Final State

The quantum mechanical Klein-Nishina differential cross section per atom is
[3] :

dσ

dε
= πr2

e

mec
2

E0
Z
[

1

ε
+ ε

]

[

1 − ε sin2 θ

1 + ε2

]

(6.10)

where re = classical electron radius
mec

2 = electron mass
E0 = energy of the incident photon
E1 = energy of the scattered photon
ε = E1/E0 .

Assuming an elastic collision, the scattering angle θ is defined by the Comp-
ton formula:

E1 = E0
mec

2

mec2 + E0(1 − cos θ)
. (6.11)

Sampling the Photon Energy

The value of ε corresponding to the minimum photon energy (backward scat-
tering) is given by

ε0 =
mec

2

mec2 + 2E0
, (6.12)

hence ε ∈ [ε0, 1]. Using the combined composition and rejection Monte Carlo
methods described in [4, 5, 6] one may set

Φ(ε) '
[

1

ε
+ ε

]

[

1 − ε sin2 θ

1 + ε2

]

= f(ε)·g(ε) = [α1f1(ε) + α2f2(ε)]·g(ε), (6.13)

where
α1 = ln(1/ε0) ; f1(ε) = 1/(α1ε)
α2 = (1 − ε20)/2 ; f2(ε) = ε/α2.

f1 and f2 are probability density functions defined on the interval [ε0, 1], and

g(ε) =
[

1 − ε

1 + ε2
sin2 θ

]

is the rejection function ∀ε ∈ [ε0, 1] =⇒ 0 < g(ε) ≤ 1.

Given a set of 3 random numbers r, r′, r′′ uniformly distributed on the interval
[0,1], the sampling procedure for ε is the following:

1. decide whether to sample from f1(ε) or f2(ε):
if r < α1/(α1 + α2) select f1(ε), otherwise select f2(ε)
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2. sample ε from the distributions corresponding to f1 or f2:
for f1 : ε = εr

′

0 (≡ exp(−r′α1))
for f2 : ε2 = ε20 + (1 − ε20)r

′

3. calculate sin2 θ = t(2 − t) where t ≡ (1 − cos θ) = mec
2(1 − ε)/(E0ε)

4. test the rejection function:
if g(ε) ≥ r′′ accept ε, otherwise go to step 1.

Compute the Final State Kinematics

After the successful sampling of ε, the polar angles of the scattered photon
with respect to the direction of the parent photon are generated. The az-
imuthal angle, φ, is generated isotropically and θ is as defined in the previous
section. The momentum vector of the scattered photon,

−→
Pγ1, is then trans-

formed into the World coordinate system. The kinetic energy and momentum
of the recoil electron are then

Tel = E0 − E1−→
Pel =

−→
Pγ0 −−→

Pγ1.

6.2.3 Validity

The differential cross-section is valid only for those collisions in which the
energy of the recoil electron is large compared to its binding energy (which
is ignored). However, as pointed out by Rossi [7], this has a negligible effect
because of the small number of recoil electrons produced at very low energies.

6.2.4 Status of this document

09.10.98 created by M.Maire.
14.01.02 minor revision (mma)
22.04.02 reworded by D.H. Wright
18.03.04 include references for total cross section (mma)
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6.3 Gamma Conversion into an Electron - Positron

Pair

6.3.1 Cross Section and Mean Free Path

Cross Section per Atom

The total cross-section per atom for the conversion of a gamma into an
(e+, e−) pair has been parameterized as

σ(Z,Eγ) = Z(Z + 1)

[

F1(X) + F2(X) Z +
F3(X)

Z

]

, (6.14)

where Eγ is the incident gamma energy andX = ln(Eγ/mec
2) . The functions

Fn are given by

F1(X) = a0 + a1X + a2X
2 + a3X

3 + a4X
4 + a5X

5 (6.15)

F2(X) = b0 + b1X + b2X
2 + b3X

3 + b4X
4 + b5X

5

F3(X) = c0 + c1X + c2X
2 + c3X

3 + c4X
4 + c5X

5,

with the parameters ai, bi, ci taken from a least-squares fit to the data [1].
Their values can be found in the function which computes formula 6.14.
This parameterization describes the data in the range

1 ≤ Z ≤ 100

and

Eγ ∈ [1.5 MeV, 100 GeV].

The accuracy of the fit was estimated to be ∆ σ
σ

≤ 5% with a mean value of
≈ 2.2%. Above 100 GeV the cross section is constant. Below Elow = 1.5 MeV
the extrapolation

σ(E) = σ(Elow) ·
(

E − 2mec
2

Elow − 2mec2

)2

(6.16)

is used.

Mean Free Path

In a given material the mean free path, λ, for a photon to convert into an
(e+, e−) pair is

λ(Eγ) =

(

∑

i

nati · σ(Zi, Eγ)

)−1

(6.17)

where nati is the number of atoms per volume of the ith element of the
material.
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6.3.2 Final State

Choosing an Element

The differential cross section depends on the atomic number Z of the material
in which the interaction occurs. In a compound material the element i in
which the interaction occurs is chosen randomly according to the probability

Prob(Zi, Eγ) =
natiσ(Zi, Eγ)
∑

i[nati · σi(Eγ)]
. (6.18)

Corrected Bethe-Heitler Cross Section

As written in [2], the Bethe-Heitler formula corrected for various effects is

dσ(Z, ε)

dε
= αr2

eZ[Z + ξ(Z)]

{

[ε2 + (1 − ε)2]

[

Φ1(δ(ε)) −
F (Z)

2

]

+
2

3
ε(1 − ε)

[

Φ2(δ(ε)) −
F (Z)

2

]}

(6.19)

where α is the fine-structure constant and re the classical electron radius.
Here ε = E/Eγ, Eγ is the energy of the photon and E is the total energy
carried by one particle of the (e+, e−) pair. The kinematical limits of ε are
therefore

mec
2

Eγ
= ε0 ≤ ε ≤ 1 − ε0. (6.20)

Screening Effect The screening variable, δ, is a function of ε

δ(ε) =
136

Z1/3

ε0
ε(1 − ε)

, (6.21)

and measures the ’impact parameter’ of the projectile. Two screening func-
tions are introduced in the Bethe-Heitler formula :

for δ ≤ 1 Φ1(δ) = 20.867 − 3.242δ + 0.625δ2 (6.22)

Φ2(δ) = 20.209 − 1.930δ − 0.086δ2

for δ > 1 Φ1(δ) = Φ2(δ) = 21.12 − 4.184 ln(δ + 0.952).

Because the formula 6.19 is symmetric under the exchange ε ↔ (1 − ε), the
range of ε can be restricted to

ε ∈ [ε0, 1/2]. (6.23)
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Born Approximation The Bethe-Heitler formula is calculated with plane
waves, but Coulomb waves should be used instead. To correct for this, a
Coulomb correction function is introduced in the Bethe-Heitler formula :

for Eγ < 50 MeV : F (z) = 8/3 lnZ (6.24)

for Eγ ≥ 50 MeV : F (z) = 8/3 lnZ + 8fc(Z)

with

fc(Z) = (αZ)2

[

1

1 + (αZ)2
(6.25)

+0.20206 − 0.0369(αZ)2 + 0.0083(αZ)4 − 0.0020(αZ)6 + · · ·
]

.

It should be mentioned that, after these additions, the cross section becomes
negative if

δ > δmax(ε1) = exp

[

42.24 − F (Z)

8.368

]

− 0.952. (6.26)

This gives an additional constraint on ε :

δ ≤ δmax =⇒ ε ≥ ε1 =
1

2
− 1

2

√

1 − δmin

δmax

(6.27)

where

δmin = δ
(

ε =
1

2

)

=
136

Z1/3
4ε0 (6.28)

has been introduced. Finally the range of ε becomes

ε ∈ [εmin = max(ε0, ε1), 1/2]. (6.29)

28



ε

0 11/2ε1

d min

d max

ε0

δ(ε)

Gamma Conversion in the Electron Field The electron cloud gives an
additional contribution to pair creation, proportional to Z (instead of Z2).
This is taken into account through the expression

ξ(Z) =
ln(1440/Z2/3)

ln(183/Z1/3) − fc(Z)
. (6.30)

Factorization of the Cross Section ε is sampled using the techniques of
’composition+rejection’, as treated in [3, 4, 5]. First, two auxiliary screening
functions should be introduced:

F1(δ) = 3Φ1(δ) − Φ2(δ) − F (Z)

F2(δ) =
3

2
Φ1(δ) −

1

2
Φ2(δ) − F (Z) (6.31)

It can be seen that F1(δ) and F2(δ) are decreasing functions of δ, ∀δ ∈
[δmin, δmax]. They reach their maximum for δmin = δ(ε = 1/2) :

F10 = maxF1(δ) = F1(δmin)

F20 = maxF2(δ) = F2(δmin). (6.32)

After some algebraic manipulations the formula 6.19 can be written :

dσ(Z, ε)

dε
= αr2

eZ[Z + ξ(Z)]
2

9

[

1

2
− εmin

]

× [N1 f1(ε) g1(ε) +N2 f2(ε) g2(ε)] , (6.33)
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where

N1 =
[

1

2
− εmin

]2

F10 f1(ε) = 3

[ 1
2
−εmin]

3

[

1
2
− ε

]2
g1(ε) =

F1(ε)

F10

N2 =
3

2
F20 f2(ε) = const = 1

[ 1
2
−εmin]

g2(ε) =
F2(ε)

F20
.

f1(ε) and f2(ε) are probability density functions on the interval ε ∈ [εmin, 1/2]
such that

∫ 1/2

εmin

fi(ε) dε = 1

, and g1(ε) and g2(ε) are valid rejection functions: 0 < gi(ε) ≤ 1 .

Sampling the Energy Given a triplet of uniformly distributed random
numbers (ra, rb, rc) :

1. use ra to choose which decomposition term in 6.33 to use:

if ra < N1/(N1 +N2) → f1(ε) g1(ε) otherwise → f2(ε) g2(ε) (6.34)

2. sample ε from f1(ε) or f2(ε) with rb :

ε =
1

2
−
(

1

2
− εmin

)

r
1/3
b or ε = εmin +

(

1

2
− εmin

)

rb (6.35)

3. reject ε if g1(ε)or g2(ε) < rc

note : below Eγ = 2 MeV it is enough to sample ε uniformly on [ε0, 1/2],
without rejection.

Charge The charge of each particle of the pair is fixed randomly.

Polar Angle of the Electron or Positron

The polar angle of the electron (or positron) is defined with respect to the
direction of the parent photon. The energy-angle distribution given by Tsai
[6] is quite complicated to sample and can be approximated by a density
function suggested by Urban [7] :

∀u ∈ [0, ∞[ f(u) =
9a2

9 + d
[u exp(−au) + d u exp(−3au)] (6.36)

with

a =
5

8
d = 27 and θ± =

mc2

E±
u. (6.37)
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A sampling of the distribution 6.36 requires a triplet of random numbers such
that

if r1 <
9

9 + d
→ u =

− ln(r2r3)

a
otherwise u =

− ln(r2r3)

3a
. (6.38)

The azimuthal angle φ is generated isotropically.

Final State The e+ and e− momenta are assumed to be coplanar with the
parent photon. This information, together with energy conservation, is used
to calculate the momentum vectors of the (e+, e−) pair and to rotate them
to the global reference system.

6.3.3 Status of this document
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6.4 Gamma Conversion into a Muon - Anti-

muon Pair

The class G4GammaConversionToMuons simulates the process of gamma con-
version into muon pairs. Given the photon energy and Z and A of the mate-
rial in which the photon converts, the probability for the conversions to take
place is calculated according to a parameterized total cross section. Next, the
sharing of the photon energy between the µ+ and µ− is determined. Finally,
the directions of the muons are generated. Details of the implementation are
given below and can be also found in [1].

6.4.1 Cross Section and Energy Sharing

In the field of the nucleus, muon pair production on atomic electrons, γ+e→
e + µ+ + µ−, has a threshold of 2mµ(mµ + me)/me ≈ 43.9 GeV . Up to
several hundred GeV this process has a much lower cross section than the
corresponding process on the nucleus. At higher energies, the cross section on
atomic electrons represents a correction of ∼ 1/Z to the total cross section.

For the approximately elastic scattering considered here, momentum, but
no energy, is transferred to the nucleon. The photon energy is fully shared
by the two muons according to

Eγ = E+
µ + E−

µ (6.39)

or in terms of energy fractions

x+ =
E+

µ

Eγ
, x− =

E−
µ

Eγ
, x+ + x− = 1 .

The differential cross section for electromagnetic pair creation of muons in
terms of the energy fractions of the muons is

dσ

dx+
= 4αZ2 r2

c

(

1 − 4

3
x+x−

)

log(W ) , (6.40)

where Z is the charge of the nucleus, rc is the classical radius of the particles
which are pair produced (here muons) and

W = W∞
1 + (Dn

√
e− 2) δ /mµ

1 +B Z−1/3
√
e δ /me

(6.41)

where

W∞ =
B Z−1/3

Dn

mµ

me
δ =

m2
µ

2Eγ x+x−

√
e = 1.6487 . . . .
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For hydrogen B = 202.4 Dn = 1.49

and for all other nuclei B = 183 Dn = 1.54A0.27. (6.42)

These formulae are obtained from the differential cross section for muon
bremsstrahlung [2] by means of crossing relations. The formulae take into
account the screening of the field of the nucleus by the atomic electrons in
the Thomas-Fermi model, as well as the finite size of the nucleus, which is
essential for the problem under consideration. The above parameterization
gives good results for Eγ � mµ. The fact that it is approximate close
to threshold is of little practical importance. Close to threshold, the cross
section is small and the few low energy muons produced will not travel very
far. The cross section calculated from Eq. (6.40) is positive for Eγ > 4mµ

and

xmin ≤ x ≤ xmax with xmin =
1

2
−
√

1

4
− mµ

Eγ
xmax =

1

2
+

√

1

4
− mµ

Eγ
,

(6.43)
except for very asymmetric pair-production, close to threshold, which can
easily be taken care of by explicitly setting σ = 0 whenever σ < 0.

Note that the differential cross section is symmetric in x+ and x− and
that

x+x− = x− x2

where x stands for either x+ or x−. By defining a constant

σ0 = 4αZ2 r2
c log(W∞) (6.44)

the differential cross section Eq. (6.40) can be rewritten as a normalized and
symmetric as function of x:

1

σ0

dσ

dx
=
[

1 − 4

3
(x− x2)

]

logW

logW∞
. (6.45)

This is shown in Fig. 6.1 for several elements and a wide range of photon
energies. The asymptotic differential cross section for Eγ → ∞

1

σ0

dσ∞
dx

= 1 − 4

3
(x− x2)

is also shown.
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Figure 6.1: Normalized differential cross section for pair production as a
function of x, the energy fraction of the photon energy carried by one of
the leptons in the pair. The function is shown for three different elements,
hydrogen, beryllium and lead, and for a wide range of photon energies.
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6.4.2 Parameterization of the Total Cross Section

The total cross section is obtained by integration of the differential cross
section Eq. (6.40), that is

σtot(Eγ) =
∫ xmax

xmin

dσ

dx+
dx+ = 4αZ2 r2

c

∫ xmax

xmin

(

1 − 4

3
x+x−

)

log(W ) dx+ .

(6.46)
W is a function of (x+, Eγ) and (Z,A) of the element (see Eq. (6.41)). Nu-
merical values of W are given in Table 6.1.

Table 6.1: Numerical values of W for x+ = 0.5 for different elements.

Eγ W for H W for Be W for Cu W for Pb
GeV

1 2.11 1.594 1.3505 5.212
10 19.4 10.85 6.803 43.53
100 191.5 102.3 60.10 332.7
1000 1803 919.3 493.3 1476.1
10000 11427 4671 1824 1028.1
∞ 28087 8549 2607 1339.8

Values of the total cross section obtained by numerical integration are
listed in Table 6.2 for four different elements. Units are in µbarn , where
1µbarn = 10−34 m2 .

Table 6.2: Numerical values for the total cross section
Eγ σtot, H σtot, Be σtot, Cu σtot, Pb

GeV µbarn µbarn µbarn µbarn
1 0.01559 0.1515 5.047 30.22
10 0.09720 1.209 49.56 334.6
100 0.1921 2.660 121.7 886.4
1000 0.2873 4.155 197.6 1476
10000 0.3715 5.392 253.7 1880
∞ 0.4319 6.108 279.0 2042

Well above threshold, the total cross section rises about linearly in log(Eγ)
with the slope

WM =
1

4Dn

√
emµ

(6.47)
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Figure 6.2: Total cross section for the Bethe-Heitler process γ → µ+µ− as a
function of the photon energy Eγ in hydrogen and lead, normalized to the
asymptotic cross section σ∞.
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until it saturates due to screening at σ∞. Fig. 6.2 shows the normalized cross
section where

σ∞ =
7

9
σ0 and σ0 = 4αZ2 r2

c log(W∞) . (6.48)

Numerical values of WM are listed in Table 6.3.

Table 6.3: Numerical values of WM .

Element WM

1/GeV
H 0.963169
Be 0.514712
Cu 0.303763
Pb 0.220771

The total cross section can be parameterized as

σpar =
28αZ2 r2

c

9
log(1 +WMCfEg) , (6.49)

with

Eg =

(

1 − 4mµ

Eγ

)t
(

W s
sat + Es

γ

)1/s
. (6.50)

and

Wsat =
W∞
WM

= B Z−1/3 4
√
em2

µ

me
.

The threshold behavior in the cross section was found to be well approxi-
mated by t = 1.479 + 0.00799Dn and the saturation by s = −0.88. The
agreement at lower energies is improved using an empirical correction factor,
applied to the slope WM , of the form

Cf =

[

1 + 0.04 log

(

1 +
Ec

Eγ

)]

,

where

Ec =
[

−18. +
4347.

B Z−1/3

]

GeV .

A comparison of the parameterized cross section with the numerical integra-
tion of the exact cross section shows that the accuracy of the parametrization
is better than 2%, as seen in Fig. 6.3.
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Figure 6.3: Ratio of numerically integrated and parametrized total cross
sections as a function of Eγ for hydrogen, beryllium, copper and lead.

6.4.3 Multi-differential Cross Section and Angular Vari-
ables

The angular distributions are based on the multi-differential cross section for
lepton pair production in the field of the Coulomb center

dσ

dx+ du+ du− dϕ
=

4Z2α3

π

m2
µ

q4
u+ u−

{

u2
+ + u2

−
(1 + u2

+) (1 + u2
−)

− 2x+x−

[

u2
+

(1 + u2
+)2

+
u2
−

(1 + u2
−)2

]

− 2u+u−(1 − 2x+x−) cosϕ

(1 + u2
+) (1 + u2

−)

}

. (6.51)

Here

u± = γ±θ± , γ± =
E±

µ

mµ

, q2 = q2
‖ + q2

⊥ , (6.52)

where

q2
‖ = q2

min (1 + x−u
2
+ + x+u

2
−)2 ,

q2
⊥ = m2

µ

[

(u+ − u−)2 + 2 u+u−(1 − cosϕ)
]

. (6.53)

q2 is the square of the momentum q transferred to the target and q2
‖ and q2

⊥
are the squares of the components of the vector q, which are parallel and
perpendicular to the initial photon momentum, respectively. The minimum
momentum transfer is qmin = m2

µ/(2Eγ x+x−).
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The muon vectors have the components

p+ = p+ ( sin θ+ cos(ϕ0 + ϕ/2) , sin θ+ sin(ϕ0 + ϕ/2) , cos θ+) ,
p− = p− (− sin θ− cos(ϕ0 − ϕ/2) , − sin θ− sin(ϕ0 − ϕ/2) , cos θ−) ,

(6.54)

where p± =
√

E2
± −m2

µ. The initial photon direction is taken as the z-axis.

The cross section of Eq. (6.51) does not depend on ϕ0. Because of azimuthal
symmetry, ϕ0 can simply be sampled at random in the interval (0, 2 π).

Eq. (6.51) is too complicated for efficient Monte Carlo generation. To
simplify, the cross section is rewritten to be symmetric in u+, u− using a
new variable u and small parameters ξ, β, where u± = u± ξ/2 and β = uϕ.
When higher powers in small parameters are dropped, the differential cross
section in terms of u, ξ, β becomes

dσ

dx+ dξ dβ udu
=

4Z2α3

π

m2
µ

(

q2
‖ +m2

µ(ξ2 + β2)
)2 (6.55)

{

ξ2

[

1

(1 + u2)2
− 2 x+x−

(1 − u2)2

(1 + u2)4

]

+
β2(1 − 2x+x−)

(1 + u2)2

}

,

where, in this approximation,

q2
‖ = q2

min (1 + u2)2 .

For Monte Carlo generation, it is convenient to replace (ξ, β) by the polar
coordinates (ρ, ψ) with ξ = ρ cosψ and β = ρ sinψ. Integrating Eq. 6.55
over ψ and using symbolically du2 where du2 = 2u du yields

dσ

dx+ dρ du2
=

4Z2α3

m2
µ

ρ3

(q2
‖/m

2
µ + ρ2)2

{

1 − x+x−
(1 + u2)2

− x+x−(1 − u2)2

(1 + u2)4

}

.

(6.56)
Integration with logarithmic accuracy over ρ gives

∫ ρ3 dρ

(q2
‖/m

2
µ + ρ2)2

≈
1
∫

q‖/mµ

dρ

ρ
= log

(

mµ

q‖

)

. (6.57)

Within the logarithmic accuracy, log(mµ/q‖) can be replaced by log(mµ/qmin),
so that

dσ

dx+ du2
=

4Z2α3

m2
µ

{

1 − x+x−
(1 + u2)2

− x+x−(1 − u2)2

(1 + u2)4

}

log

(

mµ

qmin

)

. (6.58)
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Making the substitution u2 = 1/t− 1, du2 = −dt /t2 gives

dσ

dx+ dt
=

4Z2α3

m2
µ

[1 − 2 x+x− + 4 x+x−t (1 − t)] log

(

mµ

qmin

)

. (6.59)

Atomic screening and the finite nuclear radius may be taken into account by
multiplying the differential cross section determined by Eq. (6.56) with the
factor

(Fa(q) − Fn(q) )2 , (6.60)

where Fa and Fn are atomic and nuclear form factors. Please note that after
integrating Eq. 6.56 over ρ, the q-dependence is lost.

6.4.4 Procedure for the Generation of Muon - Anti-

muon Pairs

Given the photon energy Eγ and Z and A of the material in which the γ
converts, the probability for the conversions to take place is calculated ac-
cording to the parametrized total cross section Eq. (6.49). The next step,
determining how the photon energy is shared between the µ+ and µ−, is
done by generating x+ according to Eq. (6.40). The directions of the muons
are then generated via the auxilliary variables t, ρ, ψ. In more detail, the
final state is generated by the following five steps, in which R1,2,3,4,... are ran-
dom numbers with a flat distribution in the interval [0,1]. The generation
proceeds as follows.

1) Sampling of the positive muon energy E+
µ = x+Eγ .

This is done using the rejection technique. x+ is first sampled from a flat
distribution within kinematic limits using

x+ = xmin +R1(xmax − xmin)

and then brought to the shape of Eq. (6.40) by keeping all x+ which satisfy

(

1 − 4

3
x+x−

)

log(W )

log(Wmax)
< R2 .

Here Wmax = W (x+ = 1/2) is the maximum value of W , obtained for sym-
metric pair production at x+ = 1/2. About 60% of the events are kept in this
step. Results of a Monte Carlo generation of x+ are illustrated in Fig. 6.4.
The shape of the histograms agrees with the differential cross section illus-
trated in Fig. 6.1.
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Figure 6.4: Histogram of generated x+ distributions for beryllium at three
different photon energies. The total number of entries at each energy is 106.

2) Generate t(= 1
γ2θ2+1

) .

The distribution in t is obtained from Eq.(6.59) as

f1(t) dt =
1 − 2 x+x− + 4 x+x−t (1 − t)

1 + C1/t2
dt , 0 < t ≤ 1 . (6.61)

with form factors taken into account by

C1 =
(0.35A0.27)2

x+x−Eγ/mµ

. (6.62)

In the interval considered, the function f1(t) will always be bounded from
above by

max[f1(t)] =
1 − x+x−
1 + C1

.

For small x+ and large Eγ, f1(t) approaches unity, as shown in Fig. 6.5.
The Monte Carlo generation is done using the rejection technique. About
70% of the generated numbers are kept in this step. Generated t-distributions
are shown in Fig. 6.6.

3) Generate ψ by the rejection technique using t generated in the previous
step for the frequency distribution

f2(ψ) =
[

1−2 x+x−+4 x+x−t (1−t) (1+cos(2ψ))
]

, 0 ≤ ψ ≤ 2π . (6.63)
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Figure 6.5: The function f1(t) at Eγ = 10 GeV (left) and Eγ = 1 TeV (right)
in beryllium for different values of x+.
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Figure 6.6: Histograms of generated t distributions for Eγ = 10 GeV (solid
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The maximum of f2(ψ) is

max[f2(ψ)] = 1 − 2 x+x− [1 − 4 t (1 − t)] . (6.64)

Generated distributions in ψ are shown in Fig. 6.7.

4) Generate ρ.
The distribution in ρ has the form

f3(ρ) dρ =
ρ3 dρ

ρ4 + C2

, 0 ≤ ρ ≤ ρmax , (6.65)

where

ρ2
max =

1.9

A0.27

(

1

t
− 1

)

, (6.66)

and

C2 =
4√
x+x−





(

mµ

2Eγx+x− t

)2

+

(

me

183Z−1/3mµ

)2




2

. (6.67)

The ρ distribution is obtained by a direct transformation applied to uniform
random numbers Ri according to

ρ = [C2(exp(β Ri) − 1)]1/4 , (6.68)

where

β = log

(

C2 + ρ4
max

C2

)

. (6.69)

Generated distributions of ρ are shown in Fig. 6.8
5) Calculate θ+, θ− and ϕ from t, ρ, ψ with

γ± =
E±

µ

mµ

and u =

√

1

t
− 1 . (6.70)

according to

θ+ =
1

γ+

(

u+
ρ

2
cosψ

)

, θ− =
1

γ−

(

u− ρ

2
cosψ

)

and ϕ =
ρ

u
sinψ .

(6.71)
The muon vectors can now be constructed from Eq. (6.54), where ϕ0 is chosen
randomly between 0 and 2π. Fig. 6.9 shows distributions of θ+ at different
photon energies (in beryllium). The spectra peak around 1/γ as expected.

The most probable values are θ+ ∼ mµ/E
+
µ = 1/γ+. In the small angle

approximation used here, the values of θ+ and θ− can in principle be any
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positive value from 0 to ∞. In the simulation, this may lead (with a very
small probability, of the order of mµ/Eγ) to unphysical events in which θ+ or
θ− is greater than π. To avoid this, a limiting angle θcut = π is introduced,
and the angular sampling repeated, whenever max(θ+, θ−) > θcut .

Figs. 6.10,6.11 and 6.12 show distributions of the simulated angular char-
acteristics of muon pairs in comparison with results of exact calculations.
The latter were obtained by means of numerical integration of the squared
matrix elements with respective nuclear and atomic form factors. All these
calculations were made for iron, with Eγ = 10 GeV and x+ = 0.3. As seen
from Fig. 6.10, wide angle pairs (at low values of the argument in the fig-
ure) are suppressed in comparison with the Coulomb center approximation.
This is due to the influence of the finite nuclear size which is comparable
to the inverse mass of the muon. Typical angles of particle emission are of
the order of 1/γ± = mµ/E

±
µ (Fig. 6.11). Fig. 6.12 illustrates the influence of

the momentum transferred to the target on the angular characteristics of the
produced pair. In the frame of the often used model which neglects target
recoil, the pair particles would be symmetric in transverse momenta, and
coplanar with the initial photon.

6.4.5 Status of this document

28.05.02 created by H.Burkhardt.
01.12.02 re-worded by D.H. Wright
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Chapter 7

Common to All Charged
Particles
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7.1 Computing the Mean Energy Loss

Energy loss processes are very similar for e + /e− , µ + /µ− and charged
hadrons, so a common description for them was a natural choice in Geant4.
Any energy loss process must calculate the continuous and discrete energy
loss in a material. Below a given energy threshold the energy loss is contin-
uous and above it the energy loss is simulated by the explicit production of
secondary particles - gammas, electrons, and positrons.

7.1.1 Method

Let
dσ(Z,E, T )

dT

be the differential cross-section per atom (atomic number Z) for the ejection
of a secondary particle with kinetic energy T by an incident particle of total
energy E moving in a material of density ρ. The value of the kinetic energy
cut-off or production threshold is denoted by Tcut. Below this threshold the
soft secondaries ejected are simulated as continuous energy loss by the inci-
dent particle, and above it they are explicitly generated. The mean rate of
energy loss is given by:

dEsoft(E, Tcut)

dx
= nat ·

∫ Tcut

0

dσ(Z,E, T )

dT
T dT (7.1)

where nat is the number of atoms per volume in the material. The total cross
section per atom for the ejection of a secondary of energy
T > Tcut is

σ(Z,E, Tcut) =
∫ Tmax

Tcut

dσ(Z,E, T )

dT
dT (7.2)

where Tmax is the maximum energy transferable to the secondary particle.
If there are several processes providing energy loss for a given particle, then
the total continuous part of the energy loss is the sum:

dEtot
soft(E, Tcut)

dx
=
∑

i

dEsoft,i(E, Tcut)

dx
. (7.3)

These values are pre-calculated during the initialization phase of Geant4

and stored in the dE/dx table. Using this table the ranges of the particle
in given materials are calculated and stored in the Range table. The Range
table is then inverted to provide the InverseRange table. At run time, values
of the particle’s continuous energy loss and range are obtained using these
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tables. Concrete processes contributing to the energy loss are not involved in
the calculation at that moment. In contrast, the production of secondaries
with kinetic energies above the production threshold is sampled by each
concrete energy loss process.

The default energy interval for these tables extends from 100 eV to 100
TeV and the default number of bins is 120. For muon energy loss processes
models are valid for higher energies and this interval can be extended up to
1000 PeV. Note that this extention should be done for all three processes
which contribute to muon energy loss.

7.1.2 Implementation Details

Common calculations are performed in the class G4V EnergyLossProcess
in which the following methods are implemented:

• BuildPhysicsTable;

• StorePhysicsTable;

• RetrievePhysicsTable;

• AlongStepDoIt;

• PostStepDoIt;

• GetMeanFreePath;

• GetContinuousStepLimit;

• MicroscopicCrossSection;

• GetDEDXDispersion;

• SetMinKinEnergy;

• SetMaxKinEnergy;

• SetDEDXBinning;

• SetLambdaBinning;

This interface is used by the following processes:

• G4eIonisation;

• G4eBremsstrahlung;
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• G4hIonisation;

• G4ionIonisation;

• G4MuIonisation;

• G4MuBremsstrahlung;

• G4MuPairProduction.

These processes mainly provide initialization. The physics models are im-
plemented using the G4V EmModel interface. Because a model is defined to
be active over a given energy range and for a defined set of G4Regions, an
energy loss process can have one or several models defined for a particle and
G4Region. The following models are available:

• G4MollerBhabhaModel;

• G4eBremmstrahlungModel;

• G4BetheBlochModel;

• G4BraggModel;

• G4PAIModel;

• G4MuBetheBlochModel;

• G4MuBremmstrahlungModel;

• G4MuPairProductionModel;

Stepsize Limit Due to Continuous Energy Loss

Continuous energy loss imposes a limit on the stepsize because of the energy
dependence of the cross sections. It is generally assumed in MC programs
that the particle cross sections are approximately constant along a step, i.e.
the step size should be small enough that the change in cross section, from
the beginning of the step to the end, is also small. In principle one must
use very small steps in order to insure an accurate simulation, however the
computing time increases as the stepsize decreases. A good compromise is
to limit the stepsize by not allowing the stopping range of the particle to
decrease by more than 20 % during the step. This condition works well for
particles with kinetic energies > 1MeV , but for lower energies it gives very
short stepsizes.
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To cure this problem a lower limit on the stepsize was introduced. There
is a natural choice for this limit: the stepsize cannot be smaller than the range
cut parameter of the program. The stepsize limit varies smoothly with de-
creasing energy from the value given by the condition ∆range/range = 0.20
to the lowest possible value range cut. These are the default step limi-
tation parameters; they can be overwritten using the UI command “/pro-
cess/eLoss/StepFunction 0.2 1 mm”, for example.

Energy Loss Computation

The computation of the mean energy loss after a given step is done by using
the dE/dx, Range, and InverseRange tables. The dE/dx table is used if
the energy deposition is less than 5 % of kinetic energy of the particle. When
a larger percentage of energy is lost, the mean loss ∆T can be written as

∆T = T0 − fT (r0 − step) (7.4)

where T0 is the kinetic energy, r0 the range at the beginning of the step step,
the function fT (r) is the inverse of the Range table (i.e. it gives the kinetic
energy of the particle for a range value of r) .
After the mean energy loss has been calculated, the process computes the
actual energy loss, i.e. the loss with fluctuations. The fluctuation is computed
from a model described in Section 7.2.

7.1.3 Energy Loss by Heavy Charged Particles

To save memory in the case of hadron energy loss, dE/dx, Range and
InverseRange tables are constructed only for protons. The energy loss for
other heavy, charged particles is computed from these tables at the scaled
kinetic energy Tscaled :

Tscaled =
MprotonT

Mparticle
, (7.5)

where T is the kinetic energy of the particle, and Mproton and Mparticle are
the masses of the proton and particle. Note that in this approach the small
differences between Tmax values calculated for different changed particles are
neglected. This is acceptable for hadrons and ions, but is not very accurate
for the simulation of muon energy loss, which is simulated by a separate
process.
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7.1.4 Status of this document

09.10.98 created by L. Urbán.
01.12.03 revised by V.Ivanchenko.
02.12.03 spelling and grammar check by D.H. Wright
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7.2 Energy loss fluctuations

7.2.1 Fluctuations in thick absorbers

The total continuous energy loss of charged particles is a stochastic quantity
with a distribution described in terms of a straggling function. The strag-
gling is partially taken into account in the simulation of energy loss by the
production of δ-electrons with energy T > Tc. However, continuous energy
loss also has fluctuations. Hence in the current GEANT4 implementation
two different models of fluctuations are applied depending on the value of
the parameter κ which is the lower limit of the number of interactions of the
particle in the step. The default value chosen is κ = 10. To select a model
for thick absorbers the following boundary conditions are used:

∆E > κTc or Tc < κI (7.6)

where ∆E is the mean continuous energy loss in a track segment of length
s, Tc is the cut kinetic energy of δ-electrons, and I is the average ionization
potential of the atom. For thick absorbers the straggling function approaches
the Gaussian distribution with Bohr’s variance [4]:

Ω2 = 2πr2
emec

2Nel
Z2

h

β2
Tcs

(

1 − β2

2

)

, (7.7)

where re is the classical electron radius, Nel is the electron density of the
medium, Zh is the charge of the incident particle in units of positron charge,
and β is the relativistic velocity.

7.2.2 Fluctuations in thin absorbers

If the condition 7.6 is not satisfied the model of energy fluctuations in thin
absorbers is applied. The formulae used to compute the energy loss fluctua-
tion (straggling) are based on a very simple physics model of the atom. It is
assumed that the atoms have only two energy levels with binding energies E1

and E2. The particle-atom interaction can be an excitation with energy loss
E1 or E2, or ionization with energy loss distributed according to a function
g(E) ∼ 1/E2 :

∫ Tup+I

I
g(E) dE = 1 =⇒ g(E) =

I(Tup + I)

Tup

1

E2
. (7.8)

The macroscopic cross section for excitation (i = 1, 2) is

Σi = C
fi

Ei

ln[2mc2 (βγ)2/Ei] − β2

ln[2mc2 (βγ)2/I] − β2
(1 − r) (7.9)
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and the ionization cross section is

Σ3 = C
Tup

I(Tup + I) ln(Tup+I
I

)
r (7.10)

where I denotes the mean ionization energy of the atom, Tup is the production
threshold for delta ray production (or the maximum energy transfer minus
mean ionization energy if this value smaller than the production threshold),
Ei and fi are the energy levels and corresponding oscillator strengths of the
atom, and C and r are model parameters.
The oscillator strengths fi and energy levels Ei should satisfy the constraints

f1 + f2 = 1 (7.11)

f1· lnE1 + f2· lnE2 = lnI (7.12)

The cross section formulae 7.9,7.10 and the sum rule equations 7.11,7.12 can
be found e.g. in Ref. [1].
The model parameter C can be defined in the following way. The numbers of
collisions (ni, i = 1, 2 for excitation and 3 for ionization) follow the Poisson
distribution with a mean value < ni >. In a step of length ∆x the mean
number of collisions is given by

< ni >= Σi·∆x. (7.13)

The mean energy loss in a step is the sum of the excitation and ionization
contributions and can be written as

dE

dx
·∆x =

{

Σ1E1 + Σ2E2 +
∫ Tup+I

I
Eg(E)dE

}

∆x. (7.14)

From this, using eq. 7.9 - 7.12, one can see that

C = dE/dx. (7.15)

The other parameters in the fluctuation model have been chosen in the follow-
ing way. Z· f1 and Z· f2 represent in the model the number of loosely/tightly
bound electrons

f2 = 0 for Z = 1 (7.16)

f2 = 2/Z for Z ≥ 2 (7.17)

E2 = 10 eV Z2. (7.18)

Using these parameter values, E2 corresponds approximately to the K-shell
energy of the atoms ( and Zf2 = 2 is the number of K-shell electrons). The
parameters f1 and E1 can be obtained from Eqs. 7.11 and 7.12.
The parameter r is the only variable in the model which can be tuned. This
parameter determines the relative contribution of ionization and excitation to
the energy loss. Based on comparisons of simulated energy loss distributions
to experimental data, its value has been fixed at r = 0.4.
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Sampling the energy loss. The energy loss is computed in the model
under the assumption that the step length (or relative energy loss) is small
and, in consequence, the cross section can be considered constant along the
step. The loss due to the excitation is

∆Eexc = n1E1 + n2E2 (7.19)

where n1 and n2 are sampled from a Poisson distribution. The energy loss
due to ionization can be generated from the distribution g(E) by the inverse
transformation method :

u = F (E) =
∫ E

I
g(x)dx (7.20)

E = F−1(u) =
I

1 − u Tup

Tup+I

(7.21)

where u is a uniformly distributed random number ∈ [0, 1]. The contribution
coming from the ionization will then be

∆Eion =
n3
∑

j=1

I

1 − uj
Tup

Tup+I

(7.22)

where n3 is the number of ionizations sampled from the Poisson distribution.
The total energy loss in a step will be ∆E = ∆Eexc + ∆Eion and the energy
loss fluctuation comes from the fluctuations of the collision numbers ni.

Thin layers : In the case of very small energy loss (small step lengths, ∼ 1
mm in gases, ∼ 1 micrometer in solids) this model calculation can give zero
energy loss for some events. In order to avoid this nonphysical situation, the
probability of zero energy loss is computed as

P (∆E = 0) = e−(<n1>+<n2>+<n3>). (7.23)

If this probabillity is bigger than a limit (0.01) a special sampling is done,
taking into account the fact that in this case the projectile interacts only
with the outer electrons of the atom. An energy level E0 = 10 eV has been
chosen to correspond to the outer electrons. The mean number of collisions
can be computed as

< n >=
1

E0

dE

dx
∆x. (7.24)

All the collisions can be considered as ionizations for this case. The number
of collisions are sampled according to a Poisson distribution and the energy
loss is computed from the equation

∆E =
n
∑

j=1

E0

1 − uj
Tup

Tup+E0

. (7.25)
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Thick layers : If the mean energy loss and step are in the range of validity
of the Gaussian approximation of the fluctuation, the much faster Gaussian
sampling is used to compute the actual energy loss.

Conclusions. This simple model of the energy loss fluctuations is rather
fast and it can be used for any thickness of material. This has been verified by
performing many simulations and comparing the results with experimental
data, such as that in Ref.[2].
Approaching the limit of the validity of Landau’s theory, the loss distribution
approaches the Landau form smoothly.

7.2.3 Status of this document

30.01.02 created by L. Urbán.
28.08.02 updated by V.Ivanchenko.
17.08.04 moved to common to all charged particles (mma)
04.12.04 spelling and grammar check by D.H. Wright
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7.3 Correcting the cross section for energy

variation

As described in Sections 7.1 and 5.2 the step size limitation is provided
by energy loss processes in order to insure the precise calculation of the
probability of particle interaction. It is generally assumed in Monte Carlo
programs that the particle cross sections are approximately constant during a
step, hence the reaction probability p at the end of the step can be expressed
as

p = 1 − exp (−nsσ(Ei)) , (7.26)

where n is the density of atoms in the medium, s is the step length, Ei is the
energy of the incident particle at the beginning of the step, and σ(Ei) is the
reaction cross section at the beginning of the step.

However, it is possible to sample the reaction probability from the exact
expression

p = 1 − exp

(

−
∫ Ef

Ei

nσ(E)ds

)

, (7.27)

where Ef is the energy of the incident particle at the end of the step, by
using the integral approach to particle transport. This approach is available
for processes implemented via the G4V EnergyLossProcess interface.

The Monte Carlo method of integration is used for sampling the reaction
probability [1]. It is assumed that the reaction cross section increases with
energy, so that the cross section at the end of the step is always smaller,
σ(Ef ) < σ(Ei). This assumption is correct for electromagnetic physics.

The integral variant of step limitation is the default for theG4eIonisation
process but is not automatically activated for others. To do so the boolean UI
command “/process/eLoss/integral true” can be used. The integral variant of
the energy loss sampling process is less dependent on values of the production
cuts [2], however it should be applied on a case-by-case basis because heavy
particles taking large steps in an absorber can cause inaccurate sampling of
energy loss fluctuations.

7.3.1 Status of this document

01.12.03 integral method subsection added by V. Ivanchenko
17.08.04 moved to common to all charged particles (mma)
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7.4 Conversion from range to kinetic energy

7.4.1 Charged particles

The algorithm which converts the stopping range of a charged particle to the
corresponding kinetic energy is essentially the same for all charged particle
types: given the stopping range of a particle, a vector holding the corre-
sponding kinetic energy for every material is constructed. Only the energy
loss formulae are different, depending on whether the particle is an electron,
a positron, or a heavy charged particle (muon, pion, proton, etc.). For pro-
tons and anti-protons the above procedure is followed, but for other charged
hadrons, the cut values in kinetic energy are computed using the proton and
anti-proton energy loss and range tables.

General scheme

1. An energy loss table is created and filled for all the elements in the
element table.

2. For every material in the material table the following steps are per-
formed:

(a) a range vector is constructed using the energy loss table and spe-
cific formulae for the low energy part of the calculations,

(b) the conversion from stopping range to kinetic energy is performed
and the corresponding element of the KineticEnergyCuts vector
is set,

(c) the range vector is deleted.

3. The energy loss table is deleted at the end of the process.

Energy loss formula for heavy charged particles

The energy loss of the particle is calculated from a simplified Bethe-Bloch
formula if the kinetic energy of the particle is above the value

Tlim = 2MeV ×
(

particle mass

proton mass

)

.

The word “simplified” means that the low energy shell correction term and
the high energy Sternheimer density correction term have been omitted. Be-
low the energy value Tlim a simple parameterized energy loss formula is used
to compute the loss, which reproduces the energy loss values of the stopping
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power tables fairly well. The main reason for using a parameterized formula
for low energy is that the Bethe-Bloch formula breaks down at low energy.
The formula has the following form :

dE

dx
=















a ∗
√

T
M

+ b ∗ T
M

for T ∈ [0, T0]

c ∗
√

T
M

for T ∈ [T0, Tlim]

where : M = particle mass
T = kinetic energy
T0 = 0.1MeV × Z1/3 × M/(proton mass)
Z = atomic number.

The paramaters a, b and c have been chosen in such a way that dE/dx is a
continuous function of T at T = Tlim and T = T0, and dE/dx reaches its
maximum at the correct T value.

Energy loss of electrons and positrons

The Berger-Seltzer energy loss formula has been used for T > 10 keV to
compute the energy loss due to ionization. This formula plays the role of the
Bethe-Bloch equation for electrons (see e.g. the GEANT3 manual). Below
10 keV the simple c/(T/mass of electron) parameterization has been used,
where c can be determined from the requirement of continuity at T = 10
keV. For electrons the radiation loss is important even at relatively low (few
MeV) energies, so a second term has been added to the energy loss formula
which accounts for radiation losses (losses due to bremsstrahlung). This
second term is an empirical, parameterized formula. For positrons a different
formula is used to calculate the ionization loss, while the term accounting for
the radiation losses is the same as that for electrons.

Range calculation

The stopping range is defined as

R(T ) =
∫ T

0

1

(dE/dx)
dE

. The integration has been done analytically for the low energy part and
numerically above an energy limit.
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7.4.2 Photons

Starting from a particle cut given in absorption lengths, the method con-
structs a vector holding the cut values in kinetic energy for every material.
The main steps of the algorithm are the following :

General scheme

1. A cross section table is created and filled for all the elements in the
element table.

2. For every material in the material table the following steps are per-
formed:

(a) an absorption length vector is constructed using the cross section
table

(b) the conversion from absorption length to kinetic energy is per-
formed and the corresponding element of the KineticEnergyCuts
vector is set (It contains the particle cut value in kinetic energy
for the actual material.),

(c) the absorption length vector is deleted.

3. The cross section table is deleted at the end of the process.

Cross section formula for elements

An approximate empirical formula is used to compute the absorption cross
section of a photon in an element. Here, the absorption cross section means
the sum of the cross sections of the gamma conversion, Compton scattering
and photoelectric effect. These processes are the “destructive” processes for
photons: they destroy the photon or decrease its energy. (The coherent or
Rayleigh scattering changes the direction of the gamma only; its cross section
is not included in the absorption cross section.)

Absorption length vector

The AbsorptionLength vector is calculated for every material as :

AbsorptionLength = 5/(macroscopic absorption cross section) .

The factor 5 comes from the requirement that the probability of having no
’destructive’ interaction should be small, hence

exp(−AbsorptionLength * MacroscopicCrossSection) = exp(−5)

= 6.7 × 10−3
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Meaningful cuts in absorption length

The photon cross section for a material has a minimum at a certain kinetic
energy Tmin. The AbsorptionLength has a maximum at T = Tmin, the
value of the maximal AbsorptionLength is the biggest ”meaningful” cut in
absorption length. If the cut given by the user is bigger than this maximum,
a warning is printed and the cut in kinetic energy is set to the maximum
gamma energy (i.e. all the photons will be killed in the material).

7.4.3 Status of this document

9.10.98 created by L. Urbán.
27.07.01 minor revision M.Maire
17.08.04 moved to common to all charged particles (mma)
04.12.04 minor re-wording by D.H. Wright
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7.5 Multiple Scattering

Geant4 uses a new multiple scattering (MSC) model to simulate the mul-
tiple scattering of charged particles in matter. This model does not use the
Moliere formalism [1], but is based on the more complete Lewis theory [2].
The model simulates the scattering of the particle after a given step, and
also computes the path length correction and the lateral displacement.

7.5.1 Introduction

Multiple Scattering Algorithms

MSC simulation algorithms can be classified as either ”detailed” or ”con-
densed”. In the detailed algorithms, all the collisions/interactions experi-
enced by the particle are simulated. This simulation can be considered as
exact; it gives the same results as the solution of the transport equation.
However, it can be used only if the number of collisions is not too large,
a condition fulfilled only for special geometries (such as thin foils), or low
enough kinetic energies. For larger kinetic energies the average number of
collisions is very large and the detailed simulation becomes very inefficient.
High energy simulation codes use condensed simulation algorithms, in which
the global effects of the collisions are simulated at the end of a track segment.
The global effects generally computed in these codes are the net displacement,
energy loss, and change of direction of the charged particle. These quantities
are computed from the multiple scattering theories used in the codes. The
accuracy of the condensed simulations is limited by the approximations of
the multiple scattering theories.

Most particle physics simulation codes use the multiple scattering theories
of Molière [1], Goudsmit and Saunderson [3] and Lewis [2]. The theories of
Molière and Goudsmit-Saunderson give only the angular distribution after a
step, while the Lewis theory computes the moments of the spatial distribution
as well. None of the these MSC theories gives the probability distribution
of the spatial displacement. Therefore each of the MSC simulation codes
incorporates its own algorithm to determine the spatial displacement of the
charged particle after a given step. These algorithms are not exact, of course,
and are responsible for most of the uncertainties in the MSC codes. There-
fore the simulation results can depend on the value of the step length and
generally one has to select the value of the step length carefully.

A new class of MSC simulation, the ”mixed” simulation algorithms (see
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e.g.[4]), appeared in the literature recently. The mixed algorithm simulates
the ”hard” collisions one by one and uses a MSC theory to treat the effects of
the ”soft” collisions at the end of a given step. Such algorithms can prevent
the number of steps from becoming too large and also reduce the dependence
on the step length.

The MSC model used in Geant4 belongs to the class of condensed simula-
tions. The model is based on Lewis’ MSC theory and uses model functions to
determine the angular and spatial distributions after a step. The functions
have been chosen in such a way as to give the same moments of the (angular
and spatial) distributions as the Lewis theory.

Definition of Terms

In simulation, a particle is transported by steps through the detector geom-
etry. The shortest distance between the endpoints of a step is called the
geometrical path length, z. In the absence of a magnetic field, this is a
straight line. For non-zero fields, z is the shortest distance along a curved
trajectory. Constraints on z are imposed when particle tracks cross volume
boundaries. The path length of an actual particle, however, is usually longer
than the geometrical path length, due to physical interactions like multiple
scattering. This distance is called the true path length, t. Constraints on t
are imposed by the physical processes acting on the particle.

The properties of the multiple scattering process are completely determined
by the transport mean free paths, λk, which are functions of the energy in a
given material. The k-th transport mean free path is defined as

1

λk

= 2πna

∫ 1

−1
[1 − Pk(cosχ)]

dσ(χ)

dΩ
d(cosχ) (7.28)

where dσ(χ)/dΩ is the differential cross section of the scattering, Pk(cosχ)
is the k-th Legendre polynomial, and na is the number of atoms per volume.

Most of the mean properties of MSC computed in the simulation codes de-
pend only on the first and second transport mean free paths. The mean value
of the geometrical path length (first moment) corresponding to a given true
path length t is given by

< z >= λ1 ∗
(

1 − exp
[

− t

λ1

])

. (7.29)

Eq. 7.29 is an exact result for the mean value of z if the differential cross
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section has axial symmetry and the energy loss can be neglected. The trans-
formation between true and geometrical path lengths is called the path length
correction. This formula and other expressions for the first moments of the
spatial distribution were taken from either [4] or [5], but were originally cal-
culated by Goudsmit and Saunderson [3] and Lewis [2].

At the end of the true step length, t, the scattering angle is θ. The mean
value of cosθ is

< cosθ >= exp
[

− t

λ1

]

. (7.30)

The variance of cosθ can be written as

σ2 =< cos2θ > − < cosθ >2=
1 + 2e−2κτ

3
− e−2τ (7.31)

where τ = t/λ1 and κ = λ1/λ2. The mean lateral displacement is given
by a more complicated formula [4], but this quantity can also be calculated
relatively easily and accurately. The square of the mean lateral displacement
is

< x2 + y2 >=
4λ2

1

3

[

τ − κ+ 1

κ
+

κ

κ− 1
e−τ − 1

κ(κ− 1)
e−κτ

]

. (7.32)

Here it is assumed that the initial particle direction is parallel to the the z
axis.

The transport mean free path values have been calculated by Liljeq-
uist et al. [6], [7] for electrons and positrons in the kinetic energy range
100 eV - 20 MeV in 15 materials. The MSC model in Geant4 uses these val-
ues, and when necessary, linearly interpolates or extrapolates the transport
cross section, σ1 = 1/λ1, in atomic number Z and in the square of the parti-
cle velocity, β2. The ratio κ is a very slowly varying function of the energy:
κ > 2 for T > a few keV, and κ→ 3 for very high energies (see [5]). Hence,
a constant value of 2.5 is used in the model.

7.5.2 Path Length Correction

As mentioned above, the path length correction refers to the transformation
(true path length ⇒ geometrical path length) and its inverse. The true path
length −→ geometrical path length transformation is given by eq. 7.29 if the
step is small and the energy loss can be neglected. If the step is not small
the energy dependence makes the transformation more complicated. For this
case Eqs. 7.30,7.29 should be modified as
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< cosθ >= exp

[

−
∫ t

0

du

λ1(u)

]

(7.33)

< z >=
∫ t

0
< cosθ >u du (7.34)

where θ is the scattering angle, t and z are the true and geometrical path
lengths, and λ1 is the transport mean free path.

In order to compute Eqs. 7.33,7.34 the t dependence of the transport
mean free path must be known. λ1 depends on the kinetic energy of the
particle which decreases along the step. All computations in the model use
a linear approximation for this t dependence:

λ1(t) = λ10(1 − ct) (7.35)

Here λ10 denotes the value of λ1 at the start of the step, and c is a
constant. It is worth noting that Eq. 7.35 is not a crude approximation.
It is rather good at low (< 1 MeV) energy. At higher energies the step is
generally much smaller than the range of the particle, so the change in energy
is small and so is the change in λ1. Using Eqs. 7.33 - 7.35 the explicit formula
for the geometrical path length z can be written as

z(t) =
1

c(1 + 1
cλ10

)

[

1 − (1 − ct)
1+ 1

cλ10

]

. (7.36)

The value of the constant c can be expressed using λ10 and λ11 where λ11

is the value of the transport mean free path at the end of the step

c =
λ10 − λ11

tλ10
. (7.37)

At low energies ( Tkin < M , M - particle mass) c has a simpler form:

c =
1

r0
(7.38)

where r0 denotes the range of the particle at the start of the step.
It can easily be seen that for a small step (i.e. for a step with small

relative energy loss) the formula of z(t) is

z(t) = λ10

[

1 − exp (− t

λ10

)
]

. (7.39)

Eq. 7.36 or 7.39 gives the mean value of the geometrical step length for
a given true step length.
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The actual geometrical path length is sampled in the model according to
the probability density function defined for z ∈ [0, t] :

f(z) = [(k + 1)/t] (z/z0)
k for z < z0

f(z) = [(k + 1)/t] [(t− z)/(t− z0)]
k for z ≥ z0. (7.40)

As can be seen, f(z) has a maximum at z = z0. The value of z0 depends on
t, and this dependence is approximated by the parameterization

z0 =< z > +d (t− < z >), (7.41)

where < z > is the mean value of z, and d is a constant model parameter.
The value of the exponent k is computed from the requirement that f(z)
should give the same mean value for z as eq. 7.36 or 7.39. Hence,

k =
2 < z > −t
z0− < z >

. (7.42)

The value of z is sampled according to f(z) if k > 0, otherwise z =< z > is
used.

The (geometrical path length ⇒ true path length) transformation is per-
formed using the mean values. The transformation can be written as

t =< t >= −λ1 ∗ log
(

1 − z

λ1

)

. (7.43)

is the (geometrical) step is small and

t(z) =
1

c

[

1 − (1 − cwz)
1
w

]

(7.44)

where w = 1 + 1
cλ10

is the step is not small, i.e. the energy loss should be
taken into account.
This transformation is needed when the particle arrives at a volume bound-
ary, causing the step to be geometry-limited. In this case the true path length
should be computed in order to have the correct energy loss of the particle
after the step.

7.5.3 Angular Distribution

The quantity u = cosθ is sampled according to a model function g(u). The
shape of this function has been chosen such that Eqs. 7.30 and 7.31 are
satisfied. The functional form of g is

g(u) = p[qg1(u) + (1 − q)g3(u)] + (1 − p)g2(u), (7.45)
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where 0 ≤ p, q ≤ 1, and the gi are simple functions of u = cosθ, normalized
over the range u ∈ [−1, 1]. The functions gi have been chosen as

g1(u) = C1 e−a(1−u) − 1 ≤ u0 ≤ u ≤ 1, (7.46)

g2(u) = C2
1

(b− u)c
− 1 ≤ u ≤ u0 ≤ 1, (7.47)

g3(u) = C3 − 1 ≤ u ≤ 1, (7.48)

where a > 0, b > 0,c > 0 and u0 are model parameters, and the Ci are
normalization constants. It is worth noting that for small scattering angles,
θ, g1(u) is nearly Gaussian (exp(−θ2/2θ2

0)) if θ2
0 ≈ 1/a, while g2(u) has a

Rutherford-like tail for large θ, if b ≈ 1 and c is not far from 2 .

7.5.4 Determination of the Model Parameters

The parameters a, b, c, u0 and p, q are not independent. The requirement that
the angular distribution function g(u) and its first derivative be continuous
at u = u0 imposes two constraints on the parameters:

p g1(u0) = (1 − p) g2(u0) (7.49)

p a g1(u0) = (1 − p)
c

b− u0
g2(u0). (7.50)

A third constraint comes from Eq. 7.30: g(u) should give the same mean
value for u as the theory.

It follows from Eqs. 7.30 and 7.45 that

q{p < u >1 +(1 − p) < u >2} = e−τ , (7.51)

where < u >i denotes the mean value of u computed from the distribution
gi(u).

The parameter a was chosen according to a modified Highland-Lynch-
Dahl formula for the width of the angular distribution [8], [9].

a =
0.5

1 − cos(θ0)
(7.52)

where θ0 is

θ0 =
13.6MeV

βcp
z
√

t/X0(1 + 0.038 lnx/X0) (7.53)
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when the original Highland-Lynch-Dahl formula is used. Here θ0 = θrms
plane

is the width of the approximate Gaussian projected angle distribution, p,βc
and z are the momentum, velocity and charge number of the incident particle,
and t/X0 is the thickness of the scattering medium in radiation lengths. This
value of θ0 is from a fit to the Molière distribution for singly charged particles
with β = 1 for all Z, and is accurate to 11 % or better for 10−3 ≤ t/X0 ≤ 100
(see e.g. Rev. of Particle Properties, section 23.3). The modified formula for
θ0 is

θ0 =
13.6MeV

βcp
z(

t

X0
)0.555 (7.54)

This formula gives much smaller step dependence in the angular distri-
bution and describes the available electron scattering data better than the
Highland form.

The value of the parameter u0 has been chosen as

u0 = 1 − ξ/a (7.55)

where ξ is a constant. The numerical value of the parameter ξ has been
determined from a comparison of the simulated angular distribution with
experimental data. Here, the experiment of Hanson et al.([10]) has been
used for the electron case, where the scattering of 15.7 MeV electrons from
thin gold foils has been measured. The value of the parameter c is set to

c = 2 +
t

λ0
(7.56)

The remaining three parameters can be computed from Eqs. 7.49 - 7.51.
The numerical value of the parameters can be found in the code.

It should be noted that in this model there is no step limitation originat-
ing from the multiple scattering process. Another important feature of this
model is that the sum of the ’true’ step lengths of the particle, that is, the
total true path length, does not depend on the length of the steps. Most
algorithms used in simulations do not have these properties.

In the case of heavy charged particles (µ, π, p, etc.) the mean transport
free path is calculated from the electron or positron λ1 values with a ’scaling’
applied. This is possible because the transport mean free path λ1 depends
only on the variable Pβ, where P is the momentum, and β is the velocity of
the particle.
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In its present form the model samples the path length correction and
angular distribution from model functions, while for the lateral displacement
only the mean value is used and the correlations are neglected. However,
the model is general enough to incorporate other random quantities and
correlations in the future.

7.5.5 Nuclear Size Effects

The effect of the finite nuclear size is estimated in the Born approximation
[6]. In this very simple approximation the scattering cross section can be
written as

dσ(χ)

dΩ
=
dσB(χ)

dΩ
F (χ) (7.57)

where dσB/dΩ is the Born cross section for a screened, point-like nucleus and
F (χ) is the squared nuclear form factor. F (χ) ≈ 0 if χ > χmax where

sin(
χmax

2
) =

1

kR
, (7.58)

k is the particle wave number, and R is the nuclear radius. This correction
means that σ(χ) decreases with energy, so that λ1, defined by

1

λ1

= 2πna

∫ 1

cosχmax

[1 − P1(cosχ)]
dσB(χ)

dΩ
F (χ)d(cosχ) (7.59)

increases for larger energies.

7.5.6 Implementation of the Process

The actual step length taken by a particle in the simulation is the smaller
of the ’physics step length’, determined by the physics processes, and the
’geometrical step length’, determined by the geometry of the detectors. The
physics step length is the minimum of all the step lengths proposed by the
(continuous or discrete) physics processes, and represents the path length of
a particle from the beginning of a step to the interaction point. When mul-
tiple scattering is applied, the path length is unaffected but the straight-line
distance (in the absence of a magnetic field) between the beginning of the
step and the interaction point is reduced. It is the responsibility of the MSC
model to perform the transformation from the ’true’, or physical step length,
t, to the ’straight-line’, or geometrical step length, z, so that the step size
limitations from geometry and physics processes may be fairly compared.
This ’t’⇒’z’ transformation can be considered the inverse of the path length
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correction. After the actual step length has been determined and the par-
ticle relocation has been performed, the MSC performs the transformation
’z’⇒’t’, so that the true step length t is available for the energy loss and
scattering computations.

The scattering angle θ of the particle after a step of length t is sampled ac-
cording to the model function given in Eq. 7.45 . The azimuthal angle φ is
generated uniformly in the range [0, 2π].

After the simulation of the scattering, the lateral displacement is com-
puted using Eq. 7.32. Before doing this, a check is performed to ensure that
the relocation of the particle with the lateral displacement does not take the
particle beyond the volume boundary.

Boundary Crossing Algorithm

In Geant4 boundary crossing is handled by the transportation code/process.
The transportation ensures that the particle does not penetrate a new volume
without first stopping at the boundary. It must therefore restrict the step
size when the particle leaves a volume. However, there is no similar step
limitation when a particle enters a volume and this fact does not allow a
good backscattering simulation for low energy particles. Low energy particles
penetrate deeply into the volume in the very first step and then, because of
energy loss, they are not able to return to the boundary in the backward
direction.

A very simple boundary crossing algorithm has been implemented in the
MSC code to cure this situation. When entering a new volume the algorithm
restricts the step size to a value fr ·max{r, λ}, where r is the range of the
particle and fr is a constant (fr ∈ [0, 1]). This kind of step limitation imposes
real constraints only for low energy particles. Because the parameter fr re-
duces step size, performance will be affected. A default value of fr = 0.2 was
chosen as a compromise between performance and physics, which provides
an approximate simulation of the backscattering. If a better backscattering
simulation is needed it is easy to set fr to some other small value.

Implementation Details

Because multiple scattering is very similar for different particles the base
class G4VMultipleScattering was created to collect and provide signifi-
cant features of the calculations which are common to different particle
types. The methods implemented in this class are: BuildPhysicsTables,
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AlongStepDoIt, PostStepDoIt, AlongStepGetPhysicalInteractionLength,
StorePhysicsTable, and RestorePhysicsTable. The concrete physics model
is implemented in the class G4MscModel. The G4MultipleScattering pro-
cess has only intialization functions, which allows the values of model pa-
rameters, such as fr ( SetFacrange), to be defined. It also allows the setting
of flags to activate or deactivate the following actions:

• Setsamplez(G4bool) - sampling of geometry length;

• SetLateralDisplasmentFlag(G4bool) - sampling of lateral displacement;

• SetBoundary(G4bool) - boundary algorithm;

• SetBuildLambdaTable(G4bool) - build/store/restore a table for the sam-
pling of geometry length.

The default initialization is the same for all particles except G4GenericIons,
for which all flags are set to false.

In the AlongStepGetPhysicalInteractionLength method the minimum
step size due to the physics processes is compared with the step size con-
straints imposed by the transportation process and the geometry. In order
to do this, the ’t’ step → ’z’ step transformation must be performed. There-
fore, the method should be invoked after the GetPhysicalInteractionLength
methods of other physics processes, but before the same method of the trans-
portation process. The reason for this ordering is that the physics processes
’feel’ the true path length t traveled by the particle, while the transportation
process (geometry) uses the z step length.

At this point the program also checks whether the particle has entered
a new volume. If it has, the particle steps cannot be bigger than tlim =
fr max(r, λ). This step limitation is governed by the physics, because tlim
depends on the particle energy and the material.

The PostStepGetPhysicalInteractionLengthmethod of the multiple scat-
tering process simply sets the force flag to ’Forced’ in order to ensure that
PostStepDoIt is called at every step. It also returns a large value for the
interaction length so that there is no step limitation at this level.

The AlongStepDoIt function of the process performs the inverse,
’z’ → ’t’ transformation. This function should be invoked after the
AlongStepDoIt of the transportation process, that is, after the particle relo-
cation is determined by the geometrical step length, but before applying any
other physics AlongStepDoIts.

The PostStepDoIt method of the process samples the scattering angle
and performs the lateral displacement when the particle is not near a bound-
ary.
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7.5.7 Status of this document

09.10.98 created by L. Urbán.
15.11.01 major revision by L. Urbán.
18.04.02 updated by L. Urbán.
25.04.02 re-worded by D.H. Wright
07.06.02 major revision by L. Urbán.
18.11.02 updated by L. Urbán, now it describes the new angle distribution.
05.12.02 grammar check and parts re-written by D.H. Wright
13.11.03 revision by L. Urbán.
01.12.03 revision by V. Ivanchenko.
17.05.04 revision by L.Urbán.
01.12.04 updated by L.Urbán.
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7.6 Transition radiation

7.6.1 The Relationship of Transition Radiation to X-

ray Cherenkov Radiation

X-ray transition radiation (XTR ) occurs when a relativistic charged particle
passes from one medium to another of a different dielectric permittivity. In
order to describe this process it is useful to begin with an explanation of
X-ray Cherenkov radiation, which is closely related.

The mean number of X-ray Cherenkov radiation (XCR) photons of fre-
quency ω emitted into an angle θ per unit distance along a particle trajectory
is [1]

d3N̄xcr

h̄dω dx dθ2
=

α

πh̄c

ω

c
θ2Im {Z} . (7.60)

Here the quantity Z is introduced as the complex formation zone of XCR in
the medium:

Z =
L

1 − i
L

l

, L =
c

ω

[

γ−2 +
ω2

p

ω2
+ θ2

]−1

, γ−2 = 1 − β2. (7.61)

with l and ωp the photon absorption length and the plasma frequency, re-
spectively, in the medium. For the case of a transparent medium, l → ∞
and the complex formation zone reduces to the coherence length L of XCR.
The coherence length roughly corresponds to that part of the trajectory in
which an XCR photon can be created.

Introducing a complex quantity Z with its imaginary part proportional
to the absorption cross-section (∼ l−1) is required in order to account for
absorption in the medium. Usually, ω2

p/ω
2 � c/ωl. Then it can be seen from

Eqs. 7.60 and 7.61 that the number of emitted XCR photons is considerably
suppressed and disappears in the limit of a transparent medium. This is
caused by the destructive interference between the photons emitted from
different parts of the particle trajectory.

The destructive interference of X-ray Cherenkov radiation is removed if
the particle crosses an interface between two media with different dielectric
permittivities, ε, where

ε = 1 − ω2
p

ω2
+ i

c

ωl
. (7.62)

Here the standard high-frequency approximation for the dielectric permittiv-
ity has been used. This is valid for energy transfers larger than the K-shell
excitation potential.
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If layers of media are alternated with spacings of order L, the X-ray
radiation yield from a trajectory of unit length can be increased by roughly
l/L times. The radiation produced in this case is called X-ray transition
radiation (XTR).

7.6.2 Calculating the X-ray Transition Radiation Yield

Using the methods developed in Ref. [2] one can derive the relation describing
the mean number of XTR photons generated per unit photon frequency and
θ2 inside the radiator for a general XTR radiator consisting of n different
absorbing media with fluctuating thicknesses:

d2N̄in

h̄dω dθ2
=

α

πh̄c2
ωθ2Re

{

n−1
∑

i=1

(Zi − Zi+1)
2+

+ 2
n−2
∑

k=1

n−k−1
∑

i=1

(Zi − Zi+1)(Zi+k − Zi+k+1)
k
∏

j=1

Fi+j







. (7.63)

In the case of gamma distributed gap thicknesses the values Fj, (j = 1, 2)
are:

Fj =
∫ ∞

0
dtj

(

νj

t̄j

)νj t
νj−1
j

Γ(νj)
exp

[

−νjtj
t̄j

− i
tj

2Zj

]

=

[

1 + i
t̄j

2Zjνj

]−νj

, (7.64)

where Zj is the complex formation zone of XTR (similar to relation 7.61
for XCR) in the j-th medium [2, 3]. Γ is the Euler gamma function, t̄j is
the mean thickness of the j-th medium in the radiator and νj > 0 is the
parameter roughly describing the relative fluctuations of tj. In fact, the
relative fluctuation is δj = 1/

√
νj.

In the particular case of n foils of the first medium (Z1, F1) interspersed
with gas gaps of the second medium (Z2, F2), one obtains:

d2N̄in

h̄dω dθ2
=

2α

πh̄c2
ωθ2Re

{

〈R(n)〉
}

, F = F1F2, (7.65)

〈R(n)〉 = (Z1 − Z2)
2

{

n
(1 − F1)(1 − F2)

1 − F
+

(1 − F1)
2F2[1 − F n]

(1 − F )2

}

. (7.66)

This approach allows the implementation of XTR as a GEANT4 parametriza-
tion [3], or as a standard electromagnetic process (see below).
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7.6.3 Simulating X-ray Transition Radiation Produc-

tion

Parameterized models of X-ray transition radiation are implemented by the
classes G4VXTRdEdx, G4VXrayTRadModel, G4VXrayTRmodel and inherited classes.
XTR as an electromagnetic process is implemented by G4VXTRenergyLoss,
G4RegularXTRadiator and G4GammaXTRadiator.

XTR photons generated by a relativistic charged particle intersecting a
radiator with 2n interfaces between different media can be simulated by using
the following algorithm. First the total number of XTR photons is estimated
using a Poisson distribution about the mean number of photons given by the
following expression:

N̄ (n) =
∫ ω2

ω1

dω
∫ θmax

0
2θdθ

d2N̄ (n)

dω dθ2

=
α

πc2

∫ ω2

ω1

ωdω
∫ θmax

0
2θ3dθRe

{

2(Z1 − Z2)
2〈R(n)〉

}

. (7.67)

Here θmax ∼ 10/γ, h̄ω1 ∼ 1 keV, h̄ω2 ∼ 100 keV, and 〈R(n)〉 correspond to the
geometry of the experiment. For events in which the number of XTR photons
is not equal to zero, the energy and angle of each XTR quantum are simulated
according to the integral distributions obtained by the numerical integration
of expression (7.65). For example, the integral energy spectrum of emitted

XTR photons, N̄
(n)
>ω , is defined from the following integral distribution:

N̄
(n)
>ω =

α

πc2

∫ ω2

ω
ωdω

∫ θmax

0
2θ3dθRe

{

2(Z1 − Z2)
2〈R(n)〉

}

. (7.68)

In Geant4 XTR generation inside radiators is described within the frame-
work of the so-called parametrization approach by a family of classes similar
to that described in [3]. The base abstract class G4VXTRdEdx is responsi-
ble for the creation of tables with integral energy and angular distributions
of XTR photons. It also contains the DoIt function providing XTR photon
generation and moving the incident particle through a XTR radiator. Partic-
ular models like G4IrregularXTRdEdx implement the pure virtual function
GetStackFactor, which calculates the response of the XTR radiator. The
parametrization allows for improved performance and can be used for initial
simulations when one tunes the parametrs of XTR radiator.

The same approach is used in the implementation of XTR as a contin-
uous electromagnetic process. Included below are some comments for the
declaration of XTR in a user application.
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// In DetectorConstruction of an application

// Preparation of mixed radiator material

foilDensity = 1.39*g/cm3; // Mylar

gasDensity = 1.2928*mg/cm3 ; // Air

totDensity = foilDensity*foilGasRatio +

gasDensity*(1.0-foilGasRatio) ;

fractionFoil = foilDensity*foilGasRatio/totDensity ;

fractionGas = gasDensity*(1.0-foilGasRatio)/totDensity ;

G4Material* radiatorMat = new G4Material("radiatorMat",

totDensity,

ncomponents = 2 );

radiatorMat->AddMaterial( Mylar, fractionFoil ) ;

radiatorMat->AddMaterial( Air, fractionGas ) ;

G4cout << *(G4Material::GetMaterialTable()) << G4endl;

// materials of the TR radiator

fRadiatorMat = radiatorMat ; // artificial for geometry

fFoilMat = Mylar ;

fGasMat = Air ;

This artificial material will be assigned to the logical volume in which
XTR will be generated:

solidRadiator = new G4Box("Radiator",

1.1*AbsorberRadius ,

1.1*AbsorberRadius,

0.5*radThick ) ;

logicRadiator = new G4LogicalVolume( solidRadiator,

fRadiatorMat, // <-

"Radiator");

physiRadiator = new G4PVPlacement(0,

G4ThreeVector(0,0,zRad),

"Radiator", logicRadiator,

physiWorld, false, 0 );
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However, in the physics list one should pass to the XTR process additional
details of the XTR radiator involved:

// In PhysicsList of an application

else if (particleName == "e-") // Construct processes for electron with XTR

{

pmanager->AddProcess(new G4MultipleScattering, -1, 1,1 );

pmanager->AddProcess(new G4eBremsstrahlung(), -1,-1,1 );

pmanager->AddProcess(new Em10StepCut(), -1,-1,1 );

pmanager->AddProcess(

new G4IonisationByLogicalVolume(particleName,

pDet->GetLogicalAbsorber(), // MWPC, straw

"IonisationByLogVol"),-1,1,-1);

pmanager->AddContinuousProcess( // regular stack

new G4RegularXTRadiator(pDet->GetLogicalRadiator(), // XTR radiator

pDet->GetFoilMaterial(), // real foil

pDet->GetGasMaterial(), // real gas

pDet->GetFoilThick(), // real geometry

pDet->GetGasThick(),

pDet->GetFoilNumber(),

"RegularXTRadiator"));

}

7.6.4 Status of this document

29.05.02 created by V.Grichine
29.11.02 re-written by D.H. Wright
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7.7 Scintillation

Every scintillating material has a characteristic light yield, Y (photons/MeV ),
and an intrinsic resolution which generally broadens the statistical distribu-
tion, σi/σs > 1, due to impurities which are typical for doped crystals like
NaI(Tl) and CsI(Tl). The average yield can have a non-linear dependence
on the local energy deposition. Scintillators also have a time distribution
spectrum with one or more exponential decay time constants, τi, with each
decay component having its intrinsic photon emission spectrum. These are
empirical parameters typical for each material.

The generation of scintillation light can be simulated by sampling the number
of photons from a Poisson distribution. This distribution is based on the
energy lost during a step in a material and on the scintillation properties of
that material. The frequency of each photon is sampled from the empirical
spectra. The photons are generated evenly along the track segment and are
emitted uniformly into 4π with a random linear polarization.

7.7.1 Status of this document

07.12.98 created by P.Gumplinger

84



7.8 Čerenkov Effect

The radiation of Čerenkov light occurs when a charged particle moves through
a dispersive medium faster than the speed of light in that medium. A dis-
persive medium is one whose index of refraction is an increasing function of
photon energy. Two things happen when such a particle slows down:

1. a cone of Čerenkov photons is emitted, with the cone angle (measured
with respect to the particle momentum) decreasing as the particle loses
energy;

2. the momentum of the photons produced increases, while the number
of photons produced decreases.

When the particle velocity drops below the local speed of light, photons are
no longer emitted. At that point, the Čerenkov cone collapses to zero.

In order to simulate Čerenkov radiation the number of photons per track
length must be calculated. The formulae used for this calculation can be
found below and in [1, 2]. Let n be the refractive index of the dielectric
material acting as a radiator. Here n = c/c′ where c′ is the group velocity of
light in the material, hence 1 ≤ n. In a dispersive material n is an increasing
function of the photon energy ε (dn/dε ≥ 0). A particle traveling with speed
β = v/c will emit photons at an angle θ with respect to its direction, where
θ is given by

cos θ =
1

βn
.

From this follows the limitation for the momentum of the emitted photons:

n(εmin) =
1

β
.

Photons emitted with an energy beyond a certain value are immediately
re-absorbed by the material; this is the window of transparency of the radi-
ator. As a consequence, all photons are contained in a cone of opening angle
cos θmax = 1/(βn(εmax)).

The average number of photons produced is given by the relations :

dN =
αz2

h̄c
sin2 θdεdx =

αz2

h̄c
(1 − 1

n2β2
)dεdx

≈ 370z2photons

eV cm
(1 − 1

n2β2
)dεdx
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and the number of photons generated per track length is

dN

dx
≈ 370z2

∫ εmax

εmin

dε

(

1 − 1

n2β2

)

= 370z2

[

εmax − εmin − 1

β2

∫ εmax

εmin

dε

n2(ε)

]

.

The number of photons produced is calculated from a Poisson distribution
with a mean of 〈n〉 = StepLength dN/dx. The energy distribution of the
photon is then sampled from the density function

f(ε) =

[

1 − 1

n2(ε)β2

]

.

7.8.1 Status of this document

07.12.98 created by P.Gumplinger
11.12.01 SI units (mma)
08.05.02 re-written by D.H. Wright
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7.9 Photoabsorption Ionization Model

7.9.1 Cross Section for Ionizing Collisions

The Photoabsorption Ionization (PAI) model describes the ionization energy
loss of a relativistic charged particle in matter. For such a particle, the
differential cross section dσi/dω for ionizing collisions with energy transfer ω
can be expressed most generally by the following equations [1]:

dσi

dω
=

2πZe4

mv2

{

f(ω)

ω |ε(ω)|2
[

ln
2mv2

ω |1 − β2ε|−

−ε1 − β2 |ε|2
ε2

arg(1 − β2ε∗)

]

+
F̃ (ω)

ω2

}

, (7.69)

F̃ (ω) =
∫ ω

0

f(ω′)

|ε(ω′)|2
dω′,

f(ω) =
mωε2(ω)

2π2ZNh̄2 .

Here m and e are the electron mass and charge, h̄ is Planck’s constant,
β = v/c is ratio of the particle velocity v to the speed of light c, Z is the
effective atomic number, N is the number of atoms (or molecules) per unit
volume, and ε = ε1 + iε2 is the complex dielectric constant of the medium. In
an isotropic non-magnetic medium the dielectric constant can be expressed in
terms of a complex index of refraction, n(ω) = n1 + in2, ε(ω) = n2(ω). In the
energy range above the first ionization potential I1 for all cases of practical
interest, and in particular for all gases, n1 ∼ 1. Therefore the imaginary part
of the dielectric constant can be expressed in terms of the photoabsorption
cross section σγ(ω):

ε2(ω) = 2n1n2 ∼ 2n2 =
Nh̄c

ω
σγ(ω).

The real part of the dielectric constant is calculated in turn from the disper-
sion relation

ε1(ω) − 1 =
2Nh̄c

π
V.p.

∫ ∞

0

σγ(ω
′)

ω′2 − ω2
dω′,

where the integral of the pole expression is considered in terms of the princi-
pal value. In practice it is convenient to calculate the contribution from the
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continuous part of the spectrum only. In this case the normalized photoab-
sorption cross section

σ̃γ(ω) =
2π2h̄e2Z

mc
σγ(ω)

[∫ ωmax

I1
σγ(ω

′)dω′
]−1

, ωmax ∼ 100 keV

is used, which satisfies the quantum mechanical sum rule [2]:

∫ ωmax

I1
σ̃γ(ω

′)dω′ =
2π2h̄e2Z

mc
.

The differential cross section for ionizing collisions is expressed by the pho-
toabsorption cross section in the continuous spectrum region:

dσi

dω
=

α

πβ2

{

σ̃γ(ω)

ω |ε(ω)|2
[

ln
2mv2

ω |1 − β2ε|−

−ε1 − β2 |ε|2
ε2

arg(1 − β2ε∗)

]

+
1

ω2

∫ ω

I1

σ̃γ(ω
′)

|ε(ω′)|2
dω′

}

, (7.70)

ε2(ω) =
Nh̄c

ω
σ̃γ(ω),

ε1(ω) − 1 =
2Nh̄c

π
V.p.

∫ ωmax

I1

σ̃γ(ω
′)

ω′2 − ω2
dω′.

For practical calculations using Eq. 7.69 it is convenient to represent the
photoabsorption cross section as a polynomial in ω−1 as was proposed in [3]:

σγ(ω) =
4
∑

k=1

a
(i)
k ω

−k,

where the coefficients, a
(i)
k result from a separate least-squares fit to experi-

mental data in each energy interval i. As a rule the interval borders are equal
to the corresponding photoabsorption edges. The dielectric constant can now
be calculated analytically with elementary functions for all ω, except near
the photoabsorption edges where there are breaks in the photoabsorption
cross section and the integral for the real part is not defined in the sense of
the principal value.
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The third term in Eq. (7.69), which can only be integrated numerically,
results in a complex calculation of dσi/dω. However, this term is dominant
for energy transfers ω > 10 keV , where the function |ε(ω)|2 ∼ 1. This is clear
from physical reasons, because the third term represents the Rutherford cross
section on atomic electrons which can be considered as quasifree for a given
energy transfer [4]. In addition, for high energy transfers, ε(ω) = 1−ω2

p/ω
2 ∼

1, where ωp is the plasma energy of the material. Therefore the factor |ε(ω)|−2

can be removed from under the integral and the differential cross section of
ionizing collisions can be expressed as:

dσi

dω
=

α

πβ2 |ε(ω)|2
{

σ̃γ(ω)

ω

[

ln
2mv2

ω |1 − β2ε|−

−ε1 − β2 |ε|2
ε2

arg(1 − β2ε∗)

]

+
1

ω2

∫ ω

I1
σ̃γ(ω

′)dω′
}

. (7.71)

This is especially simple in gases when |ε(ω)|−2 ∼ 1 for all ω > I1 [4].

7.9.2 Energy Loss Simulation

For a given track length the number of ionizing collisions is simulated by a
Poisson distribution whose mean is proportional to the total cross section of
ionizing collisions:

σi =
∫ ωmax

I1

dσ(ω′)

dω′ dω′.

The energy transfer in each collision is simulated according to a distribution
proportional to

σi(> ω) =
∫ ωmax

ω

dσ(ω′)

dω′ dω′.

The sum of the energy transfers is equal to the energy loss. PAI ionisation is
implemented according to the model approach (class G4PAIModel) allowing
a user to select specific models in different regions. Here is an example of
physics list:

const G4RegionStore* theRegionStore = G4RegionStore::GetInstance();

G4Region* gas = theRegionStore->GetRegion("VertexDetector");

...

if (particleName == "e-")

{
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G4eIonisation* eion = new G4eIonisation();

G4PAIModel* pai = new G4PAIModel(particle,

"PAIModel");

eion->AddEmModel(0,pai,pai,gas);

pmanager->AddProcess(eion,-1, 2, 2);

pmanager->AddProcess(new G4MultipleScattering, -1, 1,1);

pmanager->AddProcess(new G4eBremsstrahlung,-1,1,3);

}

It shows how to select G4PAIModel to be preferred ionisation model for
electrons in G4Region with name VertexDetector.

7.9.3 Status of this document

16.11.98 created by V. Grichine
08.05.02 re-written by D.H. Wright
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7.10 Photoabsorption Cross Section at Low

Energies

7.10.1 Method

The photoabsorption cross section, σγ(ω), where ω is the photon energy, is
used in Geant4 for the description of the photo-electric effect, X-ray trans-
portation and ionization effects in very thin absorbers. As mentioned in the
discussion of photoabsorption ionization (see section 7.9), it is convenient to
represent the cross section as a polynomial in ω−1 [1] :

σγ(ω) =
4
∑

k=1

a
(i)
k ω

−k. (7.72)

Using cross sections from the original Sandia data tables, calculations of pri-
mary ionization and energy loss distributions produced by relativistic charged
particles in gaseous detectors show clear disagreement with experimental
data, especially for gas mixtures which include xenon.

Therefore a special investigation was performed [2] by fitting the coefficients

a
(i)
k to modern data from synchrotron radiation experiments in the energy

range of 10 − 50 eV . The fits were performed for elements typically used
in detector gas mixtures: hydrogen, fluorine, carbon, nitrogen and oxygen.
Parameters for these elements were extracted from data on molecular gases
such as N2, O2, CO2, CH4, and CF4 [3, 4]. Parameters for the noble gases
were found using data given in the tables [5, 6].

7.10.2 Status of this document
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10.05.02 re-written by D.H. Wright

Bibliography

[1] Biggs F., and Lighthill R., Preprint Sandia Laboratory, SAND 87-0070
(1990)

[2] Grichine V.M., Kostin A.P., Kotelnikov S.K. et al., Bulletin of the Lebe-
dev Institute no. 2-3, 34 (1994).

91



[3] Lee L.C. et al., J.Q.S.R.T., v. 13, p. 1023 (1973).

[4] Lee L.C. et al., Journ. of Chem. Phys., v. 67, p. 1237 (1977).

[5] G.V. Marr and J.B. West, Atom. Data Nucl. Data Tabl., v. 18, p. 497
(1976).

[6] J.B. West and J. Morton, Atom. Data Nucl. Data Tabl., v. 30, p. 253
(1980).

92



Chapter 8

Electron Incident
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8.1 Ionization

8.1.1 Method

The G4eIonisation class provides the continuous and discrete energy losses
of electrons and positrons due to ionization in a material according to the
approach described in Section 7.1. The value of the maximum energy trans-
ferable to a free electron Tmax is given by the following relation:

Tmax =

{

E −mc2 for e+

(E −mc2)/2 for e−
(8.1)

where mc2 is the electron mass. Above a given threshold energy the energy
loss is simulated by the explicit production of delta rays by Möller scattering
(e−e−), or Bhabha scattering (e+e−). Below the threshold the soft electrons
ejected are simulated as continuous energy loss by the incident e±.

8.1.2 Continuous Energy Loss

The integration of 7.1 leads to the Berger-Seltzer formula [1]:

dE

dx

]

T<Tcut

= 2πr2
emc

2nel
1

β2

[

ln
2(γ + 1)

(I/mc2)2
+ F±(τ, τup) − δ

]

(8.2)

with
re classical electron radius: e2/(4πε0mc

2)
mc2 mass energy of the electron
nel electron density in the material
I mean excitation energy in the material
γ E/mc2

β2 1 − (1/γ2)
τ γ − 1
Tcut minimum energy cut for δ -ray production
τc Tcut/mc

2

τmax maximum energy transfer: τ for e+, τ/2 for e−

τup min(τc, τmax)
δ density effect function.

In an elemental material the electron density is

nel = Z nat = Z
Navρ

A
.
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Nav is Avogadro’s number, ρ is the material density, and A is the mass of a
mole. In a compound material

nel =
∑

i

Zi nati =
∑

i

Zi
Navwiρ

Ai

,

where wi is the proportion by mass of the ith element, with molar mass Ai .
The mean excitation energies I for all elements are taken from [2].
The functions F± are given by :

F+(τ, τup) = ln(ττup) (8.3)

−τ
2
up

τ

[

τ + 2τup −
3τ 2

upy

2
−
(

τup −
τ 3
up

3

)

y2 −
(

τ 2
up

2
− τ

τ 3
up

3
+
τ 4
up

4

)

y3

]

F−(τ, τup) = −1 − β2 (8.4)

+ ln [(τ − τup)τup] +
τ

τ − τup
+

1

γ2

[

τ 2
up

2
+ (2τ + 1) ln

(

1 − τup

τ

)

]

where y = 1/(γ + 1).
The density effect correction is calculated according to the formalism of

Sternheimer [3]:
x is a kinetic variable of the particle : x = log10(γβ) = ln(γ2β2)/4.606,
and δ(x) is defined by

for x < x0 : δ(x) = 0
for x ∈ [x0, x1] : δ(x) = 4.606x− C + a(x1 − x)m

for x > x1 : δ(x) = 4.606x− C
(8.5)

where the matter-dependent constants are calculated as follows:

hνp = plasma energy of the medium =
√

4πnelr3
emc

2/α =
√

4πnelreh̄c

C = 1 + 2 ln(I/hνp)
xa = C/4.606
a = 4.606(xa − x0)/(x1 − x0)

m

m = 3.
(8.6)

For condensed media

I < 100 eV

{

for C ≤ 3.681 x0 = 0.2 x1 = 2
for C > 3.681 x0 = 0.326C − 1.0 x1 = 2

I ≥ 100 eV

{

for C ≤ 5.215 x0 = 0.2 x1 = 3
for C > 5.215 x0 = 0.326C − 1.5 x1 = 3
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and for gaseous media

for C < 10. x0 = 1.6 x1 = 4
for C ∈ [10.0, 10.5[ x0 = 1.7 x1 = 4
for C ∈ [10.5, 11.0[ x0 = 1.8 x1 = 4
for C ∈ [11.0, 11.5[ x0 = 1.9 x1 = 4
for C ∈ [11.5, 12.25[ x0 = 2. x1 = 4
for C ∈ [12.25, 13.804[ x0 = 2. x1 = 5
for C ≥ 13.804 x0 = 0.326C − 2.5 x1 = 5.

8.1.3 Total Cross Section per Atom and Mean Free
Path

The total cross section per atom for Möller scattering (e−e−) and Bhabha
scattering (e+e−) is obtained by integrating Eq. 7.2. In Geant4 Tcut is
always 1 keV or larger. For delta ray energies much larger than the excitation
energy of the material (T � I), the total cross section becomes [1] for Möller
scattering,

σ(Z,E, Tcut) =
2πr2

eZ

β2(γ − 1)
× (8.7)

[

(γ − 1)2

γ2

(

1

2
− x

)

+
1

x
− 1

1 − x
− 2γ − 1

γ2
ln

1 − x

x

]

,

and for Bhabha scattering (e+e−),

σ(Z,E, Tcut) =
2πr2

eZ

(γ − 1)
× (8.8)

[

1

β2

(

1

x
− 1

)

+B1 ln x+B2(1 − x) − B3

2
(1 − x2) +

B4

3
(1 − x3)

]

.

Here
γ = E/mc2 B1 = 2 − y2

β2 = 1 − (1/γ2) B2 = (1 − 2y)(3 + y2)
x = Tcut/(E −mc2) B3 = (1 − 2y)2 + (1 − 2y)3

y = 1/(γ + 1) B4 = (1 − 2y)3.

The above formulae give the total cross section for scattering above the
threshold energies

T thr
Moller = 2Tcut and T thr

Bhabha = Tcut. (8.9)

In a given material the mean free path is then

λ = (nat · σ)−1 or λ = (
∑

i nati · σi)
−1 . (8.10)
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8.1.4 Simulation of Delta-ray Production

Differential Cross Section

For T � I the differential cross section per atom becomes [1] for Möller
scattering,

dσ

dε
=

2πr2
eZ

β2(γ − 1)
× (8.11)

[

(γ − 1)2

γ2
+

1

ε

(

1

ε
− 2γ − 1

γ2

)

+
1

1 − ε

(

1

1 − ε
− 2γ − 1

γ2

)]

and for Bhabha scattering,

dσ

dε
=

2πr2
eZ

(γ − 1)

[

1

β2ε2
− B1

ε
+B2 −B3ε+B4ε

2

]

. (8.12)

Here ε = T/(E −mc2). The kinematical limits of ε are

ε0 =
Tcut

E −mc2
≤ ε ≤ 1

2
for e−e− ε0 =

Tcut

E −mc2
≤ ε ≤ 1 for e+e−.

Sampling

The delta ray energy is sampled according to methods discussed in Chapter
2. Apart from normalization, the cross section can be factorized as

dσ

dε
= f(ε)g(ε). (8.13)

For e−e− scattering

f(ε) =
1

ε2
ε0

1 − 2ε0
(8.14)

g(ε) =
4

9γ2 − 10γ + 5

[

(γ − 1)2ε2 − (2γ2 + 2γ − 1)
ε

1 − ε
+

γ2

(1 − ε)2

]

(8.15)

and for e+e− scattering

f(ε) =
1

ε2
ε0

1 − ε0
(8.16)

g(ε) =
B0 −B1ε+B2ε

2 − B3ε
3 +B4ε

4

B0 − B1ε0 +B2ε20 −B3ε30 +B4ε40
. (8.17)

Here B0 = γ2/(γ2 − 1) and all other quantities have been defined above.
To choose ε, and hence the delta ray energy,
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1. ε is sampled from f(ε)

2. the rejection function g(ε) is calculated using the sampled value of ε

3. ε is accepted with probability g(ε).

After the successful sampling of ε, the direction of the ejected electron is
generated with respect to the direction of the incident particle. The az-
imuthal angle φ is generated isotropically and the polar angle θ is calculated
from energy-momentum conservation. This information is used to calculate
the energy and momentum of both the scattered incident particle and the
ejected electron, and to transform them to the global coordinate system.

8.1.5 Status of this document

9.10.98 created by L. Urbán.
29.07.01 revised by M.Maire.
13.12.01 minor cosmetic by M.Maire.
24.05.02 re-written by D.H. Wright.
01.12.03 revised by V. Ivanchenko.

Bibliography

[1] H.Messel and D.F.Crawford. Pergamon Press,Oxford,1970.

[2] ICRU Report No. 37 (1984)

[3] R.M.Sternheimer. Phys.Rev. B3 (1971) 3681.

98



8.2 Bremsstrahlung

The class G4eBremsstrahlung provides the energy loss of electrons and
positrons due to the radiation of photons in the field of a nucleus accord-
ing to the approach described in Section 7.1. Above a given threshold energy
the energy loss is simulated by the explicit production of photons. Below
the threshold the emission of soft photons is treated as a continuous en-
ergy loss. In GEANT4 the Landau-Pomeranchuk-Migdal effect has also been
implemented.

8.2.1 Cross Section and Energy Loss

dσ(Z, T, k)/dk is the differential cross section for the production of a photon
of energy k by an electron of kinetic energy T in the field of an atom of charge
Z. If kc is the energy cut-off below which the soft photons are treated as
continuous energy loss, then the mean value of the energy lost by the electron
is

Ebrem
Loss (Z, T, kc) =

∫ kc

0
k
dσ(Z, T, k)

dk
dk. (8.18)

The total cross section for the emission of a photon of energy larger than kc

is

σbrem(Z, T, kc) =
∫ T

kc

dσ(Z, T, k)

dk
dk. (8.19)

Parameterization of the Energy Loss and Total Cross Section

The cross section and energy loss due to bremsstrahlung have been parame-
terized using the EEDL (Evaluated Electrons Data Library) data set [1] as
input.
The following parameterization was chosen for the electron bremsstrahlung
cross section :

σ(Z, T, kc) = Z(Z + ξσ)(1 − csighZ
1/4)

[

T

kc

]α ḟs

NAvo

(8.20)

where fs is a polynomial in x = lg(T ) with Z-dependent coefficients for
x < xl , fs = 1 for x ≥ xl, ξσ, csigh, α are constants, NAvo is the Avogadro
number. For the case of low energy electrons (T ≤ Tlim = 10MeV ) the above
expression should be multiplied by
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(
Tlim

T
)cl (̇1 +

al√
ZT

), (8.21)

with constant cl, al parameters.
The energy loss parameterization is the following :

Ebrem
Loss (Z, T, kc) =

Z(Z + ξl)(T +m)2

(T + 2m)

[

kc

T

]β

(2 − clhZ
1
4 )
a+ b T

Tlim

1 + c T
Tlim

fl

NAvo

(8.22)
where m is the mass of the electron, ξl, β, clh, a, b, c are constants, fl is a
polynomial in x = lg(T ) with Z-dependent coefficients for x < xl , fl = 1 for
x ≥ xl. For low energies this expression should be divided by

(
Tlim

T
)cl (8.23)

and if T < kc the expression should be multiplied by

(
T

kc
)al (8.24)

with some constants cl, al. The numerical values of the parameters and
the coefficients of the polynomyals fs and fl can be found in the class code.

The errors of the parameterizations (8.20) and (8.22) were estimated to be

∆σ

σ
=

{

6 − 8% for T ≤ 1MeV
≤ 4 − 5% for 1MeV < T

∆Ebrem
Loss

Ebrem
Loss

=

{

8 − 10% for T ≤ 1MeV
5 − 6% for 1MeV < T.

When running GEANT4, the energy loss due to soft photon bremsstrahlung
is tabulated at initialization time as a function of the medium and of the
energy, as is the mean free path for discrete bremsstrahlung.

Corrections for e+e− Differences

The preceding section has dealt exclusively with electrons. One might ex-
pect that positrons could be treated the same way. According to reference
[9] however,
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“The differences between the radiative loss of positrons and electrons are con-
siderable and cannot be disregarded.

[...] The ratio of the radiative energy loss for positrons to that for elec-
trons obeys a simple scaling law, [...] is a function only of the quantity T/Z2”

The radiative energy loss for electrons or positrons is given by

−1

ρ

(

dE

dx

)±

rad

=
NAvαr

2
e

A
(T +m)Z2Φ±

rad(Z, T )

Φ±
rad(Z, T ) =

1

αr2
eZ

2(T +m)

∫ T

0
k
dσ±

dk
dk

and it is the ratio

η =
Φ+

rad(Z, T )

Φ−
rad(Z, T )

= η
(

T

Z2

)

that obeys the scaling law.

The authors have calculated this function in the range 10−7 ≤ T
Z2 ≤ 0.5,

where the kinetic energy T is expressed in MeV. Their data can be fairly
accurately reproduced using a parametrization:

η =











0 if x ≤ −8
1
2

+ 1
π

arctan (a1x + a3x
3 + a5x

5) if −8 < x < 9
1 if x ≥ 9

where

x = log
(

C
T

Z2

)

(T in GeV)

C = 7.5221 × 106

a1 = 0.415

a3 = 0.0021

a5 = 0.00054.

The e+e− energy loss difference is not purely a low-energy phenomenon (at
least for high Z), as shown in Table 8.1.
The scaling property will be used to obtain the positron energy loss and
discrete bremsstrahlung from the corresponding electron values. However,
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T
Z2 (GeV ) T η

(

rad. loss
total loss

)

e−

10−9 ∼ 7keV ∼ 0.1 ∼ 0%
10−8 67keV ∼ 0.2 ∼ 1%

2 × 10−7 1.35MeV ∼ 0.5 ∼ 15%
2 × 10−6 13.5MeV ∼ 0.8 ∼ 60%
2 × 10−5 135.MeV ∼ 0.95 > 90%

Table 8.1: ratio of the e+e− radiative energy loss in lead (Z=82).

while scaling holds for the ratio of the total radiative energy losses, it is
significantly broken for the photon spectrum in the screened case. That is,

Φ+

Φ− = η
(

T

Z2

) dσ+

dk
dσ−

dk

= does not scale .

For the case of a point Coulomb charge, scaling would be restored for the
photon spectrum. In order to correct for non-scaling, it is useful to note that
in the photon spectrum from bremsstrahlung reported in [9]:

dσ±

dk
= S±

(

k

T

)

S+(k)

S−(k)
≤ 1 S+(1) = 0 S−(1) > 0

One can further assume that

dσ+

dk
= f(ε)

dσ−

dk
, ε =

k

T
(8.25)

and require
∫ 1

0
f(ε)dε = η (8.26)

in order to approximately satisfy the scaling law for the ratio of the total
radiative energy loss. From the photon spectra the boundary conditions

f(0) = 1
f(1) = 0

}

for all Z, T (8.27)

may be inferred. Choosing a simple function for f

f(ε) = C(1 − ε)α C, α > 0, (8.28)

the conditions (8.26), (8.27) lead to:

C = 1

α =
1

η
− 1 (α > 0 because η < 1)

f(ε) = (1 − ε)
1
η
−1.
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Now the weight factors Fl and Fσ for the positron continuous energy loss and
the discrete bremsstrahlung cross section can be defined:

Fl =
1

ε0

∫ ε0

0
f(ε)dε Fσ =

1

1 − ε0

∫ 1

ε0
f(ε)dε (8.29)

where ε0 = kc

T
and kc is the photon cut. In this scheme the positron energy

loss and discrete bremsstrahlung can be calculated as:

(

−dE
dx

)+

= Fl

(

−dE
dx

)−
σ+

brems = Fσσ
−
brems

In this approximation the photon spectra are identical, therefore the same
sampling is used for generating e− or e+ bremsstrahlung. The following
relations hold:

Fσ = η(1 − ε0)
1
η
−1 < η

ε0Fl + (1 − ε0)Fσ = η from the def (8.29)

⇒ Fl = η
1 − (1 − ε0)

1
η )

ε0
> η

1 − (1 − ε0)

ε0
= η ⇒

{

Fl > η
Fσ < η

which is consistent with the spectra. The effect of the difference in e− and
e+ bremsstrahlung can also be seen in electromagnetic shower development
when the primary energy is not too high.

Landau Pomeranchuk Migdal (LPM) effect

The LPM effect (see for example [3, 4] ) is the suppression of photon pro-
duction due to the multiple scattering of the electron. If an electron under-
goes multiple scattering while traversing the so called “formation zone”, the
bremsstrahlung amplitudes from before and after the scattering can inter-
fere, reducing the probability of bremsstrahlung photon emission (a similar
suppression occurs for pair production). The suppression becomes significant
for photon energies below a certain value, given by

k

E
<

E

ELPM

, (8.30)

where

k photon energy
E electron energy
ELPM characteristic energy for LPM effect (depend on the medium).
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The value of the LPM characteristic energy can be written as

ELPM =
αm2X0

4hc
, (8.31)

where
α fine structure constant
m electron mass
X0 radiation length in the material
h Planck constant
c velocity of light in vacuum.

The LPM suppression of the photon spectrum is given by the formula

SLPM =

√

ELPM · k
E2

, (8.32)

while the dielectric suppression (included already in the parameterizations)
can be written as

Sp =
k2

k2 + Cp · E2
, (8.33)

where the quantity Cp is given by

Cp =
r0λ

2
en

π
. (8.34)

In eq. 8.34 the parameters are

r0 classical electron radius
λe electron Compton wavelength
n electron density in the material.

Both suppression effects reduce the effective formation length of the photon,
so the suppressions do not simply multiply. For the total suppression S the
following equation holds (see [3])

1

S
= 1 +

1

Sp

+
S

S2
LPM

(8.35)

which can be solved easily for S

S =

√

S4
LPM · (1 + 1

Sp
)2 + 4 · S2

LPM − S2
LPM · (1 + 1

Sp
)

2
. (8.36)
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The LPM effect was implemented by applying to the energy loss a factor
S
Sp

, which depends on the energy and material. This is done at initialization

time by computing the correction factor

fc =

∫ kcut
0 nγ(k) · S

Sp
dk

∫ kcut
0 nγ(k)dk

, (8.37)

where nγ(k) is the photon spectrum. A similar correction has not been
applied to the total cross section given by the parameterization 8.20. Instead
the LPM effect is included in the photon generation algorithm.

8.2.2 Simulation of Discrete Bremsstrahlung

The energy of the final state photons is sampled according to the spectrum
[5] of Seltzer and Berger. They have calculated the bremsstrahlung spectra
for materials with atomic numbers Z = 6, 13, 29, 47, 74 and 92 in the electron
kinetic energy range 1 keV - 10 GeV. Their tabulated results have been used
as input in a fit of the parameterized function

S(x) = Ck
dσ

dk
,

which will be used to form the rejection function for the sampling process.
The parameterization can be written as

S(x) =

{

(1 − ahε)F1(δ) + bhε
2F2(δ) T ≥ 1MeV

1 + alx+ blx
2 T < 1MeV

(8.38)

where

C normalization constant
k photon energy

T,E kinetic and total energy of the primary electron
x = k

T

ε = k
E

= xT
E

and ah,l and bh,l are the parameters to be fitted. The Fi(δ) screening functions
depend on the screening variable

δ = 136me

Z1/3E
ε

1−ε

F1(δ) = F0(42.392 − 7.796δ + 1.961δ2 − F ) δ ≤ 1
F2(δ) = F0(41.734 − 6.484δ + 1.250δ2 − F ) δ ≤ 1
F1(δ) = F2(δ) = F0(42.24 − 8.368 ln(δ + 0.952) − F ) δ > 1
F0 = 1

42.392−F

F = 4 lnZ − 0.55(lnZ)2.
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The “high energy” (T > 1 MeV) formula is essentially the Coulomb-corrected,
screened Bethe-Heitler formula (see e.g. [10, 11, 6]). However, Eq. (8.38) dif-
fers from Bethe-Heitler in two ways:

1. ah, bh depend on T and on the atomic number Z, whereas in the Bethe-
Heitler spectrum they are fixed (ah = 1, bh = 0.75);

2. the function F is not the same as that in the Bethe-Heitler cross-section;
the present function gives a better behavior in the high frequency limit,
i.e. when k → T (x→ 1).

The T and Z dependence of the parameters are described by the equations:

ah = 1 +
ah1

u
+
ah2

u2
+
ah3

u3

bh = 0.75 +
bh1

u
+
bh2

u2
+
bh3

u3

al = al0 + al1u+ al2u
2

bl = bl0 + bl1u+ bl2u
2

with

u = ln
(

T

me

)

The parameters ahi, bhi, ali, bli are polynomials of second order in the variable:

v = [Z(Z + 1)]1/3.

In the limiting case T → ∞, ah → 1, bh → 0.75, Eq. (8.38) gives the Bethe-
Heitler cross section.

There are altogether 36 linear parameters in the formulae and their values
are given in the code. This parameterization reproduces the Seltzer-Berger
tables to within 2-3 % on average, with the maximum error being less than
10-12 %. The original tables, on the other hand, agree well with the exper-
imental data and theoretical (low- and high-energy) results (< 10 % below
50 MeV and < 5 % above 50 MeV).

Apart from the normalization the cross section differential in photon energy
can be written as

dσ

dk
=

1

ln 1
xc

1

x
g(x) =

1

ln 1
xc

1

x

S(x)

Smax
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where xc = kc/T and kc is the photon cut-off energy below which the
bremsstrahlung is treated as a continuous energy loss. Using this decomposi-
tion of the cross section and two random numbers r1, r2 uniformly distributed
in [0, 1], the sampling of x is done as follows:

1. sample x from

1

ln 1
xc

1

x
setting x = er1 lnxc

2. calculate the rejection function g(x) and:

• if r2 > g(x) reject x and go back to 1;

• if r2 ≤ g(x) accept x.

The application of the dielectric suppression [8] and the LPM effect requires
that ε also be sampled. First, the rejection function must be multiplied by a
suppression factor

CM(ε) =
1 + C0/ε

2
c

1 + C0/ε2

where

C0 =
nr0λ

2

π
, εc =

kc

E

n electron density in the medium

r0 classical electron radius

λ reduced Compton wavelength of the electron.

Apart from the Migdal correction factor, this is simply expression 8.33 . This
correction decreases the cross-section for low photon energies.

While sampling ε, the suppression factor fLPM = S
Sp

is also used as a re-

jection function in order to take into account the LPM effect. Here the
supression factor is compared to a random number r uniformly distributed
in the interval [0, 1]. If fLPM ≥ r the simulation continues, otherwise the
bremsstrahlung process concludes without photon production. It can be seen
that this procedure performs the LPM suppression correctly.

After the successful sampling of ε, the polar angles of the radiated photon are
generated with respect to the parent electron’s momentum. It is difficult to
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find simple formulae for this angle in the literature. For example the double
differential cross section reported by Tsai [12, 13] is

dσ

dkdΩ
=

2α2e2

πkm4

{[

2ε− 2

(1 + u2)2
+

12u2(1 − ε)

(1 + u2)4

]

Z(Z + 1)

+

[

2 − 2ε− ε2

(1 + u2)2
− 4u2(1 − ε)

(1 + u2)4

]

[

X − 2Z2fc((αZ)2)
]

}

u =
Eθ

m

X =
∫ m2(1+u2)2

tmin

[

Gel
Z(t) +Gin

Z (t)
] t− tmin

t2
dt

Gel,in
Z (t) atomic form factors

tmin =

[

km2(1 + u2)

2E(E − k)

]2

=

[

εm2(1 + u2)

2E(1 − ε)

]2

.

The sampling of this distribution is complicated. It is also only an approxi-
mation to within a few percent, due at least to the presence of the atomic form
factors. The angular dependence is contained in the variable u = Eθm−1.
For a given value of u the dependence of the shape of the function on Z, E
and ε = k/E is very weak. Thus, the distribution can be approximated by a
function

f(u) = C
(

ue−au + due−3au
)

(8.39)

where

C =
9a2

9 + d
a = 0.625 d = 27

where E is in GeV. While this approximation is good at high energies, it be-
comes less accurate around a few MeV. However in that region the ionization
losses dominate over the radiative losses.

The sampling of the function f(u) can be done with three random numbers
ri, uniformly distributed on the interval [0,1]:

1. choose between ue−au and due−3au:

b =

{

a if r1 < 9/(9 + d)
3a if r1 ≥ 9/(9 + d)

2. sample ue−bu:

u = − log(r2r3)

b
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P =
∫ ∞

umax

f(u) du

E (MeV) P(%)
0.511 3.4
0.6 2.2
0.8 1.2
1.0 0.7
2.0 < 0.1

Table 8.2: Angular sampling efficiency

3. check that:

u ≤ umax =
Eπ

m

otherwise go back to 1.

The probability of failing the last test is reported in table 8.2.

The function f(u) can also be used to describe the angular distribution of
the photon in µ bremsstrahlung and to describe the angular distribution in
photon pair production.

The azimuthal angle φ is generated isotropically. Along with θ, this informa-
tion is used to calculate the momentum vectors of the radiated photon and
parent electron, and to transform them to the global coordinate system.

8.2.3 Status of this document

09.10.98 created by L. Urbán.
21.03.02 modif in angular distribution (M.Maire)
27.05.02 re-written by D.H. Wright
01.12.03 minor update by V. Ivanchenko
20.05.04 updated by L.Urban
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8.3 Positron - Electron Annihilation

8.3.1 Introduction

The process G4eplusAnnihilation simulates the in-flight annihilation of a
positron with an atomic electron. As is usually done in shower programs [1],
it is assumed here that the atomic electron is initially free and at rest. Also,
annihilation processes producing one, or three or more, photons are ignored
because these processes are negligible compared to the annihilation into two
photons [1, 2].

8.3.2 Cross Section and Mean Free Path

Cross Section per Atom

The annihilation in flight of a positron and electron is described by the cross
section formula of Heitler [3, 1]:

σ(Z,E) =
Zπr2

e

γ + 1

[

γ2 + 4γ + 1

γ2 − 1
ln
(

γ +
√

γ2 − 1
)

− γ + 3√
γ2 − 1

]

(8.40)

where

E = total energy of the incident positron

γ = E/mc2

re = classical electron radius

Mean Free Path

In a given material the mean free path, λ, for a positron to be annihilated
with an electron is given by

λ(E) =

(

∑

i

nati · σ(Zi, E)

)−1

(8.41)

where nati is the number of atoms per volume of the ith element composing
the material.

8.3.3 Sampling the final state

The final state of the e+ e− annihilation process

e+ e− → γa γb
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is simulated by first determining the kinematic limits of the photon energy
and then sampling the photon energy within those limits using the differential
cross section. Conservation of energy-momentum is then used to determine
the directions of the final state photons.

Kinematic Limits

If the incident e+ has a kinetic energy T , then the total energy is Ee =

T + mc2 and the momentum is Pc =
√

T (T + 2mc2). The total available

energy is Etot = Ee + mc2 = Ea + Eb and momentum conservation requires
~P = ~Pγa + ~Pγb

. The fraction of the total energy transferred to one photon
(say γa) is

ε =
Ea

Etot
≡ Ea

T + 2mc2
. (8.42)

The energy transfered to γa is largest when γa is emitted in the direction of
the incident e+. In that case Eamax = (Etot + Pc)/2 . The energy transfered
to γa is smallest when γa is emitted in the opposite direction of the incident
e+. Then Eamin = (Etot − Pc)/2 . Hence,

εmax =
Eamax

Etot

=
1

2

[

1 +

√

γ − 1

γ + 1

]

(8.43)

εmin =
Eamin

Etot
=

1

2

[

1 −
√

γ − 1

γ + 1

]

(8.44)

where γ = (T + mc2)/mc2 . Therefore the range of ε is [εmin ; εmax]
(≡ [εmin ; 1 − εmin]).

Sampling the Gamma Energy

A short overview of the sampling method is given in Chapter 2.
The differential cross section of the two-photon positron-electron annihi-

lation can be written as [3, 1]:

dσ(Z, ε)

dε
=
Zπr2

e

γ − 1

1

ε

[

1 +
2γ

(γ + 1)2
− ε− 1

(γ + 1)2

1

ε

]

(8.45)

where Z is the atomic number of the material, re the classical electron radius,
and ε ∈ [εmin ; εmax] . The differential cross section can be decomposed as

dσ(Z, ε)

dε
=
Zπr2

e

γ − 1
αf(ε)g(ε) (8.46)
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where

α = ln(εmax/εmin)

f(ε) =
1

αε
(8.47)

g(ε) =

[

1 +
2γ

(γ + 1)2
− ε− 1

(γ + 1)2

1

ε

]

≡ 1 − ε +
2γε− 1

ε(γ + 1)2
(8.48)

Given two random numbers r, r′ ∈ [0, 1], the photon energies are chosen as
follows:

1. sample ε from f(ε) : ε = εmin

(

εmax

εmin

)r

2. test the rejection function: if g(ε) ≥ r′ accept ε, otherwise return to
step 1.

Then the photon energies are Ea = εEtot Eb = (1 − ε)Etot .

Computing the Final State Kinematics

If θ is the angle between the incident e+ and γa, then from energy-momentum
conservation,

cos θ =
1

Pc

[

T +mc2
2ε− 1

ε

]

=
ε(γ + 1) − 1

ε
√
γ2 − 1

. (8.49)

The azimuthal angle, φ, is generated isotropically and the photon momentum
vectors, ~Pγa and ~Pγb

, are computed from energy-momentum conservation and
transformed into the lab coordinate system.

Annihilation at Rest

The method AtRestDoIt treats the special case when a positron comes to
rest before annihilating. It generates two photons, each with energy k = mc2

and an isotropic angular distribution.

8.3.4 Status of this document

09.10.98 created by M.Maire.
01.08.01 minor corrections (mma)
09.01.02 MeanFreePath (mma)
01.12.02 Re-written by D.H. Wright
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8.4 Positron - Electron Annihilation into Muon

- Anti-muon

The class G4AnnihiToMuPair simulates the electromagnetic production of
muon pairs by the annihilation of high-energy positrons with atomic elec-
trons. Details of the implementation are given below and can also be found
in Ref. [1].

8.4.1 Total Cross Section

The annihilation of positrons and target electrons producing muon pairs in
the final state (e+e− → µ+µ−) may give an appreciable contribution to the
total number of muons produced in high-energy electromagnetic cascades.
The threshold positron energy in the laboratory system for this process with
the target electron at rest is

Eth = 2m2
µ/me −me ≈ 43.69 GeV , (8.50)

where mµ and me are the muon and electron masses, respectively. The total
cross section for the process on the electron is

σ =
π r2

µ

3
ξ

(

1 +
ξ

2

)

√

1 − ξ , (8.51)

where rµ = reme/mµ is the classical muon radius, ξ = Eth/E, and E is the
total positron energy in the laboratory frame. In Eq. 8.51, approximations
are made that utilize the inequality m2

e � m2
µ.

The cross section as a function of the positron energy E is shown in Fig.8.1.
It has a maximum at E = 1.396Eth and the value at the maximum is σmax =
0.5426 r2

µ = 1.008µb.

8.4.2 Sampling of Energies and Angles

It is convenient to simulate the muon kinematic parameters in the center-of-
mass (c.m.) system, and then to convert into the laboratory frame.

The energies of all particles are the same in the c.m. frame and equal to

Ecm =

√

1

2
me(E +me) . (8.52)

The muon momenta in the c.m. frame are Pcm =
√

E2
cm −m2

µ. In what

follows, let the cosine of the angle between the c.m. momenta of the µ+ and
e+ be denoted as x = cos θcm .
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Figure 8.1: Total cross section for the process e+e− → µ+µ− as a function of
the positron energy E in the laboratory system.
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From the differential cross section it is easy to derive that, apart from
normalization, the distribution in x is described by

f(x) dx = (1 + ξ + x2 (1 − ξ)) dx , −1 ≤ x ≤ 1 . (8.53)

The value of this function is contained in the interval (1+ ξ) ≤ f(x) ≤ 2 and
the generation of x is straightforward using the rejection technique. Fig. 8.2
shows both generated and analytic distributions.
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Figure 8.2: Generated histograms with 106 entries each and the expected
cos θcm distributions (dashed lines) at E = 50 and 500GeV positron energy
in the lab frame. The asymptotic 1 + cos θ2

cm distribution valid for E → ∞
is shown as dotted line.

The transverse momenta of the µ+ and µ− particles are the same, both
in the c.m. and the lab frame, and their absolute values are equal to

P⊥ = Pcm sin θcm = Pcm

√
1 − x2 . (8.54)

The energies and longitudinal components of the muon momenta in the lab
system may be obtained by means of a Lorentz transformation. The velocity
and Lorentz factor of the center-of-mass in the lab frame may be written as

β =

√

E −me

E +me
, γ ≡ 1√

1 − β2
=

√

E +me

2me
=
Ecm

me
. (8.55)
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The laboratory energies and longitudinal components of the momenta of the
positive and negative muons may then be obtained:

E+ = γ (Ecm + x β Pcm) , P+‖
= γ (βEcm + xPcm) , (8.56)

E− = γ (Ecm − x β Pcm) , P−‖
= γ (βEcm − xPcm) . (8.57)

Finally, for the vectors of the muon momenta one obtains:

P+ = (+P⊥ cosϕ,+P⊥ sinϕ, P+‖
) , (8.58)

P− = (−P⊥ cosϕ,−P⊥ sinϕ, P−‖
) , (8.59)

where ϕ is a random azimuthal angle chosen between 0 and 2 π. The z-axis
is directed along the momentum of the initial positron in the lab frame.

The maximum and minimum energies of the muons are given by

Emax ≈ 1

2
E
(

1 +
√

1 − ξ
)

, (8.60)

Emin ≈ 1

2
E
(

1 −
√

1 − ξ
)

=
Eth

2
(

1 +
√

1 − ξ
) . (8.61)

The fly-out polar angles of the muons are approximately

θ+ ≈ P⊥/P+‖
, θ− ≈ P⊥/P−‖

; (8.62)

the maximal angle θmax ≈ me

mµ

√

1 − ξ is always small compared to 1.

Validity

The process described is assumed to be purely electromagnetic. It is based
on virtual γ exchange, and the Z-boson exchange and γ − Z interference
processes are neglected. The Z-pole corresponds to a positron energy of
E = M2

Z/2me = 8136 TeV. The validity of the current implementation is
therefore restricted to initial positron energies of less than about 1000TeV.

8.4.3 Status of this document

05.02.03 created by H.Burkhardt
14.04.03 minor re-wording by D.H. Wright
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8.5 Synchrotron Radiation

Synchrotron radiation photons are produced when ultra-relativistic electrons
travel along an approximately circular path. In the following treatment, the
magnetic field is assumed to be constant and uniform, and the radius of
curvature of the electron is assumed to be constant over its trajectory.

8.5.1 Spectral and Angular Distributions of Synchrotron

Radiation

The spectral distribution of the mean number of synchrotron radiation pho-
tons, dN̄/dω, produced by an ultra-relativistic electron along a circular tra-
jectory of length L, can be expressed in terms of the mean energy loss spec-
trum d∆̄/dω [1]:

dN̄

dω
=

1

ω

d∆̄

dω
=

√
3

2π
α
(

Lγ

R

)

1

ωc

∫ ∞

ω/ωc

K5/3(η)dη. (8.63)

Here,

ω photon energy

α fine structure constant

R instantaneous radius of curvature of the trajectory

K Macdonald function

ωc = 1.5β(h̄c/R)γ3 characteristic energy of synchrotron radiation.

β is the ratio of the electron velocity v to c, γ = 1/
√

1 − β2, and η is an arbi-
trary integration variable. In the SI system of units: R(m) = P (GeV/c)/0.3B⊥(T )
, where B⊥ is the component of magnetic flux density perpendicular to the
electron velocity, and P is the electron momentum.

In order to simulate the energy spectrum of synchrotron radiation using
the Monte Carlo method, N̄>ω, the mean number of photons above a given
energy ω, must be determined. This is done by integrating Eq. 8.63 over
energy, after first transforming dN̄/dω by using the integral representation
of the Macdonald function [2]:

N̄>ω =
∫ ∞

ω

dN̄

dω′dω
′

=

√
3

2π
α
(

Lγ

R

) ∫ ∞

0

cosh
(

5
3
t
)

cosh2(t)
exp

[

− ω

ωc
cosh(t)

]

dt. (8.64)
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Here, t is also an arbitrary integration variable. The latter integral is cal-
culated numerically by the quadrature Laguerre formula [3]. Calculations
indicate that about 50 roots of the Laguerre polynomials are required in
order for the accuracy of the integral estimation to be better than 10−4 [4].

The Monte Carlo method also requires the mean number of synchrotron
radiation photons at all energies, N̄ (= N̄>0), in order to determine the next
occurrence of synchrotron radiation along a trajectory, and to normalize the
spectral distribution of the radiation. Setting ω = 0 in Eq. 8.64 yields

N̄ = N̄>0 =

√
3

2π
α
(

Lγ

R

) ∫ ∞

0

cosh
(

5
3
t
)

cosh2(t)
dt

=
5

2
√

3
α
(

Lγ

R

)

≈ 10−2
(

Lγ

R

)

. (8.65)

Qualitatively this result can be manipulated using the fact that the mean
number of photons produced along the formation zone length z ≈ R/γ is
proportional to α. Then for length L, N̄ ≈ αL/(R/γ). Note that when
γ � 1, and R ∼ γ, N̄ does not depend on the electron energy but is defined
by the values of L and B⊥ only. Instead, it is the mean energy loss due
to synchrotron radiation ∆̄, corresponding to a trajectory of length L, that
displays the characteristic relativistic rise:

∆̄ =
∫ ∞

0
ω
dN̄

dω
dω =

2

3
αh̄c

(

Lγ2

R2

)

βγ2 =
8N̄

15
√

3
ωc ≈ 0.31N̄ωc ∼ γ2. (8.66)

The angular distribution of synchrotron radiation produced by ultra-
relativistic electrons shows a clear ’searchlight’ effect. Most of the photons
are radiated within an angular range of order 1/γ centered on the electron
trajectory direction. In the interesting region of γ > 103 the angular resolu-
tion of X-ray and gamma detectors usually does not allow the details of the
angular distribution to be measured. Therefore, the angular distribution is
set to be flat in the range 0 − 1/γ.

8.5.2 Simulating Synchrotron Radiation

The distance x along the electron/positron trajectory to the next occurrence
of a synchrotron radiation photon is simulated according to the exponen-
tial distribution, exp(−xN̄/L). The energy ω of the photon is simulated
according to the distribution N̄>ω/N̄ . The direction of the photon (θ, ϕ) is
generated relative to the local z-axis which is taken to be along the instan-
taneous direction of the electron. θ and ϕ are distributed randomly in the
ranges [0, 1/γ] and [0, 2π], respectively.
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Chapter 9

Muon Incident
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9.1 Ionization

9.1.1 Method

The class G4MuIonisation provides the continuous energy loss due to ion-
ization and simulates the ’discrete’ part of the ionization, that is delta rays
produced by muons. The approach described in Section 7.1 is used. The
value of the maximum energy transferable to a free electron Tmax is given by
the following relation:

Tmax =
2mc2(γ2 − 1)

1 + 2γ(m/M) + (m/M)2
. (9.1)

Here m is the electron mass and M the muon mass. The method of calcu-
lation of the continuous energy loss and the total cross section are explained
below.

9.1.2 Continuous Energy Loss

The integration of 7.1 leads to the Bethe-Bloch restricted energy loss formula
[1] :

dE

dx

]

T<Tcut

= 2πr2
emc

2nel
(zp)

2

β2

[

ln

(

2mc2β2γ2Tup

I2

)

− β2
(

1 +
Tup

Tmax

)

− δ − 2Ce

Z

]

(9.2)
where

re classical electron radius: e2/(4πε0mc
2)

mc2 mass-energy of the electron
nel electrons density in the material
I mean excitation energy in the material
γ E/mc2

β2 1 − (1/γ2)
Tup min(Tcut, Tmax)
δ density effect function
Ce shell correction function

In a single element the electron density is

nel = Z nat = Z
Navρ

A

(Nav: Avogadro number, ρ: density of the material, A: mass of a mole). In
a compound material

nel =
∑

i

Zi nati =
∑

i

Zi
Navwiρ

Ai
.
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wi is the proportion by mass of the ith element, with molar mass Ai.
The mean excitation energy, I, for all elements is tabulated according to

the ICRU recommended values [2].

Density Correction

δ is a correction term which takes into account the reduction in energy loss
due to the so-called density effect. This becomes important at high energy
because media have a tendency to become polarised as the incident particle
velocity increases. As a consequence, the atoms in a medium can no longer
be considered as isolated. To correct for this effect the formulation of Stern-
heimer [3] is used:
x is a kinetic variable of the particle : x = log10(γβ) = ln(γ2β2)/4.606,
and δ(x) is defined by

for x < x0 : δ(x) = 0
for x ∈ [x0, x1] : δ(x) = 4.606x− C + a(x1 − x)m

for x > x1 : δ(x) = 4.606x− C
(9.3)

where the matter-dependent constants are calculated as follows:

hνp = plasma energy of the medium =
√

4πnelr3
emc

2/α =
√

4πnelreh̄c

C = 1 + 2 ln(I/hνp)
xa = C/4.606
a = 4.606(xa − x0)/(x1 − x0)

m

m = 3.
(9.4)

For condensed media

I < 100 eV

{

for C ≤ 3.681 x0 = 0.2 x1 = 2
for C > 3.681 x0 = 0.326C − 1.0 x1 = 2

I ≥ 100 eV

{

for C ≤ 5.215 x0 = 0.2 x1 = 3
for C > 5.215 x0 = 0.326C − 1.5 x1 = 3

and for gaseous media

for C < 10. x0 = 1.6 x1 = 4
for C ∈ [10.0, 10.5[ x0 = 1.7 x1 = 4
for C ∈ [10.5, 11.0[ x0 = 1.8 x1 = 4
for C ∈ [11.0, 11.5[ x0 = 1.9 x1 = 4
for C ∈ [11.5, 12.25[ x0 = 2. x1 = 4
for C ∈ [12.25, 13.804[ x0 = 2. x1 = 5
for C ≥ 13.804 x0 = 0.326C − 2.5 x1 = 5.
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Shell Correction

2Ce/Z is the so-called shell correction term which accounts for the fact that,
at low energies for light elements and at all energies for heavy ones, the
probability of collision with the electrons of the inner atomic shells (K, L,
etc.) is negligible. The semi-empirical formula used in Geant4, applicable
to all materials, is due to Barkas [4]:

Ce(I, βγ) =
a(I)

(βγ)2
+

b(I)

(βγ)4
+

c(I)

(βγ)6
. (9.5)

The functions a(I), b(I), c(I) can be found in the source code. This formula
breaks down at low energies, and is valid only when βγ > 0.13 (T > 7.9 MeV
for a proton). For βγ ≤ 0.13 the shell correction term is calculated as:

Ce(I, βγ)

∣

∣

∣

∣

βγ≤0.13
= Ce(I, βγ = 0.13)

ln(T/T2l)

ln(7.9 MeV/T2l)
(9.6)

i.e. the correction is switched off logarithmically from T = 7.9 MeV to
T = T2l = 2 MeV.

Parameterization

The mean energy loss can be described by the Bethe-Bloch formula (9.2)
only if the projectile velocity is larger than that of the orbital electrons. In
the low energy region this is not the case, and the parameterization from the
ICRU’49 report [5] is used in the G4BraggModel class. The Bethe-Bloch
model is applied to muons of higher kinetic energies

T > 2 ∗Mµ/MprotonMeV. (9.7)

The details of the low energy parameterization are described in Section 11.10.

9.1.3 Total Cross Section per Atom and Mean Free

Path

For T � I the differential cross section can be written as [1]

dσ

dT
= 2πr2

emc
2Z

z2
p

β2

1

T 2

[

1 − β2 T

Tmax

+
T 2

2E2

]

. (9.8)

In Geant4 Tcut ≥ 1 keV. Integrating from Tcut to Tmax gives the total cross-
section per atom :

σ(Z,E, Tcut) =
2πr2

eZz
2
p

β2
mc2 × (9.9)
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[

(

1

Tcut
− 1

Tmax

)

− β2

Tmax
ln
Tmax

Tcut
+
Tmax − Tcut

2E2

]

.

In a given material the mean free path is

λ = (nat · σ)−1 or λ = (
∑

i nati · σi)
−1 . (9.10)

The mean free path is tabulated during initialization as a function of the
material and of the energy of the incident muon.

9.1.4 Simulating Delta-ray Production

A short overview of the sampling method is given in Chapter 2. Apart from
the normalization, the cross section 9.8 can be factorized :

dσ

dT
= f(T )g(T ) with T ∈ [Tcut, Tmax] (9.11)

where

f(T ) =
(

1

Tcut
− 1

Tmax

)

1

T 2
(9.12)

g(T ) = 1 − β2 T

Tmax
+

T 2

2E2
. (9.13)

The energy T is chosen by

1. sampling T from f(T )

2. calculating the rejection function g(T ) and accepting the sampled T
with a probability of g(T ).

After successful sampling of the energy, the direction of the scattered elec-
tron is generated with respect to the direction of the incident muon. The
azimuthal angle φ is generated isotropically. The polar angle θ is calculated
from energy-momentum conservation. This information is used to calculate
the energy and momentum of both scattered particles and to transform them
into the global coordinate system.

9.1.5 Status of this document

09.10.98 created by L. Urbán.
14.12.01 revised by M.Maire
30.11.02 re-worded by D.H. Wright
01.12.03 revised by V. Ivanchenko
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9.2 Bremsstrahlung

Bremsstrahlung dominates other muon interaction processes in the region
of catastrophic collisions (v ≥ 0.1 ), that is at ”moderate” muon energies
above the kinematic limit for knock–on electron production. At high energies
(E ≥ 1 TeV) this process contributes about 40% of the average muon energy
loss.

9.2.1 Differential Cross Section

The differential cross section for muon bremsstrahlung (in units of cm2/(g GeV))
can be written as

dσ(E, ε, Z, A)

dε
=

16

3
αNA(

m

µ
re)

2 1

εA
Z(ZΦn + Φe)(1 − v +

3

4
v2)

= 0 if ε ≥ εmax = E − µ, (9.14)

where µ and m are the muon and electron masses, Z and A are the atomic
number and atomic weight of the material, and NA is Avogadro’s number.
If E and T are the initial total and kinetic energy of the muon, and ε is
the emitted photon energy, then ε = E −E ′ and the relative energy transfer
v = ε/E.

Φn represents the contribution of the nucleus and can be expressed as

Φn = ln
BZ−1/3(µ+ δ(D′

n

√
e− 2))

D′
n(m+ δ

√
eBZ−1/3)

;

= 0 if negative.

Φe represents the contribution of the electrons and can be expressed as

Φe = ln
B′Z−2/3µ

(

1 +
δµ

m2
√
e

)

(m + δ
√
eB′Z−2/3)

;

= 0 if ε ≥ ε′max = E/(1 + µ2/2mE);

= 0 if negative.

In Φn and Φe, for all nuclei except hydrogen,

δ = µ2ε/2EE ′ = µ2v/2(E − ε);

D′
n = D(1−1/Z)

n , Dn = 1.54A0.27;

B = 183, B′ = 1429,
√
e = 1.648(721271).
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For hydrogen (Z=1) B = 202.4, B ′ = 446, D′
n = Dn.

These formulae are taken mostly from Refs. [1] and [2]. They include
improved nuclear size corrections in comparison with Ref. [3] in the region
v ∼ 1 and low Z. Bremsstrahlung on atomic electrons (taking into account
target recoil and atomic binding) is introduced instead of a rough substitution
Z(Z + 1). A correction for processes with nucleus excitation is also included
[4].

Applicability and Restrictions of the Method

The above formulae assume that:
1. E � µ, hence the ultrarelativistic approximation is used;
2. E ≤ 1020 eV; above this energy, LPM suppression can be expected;
3. v ≥ 10−6 ; below 10−6 Ter-Mikaelyan suppression takes place. However, in
the latter region the cross section of muon bremsstrahlung is several orders
of magnitude less than that of other processes.
The Coulomb correction (for high Z) is not included. However, existing
calculations [5] show that for muon bremsstrahlung this correction is small.

9.2.2 Continuous Energy Loss

The restricted energy loss for muon bremsstrahlung (dE/dx)rest with relative
transfers v = ε/(T + µ) ≤ vcut can be calculated as follows :

(

dE

dx

)

rest

=
∫ εcut

0
ε σ(E, ε) dε = (T + µ)

∫ vcut

0
ε σ(E, ε) dv .

If the user cut vcut ≥ vmax = T/(T + µ), the total average energy loss is
calculated. Integration is done using Gaussian quadratures, and binning
provides an accuracy better than about 0.03% for T = 1 GeV, Z = 1. This
rapidly improves with increasing T and Z.

9.2.3 Total Cross Section

The integration of the differential cross section over dε gives the total cross
section for muon bremsstrahlung:

σtot(E, εcut) =
∫ εmax

εcut

σ(E, ε)dε =
∫ ln vmax

ln vcut

εσ(E, ε)d(ln v), (9.15)

where vmax = T/(T + µ). If vcut ≥ vmax , σtot = 0.
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9.2.4 Sampling

The photon energy εp is found by numerically solving the equation :

P =
∫ εmax

εp

σ(E, ε, Z, A) dε
/∫ εmax

εcut

σ(E, ε, Z, A) dε .

Here P is the random uniform probability, εmax = T , and εcut = (T + µ) ·
vcut. vmin.cut = 10−5 is the minimal relative energy transfer adopted in the
algorithm.

For fast sampling, the solution of the above equation is tabulated at
initialization time for selected Z, T and P . During simulation, this table is
interpolated in order to find the value of εp corresponding to the probability
P .

The tabulation routine uses accurate functions for the differential cross
section. The table contains values of

xp = ln(vp/vmax)/ ln(vmax/vcut), (9.16)

where vp = εp/(T + µ) and vmax = T/(T + µ). Tabulation is performed
in the range 1 ≤ Z ≤ 128, 1 ≤ T ≤ 1000 PeV, 10−5 ≤ P ≤ 1 with con-
stant logarithmic steps. Atomic weight (which is a required parameter in the
cross section) is estimated here with an iterative solution of the approximate
relation:

A = Z (2 + 0.015A2/3).

For Z = 1, A = 1 is used.
To find xp (and thus εp) corresponding to a given probability P , the

sampling method performs a linear interpolation in lnZ and lnT , and a
cubic, 4 point Lagrangian interpolation in lnP . For P ≤ Pmin, a linear
interpolation in (P, x) coordinates is used, with x = 0 at P = 0. Then the
energy εp is obtained from the inverse transformation of 9.16 :

εp = (T + µ)vmax(vmax/vcut)
xp

The algorithm with the parameters described above has been tested for var-
ious Z and T . It reproduces the differential cross section to within 0.2 –
0.7 % for T ≥ 10 GeV. The average total energy loss is accurate to within
0.5%. While accuracy improves with increasing T , satisfactory results are
also obtained for 1 ≤ T ≤ 10 GeV.

It is important to note that this sampling scheme allows the generation
of εp for different user cuts on v which are above vmin.cut. To perform such a
simulation, it is sufficient to define a new probability variable

P ′ = P σtot (vuser.cut)/σtot(vmin.cut)
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and use it in the sampling method. Time consuming re-calculation of the
3-dimensional table is therefore not required because only the tabulation of
σtot(vuser.cut) is needed.

The small-angle, ultrarelativistic approximation is used for the simulation
(with about 20% accuracy at θ ≤ θ∗ ≈ 1) of the angular distribution of the
final state muon and photon. Since the target recoil is small, the muon
and photon are directed symmetrically (with equal transverse momenta and
coplanar with the initial muon):

p⊥µ = p⊥γ, where p⊥µ = E ′θµ, p⊥γ = εθγ . (9.17)

θµ and θγ are muon and photon emission angles. The distribution in the
variable r = Eθγ/µ is given by

f(r)dr ∼ rdr/(1 + r2)2. (9.18)

Random angles are sampled as follows:

θγ =
µ

E
r θµ =

ε

E ′ θγ , (9.19)

where

r =

√

a

1 − a
, a = ξ

r2
max

1 + r2
max

, rmax = min(1, E ′/ε) · E θ∗/µ ,

and ξ is a random number uniformly distributed between 0 and 1.

9.2.5 Status of this document
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9.3 Muon Photonuclear Interaction

The inelastic interaction of muons with nuclei is important at high muon en-
ergies (E ≥ 10 GeV), and at relatively high energy transfers ν (ν/E ≥ 10−2).
It is especially important for light materials and for the study of detector re-
sponse to high energy muons, muon propagation and muon-induced hadronic
background. The average energy loss for this process increases almost lineary
with energy, and at TeV muon energies constitutes about 10% of the energy
loss rate.

The main contribution to the cross section σ(E, ν) and energy loss comes
from the low Q2–region ( Q2 � 1 GeV2). In this domain, many simplifi-
cations can be made in the theoretical consideration of the process in order
to obtain convenient and simple formulae for the cross section. Most widely
used are the expressions given by Borog and Petrukhin [1], and Bezrukov and
Bugaev [2]. Results from these authors agree within 10% for the differential
cross section and within about 5% for the average energy loss, provided the
same photonuclear cross section, σγN , is used in the calculations.

9.3.1 Differential Cross Section

The Borog and Petrukhin formula for the cross section is based on:

• Hand’s formalism [3] for inelastic muon scattering,

• a semi-phenomenological inelastic form factor, which is a Vector Dom-
inance Model with parameters estimated from experimental data, and

• nuclear shadowing effects with a reasonable theoretical parameteriza-
tion [4].

For E ≥ 10 GeV, the Borog and Petrukhin cross section (cm2/g GeV), dif-
ferential in transferred energy, is

σ(E, ν) = Ψ(ν)Φ(E, v), (9.20)

Ψ(ν) =
α

π

AeffNAV

A
σγN (ν)

1

ν
, (9.21)

Φ(E, v) = v − 1 +

[

1 − v +
v2

2

(

1 +
2µ2

Λ2

)]

ln

E2(1 − v)

µ2

(

1 +
µ2v2

Λ2(1 − v)

)

1 +
Ev

Λ

(

1 +
Λ

2M
+
Ev

Λ

) ,

(9.22)
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where ν is the energy lost by the muon, v = ν/E, and µ and M are
the muon and nucleon (proton) masses, respectively. Λ is a Vector Dom-
inance Model parameter in the inelastic form factor which is estimated to be
Λ2 = 0.4 GeV2.

For Aeff , which includes the effect of nuclear shadowing, the parameterization
[4]

Aeff = 0.22A+ 0.78A0.89 (9.23)

is chosen.

A reasonable choice for the photonuclear cross section, σγN , is the parame-
terization obtained by Caldwell et al. [5] based on the experimental data on
photoproduction by real photons:

σγN = (49.2 + 11.1 lnK + 151.8/
√
K) · 10−30cm2 K in GeV. (9.24)

The upper limit of the transferred energy is taken to be νmax = E −M/2.
The choice of the lower limit νmin is less certain since the formula 9.20, 9.21,
9.22 is not valid in this domain. Fortunately, νmin influences the total cross
section only logarithmically and has no practical effect on the average energy
loss for high energy muons. Hence, a reasonable choice for νmin is 0.2 GeV.

In Eq. 9.21, Aeff and σγN appear as factors. A more rigorous theoretical
approach may lead to some dependence of the shadowing effect on ν and E;
therefore in the differential cross section and in the sampling procedure, this
possibility is forseen and the atomic weight A of the element is kept as an
explicit parameter.

The total cross section is obtained by integration of Eq. 9.20 between νmin

and νmax; to facilitate the computation, a ln(ν)–substitution is used.

9.3.2 Sampling

Sampling the Transferred Energy

The muon photonuclear interaction is always treated as a discrete process
with its mean free path determined by the total cross section. The total
cross section is obtained by the numerical integration of Eq. 9.20 within the
limits νmin and νmax. The process is considered for muon energies 1GeV ≤
T ≤ 1000PeV, though it should be noted that above 100 TeV the extrapola-
tion (Eq. 9.24) of σγN may be too crude.
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The random transferred energy, νp, is found from the numerical solution of
the equation :

P =
∫ νmax

νp

σ(E, ν)dν
/∫ νmax

νmin

σ(E, ν)dν . (9.25)

Here P is the random uniform probability, with νmax = E − M/2 and
νmin = 0.2 GeV.

For fast sampling, the solution of Eq. 9.25 is tabulated at initialization time.
During simulation, the sampling method returns a value of νp corresponding
to the probability P , by interpolating the table. The tabulation routine uses
Eq. 9.20 for the differential cross section. The table contains values of

xp = ln(νp/νmax)/ ln(νmax/νmin), (9.26)

calculated at each point on a three-dimensional grid with constant spacings in
ln(T ), ln(A) and ln(P ) . The sampling uses linear interpolations in ln(T ) and
ln(A), and a cubic interpolation in ln(P ). Then the transferred energy is cal-
culated from the inverse transformation of Eq. 9.26, νp = νmax(νmax/νmin)

xp.
Tabulated parameters reproduce the theoretical dependence to better than
2% for T > 1 GeV and better than 1% for T > 10 GeV.

Sampling the Muon Scattering Angle

According to Refs. [1, 6], in the region where the four-momentum transfer is
not very large (Q2 ≤ 3GeV2), the t – dependence of the cross section may
be described as:

dσ

dt
∼ (1 − t/tmax)

t(1 + t/ν2)(1 + t/m2
0)

[(1 − y)(1 − tmin/t) + y2/2], (9.27)

where t is the square of the four-momentum transfer, Q2 = 2(EE ′−PP ′ cos θ−
µ2). Also, tmin = (µy)2/(1 − y), y = ν/E and tmax = 2Mν. ν = E − E ′ is
the energy lost by the muon and E is the total initial muon energy. M is
the nucleon (proton) mass and m2

0 ≡ Λ2 ' 0.4 GeV2 is a phenomenological
parameter determing the behavior of the inelastic form factor. Factors which
depend weakly, or not at all, on t are omitted.

To simulate random t and hence the random muon deflection angle, it is
convenient to represent Eq. 9.27 in the form :

σ(t) ∼ f(t)g(t), (9.28)
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where

f(t) =
1

t(1 + t/t1)
, (9.29)

g(t) =
1 − t/tmax

1 + t/t2
· (1 − y)(1 − tmin/t) + y2/2

(1 − y) + y2/2
,

and
t1 = min(ν2, m2

0) t2 = max(ν2, m2
0). (9.30)

tP is found analytically from Eq. 9.29 :

tP =
tmaxt1

(tmax + t1)

[

tmax(tmin + t1)

tmin(tmax + t1)

]P

− tmax

,

where P is a random uniform number between 0 and 1, which is accepted
with probability g(t). The conditions of Eq. 9.30 make use of the symmetry
between ν2 and m2

0 in Eq. 9.27 and allow increased selection efficiency, which
is typically ≥ 0.7. The polar muon deflection angle θ can easily be found
from 1

sin2(θ/2) =
tP − tmin

4 (EE ′ − µ2) − 2 tmin
.

The hadronic vertex is generated by the hadronic processes taking into ac-
count the four-momentum transfer.

9.3.3 Status of this document

12.10.98 created by R.Kokoulin, A.Rybin.
18.05.00 edited by S.Kelner, R.Kokoulin, and A.Rybin.
07.12.02 re-worded by D.H. Wright
30.08.04 correction of eq. 8.24 (to 1/sqrt) from H. Araujo
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9.4 Positron - Electron Pair Production by

Muons

Direct electron pair production is one of the most important muon inter-
action processes. At TeV muon energies, the pair production cross section
exceeds those of other muon interaction processes over a range of energy
transfers between 100 MeV and 0.1Eµ. The average energy loss for pair
production increases linearly with muon energy, and in the TeV region this
process contributes more than half the total energy loss rate.

To adequately describe the number of pairs produced, the average energy
loss and the stochastic energy loss distribution, the differential cross section
behavior over an energy transfer range of 5 MeV ≤ ε ≤ 0.1 ·Eµ must be
accurately reproduced. This is is because the main contribution to the total
cross section is given by transferred energies 5 MeV ≤ ε ≤ 0.01 ·Eµ, and be-
cause the contribution to the average muon energy loss is determined mostly
in the region 0.001 · Eµ ≤ ε ≤ 0.1 ·Eµ .

For a theoretical description of the cross section, the formulae of Ref. [1]
are used, along with a correction for finite nuclear size [2]. To take into
account electron pair production in the field of atomic electrons, the inelastic
atomic form factor contribution of Ref. [3] is also applied.

9.4.1 Differential Cross Section

Definitions and Applicability

In the following discussion, these definitions are used:

• m and µ are the electron and muon masses, respectively

• E ≡ Eµ is the total muon energy, E = T + µ

• Z and A are the atomic number and weight of the material

• ε is the total pair energy or, approximately, the muon energy loss (E−
E ′)

• v = ε/E

• e = 2.718 . . .

• A? = 183.

The formula for the differential cross section applies when:
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• Eµ � µ (E ≥ 2 – 5 GeV) and Eµ ≤ 1015 – 1017 eV. If muon energies
exceed this limit, the LPM (Landau Pomeranchuk Migdal) effect may
become important, depending on the material

• the muon energy transfer ε lies between εmin = 4m and εmax = Eµ −
3
√

e
4
µZ1/3, although the formal lower limit is ε � 2m, and the formal

upper limit requires E ′
µ � µ.

• Z ≤ 40 – 50. For higher Z, the Coulomb correction is important but
has not been sufficiently studied theoretically.

Formulae

The differential cross section for electron pair production by muons σ(Z,A,E, ε)
can be written as :

σ(Z,A,E, ε) =
4

3π

Z(Z + ζ)

A
NA (αr0)

2 1 − v

ε

∫ ρmax

0
G(Z,E, v, ρ) dρ, (9.31)

where
G(Z,E, v, ρ) = Φe + (m/µ)2Φµ,

Φe,µ = Be,µL
′
e,µ

and
Φe,µ = 0 whenever Φe,µ < 0.

Be and Bµ do not depend on Z,A, and are given by

Be = [(2 + ρ2)(1 + β) + ξ(3 + ρ2)] ln

(

1 +
1

ξ

)

+
1 − ρ2 − β

1 + ξ
− (3 + ρ2);

Be ≈
1

2ξ
[(3 − ρ2) + 2β(1 + ρ2)] for ξ ≥ 103;

Bµ =

[

(1 + ρ2)

(

1 +
3β

2

)

− 1

ξ
(1 + 2β)(1 − ρ2)

]

ln(1 + ξ)

+
ξ(1 − ρ2 − β)

1 + ξ
+ (1 + 2β)(1 − ρ2);

Bµ ≈ ξ

2
[(5 − ρ2) + β(3 + ρ2)] for ξ ≤ 10−3;

Also,
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ξ =
µ2v2

4m2

(1 − ρ2)

(1 − v)
; β =

v2

2(1 − v)
;

L′
e = ln

A∗Z−1/3
√

(1 + ξ)(1 + Ye)

1 +
2m

√
eA∗Z−1/3(1 + ξ)(1 + Ye)

Ev(1 − ρ2)

−1

2
ln



1 +

(

3mZ1/3

2µ

)2

(1 + ξ)(1 + Ye)



 ;

L′
µ = ln

(µ/m)A∗Z−1/3
√

(1 + 1/ξ)(1 + Yµ)

1 +
2m

√
eA∗Z−1/3(1 + ξ)(1 + Yµ)

Ev(1 − ρ2)

− ln
[

3

2
Z1/3

√

(1 + 1/ξ)(1 + Yµ)
]

.

For faster computing, the expressions for L′
e,µ are further algebraically trans-

formed. The functions L′
e,µ include the nuclear size correction [2] in compar-

ison with parameterization [1] :

Ye =
5 − ρ2 + 4 β (1 + ρ2)

2(1 + 3β) ln(3 + 1/ξ) − ρ2 − 2β(2 − ρ2)
;

Yµ =
4 + ρ2 + 3 β (1 + ρ2)

(1 + ρ2)(3
2

+ 2β) ln(3 + ξ) + 1 − 3
2
ρ2

;

ρmax = [1 − 6µ2/E2(1 − v)]
√

1 − 4m/Ev.

Comment on the Calculation of the Integral
∫

dρ in Eq. 9.31

The integral
ρmax
∫

0
G(Z,E, v, ρ) dρ is computed with the substitutions:

t = ln(1 − ρ),

1 − ρ = exp(t),

1 + ρ = 2 − exp(t),

1 − ρ2 = et (2 − et).

After that,

∫ ρmax

0
G(Z,E, v, ρ) dρ =

∫ 0

tmin

G(Z,E, v, ρ) et dt, (9.32)
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where

tmin = ln

4m

ε
+

12µ2

EE ′

(

1 − 4m

ε

)

1 +

(

1 − 6µ2

EE ′

)

√

1 − 4m

ε

.

To compute the integral of Eq. 9.32 with an accuracy better than 0.5%,
Gaussian quadrature with N = 8 points is sufficient.

The function ζ(E,Z) in Eq. 9.31 serves to take into account the process
on atomic electrons (inelastic atomic form factor contribution). To treat
the energy loss balance correctly, the following approximation, which is an
algebraic transformation of the expression in Ref. [3], is used:

ζ(E,Z) =

0.073 ln
E/µ

1 + γ1Z2/3E/µ
− 0.26

0.058 ln
E/µ

1 + γ2Z1/3E/µ
− 0.14

;

ζ(E,Z) = 0 if the numerator is negative.

For E ≤ 35µ, ζ(E,Z) = 0. Also γ1 = 1.95 · 10−5 and γ2 = 5.30 · 10−5.
The above formulae make use of the Thomas-Fermi model which is not

good enough for light elements. For hydrogen (Z = 1) the following param-
eters must be changed:
A∗ = 183 ⇒ 202.4;
γ1 = 1.95 · 10−5 ⇒ 4.4 · 10−5;
γ2 = 5.30 · 10−5 ⇒ 4.8 · 10−5.

9.4.2 Total Cross Section and Restricted Energy Loss

If the user’s cut for the energy transfer εcut is greater than εmin, the process is
represented by continuous restricted energy loss for interactions with ε ≤ εcut,
and discrete collisions with ε > εcut. Respective values of the total cross
section and restricted energy loss rate are defined as:

σtot =
∫ εmax

εcut

σ(E, ε) dε; (dE/dx)restr =
∫ εcut

εmin

ε σ(E, ε) dε.

For faster computing, ln ε substitution and Gaussian quadratures are used.
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9.4.3 Sampling of Positron - Electron Pair Production

The e+e− pair energy εP , is found numerically by solving the equation

P =
∫ εmax

εP

σ(Z,A, T, ε)dε /
∫ εmax

cut
σ(Z,A, T, ε)dε (9.33)

or
1 − P =

∫ εP

cut
σ(Z,A, T, ε)dε /

∫ εmax

cut
σ(Z,A, T, ε)dε (9.34)

To reach high sampling speed, solutions of Eqs. 9.33, 9.34 are tabulated
at initialization time. Two 3-dimensional tables (referred to here as A and
B) of εP (P, T, Z) are created, and then interpolation is used to sample εP .
The number and spacing of entries in the table are chosen as follows:

• a constant increment in lnT is chosen such that there are four points
per decade in the range Tmin−Tmax. The default range of muon kinetic
energies in Geant4 is T = 1 GeV − 1000 PeV.

• a constant increment in lnZ is chosen. The shape of the sampling dis-
tribution does depend on Z, but very weakly, so that eight points in the
range 1 ≤ Z ≤ 128 are sufficient. There is practically no dependence
on the atomic weight A.

• for probabilities P ≤ 0.5, Eq. 9.33 is used and Table A is computed
with a constant increment in lnP in the range 10−7 ≤ P ≤ 0.5. The
number of points in lnP for Table A is about 100.

• for P ≥ 0.5, Eq. 9.34 is used and Table B is computed with a constant
increment in ln(1− P ) in the range 10−5 ≤ (1− P ) ≤ 0.5. In this case
50 points are sufficient.

The values of ln(εP − cut) are stored in both Table A and Table B.
To create the “probability tables” for each (T, Z) pair, the following pro-

cedure is used:

• a temporary table of ∼ 2000 values of ε · σ(Z,A, T, ε) is constructed
with a constant increment (∼ 0.02) in ln ε in the range (cut, εmax). ε is
taken in the middle of the corresponding bin in ln ε.

• the accumulated cross sections

σ1 =
∫ ln εmax

ln ε
ε σ(Z,A, T, ε) d(ln ε)
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and

σ2 =
∫ ln ε

ln(cut)
ε σ(Z,A, T, ε) d(ln ε)

are calculated by summing the temporary table over the values above
ln ε (for σ1) and below ln ε (for σ2) and then normalizing to obtain the
accumulated probability functions.

• finally, values of ln(εP − cut) for corresponding values of lnP and
ln(1 − P ) are calculated by linear interpolation of the above accumu-
lated probabilities to form Tables A and B. The monotonic behavior of
the accumulated cross sections is very useful in speeding up the inter-
polation procedure.

The random transferred energy corresponding to a probability P , is then
found by linear interpolation in lnZ and lnT , and a cubic interpolation in
lnP for Table A or in ln(1−P ) for Table B. For P ≤ 10−7 and (1−P ) ≤ 10−5,
linear extrapolation using the entries at the edges of the tables may be safely
used. Electron pair energy is related to the auxiliary variable x = ln(εP −cut)
found by the trivial interpolation εP = ex + cut.

Similar to muon bremsstrahlung (section 9.2), this sampling algorithm
does not re-initialize the tables for user cuts greater than cutmin. Instead,
the probability variable is redefined as

P ′ = Pσtot(cutuser)/σtot(cutmin),

and P ′ is used for sampling.
In the simulation of the final state, the muon deflection angle (which is

of the order of m/E) is neglected. The procedure for sampling the energy
partition between e+ and e− and their emission angles is similar to that used
for the γ → e+ e− conversion.

9.4.4 Status of this document

12.10.98 created by R.Kokoulin and A.Rybin
18.05.00 edited by S.Kelner, R.Kokoulin, and A.Rybin
27.01.03 re-written by D.H. Wright
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Chapter 10

Charged Hadron Incident
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10.1 Ionization

10.1.1 Method

The class G4hIonisation provides the continuous energy loss due to ioniza-
tion and simulates the ’discrete’ part of the ionization, that is, delta rays
produced by charged hadrons. The class G4ionIonisation is intended for
the simulation of energy loss by ions and the approach described in Section
7.1 is used. The value of the maximum energy transferable to a free electron
Tmax is given by the following relation:

Tmax =
2mc2(γ2 − 1)

1 + 2γ(m/M) + (m/M)2
, (10.1)

where m is the electron mass and M is the mass of the incident particle. The
method of calculation of the continuous energy loss and the total cross-section
are explained below.

10.1.2 Continuous Energy Loss

The integration of 7.1 leads to the Bethe-Bloch restricted energy loss formula
[1] :

dE

dx

]

T<Tcut

= 2πr2
emc

2nel
(zp)

2

β2

[

ln

(

2mc2β2γ2Tup

I2

)

− β2
(

1 +
Tup

Tmax

)

− δ − 2Ce

Z

]

(10.2)
where

re classical electron radius: e2/(4πε0mc
2)

mc2 mass-energy of the electron
nel electrons density in the material
I mean excitation energy in the material
γ E/mc2

β2 1 − (1/γ2)
Tup min(Tcut, Tmax)
δ density effect function
Ce shell correction function

In a single element the electron density is

nel = Z nat = Z
Navρ

A

(Nav: Avogadro number, ρ: density of the material, A: mass of a mole). In
a compound material

nel =
∑

i

Zi nati =
∑

i

Zi
Navwiρ

Ai
.
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wi is the proportion by mass of the ith element, with molar mass Ai.
The mean excitation energy I for all elements is tabulated according to

the ICRU recommended values [2].

Density Correction

δ is a correction term which takes into account the reduction in energy loss
due to the so-called density effect. This becomes important at high energies
because media have a tendency to become polarized as the incident particle
velocity increases. As a consequence, the atoms in a medium can no longer
be considered as isolated. To correct for this effect the formulation of Stern-
heimer [3] is used:
x is a kinetic variable of the particle : x = log10(γβ) = ln(γ2β2)/4.606,
and δ(x) is defined by

for x < x0 : δ(x) = 0
for x ∈ [x0, x1] : δ(x) = 4.606x− C + a(x1 − x)m

for x > x1 : δ(x) = 4.606x− C
(10.3)

where the matter-dependent constants are calculated as follows:

hνp = plasma energy of the medium =
√

4πnelr3
emc

2/α =
√

4πnelreh̄c

C = 1 + 2 ln(I/hνp)
xa = C/4.606
a = 4.606(xa − x0)/(x1 − x0)

m

m = 3.
(10.4)

For condensed media

I < 100 eV

{

for C ≤ 3.681 x0 = 0.2 x1 = 2
for C > 3.681 x0 = 0.326C − 1.0 x1 = 2

I ≥ 100 eV

{

for C ≤ 5.215 x0 = 0.2 x1 = 3
for C > 5.215 x0 = 0.326C − 1.5 x1 = 3

and for gaseous media

for C < 10. x0 = 1.6 x1 = 4
for C ∈ [10.0, 10.5[ x0 = 1.7 x1 = 4
for C ∈ [10.5, 11.0[ x0 = 1.8 x1 = 4
for C ∈ [11.0, 11.5[ x0 = 1.9 x1 = 4
for C ∈ [11.5, 12.25[ x0 = 2. x1 = 4
for C ∈ [12.25, 13.804[ x0 = 2. x1 = 5
for C ≥ 13.804 x0 = 0.326C − 2.5 x1 = 5.
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Shell Correction

2Ce/Z is the so-called shell correction term which accounts for the fact that,
at low energies for light elements and at all energies for heavy ones, the
probability of collision with the electrons of the inner atomic shells (K, L,
etc.) is negligible. The semi-empirical formula used in Geant4, applicable
to all materials, is due to Barkas [4]:

Ce(I, βγ) =
a(I)

(βγ)2
+

b(I)

(βγ)4
+

c(I)

(βγ)6
. (10.5)

The functions a(I), b(I) and c(I) can be found in the source code. This
formula breaks down at low energies, and is valid only when βγ > 0.13
(T > 7.9 MeV for a proton). For βγ ≤ 0.13 the shell correction term is
calculated as:

Ce(I, βγ)
∣

∣

∣

∣

βγ≤0.13
= Ce(I, βγ = 0.13)

ln(T/T2l)

ln(7.9 MeV/T2l)
, (10.6)

i.e. the correction is switched off logarithmically from T = 7.9 MeV to
T = T2l = 2 MeV.

Parameterization

The mean energy loss can be described by the Bethe-Bloch formula (9.2)
only if the projectile velocity is larger than that of the orbital electrons. In
the low-energy region this is not the case, and the parameterization from the
ICRU’49 report [5] is used in the G4BraggModel class. The Bethe-Bloch
model is applied for higher kinetic energies of incident particles

T > 2 ∗M/MprotonMeV, (10.7)

where M is the particle mass. The details of the low energy parameterization
are described in Section 11.10.

10.1.3 Total Cross Section per Atom and Mean Free
Path

For T � I the differential cross section can be written as

dσ

dT
= 2πr2

emc
2Z

z2
p

β2

1

T 2

[

1 − β2 T

Tmax
+

T 2

2E2

]

(10.8)
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[1]. In Geant4 Tcut ≥ 1 keV. Integrating from Tcut to Tmax gives the total
cross section per atom :

σ(Z,E, Tcut) =
2πr2

eZz
2
p

β2
mc2 × (10.9)

[

(

1

Tcut

− 1

Tmax

)

− β2

Tmax

ln
Tmax

Tcut

+
Tmax − Tcut

2E2

]

The last term is for spin 1/2 only. In a given material the mean free path is:

λ = (nat · σ)−1 or λ = (
∑

i nati · σi)
−1 (10.10)

The mean free path is tabulated during initialization as a function of the
material and of the energy for all kinds of charged particles.

10.1.4 Simulating Delta-ray Production

A short overview of the sampling method is given in Chapter 2. Apart from
the normalization, the cross section 10.8 can be factorized :

dσ

dT
= f(T )g(T ) with T ∈ [Tcut, Tmax] (10.11)

where

f(T ) =
(

1

Tcut
− 1

Tmax

)

1

T 2
(10.12)

g(T ) = 1 − β2 T

Tmax
+

T 2

2E2
. (10.13)

The last term in g(T ) is for spin 1/2 only. The energy T is chosen by

1. sampling T from f(T )

2. calculating the rejection function g(T ) and accepting the sampled T
with a probability of g(T ).

After the successful sampling of the energy, the direction of the scattered elec-
tron is generated with respect to the direction of the incident particle. The
azimuthal angle φ is generated isotropically. The polar angle θ is calculated
from energy-momentum conservation. This information is used to calculate
the energy and momentum of both scattered particles and to transform them
into the global coordinate system.
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Ion Effective Charge

As ions penetrate matter they exchange electrons with the medium. In the
implementation of G4ionIonisation the effective charge approach is used [6].
A state of equilibrium between the ion and the medium is assumed, so that
the ion’s effective charge can be calculated as a function of its kinetic energy
in a given material. This is done according to the approximation described
in Section 11.10. Before and after each step the dynamic charge of the ion
is recalculated and saved in G4DynamicParticle, where it can be used not
only for energy loss calculations but also for the sampling of transportation
in an electromagnetic field.

10.1.5 Status of this document

09.10.98 created by L. Urbán.
14.12.01 revised by M.Maire
29.11.02 re-worded by D.H. Wright
01.12.03 revised by V. Ivanchenko
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Chapter 11

Low Energy Extensions
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11.1 Introduction

Additional electromagnetic physics processes for photons, electrons, hadrons
and ions have been implemented in Geant4 in order to extend the validity
range of particle interactions to lower energies than those available in the
standard Geant4 electromagnetic processes [1, 2, 3]. Because atomic shell
structure is more important in most cases at low energies than it is at higher
energies, the low energy processes make direct use of shell cross section data.
The standard processes, which are optimized for high energy physics appli-
cations, rely on parameterizations of these data.

The low energy processes include the photo-electric effect, Compton scat-
tering, Rayleigh scattering, gamma conversion, bremsstrahlung and ioniza-
tion. Fluorescence of excited atoms is also considered.

Some features common to all low energy processes currently implemented
in Geant4 are summarized in this section. Subsequent sections provide more
detailed information for each process.

11.1.1 Physics

The low energy processes of Geant4 represent electromagnetic interactions
at lower energies than those covered by the equivalent Geant4 standard elec-
tromagnetic processes.

The current implementation of low energy processes is valid for energies
down to 250 eV (and can be used up to approximately 100 GeV), unless
differently specified. It covers elements with atomic number between 1 and
99.

All processes involve two distinct phases:

• the calculation and use of total cross sections, and

• the generation of the final state.

Both phases are based on the theoretical models and on exploitation of eval-
uated data.

11.1.2 Data Sources

The data used for the determination of cross-sections and for sampling of
the final state are extracted from a set of publicly distributed evaluated data
libraries:

• EPDL97 (Evaluated Photons Data Library) [4];
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• EEDL (Evaluated Electrons Data Library) [5];

• EADL (Evaluated Atomic Data Library) [6];

• stopping power data [7, 8, 9, 10];

• binding energy values based on data of Scofield [11].

Evaluated data sets are produced through the process of critical compar-
ison, selection, renormalization and averaging of the available experimental
data, normally complemented by model calculations. These libraries provide
the following data relevant for the simulation of Geant4 low energy processes:

• total cross-sections for photoelectric effect, Compton scattering, Rayleigh
scattering, pair production and bremsstrahlung,

• subshell integrated cross sections for photo-electric effect and ioniza-
tion,

• energy spectra of the secondaries for electron processes,

• scattering functions for the Compton effect,

• form factors for Rayleigh scattering,

• binding energies for electrons for all subshells,

• transition probabilities between subshells for fluorescence and the Auger
effect, and

• stopping power tables.

The energy range covered by the data libraries extends from 100 GeV
down to 1 eV for Rayleigh and Compton effects, down to the lowest binding
energy for each element for photo-electric effect and ionization, and down to
10 eV for bremsstrahlung.

11.1.3 Distribution of the Data Sets

The author of EPDL97 [4], who is also responsible for the EEDL [5] and
EADL [6] data libraries, Dr. Red Cullen, has kindly permitted the libraries
and their related documentation to be distributed with the Geant4 toolkit.
The data are reformatted for Geant4 input. They can be downloaded from
the source code section of the Geant4 page: http://cern.ch/geant4/geant4.html.
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The EADL, EEDL and EPDL97 data-sets are also available from sev-
eral public distribution centres in a format different from the one used by
Geant4 [12].

Stopping power data are taken from publications [7, 8, 9, 10].

11.1.4 Calculation of Total Cross Sections

The energy dependence of the total cross section is derived for each process
from the evaluated data libraries. Since the libraries provide cross sections
for a set of discrete incident energies, the total cross section at a given energy,
E, is obtained by interpolation according to the formula [13]:

log(σ(E)) =
log(σ1)log(E2/E) + log(σ2)log(E/E1)

log(E2/E1)
(11.1)

where E1 and E2 are respectively the closest lower and higher energy for
which data (σ1 and σ2) are available.

For each process a production threshold energy is defined; by default it is
set to the low end of the energy validity range of the process (250 eV in the
current implementation), but a higher or lower value can be set by the user.

For a particle of energy E, the mean free path for interacting via a given
process is calculated as:

λ =
1

Σiσi(E) · ni
(11.2)

where σi(E) is the microscopic integrated cross-section of the process con-
sidered at energy E, and ni is the atomic density of the i− th element con-
tributing to the material composition. The sum runs over all the elements
of which the material is composed. The cross sections are determined as
described in this section. An exception to this method is the implementation
of the chemical effect on hadron/ion stopping powers for a set of materials.

11.1.5 Sampling of Relevant Physics Quantities

The final state products of the processes are generated by sampling relevant
physical quantities, such as energies and angular distributions of secondaries,
from distributions derived from theoretical models and evaluated data. The
energy dependence of the parameters which characterize the distributions is
taken into account either by direct interpolation of the data available in the
libraries, or by interpolation of values obtained from fits to the data.

When generating the final state, an atom of the material in which the
interaction occurs is randomly selected and atomic de-excitation is simulated.
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Secondaries which would be produced with energies below their user de-
fined production threshold are not created and their energy is deposited
locally.

11.1.6 Status of the document
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11.2 Compton Scattering

11.2.1 Total Cross Section

The total cross section for the Compton scattering process is determined
from the data as described in section 11.1.4.

11.2.2 Sampling of the Final State

For low energy incident photons, the simulation of the Compton scattering
process is performed according to the same procedure used for the “standard”
Compton scattering simulation, with the addition that Hubbel’s atomic form
factor [1] or scattering function, SF , is taken into account. The angular and
energy distribution of the incoherently scattered photon is then given by
the product of the Klein-Nishina formula Φ(ε) and the scattering function,
SF (q) [2]

P (ε, q) = Φ(ε) × SF (q). (11.3)

ε is the ratio of the scattered photon energy E ′, and the incident photon
energy E. The momentum transfer is given by q = E × sin2(θ/2), where θ is
the polar angle of the scattered photon with respect to the direction of the
parent photon. Φ(ε) is given by

Φ(ε) ∼= [
1

ε
+ ε][1 − ε

1 + ε2
sin2θ]. (11.4)

The effect of the scattering function becomes significant at low energies,
especially in suppressing forward scattering [2].

The sampling method of the final state is based on composition and re-
jection Monte Carlo methods [3, 4, 5], with the SF function included in the
rejection function

g(ε) =
[

1 − ε

1 + ε2
sin2 θ

]

× SF (q), (11.5)

with 0 < g(ε) < Z. Values of the scattering functions at each momentum
transfer, q, are obtained by interpolating the evaluated data for the corre-
sponding atomic number, Z.

The polar angle θ is deduced from the sampled ε value. In the azimuthal
direction, the angular distributions of both the scattered photon and the
recoil electron are considered to be isotropic [6].

Since the incoherent scattering occurs mainly on the outermost electronic
subshells, the binding energies can be neglected, as stated in reference [6].
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The momentum vector of the scattered photon,
−→
P ′

γ, is transformed into the
World coordinate system. The kinetic energy and momentum of the recoil
electron are then

Tel = E − E ′

−→
Pel =

−→
Pγ −

−→
P ′

γ .

11.2.3 Status of the document
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11.3 Compton Scattering by Linearly Polar-

ized Gamma Rays

11.3.1 The Cross Section

The quantum mechanical Klein - Nishina differential cross section for polar-
ized photons is [Heitler 1954]:

dσ

dΩ
=

1

4
r2
0

hν2

hν2
o

hν2
o

hν2

[

hνo

hν
+
hν

hνo

− 2 + 4cos2Θ

]

where Θ is the angle between the two polarization vectors. In terms of the
polar and azimuthal angles (θ, φ) this cross section can be written as

dσ

dΩ
=

1

2
r2
0

hν2

hν2
o

hν2
o

hν2

[

hνo

hν
+
hν

hνo
− 2cos2φsin2θ

]

.

11.3.2 Angular Distribution

The integration of this cross section over the azimuthal angle produces the
standard cross section. The angular and energy distribution are then ob-
tained in the same way as for the standard process. Using these values for
the polar angle and the energy, the azimuthal angle is sampled from the
following distribution:

P (φ) = 1 − a

b
cos2φ

where a = sin2θ and b = ε+1/ε. ε is the ratio between the scattered photon
energy and the incident photon energy.

11.3.3 Polarization Vector

The components of the vector polarization of the scattered photon are cal-
culated from

~ε′⊥ =
1

N

(

ĵcosθ − k̂sinθsinφ
)

sinβ

~ε′‖ =
[

Nî− 1

N
ĵsin2θsinφcosφ− 1

N
k̂sinθcosθcosφ

]

cosβ
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where
N =

√

1 − sin2θcos2φ.

cosβ is calculated from cosΘ = Ncosβ, while cosΘ is sampled from the Klein
- Nishina distribution.

The binding effects and the Compton profile are neglected. The kinetic
energy and momentum of the recoil electron are then

Tel = E − E ′

~Pel = ~Pγ − ~P ′
γ.

The momentum vector of the scattered photon ~Pγ and its polarization
vector are transformed into the World coordinate system. The polarization
and the direction of the scattered gamma in the final state are calculated in
the reference frame in which the incoming photon is along the z-axis and has
its polarization vector along the x-axis. The transformation to the World

coordinate system performs a linear combination of the initial direction, the
initial poalrization and the cross product between them, using the projections
of the calculated quantities along these axes.

11.3.4 Unpolarized Photons

A special treatment is devoted to unpolarized photons. In this case a random
polarization in the plane perpendicular to the incident photon is selected.

11.3.5 Status of this document
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26.01.2003 minor re-wording and correction of equations by D.H. Wright

Bibliography

[1] W. Heitler The Quantum Theory of Radiation, Oxford Clarendom Press
(1954)

161



11.4 Rayleigh Scattering

11.4.1 Total Cross Section

The total cross section for the Rayleigh scattering process is determined from
the data as described in section 11.1.4.

11.4.2 Sampling of the Final State

The coherent scattered photon angle θ is sampled according to the distribu-
tion obtained from the product of the Rayleigh formula (1 + cos2 θ) sin θ and
the square of Hubbel’s form factor FF 2(q) [1] [2]

Φ(E, θ) = [1 + cos2 θ] sin θ × FF 2(q), (11.6)

where q = 2E sin(θ/2) is the momentum transfer.
Form factors introduce a dependency on the initial energy E of the photon

that is not taken into account in the Rayleigh formula. At low energies, form
factors are isotropic and do not affect angular distribution, while at high
energies they are forward peaked.

The sampling procedure is as follows [3]:

1. cosθ is chosen from a uniform distribution between -1 and 1

2. the form factor FF is extracted from the data table for the considered
element, using logarithmic data interpolation, for q = 2E · sin(θ/2)

3. if the value obtained for Φ(E, θ) is larger than a random number uni-
formly distributed between 0 and Z2, the procedure is repeated from
step 1, otherwise θ is taken as the photon scattering angle with respect
to its incident direction.

4. the azimuthal direction of the scattered photon is chosen at random.

11.4.3 Status of this document
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11.5 Gamma Conversion

11.5.1 Total cross-section

The total cross-section of the Gamma Conversion process is determined from
the data as described in section 11.1.4.

11.5.2 Sampling of the final state

For low energy incident photons, the simulation of the Gamma Conversion
final state is performed according to [1].

The secondary e± energies are sampled using the Bethe-Heitler cross-
sections with Coulomb correction.

The Bethe-Heitler differential cross-section with the Coulomb correction
for a photon of energy E to produce a pair with one of the particles having
energy εE (ε is the fraction of the photon energy carried by one particle of
the pair) is given by [2]:

dσ(Z,E, ε)

dε
=

r2
0αZ(Z + ξ(Z))

E2

[

(ε2 + (1 − ε)2)

(

Φ1(δ) −
F (Z)

2

)

+

+
2

3
ε(1 − ε)

(

Φ2(δ) −
F (Z)

2

)]

where Φi(δ) are the screening functions depending on the screening vari-
able δ [1].

The value of ε is sampled using composition and rejection Monte Carlo
methods [1, 3, 4].

After the successful sampling of ε, the process generates the polar angles of
the electron with respect to an axis defined along the direction of the parent
photon. The electron and the positron are assumed to have a symmetric
angular distribution. The energy-angle distribution is given by[5]:

dσ

dpdΩ
=

2α2e2

πkm4

[(

2x(1 − x)

(1 + l)

2

− 12lx(1 − x)

(1 + l)4

)

(Z2 + Z)+

+

(

2x2 − 2x + 1

(1 + l)2
+

4lx(1 − x)

(1 + l)4

)

(X − 2Z2f((αZ)2))

]

where k is the photon energy, p the momentum and E the energy of the
electron of the e± pair x = E/k and l = E2θ2/m2. The sampling of this
cross-section is obtained according to [1].
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The azimuthal angle φ is generated isotropically.
This information together with the momentum conservation is used to

calculate the momentum vectors of both decay products and to transform
them to the GEANT coordinate system. The choice of which particle in the
pair is the electron/positron is made randomly.
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11.6 Photoelectric effect

11.6.1 Total cross-section

The total photoelectric cross-section at a given energy, E, is calculated as
described in section 11.1.4. Note that for this process the MeanFreePathTable
is not built, since the cross-section is not a smooth function of the energy,
therefore in all calculations the cross-section is used directly.

11.6.2 Sampling of the final state

The incident photon is absorbed and an electron is emitted in the same
direction as the incident photon.

The electron kinetic energy is the difference between the incident photon
energy and the binding energy of the electron before the interaction. The
sub-shell, from which the electron is emitted, is randomly selected according
to the relative cross-sections of all subshells, determined at the given energy,
T , by interpolating the evaluated cross-section data from the EPDL97 data
bank [1].

The interaction leaves the atom in an excited state. The deexcitation of
the atom is simulated as described in section 11.9.

11.6.3 Status of the document
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11.7 Bremsstrahlung

The class G4LowEnergyBremsstrahlung calculates the continuous energy loss
due to low energy gamma emission and simulates the gamma production by
electrons. The gamma production threshold for a given material ωc is used
to separate the continuous and the discrete parts of the process. The energy
loss of an electron with the incident energy T are expressed via the integrand
over energy of the gammas:

dE

dx
= σ(T )

∫ ωc

0.1eV t
dσ
dω
dω

∫ T
0.1eV

dσ
dω
dω

, (11.7)

where σ(T ) is the total cross-section at a given incident kinetic energy, T ,
0.1eV is the low energy limit of the EEDL data. The production cross-section
is a complimentary function:

σ = σ(T )

∫ T
ωc

dσ
dω
dω

∫ T
0.1eV

dσ
dω
dω
. (11.8)

The total cross-section, σs, is obtained from an interpolation of the eval-
uated cross-section data in the EEDL library [1], according to the formula
(11.1) in Section 11.1.4.

The EEDL data [1] of total cross-sections are parametrised [2] according
to (11.1). The probability of the emission of a photon with energy, ω, con-
sidering an electron of incident kinetic energy, T , is generated according to
the formula:

dσ

dω
=
F (x)

x
, withx =

ω

T
. (11.9)

The function, F (x), describing energy spectra of the outcoming photons
is taken from the EEDL library. For each element 15 points in x from 0.01
to 1 are used for the linear interpolation of this function. The function F
is normalised by the condition F (0.01) = 1. The energy distributions of the
emitted photons available in the EEDL library are for only a few incident
electron energies (about 10 energy points between 10 eV and 100 GeV). For
other energies a logarithmic interpolation formula (11.1) is used to obtain
values for the function, F (x). For high energies, the spectral function is very
close to:

F (x) = 1 − x+ 0.75x2. (11.10)
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11.7.1 Bremsstrahlung angular distributions

The angular distribution of the emitted photons with respect to the inci-
dent electron can be sampled according to three alternative generators de-
scribed below. The direction of the outcoming electron is determined from
the energy-momentum balance. This generators are currently implemented
in G4ModifiedTsai, G4Generator2BS and G4Generator2BN classes.

G4ModifiedTsai

The angular distribution of the emitted photons is obtained from a simplified
[3] formula based on the Tsai cross-section [4], which is expected to become
isotropic in the low energy limit.

G4Generator2BS

In G4Generator2BS generator, the angular distribution of the emitted pho-
tons is obtained from the 2BS Koch and Motz bremsstrahlung double differ-
ential cross-section [5]:

dσk,θ =
4Z2r2

0

137

dk

k
ydy

{

16y2E

(y2 + 1)4E0
−

(E0 + E)2

(y2 + 1)2E2
0

+

[

E2
0 + E2

(y2 + 1)2E2
0

− 4y2E

(y2 + 1)4E0

]

lnM(y)

}

where k the photon energy, θ the emission angle, E0 and E are the initial
and final electron energy in units of mec

2, r0 is the classical electron radius
and Z the atomic number of the material. y and M(y) are defined as:

y = E0θ

1

M(y)
=

(

k

2E0E

)2

+

(

Z1/3

111(y2 + 1)

)2

The adopted sampling algorithm is based on the sampling scheme devel-
oped by A. F. Bielajew et al. [6], and latter implemented in EGS4. In this
sampling algorithm only the angular part of 2BS is used, with the emitted
photon energy, k, determined by GEANT4

(

dσ
dk

)

differential cross-section.

G4Generator2BN

The angular distribution of the emitted photons is obtained from the 2BN
Koch and Motz bremsstrahlung double differential cross-section [5] that can
be written as:
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dσk,θ =
Z2r2

0

8π137

dk

k

p

p0
dΩk

{

8 sin2 θ(2E2
0 − 1)

p2
0∆

4
0

−

2(5E2
0 + 2EE0 + 3)

p2
0∆

2
0

− 2(p2
0 − k2)

Q2∆0

+
4E

p2
2∆0

+
L

pp0
[

4E0 sin2 θ(3k − p2
0E)

p2
0∆

4
+

4E2
0(E

2
0 + E2)

p2
0∆

2
0

+

2 − 2(E2
0 − 3EE0 + E2)

p2
0∆

2
0

+
2k(E2

0 + EE0 − 1)

p2
0∆0

]

−
(

4ε

p∆0

)

+

(

εQ

pQ

)[

4

∆2
0

− 6k

∆0

− 2k(p2
0 − k2)

Q2∆0

]}

in which:

L = ln

[

EE0 − 1 + pp0

EE0 − 1 − pp0

]

∆0 = E0 − p0 cos θ

Q2 = p2
0 + k2 − 2p0k cos θ

ε = ln

[

E + p

E − p

]

εQ = ln

[

Q+ p

Q− p

]

where k is the photon energy, θ the emission angle and (E0, p0) and (E, p) are
the total (energy, momentum) of the electron before and after the radiative
emission, all in units of mec

2.
Since the 2BN cross–section is a 2-dimensional non-factorized distribution an
acceptance-rejection technique was the adopted. For the 2BN distribution,
two functions g1(k) and g2(θ) were defined:

g1(k) = k−b g2(θ) =
θ

1 + cθ2
(11.11)

such that:

Ag1(k)g2(θ) ≥
dσ

dkdθ
(11.12)

where A is a global constant to be completed. Both functions have an analyt-
ical integral G and an analytical inverse G−1. The b parameter of g1(k) was
empirically tuned and set to 1.2. For positive θ values, g2(θ) has a maximum
at 1√

(c)
. c parameter controls the function global shape and it was used to

tune g2(θ) according to the electron kinetic energy.
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To generate photon energy k according to g1 and θ according to g2 the inverse-
transform method was used. The integration of these functions gives

G1 = C1

∫ kmax

kmin

k′−bdk′ = C1
k1−b − k1−b

min

1 − b
(11.13)

G2 = C2

∫ θ

0

θ′

1 + cθ′2
dθ′ = C2

log(1 + cθ2)

2c
(11.14)

where C1 and C2 are two global constants chosen to normalize the integral
in the overall range to the unit. The photon momentum k will range from
a minimum cut value kmin (required to avoid infrared divergence) to a max-
imum value equal to the electron kinetic energy Ek, while the polar angle
ranges from 0 to π, resulting for C1 and C2:

C1 =
1 − b

E1−b
k

C2 =
2c

log(1 + cπ2)
(11.15)

k and θ are then sampled according to:

k =

[

1 − b

C1
ξ1 + k1−b

min

]

θ =

√

√

√

√

exp
(

2cξ2
C1

)

2c
(11.16)

where ξ1 and ξ2 are uniformly sampled in the interval (0,1). The event is
accepted if:

uAg1(k)g2(θ) ≤
dσ

dkdθ
(11.17)

where u is a random number with uniform distribution in (0,1). The A and
c parameters were computed in a logarithmic grid, ranging from 1 keV to 1.5
MeV with 100 points per decade. Since the g2(θ) function has a maximum
at θ = 1√

c
, the c parameter was computed using the relation c = 1

θmax
. At the

point (kmin, θmax) where kmin is the k cut value, the double differential cross-
section has its maximum value, since it is monotonically decreasing in k and
thus the global normalization parameter A is estimated from the relation:

Ag1(kmin)g2(θmax) =

(

d2σ

dkdθ

)

max

(11.18)

where g1(kmin)g2(θmax) =
k−b

min

2
√

c
. Since A and c can only be retrieved for

a fixed number of electron kinetic energies there exists the possibility that
Ag1(kmin)g2(θmax) ≤

(

d2σ
dkdθ

)

max
for a given Ek. This is a small violation that
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can be corrected introducing an additional multiplicative factor to the A pa-
rameter, which was empirically determined to be 1.04 for the entire energy
range.

Comparisons between Tsai, 2BS and 2BN generators

The currently available generators can be used according to the user required
precision and timing requirements. Regarding the energy range, validation
results indicate that for lower energies (≤ 100 keV) there is a significant
deviation on the most probable emission angle between Tsai/2BS generators
and the 2BN generator - Figure 11.1. The 2BN generator maintains however
a good agreement with Kissel data [7], derived from the work of Tseng and
co-workers [8], and it should be used for energies between 1 keV and 100 keV
[9]. As the electron kinetic energy increases, the different distributions tend
to overlap and all generators present a good agreement with Kissel data.

Figure 11.1: Comparison of polar angle distribution of bremsstrahlung pho-
tons (k/T = 0.5) for 10 keV (left) and 100 keV (middle) and 500 keV (right)
electrons in silver, obtained with Tsai, 2BS and 2BN generator

In figure 11.2 the sampling efficiency for the different generators are pre-
sented. The sampling generation efficiency was defined as the ratio between
the number of generated events and the total number of trials. As energies
increases the sampling efficiency of the 2BN algorithm decreases from 0.65
at 1 keV electron kinetic energy down to almost 0.35 at 1 MeV. For ener-
gies up to 10 keV the 2BN sampling efficiency is superior or equivalent to
the one of the 2BS generator. These results are an indication that precision
simulation of low energy bremsstrahlung can be obtained with little perfor-
mance degradation. For energies above 500 keV, Tsai generator can be used,
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retaining a good physics accuracy and a sampling efficiency superior to the
2BS generator.

Figure 11.2: Sampling efficiency for Tsai generator, 2BS and 2BN Koch and
Motz generators.
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11.8 Electron ionisation

The class G4LowEnergyIonisation calculates the continuous energy loss due
to electron ionisation and simulates δ-ray production by electrons. The delta-
electron production threshold for a given material, Tc, is used to separate
the continuous and the discrete parts of the process. The energy loss of an
electron with the incident energy, T , is expressed via the sum over all atomic
shells, s, and the integral over the energy, t, of delta-electrons:

dE

dx
=
∑

s

(

σs(T )

∫ Tc
0.1eV t

dσ
dt
dt

∫ Tmax
0.1eV

dσ
dt
dt

)

, (11.19)

where Tmax = 0.5T is the maximum energy transfered to a δ-electron, σs(T )
is the total cross-section for the shell, s, at a given incident kinetic energy,
T , and 0.1eV is the low energy limit of the EEDL data. The δ-electron
production cross-section is a complimentary function:

σ(T ) =
∑

s

(

σs(T )

∫ Tmax
Tc

dσ
dt
dt

∫ Tmax
0.1eV

dσ
dt
dt

)

. (11.20)

The partial sub-shell cross-sections, σs, are obtained from an interpolation
of the evaluated cross-section data in the EEDL library [1], according to the
formula (11.1) in Section 11.1.4.

The probability of emission of a δ-electron with kinetic energy, t, from
a sub-shell, s, of binding energy, Bs, as the result of the interaction of an
incoming electron with kinetic energy, T , is described by:

dσ

dt
=
P (x)

x2
, withx =

t +Bs

T +Bs

, (11.21)

where the parameter x is varied from xmin = (0.1eV +Bs)/(T + Bs) to 0.5.
The function, P (x), is parametrised differently in 3 regions of x: from xmin

to x1 the linear interpolation with linear scale of 4 points is used; from x1 to
x2 the linear interpolation with logarithmic scale of 16 points is used; from
x2 to 0.5 the following interpolation is applied:

P (x) = 1 − gx+ (1 − g)x2 +
x2

1 − x
(

1

1 − x
− g) + A ∗ (0.5 − x)/x, (11.22)

where A is a fit coefficient, g is expressed via the gamma factor of the in-
coming electron:

g = (2γ − 1)/γ2. (11.23)
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For the high energy case (x >> 1) the formula (11.22) is transformed to the
Möller electron-electron scattering formula [2, 3].

The value of the coefficient, A, for each element is obtained as a result
of the fit on the spectrum from the EEDL data for those energies which
are available in the database. The values of x1 and x2 are chosen for each
atomic shell according to the spectrum of δ-electrons in this shell. Note that
x1 corresponds to the maximum of the spectrum, if the maximum does not
coincide with xmin. The dependence of all 24 parameters on the incident
energy, T , is evaluated from a logarithmic interpolation (11.1).

The sampling of the final state proceeds in three steps. First a shell is
randomly selected, then the energy of the delta-electron is sampled, finally
the angle of emission of the scattered electron and of the δ-ray is determined
by energy-momentum conservation taken into account electron motion on
the atomic orbit.

The interaction leaves the atom in an excited state. The deexcitation of
the atom is simulated as described in section 11.9. Sampling of the excitations
is carried out for both the continuous and the discrete parts of the process.
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11.9 Atomic relaxation

The atomic relaxation can be triggered by other electromagnetic interactions
such as the photoelectric effect or ionisation, which leave the atom in an
excited state.

The Livermore Evaluation Atomic Data Library EADL [1] contains data
to describe the relaxation of atoms back to neutrality after they are ionised.

It is assumed that the binding energy of all subshells are the same for
neutral ground state atoms as for ionised atoms [1].

The data in EADL includes the radiative and non-radiative transition
probabilities for each sub-shell of each element, for Z=1 to 100. The atom
has been ionised by a process that has caused an electron to be ejected from
an atom, leaving a vacancy or “hole” in a given subshell. The EADL data
are then used to calculate the complete radiative and non-radiative spectrum
of X-rays and electrons emitted as the atom relaxes back to neutrality.

Non-radiative de-excitation can occur via the Auger effect (the initial and
secondary vacancies are in different shells) or Coster-Kronig effect (transi-
tions within the same shell).

11.9.1 Fluorescence

The simulation procedure for the fluorescence process is the following:

1. If the vacancy subshell is not included in the data, a photon is emitted
in a random direction in 4π with an energy equal to the corresponding
binding energy, and the procedure is terminated.

2. If the vacancy subshell is included in the data, an outer subshell is ran-
domly selected taking into account the relative transition probabilities
for all possible outer subshells.

3. In the case where the energy corresponding to the selected transition is
larger than a user defined cut value (equal to zero by default), a photon
particle is created and emitted in a random direction in 4π, with an
energy equal to the transition energy.

4. the procedure is repeated from step 1, for the new vacancy subshell.

The final local energy deposit is the difference between the binding energy
of the initial vacancy subshell and the sum of all transition energies which
were taken by fluorescence photons. The atom is assumed to be initially
ionised with an electric charge of +1e.

176



Sub-shell data are provided in the EADL data bank [1] for Z=1 through
100. However, transition probabilities are only explicitly included for Z=6
through 100, from the subshells of the K, L, M, N shells and some O sub-
shells. For subshells O,P,Q: transition probabilities are negligible (of the
order of 0.1%) and smaller than the precision with which they are known.
Therefore, for the time being, for Z=1 through 5, only a local energy deposit
corresponding to the binding energy B of an electron in the ionised subshell
is simulated. For subshells of the O, P, and Q shells, a photon is emitted
with that energy B.

11.9.2 Auger process

The Auger effect is complimentary to fluorescence, hence the simulation pro-
cess is the same as for the fluorescence, with the exception that two random
shells are selected, one for the transition electron that fills the original va-
cancy, and the other for selecting the shell generating the Auger electron.

Subshell data are provided in the EADL data bank [1] for Z = 6 through
100. Since in EADL no data for elements with Z < 5 are provided, Auger
effects are only considered for 5 < Z < 100 and always due to the EADL data
tables, only for those transitions which have a probabiliy to occur > 0.1% of
the total non-radiative transition probability. EADL probability data used
are, however, normalized to one for Fluorescence + Auger.
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11.10 Hadron and Ion Ionisation

The class G4hLowEnergyIonisation calculates the continuous energy loss
due to ionisation and simulates the δ-ray production by charged hadrons or
ions. This represents an extension of the Geant4 physics models down to low
energy [1, 2].

11.10.1 Delta-ray production

In Geant4, δ-rays are generated generally only above a threshold energy, Tc,
the value of which depends on atomic parameters and the cut value, Tcut,
calculated from the unique cut in range parameter for all charged particles
in all materials. The total cross-section for the production of a δ-ray electron
of kinetic energy T > Tc by a particle of kinetic energy E is:

σ(E, Tc) =
∫ Tmax

Tc

dσ(E, T )

dT
dT with Tc = min(max(I, Tcut), Tmax) (11.24)

where I is the mean excitation potential of the atom (the formulae of this
charter are precise if T � I), Tmax is the maximum energy transferable to
the free electron

Tmax =
2mec

2(γ2 − 1)

1 + 2γ(me/M) + (me/M)2
(11.25)

with me the electron mass, M the mass of the incident particle, and γ is the
relativistic factor. For heavy charged particles the differential cross-section
per atom can be written as [3, 4]:

for spin 0 dσ
dT

= KZ
Z2

h

β2T 2

[

1 − β2 T

Tmax

]

(11.26)

for spin 1/2 dσ
dT

= KZ
Z2

h

β2T 2

[

1 − β2 T

Tmax

+
T 2

2E2

]

for spin 1 dσ
dT

= KZ
Z2

h

β2T 2

[

(

1 − β2 T

Tmax

)

(

1 +
T

3Qc

)

+
T 2

3E2

(

1 +
T

2Qc

)]

where Z is the atomic number, Zh is the effective charge of the incident
particle in units of positron charge, β is the relativistic velocity, and Qc =
(Mc2)2/mec

2. The factor K is expressed as K = 2πr2
emec

2, where re is the
classical electron radius. The integration of formula (11.24) gives the total
cross-section, which for particles with spin 0 and 1/2 are the following :

for spin 0 σ(Z,E, Tc) = KZ
Z2

h

β2

(

1 − τ + β2τ ln τ

Tc

)

(11.27)
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for spin 1/2 σ(Z,E, Tc) = KZ
Z2

h

β2

(

1 − τ + β2τ ln τ

Tc
+
Tmax − Tc

2E2

)

where τ = Tc/Tmax.
The average energy transfer ∆Eδ of a particle with spin 0 to δ-electrons with
T > Tc can be expressed as:

∆Eδ = Nel
Z2

h

β2

(

− ln τ − β2(1 − τ)
)

(11.28)

where Nel is the electron density of the medium. Using (11.26) one finds that
the correction to (11.28) for particles with spin 1/2 is (T 2

max −T 2
c )/4E2. This

value is very small for low energy and can be neglected. The same conclusion
can be drawn for particles with spin 1.
The mean free path of the particle is tabulated during initialisation as a
function of the material and of the energy for all the charged hadrons and
static ions. Note, that for low energy Tc = Tmax, cross-section is zero and
the mean free path is set to infinity, compatible with the machine precision.

11.10.2 Energy Loss of Fast Hadrons

The energy lost in soft ionising collisions producing δ-rays below Tc are in-
cluded in the continuous energy loss. The mean value of the energy loss is
given by the restricted Bethe-Bloch formula [5, 3] :

dE

dx

]

T<Tc

= KNel
Z2

h

β2
L0 (11.29)

= KNel
Z2

h

β2

[

ln
2mec

2β2γ2Tmax

I2
− β2

(

1 +
Tc

Tmax

)

− δ − 2Ce

Z

]

where Nel is the electron density of the medium, δ is the density correction
term, and Ce/Z is the shell correction term.
The density effect becomes important at high energies because of the long-
range polarisation of the medium by a relativistic charged particle. The
shell correction term takes into account the fact that, at low energies for
light elements, and at all energies for heavy ones, the probability of hadron
interaction with inner atomic shells becomes small. The accuracy of the
Bethe-Bloch formula with the correction terms mentioned above is estimated
as 1 % for energies between 6 MeV and 6 GeV [3]. Using (11.26) one can
find out that the correction to L0 for particles with the spin 1/2 is T 2

c /4E
2.

This value is very small and can be neglected.
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There exists a variety of phenomenological approximations for parameters in
the Bethe-Bloch formula. In Geant4 the tabulation of the ionisation potential
from Ref.[6] is implemented for all the elements. For the density effect the
formulation of Sternheimer [7] is used:
x is a kinetic variable of the particle : x = log10(γβ) = ln(γ2β2)/4.606,
and δ(x) is defined by

for x < x0 : δ(x) = 0
for x ∈ [x0, x1] : δ(x) = 4.606x− C + a(x1 − x)m

for x > x1 : δ(x) = 4.606x− C
(11.30)

where the matter-dependent constants are calculated as follows:

hνp = plasma energy of the medium =
√

4πnelr3
emc

2/α =
√

4πnelreh̄c

C = 1 + 2 ln(I/hνp)
xa = C/4.606
a = 4.606(xa − x0)/(x1 − x0)

m

m = 3.
(11.31)

For condensed media

I < 100 eV

{

for C ≤ 3.681 x0 = 0.2 x1 = 2
for C > 3.681 x0 = 0.326C − 1.0 x1 = 2

I ≥ 100 eV

{

for C ≤ 5.215 x0 = 0.2 x1 = 3
for C > 5.215 x0 = 0.326C − 1.5 x1 = 3

and for gaseous media

for C < 10. x0 = 1.6 x1 = 4
for C ∈ [10.0, 10.5[ x0 = 1.7 x1 = 4
for C ∈ [10.5, 11.0[ x0 = 1.8 x1 = 4
for C ∈ [11.0, 11.5[ x0 = 1.9 x1 = 4
for C ∈ [11.5, 12.25[ x0 = 2. x1 = 4
for C ∈ [12.25, 13.804[ x0 = 2. x1 = 5
for C ≥ 13.804 x0 = 0.326C − 2.5 x1 = 5.

The semi-empirical formula due to Barkas, which is applicable to all materi-
als, is used for the shell correction term[8]:

Ce(I, βγ) =
a(I)

(βγ)2
+

b(I)

(βγ)4
+

c(I)

(βγ)6
(11.32)

The functions a(I), b(I), c(I) can be found in the source code.
This formula breaks down at low energies, and it only applies for βγ > 0.13
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(e.g. T > 7.9 MeV for a proton). For βγ ≤ 0.13 the shell correction term is
calculated as:

Ce(I, βγ)

∣

∣

∣

∣

βγ≤0.13
= Ce(I, βγ = 0.13)

ln(T/T2l)

ln(7.9 MeV/T2l)

hence the correction becomes progressively smaller from T = 7.9 MeV to
T = T2l = 2 MeV.
Since M � me, the ionisation loss does not depend on the hadron mass, but
on its velocity. Therefore the energy loss of a charged hadron with kinetic
energy, T , is the same as the energy loss of a proton with the same velocity.
The corresponding kinetic energy of the proton Tp is

Tproton =
Mproton

M
T. (11.33)

At initialisation stage of Geant4 the dE/dx tables and range tables for all
materials are calculated only for protons and antiprotons. During run time
the energy loss and the range of any hadron or ion are recalculated using the
scaling relation (11.33).

11.10.3 Barkas and Bloch effects

The accuracy of the Bethe-Bloch stopping power formula (11.33) can be
improved if the higher order terms are taken into account:

− dE

dx
= K

Z2
h

β2
(L0 + ZhL1 + Z2

hL2), (11.34)

where L1 is the Barkas term [9], describing the difference between ionisation
of positively and negatively charged particles, and L2 is the Bloch term.

The Barkas effect for kinetic energy of protons or antiprotons greater than
500keV can be described as [10]:

L1 =
F (b/

√
x)√

Zx3
, x =

β2c2

Zv2
0

, b = 0.8Z
1
6

(

1 + 6.02Z−1.19
)

, (11.35)

where v0 is the Bohr velocity (corresponding to proton energy Tp = 25keV ),
and the function F is tabulated according to [10].

The Bloch term [11] can be expressed in the following way:

Z2
hL2 = −y2

inf
∑

j=1

1

j(j2 + y2)
, y =

Zh

137β
. (11.36)
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Note, that for y � 1 the simplified expression Z2
hL2 = −1.202y2 can be used.

Both the Barkas and Bloch terms break scaling of ionisation losses if the
absolute value of particle charge is different from unity, because the particle
charge Zh is not factorised in the formula (11.34). To take these terms
into account correction is made at each step of the simulation for the value
of dE/dx re-calculated from the proton or antiproton tables. There is the
possibility to switch off the calculation of these terms.

11.10.4 Energy losses of slow positive hadrons

At low energies the total energy loss is usually described in terms of electronic
stopping power Se = −dE/dx. For charged hadron with velocity β < 0.05
(corresponding to 1 MeV for protons), formula (11.30) becomes inaccurate.
In this case the velocity of the incident hadron is comparable to the velocity
of atomic electrons. At very low energies, when β < 0.01, the model of a
free electron gas [12] predicts the stopping power to be proportional to the
hadron velocity, but it is not as accurate as the Bethe-Bloch formalism. The
intermediate region 0.01 < β < 0.05 is not covered by precise theories. In
this energy interval the Bragg peak of ionisation loss occurs.

To simulate slow proton energy loss the following parametrisation from
the review [13] was implemented:

Se = A1E
1/2, 1 keV < Tp < 10 keV,

Se =
SlowShigh

Slow + Shigh
, 10 keV < Tp < 1 MeV,

Slow = A2E
0.45,

Shigh =
A3

E
ln
(

1 +
A4

E
+ A5E

)

,

Se =
A6

β2

[

ln
A7β

2

1 − β2
− β2 −

4
∑

i=0

Ai+8(lnE)i

]

, 1 MeV < Tp < 100 MeV,

(11.37)

where Se is the stopping power in [eV/1015atoms/cm2], E = Tp/Mp[keV/amu],
Ai are twelve fitting parameters found individually for each atom for atomic
numbers from 1 to 92. This parametrisation is used in the interval of proton
kinetic energy:

T1 < Tp < T2, (11.38)

where T1 = 1 keV is the minimal kinetic energy of protons in the tables of
Ref.[13], T2 is an arbitrary value between 2 MeV and 100 MeV, since in this
range both the parametrisation (11.37) and the Bethe-Bloch formula (11.33)
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Table 11.1: The list of parameterisations available.

Name Particle Source
Ziegler1977p proton J.F. Ziegler parameterisation [13]
Ziegler1977He He4 J.F. Ziegler parameterisation [15]
Ziegler1985p proton TRIM’85 parameterisation [16]
ICRU R49p proton ICRU parameterisation [14]
ICRU R49He He4 ICRU parameterisation [14]

have practically the same accuracy and are close to each other. Currently
the value T2 = 2 MeV is chosen.

To avoid problems in computation and to provide a continuous dE/dx
function, the factor

F =

(

1 +B
T2

Tp

)

(11.39)

is multiplied by the value of dE/dx for Tp > T2. The parameter B is de-
termined for each element of the material in order to provide continuity at
Tp = T2. The value of B for all atoms is less than 0.01. For the simulation
of the stopping power of very slow protons the model of a free electron gas
[12] is used:

Se = A
√

Tp, Tp < T1. (11.40)

The parameter A is defined for each atom by requiring the stopping power
to be continuous at Tp = T1. Currently the value used is T1 = 1 keV .

Note that if the cut kinetic energy is small (Tc < Tmax), then the average
energy deposit giving rise to δ-electron production (11.28) is subtracted from
the value of the stopping power Se, which is calculated by formula (11.37).

Alternative parametrisations of proton energy loss are also available within
Geant4 (Table 11.1). The parameterisation formulae in Ref.[14] are the same
as in Ref.([13]) for the kinetic energy of protons Tp < 1 MeV , but the values
of the parameters are different. The type of parameterisation is optional and
can be chosen by the user separately for each particle at the initialisation
stage of Geant4.

11.10.5 Energy loss of alpha particles

The accuracy of the data for the ionisation losses of α-particles in all ele-
ments [14, 15] is comparable to the accuracy of the data for proton energy
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loss [13, 14]. In the GEANT4 energy loss model for α-particles the Bethe-
Bloch formula is used for kinetic energy T > T2, where T2 is the arbitrary
parameter, currently set to 8 MeV . For lower energies a parameterisation is
performed. In the energy range of the Bragg peak, 1 keV < T < 10 MeV ,
the parameterisation is:

Se =
SlowShigh

Slow + Shigh
,

Slow = A1T
A2,

Shigh =
A3

T
ln
(

1 +
A4

T
+ A5T

)

,

(11.41)

where Se is the electronic stopping power in [eV/1015atoms/cm2], T is the
kinetic energy of α-particles in MeV , Ai are the five fitting parameters fitted
individually for each atom for atomic numbers from 1 to 92.

For higher energies T > 10 MeV , another parametrisation [15] is applied

Se = exp
(

A6 + A7E + A8E
2 + A9E

3
)

, E = ln(1/T ). (11.42)

To ensure a continuous dE/dx function from the energy range of the Bethe-
Bloch formula to the energy range of the parameterisation, the factor

F =
(

1 +B
T2

T

)

(11.43)

is multiplied by the value of Se as predicted by the Bethe-Bloch formula for
T > T2. The parameter B is determined for each element of the material in
order to ensure continuity at Tp = T2. The value of B for different atoms is
usually less than 0.01.

For kinetic energies of α-particles T < 1 keV the model of free electron
gas [12] is used

Se = A
√
T , (11.44)

The parameter A is defined for each atom by requiring the stopping power
to be continuous at T = 1 keV .

11.10.6 Effective charge of ions

For hadrons or ions the scaling relation can be written as

Sei(T ) = Z2
eff · Sep(Tp), (11.45)
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where Sei is the ion stopping power, Sep is the proton stopping power at the
energy scaled according (11.33), and Zeff is effective charge of the particle,
which has to be used in all expressions in place of Zh. For fast particles it
is equal to the particle charge Zh, but for slow ions it differs significantly
because a slow ion picks up electrons from the medium. The ion effective
charge is expressed via the ion charge Zh and the fractional effective charge
of ion γi:

Zeff = γiZh. (11.46)

For helium ions fractional effective charge is parameterised for all elements
with good accuracy [16] according to:

(γHe)
2 =



1 − exp



−
5
∑

j=0

CjQ
j









(

1 +
7 + 0.05Z

1000
exp(−(7.6 −Q)2)

)2

,

Q = max(0, lnTp), (11.47)

where the coefficients Cj are the same for all elements, and the helium ion
kinetic energy is in keV/amu.

The following expression is used for heavy ions [17]:

γi =

(

q +
1 − q

2

(

v0

vF

)2

ln
(

1 + Λ2
)

)(

1 +
(0.18 + 0.0015Z) exp(−(7.6 −Q)2)

Z2
i

)

,

(11.48)
where q is the fractional average charge of the ion, v0 is the Bohr velocity,
vF is the Fermi velocity of the electrons in the target medium, and Λ is the
term taking into account the screening effect. In Ref. [17], Λ is estimated to
be:

Λ = 10
vF

v0

(1 − q)2/3

Z
1/3
i (6 + q)

. (11.49)

The Fermi velocity of the medium is of the same order as the Bohr veloc-
ity, and its exact value depends on the detailed electronic structure of the
medium. Experimental data on the Fermi velocity are taken from Ref.[16].
The expression for the fractional average charge of the ion is the following:

q = [1 − exp(0.803y0.3 − 1.3167y0.6 − 0.38157y − 0.008983y2)], (11.50)

where y is a parameter that depends on the ion velocity vi

y =
vi

v0Z2/3

(

1 +
v2

F

5v2
i

)

. (11.51)
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The parametrisation described in this chapter is only valid if the reduced
kinetic energy of the ion is higher than the lower limit of the energy:

Tp > max

(

3.25 keV,
25 keV

Z2/3

)

. (11.52)

If the ion energy is lower, then the free electron gas model (11.44) is used to
calculate the stopping power.

11.10.7 Energy losses of slow negative particles

At low energies, e.g. below a few MeV for protons/antiprotons, the Bethe-
Bloch formula is no longer accurate in describing the energy loss of charged
hadrons and higher Z terms should be taken in account. Odd terms in Z
lead to a significant difference between energy loss of positively and negatively
charged particles. The energy loss of negative hadrons is scaled from that of
antiprotons. The antiproton energy loss is calculated in the following way:

• if the material is elemental, the quantum harmonic oscillator model is
used, as described in [18] and references therein. The lower limit of
applicability of the model is chosen for all materials at 50 keV . Below
this value stopping power is set to constant equal to the dE/dx at
50 keV .

• if the material is not elemental, the energy loss is calculated down
to 500 keV using the Barkas correction (11.43) and at lower energies
fitting the proton energy loss curve.

11.10.8 Energy losses of hadrons in compounds

To obtain energy losses in a mixture or compound, the absorber can be
thought of as made up of thin layers of pure elements with weights propor-
tional to the electron density of the element in the absorber (Bragg’s rule):

dE

dx
=
∑

i

(

dE

dx

)

i

, (11.53)

where the sum is taken over all elements of the absorber, i is the number of
the element, (dE

dx
)i is energy loss in the pure i-th element.

Bragg’s rule is very accurate for relativistic particles when the interaction
of electrons with a nucleus is negligible. But at low energies the accuracy of
Bragg’s rule is limited because the energy loss to the electrons in any material
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depends on the detailed orbital and excitation structure of the material. In
the description of Geant4 materials there is a special attribute: the chemical
formula. It is used in the following way:

• if the data on the stopping power for a compound as a function of
the proton kinetic energy is available (Table 11.2), then the direct
parametrisation of the data for this material is performed;

• if the data on the stopping power for a compound is available for only
one incident energy (Table 11.3), then the computation is performed
based on Bragg’s rule and the chemical factor for the compound is
taken into account;

• if there are no data for the compound, the computation is performed
based on Bragg’s rule.

In the review [19] the parametrisation stopping power data are presented as

Se(Tp) = SBragg(Tp)

[

1 +
f(Tp)

f(125 keV )

(

Sexp(125 keV )

SBragg(125 keV )
− 1

)]

, (11.54)

where Sexp(125 keV ) is the experimental value of the energy loss for the
compound for 125 keV protons or the reduced experimental value for He
ions, SBragg(Tp) is a value of energy loss calculated according to Bragg’s
rule, and f(Tp) is a universal function, which describes the disappearance of
deviations from Bragg’s rule for higher kinetic energies according to:

f(Tp) =
1

1 + exp
[

1.48( β(Tp)
β(25 keV )

− 7.0)
] , (11.55)

where β(Tp) is the relative velocity of the proton with kinetic energy Tp.

11.10.9 Nuclear stopping powers

Low energy ions transfer their energy not only to electrons of a medium
but also to the nuclei of the medium due to the elastic Coulomb collisions.
This contribution to the energy loss is called nuclear stopping power. It is
parametrised [15, 16, 14] using a universal parameterisation for reduced ion
energy, ε, which depends on ion parameters and on the charge, Zt, and the
mass, Mt, of the target nucleus:

ε =
32.536TMt

ZeffZt(M +Mt)
√

Z0.23
eff + Z0.23

t

. (11.56)
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Table 11.2: The list of chemical formulae of compounds for which parametri-
sation of stopping power as a function of kinetic energy is in Ref.[14].

Number Chemical formula
1. AlO
2. C 2O
3. CH 4
4. (C 2H 4) N-Polyethylene
5. (C 2H 4) N-Polypropylene
6. (C 8H 8) N
7. C 3H 8
8. SiO 2
9. H 2O
10. H 2O-Gas
11. Graphite

The universal reduced nuclear stopping power, sn, is determined by J. Moliere
in the framework of Thomas-Fermi potential [20]. The corresponding tabu-
lation from Ref.[14] is implemented. To transform the value of nuclear stop-
ping power from reduced units to [eV/1015atoms/cm2] the following formula
is used:

Sn = sn
8.462ZiZtMi

(Mi +Mt)
√

Z0.23
i + Z0.23

t

. (11.57)

The effect of nuclear stopping power is very small at high energies, but it is
of the same order of magnitude as electronic stopping power for very slow
ions (e.g. for protons, Tp < 1keV ).

11.10.10 Fluctuations of energy losses of hadrons

The total continuous energy loss of charged particles is a stochastic quantity
with a distribution described in terms of a straggling function. The strag-
gling is partially taken into account by the simulation of energy loss by the
production of δ-electrons with energy T > Tc. However, continuous energy
loss also has fluctuations. Hence in the current GEANT4 implementation
two different models of fluctuations are applied depending on the value of
the parameter κ which is the lower limit of the number of interactions of the
particle in the step. The default value chosen is κ = 10. To select a model
for thick absorbers the following boundary conditions are used:

∆E > Tcκ) or Tc < Iκ, (11.58)
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Table 11.3: The list of chemical formulae of compounds for which the chem-
ical factor is calculated from the data of Ref.[19].

Number Chemical formula Number Chemical formula
1. H 2O 28. C 2H 6
2. C 2H 4O 29. C 2F 6
3. C 3H 6O 30. C 2H 6O
4. C 2H 2 31. C 3H 6O
5. C H 3OH 32. C 4H 10O
6. C 2H 5OH 33. C 2H 4
7. C 3H 7OH 34. C 2H 4O
8. C 3H 4 35. C 2H 4S
9. NH 3 36. SH 2
10. C 14H 10 37. CH 4
11. C 6H 6 38. CCLF 3
12. C 4H 10 39. CCl 2F 2
13. C 4H 6 40. CHCl 2F
14. C 4H 8O 41. (CH 3) 2S
15. CCl 4 42. N 2O
16. CF 4 43. C 5H 10O
17. C 6H 8 44. C 8H 6
18. C 6H 12 45. (CH 2) N
19. C 6H 10O 46. (C 3H 6) N
20. C 6H 10 47. (C 8H 8) N
21. C 8H 16 48. C 3H 8
22. C 5H 10 49. C 3H 6-Propylene
23. C 5H 8 50. C 3H 6O
24. C 3H 6-Cyclopropane 51. C 3H 6S
25. C 2H 4F 2 52. C 4H 4S
26. C 2H 2F 2 53. C 7H 8
27. C 4H 8O 2
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where ∆E is the mean continuous energy loss in a track segment of length
s, Tc is the cut kinetic energy of δ-electrons, and I is the average ionisation
potential of the atom.

For long path lengths the straggling function approaches the Gaussian
distribution with Bohr’s variance [14]:

Ω2 = KNel
Z2

h

β2
Tcsf

(

1 − β2

2

)

, (11.59)

where f is a screening factor, which is equal to unity for fast particles, whereas
for slow positively charged ions with β2 < 3Z(v0/c)

2 f = a + b/Z2
eff , where

parameters a and b are parametrised for all atoms [22, 23].
For short path lengths, when the condition 11.58 is not satisfied, the

model described in the charter 7.2 is applied.

11.10.11 Sampling

At each step for a charged hadron or ion in an absorber, the step limit is
calculated using range tables for protons or antiprotons depending on the par-
ticle charge. If the reduced particle energy Tp < T2 the step limit is forced to
be not longer than αR(T2), where R(T2) is the range of the particle with the
reduced energy T2, α is an arbitrary coefficient, which is currently set to 0.05
in order to provide at least 20 steps for particles in the Bragg peak energy
range. In each step continuous energy loss of the particle is calculated using
loss tables for protons or antiprotons for Tp > T2. For lower energies, contin-
uous energy loss is calculated using the effective charge approach, chemical
factors, and nuclear stopping powers. If the step of the particle is limited
by the ionisation process the sampling of δ-electron production is performed.
(A short overview of the method is given in Chapter 2.)
Apart from the normalisation, the cross-section (11.26) can be written as :

dσ

dT
∼ f(T ) g(T ) with T ∈ [Tc, Tmax] (11.60)

with :

f(T ) =
(

1

Tc

− 1

Tmax

)

1

T 2

g(T ) = 1 − β2 T

Tmax

+ S(T ),

where S(T ) is a spin dependent term (11.26). For a spin-0 particle this term
is zero, for a spin- 1

2
particle S(T ) = T 2/2E2, whilst for spin-1 the expression

is more complicated.
The energy, T , is sampled by :
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1. Sample T from f(T ).

2. Calculate the rejection function g(T ) and accept the sampled T with a
probability of g(T ).

After the successful sampling of the energy, the polar angles of the emitted
electron are generated with respect to the direction of the incident particle.
The azimuthal angle, φ, is generated isotropically; the polar angle θ is cal-
culated from the energy momentum conservation. This information is used
to calculate the energy and momentum of both particles and to transform
them into the global coordinate system.

11.10.12 PIXE

PIXE is simulated by calculating cross-sections according to [24] and [25]
to identify the primary ionised shell, and generating the subsequent atomic
relaxation as described in 11.9. Sampling of excitations is carried out for
both the continuous and the discrete parts of the process.

11.10.13 Status of this document

21.11.2000 Created by V.Ivanchenko
30.05.2001 Modified by V.Ivanchenko
23.11.2001 Modified by M.G. Pia to add PIXE section.
19.01.2002 Minor corrections (mma)
13.05.2002 Minor corrections (V.Ivanchenko)
28.08.2002 Minor corrections (V.Ivanchenko)
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11.11 Penelope physics

11.11.1 Introduction

A new set of physics processes for photons, electrons and positrons is im-
plemented in Geant4: it includes Compton scattering, photoelectric effect,
Rayleigh scattering, gamma conversion, bremsstrahlung, ionization (to be
released) and positron annihilation (to be released). These processes are the
Geant4 implementation of the physics models developed for the PENELOPE
code (PENetration and Energy LOss of Positrons and Electrons), version
2001, that are described in detail in Ref. [1]. The Penelope models have
been specifically developed for Monte Carlo simulation and great care was
given to the low energy description (i.e. atomic effects, etc.). Hence, these
implementations provide reliable results for energies down to a few hundred
eV and can be used up to ∼1 GeV [1, 2]. For this reason, they may be
used in Geant4 as an alternative to the Low Energy processes. For the same
physics processes, the user now has more alternative descriptions from which
to choose, including the cross section calculation and the final state sampling.

11.11.2 Compton scattering

Total cross section

The total cross section of the Compton scattering process is determined from
an analytical parameterization. For γ energy E greater than 5 MeV, the usual
Klein-Nishina formula is used for σ(E). For E < 5 MeV a more accurate
parameterization is used, which takes into account atomic binding effects
and Doppler broadening [3]:

σ(E) = 2π
∫ 1

−1

r2
e

2

E2
C

E2
(
EC

E
+

E

EC
− sin2 θ) ·

∑

shells

fiΘ(E − Ui)ni(p
max
z ) d(cos θ) (11.61)

where:
re = classical radius of the electron;
me = mass of the electron;
θ = scattering angle;
EC = Compton energy

=
E

1 + E
mec2

(1 − cos θ)
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fi = number of electrons in the i-th atomic shell;
Ui = ionisation energy of the i-th atomic shell;
Θ = Heaviside step function;
pmax

z = highest possible value of pz (projection of the initial momentum of
the electron in the direction of the scattering angle)

=
E(E − Ui)(1 − cos θ) −mec

2Ui

c
√

2E(E − Ui)(1 − cos θ) + U 2
i

.

Finally,
ni(x) =

1
2
e[

1
2
−( 1

2
−
√

2Ji0x)2] if x < 0

1 − 1
2
e[

1
2
−( 1

2
+
√

2Ji0x)2] if x > 0

(11.62)

where Ji0 is the value of the pz-distribution profile Ji(pz) for the i-th atomic
shell calculated in pz = 0. The values of Ji0 for the different shells of the
different elements are tabulated from the Hartree-Fock atomic orbitals of
Ref. [4].
The integration of Eq.(11.61) is performed numerically using the 20-point
Gaussian method. For this reason, the initialization of the Penelope Compton
process is somewhat slower than the Low Energy process.

Sampling of the final state

The polar deflection cos θ is sampled from the probability density function

P (cos θ) =
r2
e

2

E2
C

E2

(EC

E
+

E

EC
− sin2 θ

)

∑

shells

fiΘ(E − Ui)ni(p
max
z ) (11.63)

(see Ref. [1] for details on the sampling algorithm). Once the direction of
the emerging photon has been set, the active electron shell i is selected with
relative probability equal to ZiΘ(E − Ui)ni[p

max
z (E, θ)]. A random value of

pz is generated from the analytical Compton profile [4]. The energy of the
emerging photon is

E ′ =
Eτ

1 − τt

[

(1 − τt cos θ) +
pz

|pz|
√

(1 − τt cos θ)2 − (1 − tτ 2)(1 − t)
]

,

(11.64)
where

t =
( pz

mec

)2
and τ =

EC

E
. (11.65)

The azimuthal scattering angle φ of the photon is sampled uniformly in
the interval (0,2π). It is assumed that the Compton electron is emitted with
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energy Ee = E−E ′−Ui, with polar angle θe and azimuthal angle φe = φ+π,
relative to the direction of the incident photon. In this case cos θe is given by

cos θe =
E − E ′ cos θ√

E2 + E ′2 − 2EE ′ cos θ
. (11.66)

Since the active electron shell is known, characteristic x-rays and electrons
emitted in the de-excitation of the ionized atom can also be followed. The de-
excitation is simulated as described in section 11.9. For further details see [1].

11.11.3 Rayleigh scattering

Total cross section

The total cross section of the Rayleigh scattering process is determined from
an analytical parameterization. The atomic cross section for coherent scat-
tering is given approximately by [5]

σ(E) = πr2
e

∫ 1

−1

1 + cos2 θ

2
[F (q, Z)]2 d cos θ, (11.67)

where F (q, Z) is the atomic form factor, Z is the atomic number and q is the
magnitude of the momentum transfer, i.e.

q = 2
E

c
sin

(θ

2

)

. (11.68)

In the numerical calculation the following analytical approximations are used
for the form factor:

F (q, Z) = f(x, Z) =

Z 1+a1x2+a2x3+a3x4

(1+a4x2+a5x4)2
or

max[f(x, Z), FK(x, Z)] if Z > 10 and f(x, Z) < 2
(11.69)

where

FK(x, Z) =
sin(2b arctanQ)

bQ(1 +Q2)b
, (11.70)

with

x = 20.6074
q

mec
, Q =

q

2meca
, b =

√
1 − a2, a = α

(

Z − 5

16

)

, (11.71)

where α is the fine-structure constant. The function FK(x, Z) is the contri-
bution to the atomic form factor due to the two K-shell electrons (see [6]).
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The parameters of expression f(x, Z) have been determined in Ref. [6] for
Z=1 to 92 by numerically fitting the atomic form factors tabulated in Ref.
[7]. The integration of Eq.(11.67) is performed numerically using the 20-point
Gaussian method. For this reason the initialization of the Penelope Rayleigh
process is somewhat slower than the Low Energy process.

Sampling of the final state

The angular deflection cos θ of the scattered photon is sampled from the
probability distribution function

P (cos θ) =
1 + cos2 θ

2
[F (q, Z)]2. (11.72)

For details on the sampling algorithm (which is quite heavy from the com-
putational point of view) see Ref. [1]. The azimuthal scattering angle φ of
the photon is sampled uniformly in the interval (0,2π).

11.11.4 Gamma conversion

Total cross section

The total cross section of the γ conversion process is determined from the
data [8], as described in section 11.1.4.

Sampling of the final state

The energies E− and E+ of the secondary electron and positron are sampled
using the Bethe-Heitler cross section with the Coulomb correction, using the
semiempirical model of Ref. [6]. If

ε =
E− +mec

2

E
(11.73)

is the fraction of the γ energy E which is taken away from the electron,

κ =
E

mec2
and a = αZ, (11.74)

the differential cross section, which includes a low-energy correction and a
high-energy radiative correction, is

dσ

dε
= r2

ea(Z + η)Cr
2

3

[

2
(1

2
− ε

)2
φ1(ε) + φ2(ε)

]

, (11.75)
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where:

φ1(ε) =
7

3
− 2 ln(1 + b2) − 6b arctan(b−1)

−b2[4 − 4b arctan(b−1) − 3 ln(1 + b−2)]

+4 ln(Rmec/h̄) − 4fC(Z) + F0(κ, Z) (11.76)

and

φ2(ε) =
11

6
− 2 ln(1 + b2) − 3b arctan(b−1)

+
1

2
b2[4 − 4b arctan(b−1) − 3 ln(1 + b−2)]

+4 ln(Rmec/h̄) − 4fC(Z) + F0(κ, Z), (11.77)

with

b =
Rmec

h̄

1

2κ

1

ε(1 − ε)
. (11.78)

In this case R is the screening radius for the atom Z (tabulated in [10] for
Z=1 to 92) and η is the contribution of pair production in the electron field
(rather than in the nuclear field). The parameter η is approximated as

η = η∞(1 − e−v), (11.79)

where

v = (0.2840 − 0.1909a) ln(4/κ) + (0.1095 + 0.2206a) ln2(4/κ)

+(0.02888 − 0.04269a) ln3(4/κ)

+(0.002527 + 0.002623) ln4(4/κ) (11.80)

and η∞ is the contribution for the atom Z in the high-energy limit and is
tabulated for Z=1 to 92 in Ref. [10]. In the Eq.(11.75), the function fC(Z)
is the high-energy Coulomb correction of Ref. [9], given by

fC(Z) = a2[(1 + a2)−1 + 0.202059 − 0.03693a2 + 0.00835a4

−0.00201a6 + 0.00049a8 − 0.00012a10 + 0.00003a12]; (11.81)

Cr = 1.0093 is the high-energy limit of Mork and Olsen’s radiative correction
(see Ref. [10]); F0(κ, Z) is a Coulomb-like correction function, which has been
analytically approximated as [1]

F0(κ, Z) = (−0.1774 − 12.10a+ 11.18a2)(2/κ)1/2

+(8.523 + 73.26a− 44.41a2)(2/κ)

−(13.52 + 121.1a− 96.41a2)(2/κ)3/2

+(8.946 + 62.05a− 63.41a2)(2/κ)2. (11.82)
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The kinetic energy E+ of the secondary positron is obtained as

E+ = E − E− − 2mec
2. (11.83)

The polar angles θ− and θ+ of the directions of movement of the electron and
the positron, relative to the direction of the incident photon, are sampled
from the leading term of the expression obtained from high-energy theory
(see Ref. [11])

p(cos θ±) = a(1 − β± cos θ±)−2, (11.84)

where a is the a normalization constant and β± is the particle velocity in
units of the speed of light. As the directions of the produced particles and
of the incident photon are not necessarily coplanar, the azimuthal angles φ−
and φ+ of the electron and of the positron are sampled independently and
uniformly in the interval (0,2π).

11.11.5 Photoelectric effect

Total cross section

The total photoelectric cross section at given photon energy E is calculated
from the data [12], as described in section 11.1.4.

Sampling of the final state

The incident photon is absorbed and one electron is emitted in the same
direction as the primary photon. The subshell from which the electron is
emitted is randomly selected according to the relative cross sections of sub-
shells, determined at the energy E by interpolation of the data of Ref. [11].
The electron kinetic energy is the difference between the incident photon
energy and the binding energy of the electron before the interaction in the
sampled shell. The interaction leaves the atom in an excited state; the sub-
sequent de-excitation is simulated as described in section 11.9.

11.11.6 Bremsstrahlung

Introduction

The class G4PenelopeBremsstrahlung calculates the continuous energy loss
due to soft γ emission and simulates the photon production by electrons and
positrons. As usual, the gamma production threshold Tc for a given material
is used to separate the continuous and the discrete parts of the process.
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Electrons

The total cross sections are calculated from the data [14], as described in
sections 11.1.4 and 11.7.
The energy distribution dσ

dW
(E), i.e. the probability of the emission of a

photon with energy W given an incident electron of kinetic energy E, is
generated according to the formula

dσ

dW
(E) =

F (κ)

κ
, κ =

W

E
. (11.85)

The functions F (κ) describing the energy spectra of the outgoing photons are
taken from Ref. [13]. For each element Z from 1 to 92, 32 points in κ, ranging
from 10−12 to 1, are used for the linear interpolation of this function. F (κ)
is normalized using the condition F (10−12) = 1. The energy distribution
of the emitted photons is available in the library [13] for 57 energies of the
incident electron between 1 keV and 100 GeV. For other primary energies,
logarithmic interpolation is used to obtain the values of the function F (κ).
The direction of the emitted bremsstrahlung photon is determined by the
polar angle θ and the azimuthal angle φ. For isotropic media, with randomly
oriented atoms, the bremsstrahlung differential cross section is independent
of φ and can be expressed as

d2σ

dWd cos θ
=

dσ

dW
p(Z,E, κ; cos θ). (11.86)

Numerical values of the “shape function” p(Z,E, κ; cos θ), calculated by
partial-wave methods, have been published in Ref. [15] for the following
benchmark cases: Z= 2, 8, 13, 47, 79 and 92; E= 1, 5, 10, 50, 100 and 500
keV; κ= 0, 0.6, 0.8 and 0.95. It was found in Ref. [1] that the benchmark
partial-wave shape function of Ref. [15] can be closely approximated by the
analytical form (obtained in the Lorentz-dipole approximation)

p(cos θ) = A
3

8

[

1 +
( cos θ − β ′

1 − β ′ cos θ

)2] 1 − β
′2

(1 − β ′ cos θ)2

+(1 − A)
3

4

[

1 −
( cos θ − β ′

1 − β ′ cos θ
m
)2] 1 − β

′2

(1 − β ′ cos θ)2
, (11.87)

with β ′ = β(1+B), if one considers A and B as adjustable parameters. The
parameters A and B have been determined, by least squares fitting, for the
144 conbinations of atomic numbers, electron energies and reduced photon
energies corresponding to the benchmark shape functions tabulated in [15].
The quantities ln(AZβ) and Bβ vary smoothly with Z, β and κ and can

201



be obtained by cubic spline interpolation of their values for the benchmark
cases. This permits the fast evaluation of the shape function p(Z,E, κ; cos θ)
for any combination of Z, β and κ.
The stopping power dE

dx
due to soft bremsstrahlung is calculated by interpo-

lating in E and κ the numerical data of scaled cross sections of Ref. [16]. The
energy and the direction of the outgoing electron are determined by using
energy-momentum balance.

Positrons

The radiative differential cross section dσ+

dW
(E) for positrons reduces to that

for electrons in the high-energy limit, but is smaller for intermediate and low
energies. Owing to the lack of more accurate calculations, the differential
cross section for positrons is obtained by multiplying the electron differential
cross section dσ−

dW
(E) by a κ−indendent factor, i.e.

dσ+

dW
= Fp(Z,E)

dσ−

dW
. (11.88)

The factor Fp(Z,E) is set equal to the ratio of the radiative stopping powers
for positrons and electrons, which has been calculated in Ref. [17]. For the
actual calculation, the following analytical approximation is used:

Fp(Z,E) = 1 − exp(−1.2359 · 10−1t+ 6.1274 · 10−2t2 − 3.1516 · 10−2t3

+7.7446 · 10−3t4 − 1.0595 · 10−3t5 + 7.0568 · 10−5t6

−1.8080 · 10−6t7),(11.89)

where

t = ln
(

1 +
106

Z2

E

mec2

)

. (11.90)

Because the factor Fp(Z,E) is independent on κ, the energy distribution of
the secondary γ’s has the same shape as electron bremsstrahlung. Similarly,
owing to the lack of numerical data for positrons, it is assumed that the shape
of the angular distribution p(Z,E, κ; cos θ) of the bremsstrahlung photons for
positrons is the same as for the electrons.
The energy and direction of the outgoing positron are determined from
energy-momentum balance.

11.11.7 Ionisation

The G4PenelopeIonisation class calculates the continuous energy loss due
to electron and positron ionisation and simulates the δ-ray production by
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electrons and positrons. The electron production threshold Tc for a given
material is used to separate the continuous and the discrete parts of the
process.
The simulation of inelastic collisions of electrons and positrons is performed
on the basis of a Generalized Oscillation Strength (GOS) model (see Ref. [1]
for a complete description). It is assumed that GOS splits into contributions
from the different atomic electron shells.

Electrons

The total cross section σ−(E) for the inelastic collision of electrons of energy
E is calculated analytically. It can be split into contributions from distant
longitudinal, distant transverse and close interactions,

σ−(E) = σdis,l + σdis,t + σ−
clo. (11.91)

The contributions from distant longitudinal and transverse interactions are

σdis,l =
2πe4

mev2

∑

shells

fk
1

Wk

ln
( Wk

Qmin
k

Qmin
k + 2mec

2

Wk + 2mec2

)

Θ(E −Wk) (11.92)

and

σdis,t =
2πe4

mev2

∑

shells

fk
1

Wk

[

ln
( 1

1 − β2

)

− β2 − δF
]

Θ(E −Wk) (11.93)

respectively, where:
me = mass of the electron;
v = velocity of the electron;
β = velocity of the electron in units of c;
fk = number of electrons in the k-th atomic shell;
Θ = Heaviside step function;
Wk = resonance energy of the k-th atomic shell oscillator;
Qmin

k = minimum kinematically allowed recoil energy for energy transfer Wk

=

√

[
√

E(E + 2mec2) −
√

(E −Wk)(E −Wk + 2mec2)
]2

+m2
ec

4 −mec
2;

δF = Fermi density effect correction, computed as described in Ref. [18].
The value of Wk is calculated from the ionisation energy Uk of the k-th

shell as Wk = 1.65 Uk. This relation is derived from the hydrogenic model,
which is valid for the innermost shells. In this model, the shell ionisation
cross sections are only roughly approximated; nevertheless the ionisation of
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inner shells is a low-probability process and the approximation has a weak
effect on the global transport properties1.
The integrated cross section for close collisions is the Møller cross section

σ−
clo =

2πe4

mev2

∑

shells

fk

∫ E
2

Wk

1

W 2
F−(E,W )dW, (11.94)

where

F−(E,W ) = 1 +
( W

E −W

)2 − W

E −W
+
( E

E +mec2

)2( W

E −W
+
W 2

E2

)

.

(11.95)
The integral of Eq.(11.94) can be evaluated analytically. In the final state
there are two indistinguishable free electrons and the fastest one is considered
as the “primary”; accordingly, the maximum allowed energy transfer in close
collisions is E

2
.

The GOS model also allows evaluation of the spectrum dσ−

dW
of the energy

W lost by the primary electron as the sum of distant longitudinal, distant
transverse and close interaction contributions,

dσ−

dW
=

dσ−
clo

dW
+
dσdis,l

dW
+
dσdis,t

dW
. (11.96)

In particular,

dσdis,l

dW
=

2πe4

mev2

∑

shells

fk
1

Wk

ln
(Wk

Q−

Q− + 2mec
2

Wk + 2mec2

)

δ(W −Wk)Θ(E −Wk),

(11.97)
where

Q− =

√

[
√

E(E + 2mec2) −
√

(E −W )(E −W + 2mec2)
]2

+m2
ec

4 −mec
2,

(11.98)

dσdis,t

dW
=

2πe4

mev2

∑

shells

fk
1

Wk

[

ln
( 1

1 − β2

)

− β2 − δF
]

Θ(E −Wk)δ(W −Wk) (11.99)

and
dσ−

clo

dW
=

2πe4

mev2

∑

shells

fk
1

W 2
F−(E,W )Θ(W −Wk). (11.100)

1In cases where inner-shell ionisation is directly observed, a more accurate description
of the process should be used.
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Eqs. (11.92), (11.93) and (11.94) derive respectively from the integration in
dW of Eqs. (11.97), (11.99) and (11.100) in the interval [0,Wmax], where
Wmax = E for distant interactions and Wmax = E

2
for close. The analytical

GOS model provides an accurate average description of inelastic collisions.
However, the continuous energy loss spectrum associated with single distant
excitations of a given atomic shell is approximated as a single resonance (a
δ distribution). As a consequence, the simulated energy loss spectra show
unphysical narrow peaks at energy losses that are multiples of the resonance
energies. These spurious peaks are automatically smoothed out after multiple
inelastic collisions.
The explicit expression of dσ−

dW
, Eq. (11.96), allows the analytic calculation

of the partial cross sections for soft and hard ionisation events, i.e.

σ−
soft =

∫ Tc

0

dσ−

dW
dW and σ−

hard =
∫ Wmax

Tc

dσ−

dW
dW. (11.101)

The first stage of the simulation is the selection of the active oscillator k
and the oscillator branch (distant or close).
In distant interactions with the k-th oscillator, the energy loss W of the
primary electron corresponds to the excitation energy Wk, i.e. W=Wk. If the
interaction is transverse, the angular deflection of the projectile is neglected,
i.e. cos θ=1. For longitudinal collisions, the distribution of the recoil energy
Q is given by

Pk(Q) =
1

Q[1+Q/(2mec2)]
if Q− < Q < Wmax

0 otherwise
(11.102)

Once the energy loss W and the recoil energy Q have been sampled, the
polar scattering angle is determined as

cos θ =
E(E + 2mec

2) + (E −W )(E −W + 2mec
2) −Q(Q + 2mec

2)

2
√

E(E + 2mec2)(E −W )(E −W + 2mec2)
.

(11.103)
The azimuthal scattering angle φ is sampled uniformly in the interval (0,2π).
For close interactions, the distributions for the reduced energy loss κ ≡ W/E
for electrons are

P−
k (κ) =

[ 1

κ2
+

1

(1 − κ)2
− 1

κ(1 − κ)
+
( E

E +mec2

)2(

1 +
1

κ(1 − κ)

)]

Θ(κ− κc)Θ(
1

2
− κ)(11.104)
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with κc = max(Wk, Tc)/E. The maximum allowed value of κ is 1/2, consis-
tent with the indistinguishability of the electrons in the final state. After the
sampling of the energy loss W = κE, the polar scattering angle θ is obtained
as

cos2 θ =
E −W

E

E + 2mec
2

E −W + 2mec2
. (11.105)

The azimuthal scattering angle φ is sampled uniformly in the interval (0,2π).
According to the GOS model, each oscillator Wk corresponds to an atomic
shell with fk electrons and ionisation energy Uk. In the case of ionisation
of an inner shell i (K or L), a secondary electron (δ-ray) is emitted with
energy Es = W − Ui and the residual ion is left with a vacancy in the shell
(which is then filled with the emission of fluorescence x-rays and/or Auger
electrons). In the case of ionisation of outer shells, the simulated δ-ray is
emitted with kinetic energy Es = W and the target atom is assumed to
remain in its ground state. The polar angle of emission of the secondary
electron is calculated as

cos2 θs =
W 2/β2

Q(Q + 2mec2)

[

1 +
Q(Q + 2mec

2) −W 2

2W (E +mec2)

]2
(11.106)

(for close collisions Q = W ), while the azimuthal angle is φs = φ + π. In
this model, the Doppler effects on the angular distribution of the δ rays are
neglected.
The stopping power due to soft interactions of electrons, which is used for the
computation of the continuous part of the process, is analytically calculated
as

S−
in = N

∫ Tc

0
W
dσ−

dW
dW (11.107)

from the expression (11.96), where N is the number of scattering centers
(atoms or molecules) per unit volume.

Positrons

The total cross section σ+(E) for the inelastic collision of positrons of energy
E is calculated analytically. As in the case of electrons, it can be split into
contributions from distant longitudinal, distant transverse and close interac-
tions,

σ+(E) = σdis,l + σdis,t + σ+
clo. (11.108)

The contributions from distant longitudinal and transverse interactions are
the same as for electrons, Eq. (11.92) and (11.93), while the integrated cross
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section for close collisions is the Bhabha cross section

σ+
clo =

2πe4

mev2

∑

shells

fk

∫ E

Wk

1

W 2
F+(E,W )dW, (11.109)

where

F+(E,W ) = 1 − b1
W

E
+ b2

W 2

E2
− b3

W 3

E3
+ b4

W 4

E4
; (11.110)

the Bhabha factors are

b1 =
(γ − 1

γ

)2 2(γ + 1)2 − 1

γ2 − 1
b2 =

(γ − 1

γ

)2 3(γ + 1)2 + 1

(γ + 1)2
,

b3 =
(γ − 1

γ

)2 2(γ − 1)γ

(γ + 1)2
, b4 =

(γ − 1

γ

)2 (γ − 1)2

(γ + 1)2
, (11.111)

(11.112)

and γ is the Lorentz factor of the positron. The integral of Eq. (11.109) can
be evaluated analytically. The particles in the final state are not undistin-
guishable so the maximum energy transfer Wmax in close collisions is E.
As for electrons, the GOS model allows the evaluation of the spectrum dσ+

dW
of

the energy W lost by the primary positron as the sum of distant longitudinal,
distant transverse and close interaction contributions,

dσ+

dW
=

dσ+
clo

dW
+
dσdis,l

dW
+
dσdis,t

dW
, (11.113)

where the distant terms
dσdis,l

dW
and

dσdis,t

dW
are those from Eqs. (11.97) and

(11.99), while the close contribution is

dσ+
clo

dW
=

2πe4

mev2

∑

shells

fk
1

W 2
F+(E,W )Θ(W −Wk). (11.114)

Also in this case, the explicit expression of dσ+

dW
, Eq. (11.113), allows an

analytic calculation of the partial cross sections for soft and hard ionisation
events, i.e.

σ+
soft =

∫ Tc

0

dσ+

dW
dW and σ+

hard =
∫ E

Tc

dσ+

dW
dW. (11.115)

The sampling of the final state in the case of distant interactions (transverse
or longitudinal) is performed in the same way as for primary electrons, see
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section 11.11.7. For close positron interactions with the k-th oscillator, the
distribution for the reduced energy loss κ ≡ W/E is

P+
k (κ) =

[ 1

κ2
− b1
κ

+ b2 − b3κ+ b4κ
2
]

Θ(κ− κc)Θ(1 − κ) (11.116)

with κc = max(Wk, Tc)/E. In this case, the maximum allowed reduced
energy loss κ is 1. After sampling the energy loss W = κE, the polar angle
θ and the azimuthal angle φ are obtained using the equations introduced for
electrons in section 11.11.7. Similarly, the generation of δ rays is performed
in the same way as for electrons.
Finally, the stopping power due to soft interactions of positrons, which is
used for the computation of the continuous part of the process, is analytically
calculated as

S+
in = N

∫ Tc

0
W
dσ+

dW
dW (11.117)

from the expression (11.113), where N is the number of scattering centers
per unit volume.

11.11.8 Positron Annihilation

Total Cross Section

The total cross section (per target electron) for the annihilation of a positron
of energy E into two photons is evaluated from the analytical formula [19, 20]

σ(E) =
πr2

e

(γ + 1)(γ2 − 1)
×

{

(γ2 + 4γ + 1) ln
[

γ +
√

γ2 − 1
]

− (3 + γ)
√

γ2 − 1
}

. (11.118)

where:
re = classical radius of the electron;
γ = Lorentz factor of the positron.

Sampling of the Final State

The target electrons are assumed to be free and at rest: binding effects, that
enable one-photon annihilation [19], are neglected. When the annihilation
occurs in flight, the two photons may have different energies, say E− and
E+ (the photon with lower energy is denoted by the superscript “−”), which
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add to E + 2mec
2. Each annihilation event is completely characterized by

the quantity

ζ =
E−

E + 2mec2
, (11.119)

which is in the interval ζmin ≤ ζ ≤ 1
2
, with

ζmin =
1

γ + 1 +
√
γ2 − 1

. (11.120)

The parameter ζ is sampled from the differential distribution

P (ζ) =
πr2

e

(γ + 1)(γ2 − 1)
[S(ζ) + S(1 − ζ)], (11.121)

where γ is the Lorentz factor and

S(ζ) = −(γ + 1)2 + (γ2 + 4γ + 1)
1

ζ
− 1

ζ2
. (11.122)

From conservation of energy and momentum, it follows that the two photons
are emitted in directions with polar angles

cos θ− =
1√

γ2 − 1

(

γ + 1 − 1

ζ

)

(11.123)

and

cos θ+ =
1√

γ2 − 1

(

γ + 1 − 1

1 − ζ

)

(11.124)

that are completely determined by ζ; in particuar, when ζ = ζmin, cos θ− =
−1. The azimuthal angles are φ− and φ+ = φ− + π; owing to the axial
symmetry of the process, the angle φ− is uniformly distributed in (0, 2π).

11.11.9 Status of the document

09.06.2003 created by L. Pandola
20.06.2003 spelling and grammar check by D.H. Wright
07.11.2003 Ionisation and Annihilation section added by L. Pandola
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Optical Photons
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12.1 Interactions of optical photons

Optical photons are produced when a charged particle traverses:

1. a dielectric material with velocity above the Čerenkov threshold;

2. a scintillating material.

12.1.1 Physics processes for optical photons

A photon is called optical when its wavelength is much greater than the
typical atomic spacing, for instance when λ ≥ 10nm which corresponds to
an energy E ≤ 100eV . Production of an optical photon in a HEP detector
is primarily due to:

1. Čerenkov effect;

2. Scintillation.

Optical photons undergo three kinds of interactions:

1. Elastic (Rayleigh) scattering;

2. Absorption;

3. Medium boundary interactions.

Rayleigh scattering

For optical photons Rayleigh scattering is usually unimportant. For λ =
.2µm we have σRayleigh ≈ .2b for N2 or O2 which gives a mean free path of
≈ 1.7km in air and ≈ 1m in quartz. Two important exceptions are aerogel,
which is used as a Čerenkov radiator for some special applications and large
water Čerenkov detectors for neutrino detection.

The differential cross section in Rayleigh scattering, dσ/dΩ, is propor-
tional to cos2 θ, where θ is the polar angle of the new polarization with
respect to the old polarization.

Absorption

Absorption is important for optical photons because it determines the lower
λ limit in the window of transparency of the radiator. Absorption competes
with photo-ionization in producing the signal in the detector, so it must be
treated properly in the tracking of optical photons.
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Medium boundary effects

When a photon arrives at the boundary of a dielectric medium, its behaviour
depends on the nature of the two materials which join at that boundary:

• Case dielectric → dielectric.
The photon can be transmitted (refracted ray) or reflected (reflected
ray). In case where the photon can only be reflected, total internal
reflection takes place.

• Case dielectric → metal.
The photon can be absorbed by the metal or reflected back into the
dielectric. If the photon is absorbed it can be detected according to
the photoelectron efficiency of the metal.

• Case dielectric → black material.
A black material is a tracking medium for which the user has not defined
any optical property. In this case the photon is immediately absorbed
undetected.

12.1.2 Photon polarization

The photon polarization is defined as a two component vector normal to the
direction of the photon:

(

a1e
iΦ1

a2eiΦ2

)

= eΦo

(

a1e
iΦc

a2e−iΦc

)

where Φc = (Φ1−Φ2)/2 is called circularity and Φo = (Φ1+Φ2)/2 is called
overall phase. Circularity gives the left- or right-polarization characteristic
of the photon. RICH materials usually do not distinguish between the two
polarizations and photons produced by the Čerenkov effect and scintillation
are linearly polarized, that is Φc = 0.

The overall phase is important in determining interference effects between
coherent waves. These are important only in layers of thickness comparable
with the wavelength, such as interference filters on mirrors. The effects of
such coatings can be accounted for by the empirical reflectivity factor for
the surface, and do not require a microscopic simulation. GEANT4 does not
keep track of the overall phase.

Vector polarization is described by the polarization angle tan Ψ = a2/a1.
Reflection/transmission probabilities are sensitive to the state of linear po-
larization, so this has to be taken into account. One parameter is sufficient to
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describe vector polarization, but to avoid too many trigonometrical transfor-
mations, a unit vector perpendicular to the direction of the photon is used in
GEANT4. The polarization vector is a data member of G4DynamicParticle.

12.1.3 Tracking of the photons

Optical photons are subject to in flight absorption, Rayleigh scattering and
boundary action. As explained above, the status of the photon is defined by
two vectors, the photon momentum (~p = h̄~k) and photon polarization (~e).
By convention the direction of the polarization vector is that of the electric
field. Let also ~u be the normal to the material boundary at the point of
intersection, pointing out of the material which the photon is leaving and
toward the one which the photon is entering. The behaviour of a photon at
the surface boundary is determined by three quantities:

1. refraction or reflection angle, this represents the kinematics of the effect;

2. amplitude of the reflected and refracted waves, this is the dynamics of
the effect;

3. probability of the photon to be refracted or reflected, this is the quan-
tum mechanical effect which we have to take into account if we want
to describe the photon as a particle and not as a wave.

As said above, we distinguish three kinds of boundary action, dielectric
→ black material, dielectric → metal, dielectric → dielectric. The first case
is trivial, in the sense that the photon is immediately absorbed and it goes
undetected.

To determine the behaviour of the photon at the boundary, we will at
first treat it as an homogeneous monochromatic plane wave:

~E = ~E0e
i~k·~x−iωt

~B =
√
µε
~k × ~E

k

Case dielectric → dielectric

In the classical description the incoming wave splits into a reflected wave
(quantities with a double prime) and a refracted wave (quantities with a
single prime). Our problem is solved if we find the following quantities:

~E ′ = ~E ′
0e

i~k′·~x−iωt
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~E ′′ = ~E ′′
0e

i~k′′·~x−iωt

For the wave numbers the following relations hold:

|~k| = |~k′′| = k =
ω

c

√
µε

|~k′| = k′ =
ω

c

√

µ′ε′

Where the speed of the wave in the medium is v = c/
√
µε and the quantity

n = c/v =
√
µε is called refractive index of the medium. The condition that

the three waves, refracted, reflected and incident have the same phase at the
surface of the medium, gives us the well known Fresnel law:

(~k · ~x)surf = (~k′ · ~x)surf = (~k′′ · ~x)surf

k sin i = k′ sin r = k′′ sin r′

where i, r, r′ are, respectively, the angle of the incident, refracted and
reflected ray with the normal to the surface. From this formula the well
known condition emerges:

i = r′

sin i

sin r
=

√

µ′ε′

µε
=
n′

n

The dynamic properties of the wave at the boundary are derived from
Maxwell’s equations which impose the continuity of the normal components
of ~D and ~B and of the tangential components of ~E and ~H at the surface
boundary. The resulting ratios between the amplitudes of the the generated
waves with respect to the incoming one are expressed in the two following
cases:

1. a plane wave with the electric field (polarization vector) perpendicular
to the plane defined by the photon direction and the normal to the
boundary:

E ′
0

E0
=

2n cos i

n cos i = µ
µ′n′ cos r

=
2n cos i

n cos i + n′ cos r

E ′′
0

E0

=
n cos i− µ

µ′n
′ cos r

n cos i+ µ
µ′n′ cos r

=
n cos i− n′ cos r

n cos i+ n′ cos r

where we suppose, as it is legitimate for visible or near-visible light,
that µ/µ′ ≈ 1;
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2. a plane wave with the electric field parallel to the above surface:

E ′
0

E0

=
2n cos i

µ
µ′n′ cos i + n cos r

=
2n cos i

n′ cos i+ n cos r

E ′′
0

E0
=

µ
µ′n

′ cos i− n cos r
µ
µ′n′ cos i+ n cos r

=
n′ cos i− n cos r

n′ cos i + n cos r

with the same approximation as above.

We note that in case of photon perpendicular to the surface, the following
relations hold:

E ′
0

E0

=
2n

n′ + n

E ′′
0

E0

=
n′ − n

n′ + n

where the sign convention for the parallel field has been adopted. This
means that if n′ > n there is a phase inversion for the reflected wave.

Any incoming wave can be separated into one piece polarized parallel to
the plane and one polarized perpendicular, and the two components treated
accordingly.

To maintain the particle description of the photon, the probability to
have a refracted or reflected photon must be calculated. The constraint is
that the number of photons be conserved, and this can be imposed via the
conservation of the energy flux at the boundary, as the number of photons is
proportional to the energy. The energy current is given by the expression:

~S =
1

2

c

4π

√
µε ~E × ~H =

c

8π

√

ε

µ
E2

0 k̂

and the energy balance on a unit area of the boundary requires that:

~S · ~u = ~S ′ · ~u− ~S ′′ · ~u

S cos i = S ′cosr + S ′′cosi

c

8π

1

µ
nE2

0 cos i =
c

8π

1

µ′n
′E ′2

0 cos r +
c

8π

1

µ
nE ′′2

0 cos i

If we set again µ/µ′ ≈ 1, then the transmission probability for the photon
will be:

T = (
E ′

0

E0

)2n
′ cos r

n cos i
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and the corresponding probability to be reflected will be R = 1 − T .
In case of reflection, the relation between the incoming photon (~k,~e), the

refracted one (~k′, ~e′) and the reflected one (~k′′, ~e′′) is given by the following
relations:

~q = ~k × ~u

~e⊥ = (
~e · ~q
|~q| )

~q

|~q|
~e‖ = ~e− ~e⊥

e′‖ = e‖
2n cos i

n′ cos i + n cos r

e′⊥| = e⊥
2n cos i

n cos i + n′ cos r

e′′‖ =
n′

n
e′‖ − e‖

e′′⊥ = e′⊥ − e⊥

After transmission or reflection of the photon, the polarization vector
is re-normalized to 1. In the case where sin r = n sin i/n′ > 1 then there
cannot be a refracted wave, and in this case we have a total internal reflection
according to the following formulas:

~k′′ = ~k − 2(~k · ~u)~u

~e′′ = −~e + 2(~e · ~u)~u

Case dielectric → metal

In this case the photon cannot be transmitted. So the probability for the
photon to be absorbed by the metal is estimated according to the table
provided by the user. If the photon is not absorbed, it is reflected.
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13.1 Gflash Shower Parameterizations

The computing time needed for the simulation of high energy electromag-
netic showers can become very large, since it increases approximately linearly
with the energy absorbed in the detector. Using parameterizations instead
of individual particle tracking for electromagnetic (sub)showers can speed
up the simulations considerably without sacrificing much precision. The
Gflash package allows the parameterization of electron and positron show-
ers in homogeneous (for the time being) calorimeters and is based on the
parameterization described in Ref. [1] .

13.1.1 Parameterization Ansatz

The spatial energy distribution of electromagnetic showers is given by three
probability density functions (pdf),

dE(~r) = E f(t)dt f(r)dr f(φ)dφ, (13.1)

describing the longitudinal, radial, and azimuthal energy distributions. Here
t denotes the longitudinal shower depth in units of radiation length, r mea-
sures the radial distance from the shower axis in Molière units, and φ is the
azimuthal angle. The start of the shower is defined by the space point where
the electron or positron enters the calorimeter, which is different from the
original Gflash. A gamma distribution is used for the parameterization of the
longitudinal shower profile, f(t). The radial distribution f(r), is described
by a two-component ansatz. In φ, it is assumed that the energy is distributed
uniformly: f(φ) = 1/2π.

13.1.2 Longitudinal Shower Profiles

The average longitudinal shower profiles can be described by a gamma dis-
tribution [2]:

〈

1

E

dE(t)

dt

〉

= f(t) =
(βt)α−1β exp(−βt)

Γ(α)
. (13.2)

The center of gravity, 〈t〉, and the depth of the maximum, T , are calcu-
lated from the shape parameter α and the scaling parameter β according to:

〈t〉 =
α

β
(13.3)

T =
α− 1

β
. (13.4)
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In the parameterization all lengths are measured in units of radiation

length (X0), and energies in units of the critical energy (Ec = 2.66
(

X0
Z
A

)1.1
).

This allows material independence, since the longitudinal shower moments
are equal in different materials, according to Ref. [3]. The following equations
are used for the energy dependence of Thom and (αhom), with y = E/Ec and
t = x/X0, x being the longitudinal shower depth:

Thom = ln y + t1 (13.5)

αhom = a1 + (a2 + a3/Z) ln y. (13.6)

The y-dependence of the fluctuations can be described by:

σ = (s1 + s2 ln y)−1. (13.7)

The correlation between lnThom and lnαhom is given by:

ρ(lnThom, lnαhom) ≡ ρ = r1 + r2 ln y. (13.8)

From these formulae, correlated and varying parameters αi and βi are gen-
erated according to

(

lnTi

lnαi

)

=

(

〈lnT 〉
〈lnα〉

)

+ C

(

z1
z2

)

(13.9)

with

C =

(

σ(lnT ) 0
0 σ(lnα)

)





√

1+ρ
2

√

1−ρ
2

√

1+ρ
2

−
√

1−ρ
2





σ(lnα) and σ(lnT ) are the fluctuations of Thom and (αhom. The values of the
coefficients can be found in Ref. [1].

13.1.3 Radial Shower Profiles

For the description of average radial energy profiles,

f(r) =
1

dE(t)

dE(t, r)

dr
, (13.10)

a variety of different functions can be found in the literature. In Gflash the
following two-component ansatz, an extension of that in Ref.[4], was used:

f(r) = pfC(r) + (1 − p)fT (r) (13.11)

= p
2rR2

C

(r2 +R2
C)2

+ (1 − p)
2rR2

T

(r2 +R2
T )2
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with
0 ≤ p ≤ 1.

Here RC (RT ) is the median of the core (tail) component and p is a probabil-
ity giving the relative weight of the core component. The variable τ = t/T ,
which measures the shower depth in units of the depth of the shower max-
imum, is used in order to generalize the radial profiles. This makes the
parameterization more convenient and separates the energy and material de-
pendence of various parameters. The median of the core distribution, RC ,
increases linearly with τ . The weight of the core, p, is maximal around the
shower maximum, and the width of the tail, RT , is minimal at τ ≈ 1.

The following formulae are used to parameterize the radial energy density
distribution for a given energy and material:

RC,hom(τ) = z1 + z2τ (13.12)

RT,hom(τ) = k1{exp(k3(τ − k2)) + exp(k4(τ − k2))} (13.13)

phom(τ) = p1 exp

{

p2 − τ

p3

− exp

(

p2 − τ

p3

)}

(13.14)

The parameters z1 · · · p3 are either constant or simple functions of lnE or Z.
Radial shape fluctuations are also taken into account. A detailed expla-

nation of this procedure, as well as a list of all the parameters used in Gflash,
can be found in Ref. [1].

13.1.4 Gflash Performance

The parameters used in this Gflash implementation were extracted from full
simulation studies with Geant 3. They also give good results inside the
Geant4 fast shower framework when compared with the full electromagnetic
shower simulation. However, if more precision or higher particle energies are
required, retuning may be necessary. For the longitudinal profiles the dif-
ference between full simulation and Gflash parameterization is at the level
of a few percent. Because the radial profiles are slightly broader in Geant3
than in Geant4, the differences may reach > 10%. The gain in speed, on the
other hand, is impressive. The simulation of a 1 TeV electron in a PbWO4

cube is 160 times faster with Gflash. Gflash can also be used to parameter-
ize electromagnetic showers in sampling calorimeters. So far, however, only
homogeneous materials are supported.
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Chapter 14

Lepton Hadron Interactions

The photonuclear interaction of muons is currently the only process treated
in this category.

14.1 G4MuonNucleusProcess

This class simulates the photonuclear interaction of muons in a material.
The muon interacts electromagnetically with a nucleus, exchanging a virtual
photon. At energies above a few GeV, the photon interacts hadronically with
the nucleus, producing hadronic secondaries.

The outcome of the simulation depends heavily upon the interaction
model chosen. Hence the model-dependent part of the process is imple-
mented in the G4MuonNucleusInteractionModel class, which can be easily
replaced by another model.

G4MuonNucleusInteractionModel calculates the cross section and final
states of the muon and hadronic secondaries. The final muon momentum is
given by a double-differential cross section which depends on the photoab-
sorption cross sections for longitudinally and transversely polarized photons.
The final hadronic state is determined by replacing the virtual photon with a
charged pion of the same Q2 and then allowing the pion to interact with the
nucleus. The charge of the pion is chosen at random. The pion interactions
with the nucleus are modeled by processes derived from the GHEISHA [1]
package. These processes are:

G4LEPionPlusInelastic, G4LEPionMinusInelastic E ≤ 25 GeV
G4HEPionPlusInelastic, G4HEPionMinusInelastic E > 25 GeV
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14.1.1 Cross Section Calculation

The cross section for the above process in a material is given roughly by

σµA = AσµN

where A is the atomic mass number of the material and σµN is the cross
section for the process on a single nucleon:

σµN =

{

0.3 (E ≤ 30GeV )
0.3(E/30)0.25 (E > 30GeV )

[µb].

The differential cross section, in terms of muon energy E and emission solid
angle Ω, can be expressed as:

dσ

dΩdE
= Γ (σT + εσL)

where σL and σT are the photoabsorption cross sections for longitudinal and
transverse photons, respectively. Γ is the transverse photon flux and ε is the
polarization of the intermediate photon. The photoabsorption cross sections
are parameterized as:

σL = 0.3
(

1 − 1

1.868
Q2ν

)

σT

σT ∼ const = 0.12mb

while the flux and polarization are given by

Γ =
Kα

2π

E ′

E

1

1 − ε

ε =

[

1 + 2
Q2 + ν2

Q2
tan2 θ

2

]−1

.

E and E ′ are the initial and final muon energies, Q2 and ν are the scaling
variables

Q2 = −q2 = 2(EE ′ − PP ′cosθ −m2
µ)

ν = E − E ′,

and K is given using the Gilman convention

K = ν +
Q2

2ν
.
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Chapter 15

Cross-sections in Photonuclear
and Electronuclear Reactions

15.1 Approximation of Photonuclear Cross Sec-

tions.

The photonuclear cross sections parameterized in the G4PhotoNuclearCrossSection
class cover all incident photon energies from the hadron production threshold
upward. The parameterization is subdivided into five energy regions, each
corresponding to the physical process that dominates it.

• The Giant Dipole Resonance (GDR) region, depending on the nucleus,
extends from 10 Mev up to 30 MeV. It usually consists of one large
peak, though for some nuclei several peaks appear.

• The “quasi-deuteron” region extends from around 30 MeV up to the
pion threshold and is characterized by small cross sections and a broad,
low peak.

• The ∆ region is characterized by the dominant peak in the cross section
which extends from the pion threshold to 450 MeV.

• The Roper resonance region extends from roughly 450 MeV to 1.2 GeV.
The cross section in this region is not strictly identified with the real
Roper resonance because other processes also occur in this region.

• The Reggeon-Pomeron region extends upward from 1.2 GeV.

In the GEANT4 photonuclear data base there are about 50 nuclei for which
the photonuclear absorption cross sections have been measured in the above
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energy ranges. For low energies this number could be enlarged, because for
heavy nuclei the neutron photoproduction cross section is close to the total
photo-absorption cross section. Currently, however, 14 nuclei are used in the
parameterization: 1H, 2H, 4He, 6Li, 7Li, 9Be, 12C, 16O, 27Al, 40Ca, Cu, Sn,
Pb, and U. The resulting cross section is a function of A and e = log(Eγ),
where Eγ is the energy of the incident photon. This function is the sum of
the components which parameterize each energy region.

The cross section in the GDR region can be described as the sum of two
peaks,

GDR(e) = th(e, b1, s1) · exp(c1 − p1 · e)+ th(e, b2, s2) · exp(c2 − p2 · e). (15.1)

The exponential parameterizes the falling edge of the resonance which be-
haves like a power law in Eγ . This behavior is expected from the CHIPS
model, which includes the nonrelativistic phase space of nucleons to explain
evaporation. The function

th(e, b, s) =
1

1 + exp( b−e
s

)
, (15.2)

describes the rising edge of the resonance. It is the nuclear-barrier-reflection
function and behaves like a threshold, cutting off the exponential. The ex-
ponential powers p1 and p2 are

p1 = 1, p2 = 2 for A < 4

p1 = 2, p2 = 4 for 4 ≤ A < 8

p1 = 3, p2 = 6 for 8 ≤ A < 12

p1 = 4, p2 = 8 for A ≥ 12.

The A-dependent parameters bi, ci and si were found for each of the 14 nuclei
listed above and interpolated for other nuclei.

The ∆ isobar region was parameterized as

∆(e, d, f, g, r, q) =
d · th(e, f, g)

1 + r · (e− q)2
, (15.3)

where d is an overall normalization factor. q can be interpreted as the energy
of the ∆ isobar and r can be interpreted as the inverse of the ∆ width. Once
again th is the threshold function. The A-dependence of these parameters is
as follows:
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• d = 0.41 · A (for 1H it is 0.55, for 2H it is 0.88), which means that the
∆ yield is proportional to A;

• f = 5.13− .00075 ·A. exp(f) shows how the pion threshold depends on
A. It is clear that the threshold becomes 140 MeV only for uranium;
for lighter nuclei it is higher.

• g = 0.09 for A ≥ 7 and 0.04 for A < 7;

• q = 5.84− .09
1+.003·A2 , which means that the “mass” of the ∆ isobar moves

to lower energies;

• r = 11.9 − 1.24 · log(A). r is 18.0 for 1H. The inverse width becomes
smaller with A, hence the width increases.

The A-dependence of the f , q and r parameters is due to the ∆+N → N+N
reaction, which can take place in the nuclear medium below the pion thresh-
old.

The quasi-deuteron contribution was parameterized with the same form as
the ∆ contribution but without the threshold function:

QD(e, v, w, u) =
v

1 + w · (e− u)2
. (15.4)

For 1H and 2H the quasi-deuteron contribution is almost zero. For these
nuclei the third baryonic resonance was used instead, so the parameters for
these two nuclei are quite different, but trivial. The parameter values are
given below.

• v = exp(−1.7+a·0.84)
1+exp(7·(2.38−a))

, where a = log(A). This shows that the A-dependence

in the quasi-deuteron region is stronger than A0.84. It is clear from the
denominator that this contribution is very small for light nuclei (up
to 6Li or 7Li). For 1H it is 0.078 and for 2H it is 0.08, so the delta
contribution does not appear to be growing. Its relative contribution
disappears with A.

• u = 3.7 and w = 0.4. The experimental information is not sufficient
to determine an A-dependence for these parameters. For both 1H and
2H u = 6.93 and w = 90, which may indicate contributions from the
∆(1600) and ∆(1620).

230



The transition Roper contribution was parameterized using the same form
as the quasi-deuteron contribution:

Tr(e, v, w, u) =
v

1 + w · (e− u)2
. (15.5)

Using a = log(A), the values of the parameters are

• v = exp(−2. + a · 0.84). For 1H it is 0.22 and for 2H it is 0.34.

• u = 6.46 + a · 0.061 (for 1H and for 2H it is 6.57), so the “mass” of the
Roper moves higher with A.

• w = 0.1 + a · 1.65. For 1H it is 20.0 and for 2H it is 15.0).

The Regge-Pomeron contribution was parametrized as follows:

RP (e, h) = h · th(7., 0.2) · (0.0116 · exp(e · 0.16) + 0.4 · exp(−e · 0.2)), (15.6)

where h = A · exp(−a · (0.885+ 0.0048 · a)) and, again, a = log(A). The first
exponential in Eq. 15.6 describes the Pomeron contribution while the second
describes the Regge contribution.

15.2 Electronuclear Cross Sections and Re-

actions

Electronuclear reactions are so closely connected with photonuclear reac-
tions that they are sometimes called “photonuclear” because the one-photon
exchange mechanism dominates in electronuclear reactions. In this sense
electrons can be replaced by a flux of equivalent photons. This is not com-
pletely true, because at high energies the Vector Dominance Model (VDM) or
diffractive mechanisms are possible, but these types of reactions are beyond
the scope of this discussion.

15.2.1 Common Notation for Different Approaches to
Electronuclear Reactions

The Equivalent Photon Approximation (EPA) was proposed by E. Fermi [1]
and developed by C. Weizsacker and E. Williams [2] and by L. Landau and
E. Lifshitz [3]. The covariant form of the EPA method was developed in Refs.
[4] and [5]. When using this method it is necessary to take into account that
real photons are always transversely polarized while virtual photons may
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be longitudinally polarized. In general the differential cross section of the
electronuclear interaction can be written as

d2σ

dydQ2
=

α

πQ2
(STL · (σT + σL) − SL · σL), (15.7)

where

STL = y
1 − y + y2

2
+ Q2

4E2 − m2
e

Q2 (y2 + Q2

E2 )

y2 + Q2

E2

, (15.8)

SL =
y

2
(1 − 2m2

e

Q2
). (15.9)

The differential cross section of the electronuclear scattering can be rewritten
as

d2σeA

dydQ2
=

αy

πQ2





(1 − y
2
)2

y2 + Q2

E2

+
1

4
− m2

e

Q2



σγ∗A, (15.10)

where σγ∗A = σγA(ν) for small Q2 and must be approximated as a function of
ε, ν, and Q2 for large Q2. Interactions of longitudinal photons are included
in the effective σγ∗A cross section through the ε factor, but in the present
GEANT4 method, the cross section of virtual photons is considered to be
ε-independent. The electronuclear problem, with respect to the interaction
of virtual photons with nuclei, can thus be split in two. At small Q2 it is
possible to use the σγ(ν) cross section. In the Q2 >> m2

e region it is neces-
sary to calculate the effective σγ∗(ε, ν, Q2) cross section.

Following the EPA notation, the differential cross section of electronuclear
scattering can be related to the number of equivalent photons dn = dσ

σγ∗
. For

y << 1 and Q2 < 4m2
e the canonical method [6] leads to the simple result

ydn(y)

dy
= −2α

π
ln(y). (15.11)

In [7] the integration over Q2 for ν2 >> Q2
max ' m2

e leads to

ydn(y)

dy
= −α

π

(

1 + (1 − y)2

2
ln(

y2

1 − y
) + (1 − y)

)

. (15.12)

In the y << 1 limit this formula converges to Eq.(15.11). But the correspon-
dence with Eq.(15.11) can be made more explicit if the exact integral

ydn(y)

dy
=
α

π

(

1 + (1 − y)2

2
l1 − (1 − y)l2 −

(2 − y)2

4
l3

)

, (15.13)
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where l1 = ln
(

Q2
max

Q2
min

)

, l2 = 1 − Q2
max

Q2
min

, l3 = ln
(

y2+Q2
max/E2

y2+Q2
min/E2

)

, Q2
min = m2

ey2

1−y
, is

calculated for

Q2
max(me) =

4m2
e

1 − y
. (15.14)

The factor (1 − y) is used arbitrarily to keep Q2
max(me) > Q2

min, which can

be considered as a boundary between the low and high Q2 regions. The full
transverse photon flux can be calculated as an integral of Eq.(15.13) with
the maximum possible upper limit

Q2
max(max) = 4E2(1 − y). (15.15)

The full transverse photon flux can be approximated by

ydn(y)

dy
= −2α

π

(

(2 − y)2 + y2

2
ln(γ) − 1

)

, (15.16)

where γ = E
me

. It must be pointed out that neither this approximation nor

Eq.(15.13) works at y ' 1; at this point Q2
max(max) becomes smaller than

Q2
min. The formal limit of the method is y < 1 − 1

2γ
.

In Fig. 15.1(a,b) the energy distribution for the equivalent photons is shown.
The low-Q2 photon flux with the upper limit defined by Eq.(15.14)) is com-
pared with the full photon flux. The low-Q2 photon flux is calculated using
Eq.(15.11) (dashed lines) and using Eq.(15.13) (dotted lines). The full pho-
ton flux is calculated using Eq.(15.16) (the solid lines) and using Eq.(15.13)
with the upper limit defined by Eq.(15.15) (dash-dotted lines, which differ
from the solid lines only at ν ≈ Ee). The conclusion is that in order to
calculate either the number of low-Q2 equivalent photons or the total num-
ber of equivalent photons one can use the simple approximations given by
Eq.(15.11) and Eq.(15.16), respectively, instead of using Eq.(15.13), which
cannot be integrated over y analytically. Comparing the low-Q2 photon flux
and the total photon flux it is possible to show that the low-Q2 photon flux is
about half of the the total. From the interaction point of view the decrease of
σγ∗ with increasing Q2 must be taken into account. The cross section reduc-
tion for the virtual photons with large Q2 is governed by two factors. First,
the cross section drops with Q2 as the squared dipole nucleonic form-factor

G2
D(Q2) ≈

(

1 +
Q2

(843 MeV )2

)−2

. (15.17)

Second, all the thresholds of the γA reactions are shifted to higher ν by a
factor Q2

2M
, which is the difference between the K and ν values. Following the
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Figure 15.1: Relative contribution of equivalent photons with small Q2 to
the total “photon flux” for (a) 1 GeV electrons and (b) 10 GeV electrons. In
figures (c) and (d) the equivalent photon distribution dn(ν,Q2) is multiplied
by the photonuclear cross section σγ∗(K,Q2) and integrated over Q2 in two
regions: the dashed lines are integrals over the low-Q2 equivalent photons
(under the dashed line in the first two figures), and the solid lines are integrals
over the high-Q2 equivalent photons (above the dashed lines in the first two
figures).
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method proposed in [8] the σγ∗ at large Q2 can be approximated as

σγ∗ = (1 − x)σγ(K)G2
D(Q2)eb(ε,K)·r+c(ε,K)·r3

, (15.18)

where r = 1
2
ln(Q2+ν2

K2 ). The ε-dependence of the a(ε,K) and b(ε,K) functions
is weak, so for simplicity the b(K) and c(K) functions are averaged over ε.
They can be approximated as

b(K) ≈
(

K

185 MeV

)0.85

, (15.19)

and

c(K) ≈ −
(

K

1390 MeV

)3

. (15.20)

The result of the integration of the photon flux multiplied by the cross sec-
tion approximated by Eq.(15.18) is shown in Fig. 15.1(c,d). The integrated
cross sections are shown separately for the low-Q2 region (Q2 < Q2

max(me),

dashed lines) and for the high-Q2 region (Q2 > Q2
max(me), solid lines). These

functions must be integrated over ln(ν), so it is clear that because of the
Giant Dipole Resonance contribution, the low-Q2 part covers more than half
the total eA → hadrons cross section. But at ν > 200 MeV , where the
hadron multiplicity increases, the large Q2 part dominates. In this sense, for
a better simulation of the production of hadrons by electrons, it is necessary
to simulate the high-Q2 part as well as the low-Q2 part.

Taking into account the contribution of high-Q2 photons it is possible to use
Eq.(15.16) with the over-estimated σγ∗A = σγA(ν) cross section. The slightly
over-estimated electronuclear cross section is

σ∗
eA = (2ln(γ) − 1) · J1 −

ln(γ)

Ee

(

2J2 −
J3

Ee

)

. (15.21)

where

J1(Ee) =
α

π

∫ Ee

σγA(ν)dln(ν) (15.22)

J2(Ee) =
α

π

∫ Ee

νσγA(ν)dln(ν), (15.23)

and

J3(Ee) =
α

π

∫ Ee

ν2σγA(ν)dln(ν). (15.24)

The equivalent photon energy ν = yE can be obtained for a particular ran-
dom number R from the equation

R =
(2ln(γ) − 1)J1(ν) − ln(γ)

Ee
(2J2(ν) − J3(ν)

Ee
)

(2ln(γ) − 1)J1(Ee) − ln(γ)
Ee

(2J2(Ee) − J3(Ee)
Ee

)
. (15.25)
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Eq.(15.13) is too complicated for the randomization of Q2 but there is an
easily randomized formula which approximates Eq.(15.13) above the hadronic
threshold (E > 10 MeV ). It reads

π

αD(y)

∫ Q2

Q2
min

ydn(y,Q2)

dydQ2
dQ2 = −L(y,Q2) − U(y), (15.26)

where

D(y) = 1 − y +
y2

2
, (15.27)

L(y,Q2) = ln

(

F (y) + (eP (y) − 1 +
Q2

Q2
min

)−1

)

, (15.28)

and

U(y) = P (y) ·
(

1 − Q2
min

Q2
max

)

, (15.29)

with

F (y) =
(2 − y)(2 − 2y)

y2
· Q

2
min

Q2
max

(15.30)

and

P (y) =
1 − y

D(y)
. (15.31)

The Q2 value can then be calculated as

Q2

Q2
min

= 1 − eP (y) +
(

eR·L(y,Q2
max)−(1−R)·U(y) − F (y)

)−1
, (15.32)

where R is a random number. In Fig. 15.2, Eq.(15.13) (solid curve) is com-
pared to Eq.(15.26) (dashed curve). Because the two curves are almost in-
distinguishable in the figure, this can be used as an illustration of the Q2

spectrum of virtual photons, which is the derivative of these curves. An al-
ternative approach is to use Eq.(15.13) for the randomization with a three
dimensional table ydn

dy
(Q2, y, Ee).

After the ν and Q2 values have been found, the value of σγ∗A(ν,Q2) is cal-
culated using Eq.(15.18). If R · σγA(ν) > σγ∗A(ν,Q2), no interaction occurs
and the electron keeps going. This “do nothing” process has low probability
and cannot shadow other processes.

15.3 Status of this document

created by ?
20.05.02 re-written by D.H. Wright
01.12.02 expanded section on electronuclear cross sections - H.P. Wellisch
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Figure 15.2: Integrals of Q2 spectra of virtual photons for three energies
10 MeV , 100 MeV , and 1 GeV at y = 0.001, y = 0.5, and y = 0.95.
The solid line corresponds to Eq.(15.13) and the dashed line (which almost
everywhere coincides with the solid line) corresponds to Eq.(15.13).
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Chapter 16

Total Reaction Cross Section in
Nucleus-nucleus Reactions

The transportation of heavy ions in matter is a subject of much interest in
several fields of science. An important input for simulations of this process
is the total reaction cross section, which is defined as the total (σT ) minus
the elastic (σel) cross section for nucleus-nucleus reactions:

σR = σT − σel.

The total reaction cross section has been studied both theoretically and ex-
perimentally and several empirical parameterizations of it have been devel-
oped. In Geant4 the total reaction cross sections are calculated using four
such parameterizations: the Sihver[1], Kox[2], Shen[3] and Tripathi[4] formu-
lae. Each of these is discussed in order below.

16.1 Sihver Formula

Of the four parameterizations, the Sihver formula has the simplest form:

σR = πr2
0[A

1/3
p + A

1/3
t − b0[A

−1/3
p + A

−1/3
t ]]2 (16.1)

where Ap and At are the mass numbers of the projectile and target nuclei,
and

b0 = 1.581 − 0.876(A−1/3
p + A

−1/3
t ),

r0 = 1.36fm.
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It consists of a nuclear geometrical term (A1/3
p + A

1/3
t ) and an overlap or

transparency parameter (b0) for nucleons in the nucleus. The cross section
is independent of energy and can be used for incident energies greater than
100 MeV/nucleon.

16.2 Kox and Shen Formulae

Both the Kox and Shen formulae are based on the strong absorption model.
They express the total reaction cross section in terms of the interaction radius
R, the nucleus-nucleus interaction barrier B, and the center-of-mass energy
of the colliding system ECM :

σR = πR2[1 − B

ECM
]. (16.2)

Kox formula: Here B is the Coulomb barrier (Bc) of the projectile-target
system and is given by

Bc =
ZtZpe

2

rC(A
1/3
t + A

1/3
p )

,

where rC = 1.3 fm, e is the electron charge and Zt, Zp are the atomic numbers
of the target and projectile nuclei. R is the interaction radius Rint which in
the Kox formula is divided into volume and surface terms:

Rint = Rvol +Rsurf .

Rvol and Rsurf correspond to the energy-independent and energy-dependent
components of the reactions, respectively. Collisions which have relatively
small impact parameters are independent of both energy and mass number.
These core collisions are parameterized by Rvol. Therefore Rvol can depend
only on the volume of the projectile and target nuclei:

Rvol = r0(A
1/3
t + A1/3

p ).

The second term of the interaction radius is a nuclear surface contribution
and is parameterized by

Rsurf = r0[a
A

1/3
t A1/3

p

A
1/3
t + A

1/3
p

− c] +D.

The first term in brackets is the mass asymmetry which is related to
the volume overlap of the projectile and target. The second term c is
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an energy-dependent parameter which takes into account increasing surface
transparency as the projectile energy increases. D is the neutron-excess
which becomes important in collisions of heavy or neutron-rich targets. It is
given by

D =
5(At − Zt)Zp

ApAr
.

The surface component (Rsurf) of the interaction radius is actually not part
of the simple framework of the strong absorption model, but a better repro-
duction of experimental results is possible when it is used.

The parameters r0, a and c are obtained using a χ2 minimizing procedure
with the experimental data. In this procedure the parameters r0 and a were
fixed while c was allowed to vary only with the beam energy per nucleon. The
best χ2 fit is provided by r0 = 1.1 fm and a = 1.85 with the corresponding
values of c listed in Table III and shown in Fig. 12 of Ref. [2] as a function
of beam energy per nucleon. This reference presents the values of c only in
chart and figure form, which is not suitable for Monte Carlo calculations.
Therefore a simple analytical function is used to calculate c in Geant4. The
function is:

c = −10

x5
+ 2.0 for x ≥ 1.5

c = (− 10

1.55
+ 2.0) × (

x

1.5
)3 for x < 1.5,

x = log(KE),

where KE is the projectile kinetic energy in units of MeV/nucleon in the
laboratory system.

Shen formula: as mentioned earlier, this formula is also based on the strong
absorption model, therefore it has a structure similar to the Kox formula:

σR = 10πR2[1 − B

ECM
]. (16.3)

However, different parameterized forms for R and B are applied. The inter-
action radius R is given by

R = r0[A
1/3
t + A1/3

p + 1.85
A

1/3
t A1/3

p

A
1/3
t + A

1/3
p

− C ′(KE)]

+α
5(At − Zt)Zp

ApAr

+ βE
−1/3
CM

A
1/3
t A1/3

p

A
1/3
t + A

1/3
p
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where α, β and r0 are

α = 1fm

β = 0.176MeV 1/3 · fm

r0 = 1.1fm

In Ref. [3] as well, no functional form for C ′(KE) is given. Hence the same
simple analytical function is used by Geant4 to derive c values.

The second term B is called the nuclear-nuclear interaction barrier in the
Shen formula and is given by

B =
1.44ZtZp

r
− b

RtRp

Rt +Rp

(MeV )

where r, b, Rt and Rp are given by

r = Rt +Rp + 3.2fm

b = 1MeV · fm−1

Ri = 1.12A
1/3
i − 0.94A

−1/3
i (i = t, p)

The difference between the Kox and Shen formulae appears at energies below
30 MeV/nucleon. In this region the Shen formula shows better agreement
with the experimental data in most cases.

16.3 Tripathi formula

Because the Tripathi formula is also based on the strong absorption model
its form is similar to the Kox and Shen formulae:

σR = πr2
0(A

1/3
p + A

1/3
t + δE)2[1 − B

ECM

], (16.4)

where r0 = 1.1 fm. In the Tripathi formula B and R are given by

B =
1.44ZtZp

R
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R = rp + rt +
1.2(A1/3

p + A
1/3
t )

E
1/3
CM

where ri is the equivalent sphere radius and is related to the rrms,i radius by

ri = 1.29rrms,i (i = p, t).

δE represents the energy-dependent term of the reaction cross section
which is due mainly to transparency and Pauli blocking effects. It is given
by

δE = 1.85S + (0.16S/E
1/3
CM) − CKE + [0.91(At − 2Zt)Zp/(ApAt)],

where S is the mass asymmetry term given by

S =
A1/3

p A
1/3
t

A
1/3
p + A

1/3
t

.

This is related to the volume overlap of the colliding system. The last term
accounts for the isotope dependence of the reaction cross section and corre-
sponds to the D term in the Kox formula and the second term of R in the
Shen formula.

The term CKE corresponds to c in Kox and C ′(KE) in Shen and is given
by

CE = DPauli[1 − exp(−KE/40)] − 0.292 exp(−KE/792) × cos(0.229KE0.453).

Here DPauli is related to the density dependence of the colliding system,
scaled with respect to the density of the 12C+12C colliding system:

DPauli = 1.75
ρAp + ρAt

ρAC
+ ρAC

.

The nuclear density is calculated in the hard sphere model. DPauli simulates
the modifications of the reaction cross sections caused by Pauli blocking and
is being introduced to the Tripathi formula for the first time. The modifica-
tion of the reaction cross section due to Pauli blocking plays an important
role at energies above 100 MeV/nucleon. Different forms of DPauli are used
in the Tripathi formula for alpha-nucleus and lithium-nucleus collisions. For
alpha-nucleus collisions,

DPauli = 2.77 − (8.0 × 10−3At) + (1.8 × 10−5A2
t )

−0.8/{1 + exp[(250 −KE)/75]}
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For lithium-nucleus collisions,

DPauli = DPauli/3.

Note that the Tripathi formula is not fully implemented in Geant4 and can
only be used for projectile energies less than 1 GeV/nucleon.

16.4 Representative Cross Sections

Representative cross section results from the Sihver, Kox, Shen and Tripathi
formulae in Geant4 are displayed in Table I and compared to the experimental
measurements of Ref. [2].

16.5 Tripathi Formula for ”light” Systems

For nuclear-nuclear interactions in which the projectile and/or target are
light, Tripathi et al [6] propose an alternative algorithm for determining the
interaction cross section (implemented in the new class G4TripathiLightCrossSection).
For such systems, Eq.16.4 becomes:

σR = πr2
0[A

1/3
p + A

1/3
t + δE]2(1 −RC

B

ECM

)Xm (16.5)

RC is a Coulomb multiplier, which is added since for light systems Eq. 16.4
overestimates the interaction distance, causing B (in Eq. 16.4) to be under-
estimated. Values for RC are given in Table 16.2.

Xm = 1 −X1 exp
(

− E

X1SL

)

(16.6)

where:

X1 = 2.83 −
(

3.1 × 10−2
)

AT +
(

1.7 × 10−4
)

A2
T (16.7)

except for neutron interactions with 4He, for which X1 is better approximated
to 5.2, and the function SL is given by:

SL = 1.2 + 1.6
[

1 − exp
(

−E

15

)]

(16.8)

For light nuclear-nuclear collisions, a slightly more general expression for CE

is used:

244



CE = D
[

1 − exp
(

−E

T1

)]

− 0.292 exp
(

− E

792

)

· cos
(

0.229E0.453
)

(16.9)

D and T1 are dependent on the interaction, and are defined in table 16.3.

16.6 Status of this document

25.11.03 created by Tatsumi Koi
28.11.03 grammar check and re-wording by D.H. Wright
18.06.04 light system section added by Peter Truscott
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Table 16.1: Representative total reaction cross sections

Proj. Target Elab Exp. Results Sihver Kox Shen Tripathi
[MeV/n] [mb]

12C 12C 30 1316±40 — 1295.04 1316.07 1269.24
83 965±30 — 957.183 969.107 989.96
200 864±45 868.571 885.502 893.854 864.56
300 858±60 868.571 871.088 878.293 857.414
8701 939±50 868.571 852.649 857.683 939.41
21001 888±49 868.571 846.337 850.186 936.205

27Al 30 1748±85 — 1801.4 1777.75 1701.03
83 1397±40 — 1407.64 1386.82 1405.61
200 1270±70 1224.95 1323.46 1301.54 1264.26
300 1220±85 1224.95 1306.54 1283.95 1257.62

89Y 30 2724±300 — 2898.61 2725.23 2567.68
83 2124±140 — 2478.61 2344.26 2346.54
200 1885±120 2156.47 2391.26 2263.77 2206.01
300 1885±150 2156.47 2374.17 2247.55 2207.01

16O 27Al 30 1724±80 — 1965.85 1935.2 1872.23
89Y 30 2707±330 — 3148.27 2957.06 2802.48

20Ne 27Al 30 2113±100 — 2097.86 2059.4 2016.32
100 1446±120 1473.87 1684.01 1658.31 1667.17
300 1328±120 1473.87 1611.88 1586.17 1559.16

108Ag 300 2407±2002 2730.69 3095.18 2939.86 2893.12

1. Data measured by Jaros et al. [5]
2. Natural silver was used in this measurement.
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Table 16.2: Coulomb multiplier for light systems [6].

System RC

p + d 13.5
p + 3He 21
p + 4He 27
p + Li 2.2
d + d 13.5

d + 4He 13.5
d + C 6.0

4He + Ta 0.6
4He + Au 0.6
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Table 16.3: Parameters D and T1 for light systems [6].

System T1 [MeV] D G [MeV]
(4He + X only)

p + X 23 1.85 + 0.16

1+exp( 500−E
200 )

(Not applicable)

n + X 18 1.85 + 0.16

1+exp( 500−E
200 )

(Not applicable)

d + X 23 1.65 + 0.1

1+exp( 500−E
200 )

(Not applicable)

3He + X 40 1.55 (Not applicable)

4He + 4He 40

D = 2.77 − 8.0 × 10−3AT

+1.8 × 10−5A2
T

− 0.8

1+exp( 250−E
G )

300

4He + Be 25 (as for 4He + 4He) 300
4He + N 40 (as for 4He + 4He) 500
4He + Al 25 (as for 4He + 4He) 300
4He + Fe 40 (as for 4He + 4He) 300

4He + X (general) 40 (as for 4He + 4He) 75
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Chapter 17

Coherent elastic scattering

17.1 Nucleon-Nucleon elastic Scattering

The classes G4LEpp and G4LEnp provide data-driven models for proton-
proton (or neutron-neutron) and neutron-proton elastic scattering over the
range 10-1200 MeV. Final states (primary and recoil particle) are derived by
sampling from tables of the cumulative distribution function of the centre-
of-mass scattering angle, tabulated for a discrete set of lab kinetic energies
from 10 MeV to 1200 MeV. The CDF’s are tabulated at 1 degree intervals
and sampling is done using bi-linear interpolation in energy and CDF values.
The data are derived from differential cross sections obtained from the SAID
database, R. Arndt, 1998.

In class G4LEpp there are two data sets: one including Coulomb ef-
fects (for p-p scattering) and one with no Coulomb effects (for n-n scat-
tering or p-p scattering with Coulomb effects suppressed). The method
G4LEpp::SetCoulombEffects can be used to select the desired data set:

• SetCoulombEffects(0): No Coulomb effects (the default)

• SetCoulombEffects(1): Include Coulomb effects

The recoil particle will be generated as a new secondary particle. In class
G4LEnp, the possiblity of a charge-exchange reaction is included, in which
case the incident track will be stopped and both the primary and recoil
particles will be generated as secondaries.
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Chapter 18

Hadron-nucleus Elastic
Scattering at Medium and High
Energy.

18.1 Method of Calculation

The Glauber model [1] is used as an alternative method of calculating dif-
ferential cross sections for elastic and quasi-elastic hadron-nucleus scattering
at high and intermediate energies.

For high energies this includes corrections for inelastic screening and for
quasi-elastic scattering the exitation of a discrete level or a state in the con-
tinuum is considered.

The usual expression for the Glauber model amplitude for multiple scat-
tering was used

F (q) =
ik

2π

∫

d2be
~q·~bM(~b). (18.1)

Here M(~b) is the hadron-nucleus amplitude in the impact parameter repre-
sentation

M(~b) = 1 − [1 − e−A
∫

d3rΓ(~b−~s)ρ(~r)]A, (18.2)

k is the incident particle momentum, ~q = ~k′ − ~k is the momentum transfer,
and ~k′ is the scattered particle momentum. Note that |~q|2 = −t - invari-

ant momentum transfer squared in the center of mass system. Γ(~b) is the
hadron-nucleon amplitude of elastic scattering in the impact-parameter rep-
resentation
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Γ(~b) =
1

2πikhN

∫

d~qe−
~q·~bf(~q). (18.3)

The exponential parameterization of the hadron-nucleon amplitude is
usually used:

f(~q) =
ikhNσhN

2π
e−0.5q2B. (18.4)

Here σhN = σhN
tot (1 − iα), σhN

tot is the total cross section of a hadron-nucleon
scattering, B is the slope of the diffraction cone and α is the ratio of the real
to imaginary parts of the amplitude at q = 0. The value khN is the hadron
momentum in the hadron-nucleon coordinate system.

The important difference of these calculations from the usual ones is that
the two-gaussian form of the nuclear density was used

ρ(r) = C(e−(r/R1)2 − pe−(r/R2)2), (18.5)

where R1, R2 and p are the fitting parameters and C is a normalization
constant.

This density representation allows the expressions for amplitude and dif-
ferential cross section to be put into analytical form. It was earlier used for
light [2, 3] and medium [4] nuclei. Described below is an extension of this
method to heavy nuclei. The form 18.5 is not physical for a heavy nucleus,
but nevertheless works rather well (see figures below). The reason is that
the nucleus absorbs the hadrons very strongly, especially at small impact
parameters where the absorption is full. As a result only the peripherial part
of the nucleus participates in elastic scattering. Eq. 18.5 therefore describes
only the edge of a heavy nucleus.

Substituting Eqs. 18.5 and 18.4 into Eqs. 18.1, 18.2 and 18.3 yields the
following formula

F (q) =
ikπ

2

A
∑

k=1

(−1)k

(

A

k

)

[
σhN

2π(R3
1 − pR3

2)
]k

k
∑

m=0

(−1)m

(

k

m

)[

R3
1

R2
1 + 2B

]k−m

×
[

pR3
2

R2
2 + 2B

]m (
m

R2
2 + 2B

+
k −m

R2
1 + 2B

)−1

× exp



−−q2

4

(

m

R2
2 + 2B

+
k −m

R2
1 + 2B

)−1


 . (18.6)
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An analogous procedure can be used to get the inelastic screening cor-
rections to the hadron-nucleus amplitude ∆M(~b) [5]. In this case an inter-
mediate inelastic diffractive state is created which rescatters on the nucleons
of the nucleus and then returns into the initial hadron. Hence it is ness-
esary to integrate the production cross section over the mass distribution of
the exited system dσdiff

dtdM2
x
. The expressions for the corresponding amplitude

are quite long and so are not presented here. The corrections for the total
cross-sections can be found in [5].

The full amplitude is the sum M(~b) + ∆M(~b).
The differential cross section is connected with the amplitude in the fol-

lowing way

dσ

dΩCM

= |F (q)|2 , dσ

|dt| =
dσ

dq2
CM

=
π

k2
CM

|F (q)|2 . (18.7)

The main energy dependence of the hadron-nucleus elastic scattering
cross section comes from the energy dependence of the parameters of hadron-
nucleon scattering (σhN

tot α, B and dσdiff

dtdM2
x
). At interesting energies these param-

eters were fixed at their well-known values. The fitting of the nuclear density
parameters was performed over a wide range of atomic numbers (A = 4−208)
using experimental data on proton-nuclei elastic scattering at a kinetic energy
of Tp = 1GeV .

The fitting was perfomed both for individual nuclei and for the entire set
of nuclei at once.

It is necessary to note that for every nucleus an optimal set of density
parameters exists and it differs slightly from the one derived for the full set
of nuclei.

A comparision of the phenomenological cross sections [6] with experiment
is presented in Figs. 18.1 - 18.9

In this comparison, the individual nuclei parameters were used. The
experimental data were obtained in Gatchina (Russia) and in Saclay (France)
[6]. The horizontal axis is the scattering angle in the center of mass system

ΘCM and the vertical axis is dσ
dΩCM

in mb
Ster .

Comparisions were also made for p4He elastic scatering at T=1GeV [7],
45GeV and 301GeV [3]. The resulting cross sections dσ

d|t| are shown in the
Figs. 18.10 - 18.12.

In order to generate events the distribution function F of a corresponding
process must be known. The differential cross section is proportional to the
density distribution. Therefore to get the distribution function it is sufficient
to integrate the differential cross section and normalize it:
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F(q2) =

q2
∫

0

d(q2)
dσ

d(q2)

q2
max
∫

0

d(q2)
dσ

d(q2)
.

(18.8)

Expressions 18.6 and 18.7 allow analytic integration in Eq. 18.8 but the
result is too long to be given here.

For light and medium nuclei the analytic expression is more convenient
for calculations than the numerical integration of Eq. 18.8, but for heavy
nuclei the latter is preferred due to the large number of terms in the analytic
expression.

18.2 Status of this document

18.06.04 created by Nikolai Starkov
19.06.04 re-written for spelling and grammar by D.H. Wright
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Figure 18.1: Elastic proton scattering on 9Be at 1 GeV
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Figure 18.2: Elastic proton scattering on 11B at 1 GeV
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Figure 18.3: Elastic proton scattering on 12C at 1 GeV
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Figure 18.4: Elastic proton scattering on 16O at 1 GeV

258



Figure 18.5: Elastic proton scattering on 28Si at 1 GeV
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Figure 18.6: Elastic proton scattering on 40Ca at 1 GeV
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Figure 18.7: Elastic proton scattering on 58Ni at 1 GeV
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Figure 18.8: Elastic proton scattering on 90Zr at 1 GeV
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Figure 18.9: Elastic proton scattering on 208Pb at 1 GeV
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Figure 18.10: Elastic proton scattering on 4He at 1 GeV
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Figure 18.11: Elastic proton scattering on 4He at 45 GeV
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Figure 18.12: Elastic proton scattering on 4He at 301 GeV
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Chapter 19

Interactions of Stopping
Particles

19.1 Complementary parameterised and the-

oretical treatment

Absorption of negative pions and kaons at rest from a nucleus is described
in literature [1], [2], [3], [4] as consisting of two main components:

• a primary absorption process, involving the interaction of the incident
stopped hadron with one or more nucleons of the target nucleus;

• the deexcitation of the remnant nucleus, left in an excitated state as a
result of the occurrence of the primary absorption process.

This interpretation is supported by several experiments [5], [6], [7], [8], [9],
[10], [11], that have measured various features characterizing these processes.
In many cases the experimental measurements are capable to distinguish the
final products originating from the primary absorption process and those
resulting from the nuclear deexcitation component.

A set of stopped particle absorption processes is implemented in GEANT4,
based on this two-component model (PiMinusAbsorptionAtRest and Kaon-
MinusAbsorptionAtRest classes, for π− and K− respectively. Both imple-
mentations adopt the same approach: the primary absorption component
of the process is parameterised, based on available experimental data; the
nuclear deexcitation component is handled through the theoretical models
described elsewhere in this Manual.
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19.1.1 Pion absorption at rest

The absorption of stopped negative pions in nuclei is interpreted [1], [2],
[3], [4] as starting with the absorption of the pion by two or more correlated
nucleons; the total energy of the pion is transferred to the absorbing nucleons,
which then may leave the nucleus directly, or undergo final-state interactions
with the residual nucleus. The remaining nucleus de-excites by evaporation
of low energetic particles.

G4PiMinusAbsorptionAtRest generates the primary absorption compo-
nent of the process through the parameterisation of existing experimental
data; the primary absorption component is handled by class G4PiMinusStopAbsorption.
In the current implementation only absorption on a nucleon pair is consid-
ered, while contributions from absorption on nucleon clusters are neglected;
this approximation is supported by experimental results [1], [13] showing that
it is the dominating contribution.

Several features of stopped pion absorption are known from experimental
measurements on various materials [5], [6], [7], [8], [9], [10], [11], [12]:

• the average number of nucleons emitted, as resulting from the primary
absorption process;

• the ratio of nn vs np as nucleon pairs involved in the absorption process;

• the energy spectrum of the resulting nucleons emitted and their opening
angle distribution.

The corresponding final state products and related distributions are gener-
ated according to a parameterisation of the available experimental measure-
ments listed above. The dependence on the material is handled by a strategy
pattern: the features pertaining to material for which experimental data are
available are treated in G4PiMinusStopX classes (where X represents an el-
ement), inheriting from G4StopMaterial base class. In case of absorption on
an element for which experimental data are not available, the experimental
distributions for the elements closest in Z are used.

The excitation energy of the residual nucleus is calculated by difference
between the initial energy and the energy of the final state products of the
primary absorption process.

Another strategy handles the nucleus deexcitation; the current default
implementation consists in handling the deexcitatoin component of the pro-
cess through the evaporation model described elsewhere in this Manual.
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Chapter 20

Parametrization Driven Models

20.1 Introduction

Two sets of parameterized models are provided for the simulation of high
energy hadron-nucleus interactions. The so-called “low energy model” is in-
tended for hadronic projectiles with incident energies between 1 GeV and
25 GeV, while the “high energy model” is valid for projectiles between 25
GeV and 10 TeV. Both are based on the well-known GHEISHA package of
GEANT3. The physics underlying these models comes from an old-fashioned
multi-chain model in which the incident particle collides with a nucleon inside
the nucleus. The final state of this interaction consists of a recoil nucleon, the
scattered incident particle, and possibly many hadronic secondaries. Hadron
production is approximated by the formation zone concept, in which the
interacting quark-partons require some time and therefore some range to
hadronize into real particles. All of these particles are able to re-interact
within the nucleus, thus developing an intra-nuclear cascade.

In these models only the first hadron-nucleon collision is simulated in detail.
The remaining interactions within the nucleus are simulated by generating
additional hadrons and treating them as secondaries from the initial collision.
The numbers, types and distributions of the extra hadrons are determined
by functions which were fitted to experimental data or which reproduce gen-
eral trends in hadron-nucleus collisions. Numerous tunable parameters are
used throughout these models to obtain reasonable physical behavior. This
restricts the use of these models as generators for hadron-nucleus interac-
tions because it is not always clear how the parameters relate to physical
quantities. On the other hand a precise simulation of minimum bias events
is possible, with significant predictive power for calorimetry.
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20.2 Low Energy Model

In the low energy parameterized model the mean number of hadrons pro-
duced in a hadron-nucleus collision is given by

Nm = C(s)A1/3Nic (20.1)

where A is the atomic mass, C(s) is a function only of the center of mass
energy s, and Nic is approximately the number of hadrons generated in the
initial collision. Assuming that the collision occurs at the center of the nu-
cleus, each of these hadrons must traverse a distance roughly equal to the
nuclear radius. They may therefore potentially interact with a number of
nucleons proportional to A1/3. If the energy-dependent cross section for in-
teraction in the nuclear medium is included in C then Eq. 20.1 can be
interpreted as the number of target nucleons excited by the initial collision.
Some of these nucleons are added to the intra-nuclear cascade. The rest,
especially at higher momenta where nucleon production is suppressed, are
replaced by pions and kaons.

Once the mean number of hadrons, Nm is calculated, the total number of
hadrons in the intra-nuclear cascade is sampled from a Poisson distribution
about the mean. Sampling from additional distribution functions provides

• the combined multiplicity w(~a, ni) for all particles i, i = π+, π0, π−, p, n, .....,
including the correlations between them,

• the additive quantum numbers E (energy), Q (charge), S (strangeness)
and B (baryon number) in the entire phase space region, and

• the reaction products from nuclear fission and evaporation.

A universal function f(~b, x/pT , mT ) is used for the distribution of the addi-
tive quantum numbers, where x is the Feynman variable, pT is the transverse
momentum and mT is the transverse mass. ~a and ~b are parameter vectors,
which depend on the particle type of the incoming beam and the atomic
number A of the target. Any dependence on the beam energy is completely
restricted to the multiplicity distribution and the available phase space.

The low energy model can be applied to the π+, π−, K+, K−, K0 and K0

mesons. It can also be applied to the baryons p, n, Λ, Σ+, Σ−, Ξ0, Ξ−, Ω−,
and their anti-particles, as well as the light nuclei, d, t and α. The model can
in principal be applied down to zero projectile energy, but the assumptions
used to develop it begin to break down in the sub-GeV region.
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20.3 High Energy Model

The high energy model is valid for incident particle energies from 10-20 GeV
up to 10-20 TeV. Individual implementations of the model exist for π+, π−,
K+, K−, K0

S and K0
L mesons, and for p, n, Λ, Σ+, Σ−, Ξ0, Ξ−, and Ω−

baryons and their anti-particles.

20.3.1 Initial Interaction

In a given implementation, the generation of the final state begins with the
selection of a nucleon from the target nucleus. The pion multiplicities result-
ing from the initial interaction of the incident particle and the target nucleon
are then calculated. The total pion multiplicity is taken to be a function of
the log of the available energy in the center of mass of the incident particle
and target nucleon, and the π+, π− and π0 multiplicities are given by the
KNO distribution.

From this initial set of particles, two are chosen at random to be replaced
with either a kaon-anti-kaon pair, a nucleon-anti-nucleon pair, or a kaon and
a hyperon. The relative probabilities of these options are chosen according to
a logarithmically interpolated table of strange-pair and nucleon-anti-nucleon
pair cross sections. The particle types of the pair are chosen according to
averaged, parameterized cross sections typical at energies of a few GeV. If
the increased mass of the new pair causes the total available energy to be
exceeded, particles are removed from the initial set as necessary.

20.3.2 Intra-nuclear Cascade

The cascade of these particles through the nucleus, and the additional parti-
cles generated by the cascade are simulated by several models. These include
high energy cascading, high energy cluster production, medium energy cas-
cading and medium energy cluster production. For each event, high energy
cascading is attempted first. If the available energy is sufficient, this method
will likely succeed in producing the final state and the interaction will have
been completely simulated. If it fails due to lack of energy or other reasons,
the remaining models are called in succession until the final state is produced.
If none of these methods succeeds, quasi-elastic scattering is attempted and
finally, as a last resort, elastic scattering is performed. These models are
responsible for assigning final state momenta to all generated particles, and
for checking that, on average, energy and momentum are conserved.
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20.3.3 High Energy Cascading

As particles from the initial collision cascade through the nucleus more par-
ticles will be generated. The number and type of these particles are param-
eterized in terms of the CM energy of the initial particle-nucleon collision.
The number of particles produced from the cascade is given roughly by

Nm = C(s)[A1/3 − 1]Nic (20.2)

where A is the atomic mass, C(s) is a function only of s, the square of
the center of mass energy, and Nic is approximately the number of hadrons
generated in the initial collision. This can be understood qualitatively by
assuming that the collision occurs, on average, at the center of the nucleus.
Then each of the Nic hadrons must traverse a distance roughly equal to
the nuclear radius. They may therefore potentially interact with a number
of nucleons proportional to A1/3. If the energy-dependent cross section for
interaction in the nuclear medium is included in C(s) then Eq. 20.2 can be
interpreted as the number of target nucleons excited by the initial collision
and its secondaries.

Some of these nucleons are added to the intra-nuclear cascade. The rest,
especially at higher momenta where nucleon production is suppressed, are
replaced by pions, kaons and hyperons. The mean of the total number of
hadrons generated in the cascade is partitioned into the mean number of
nucleons, Nn, pions, Nπ and strange particles, Ns. Each of these is used as
the mean of a Poisson distribution which produces the randomized number
of each type of particle.

The momenta of these particles are generated by first dividing the final
state phase space into forward and backward hemispheres, where forward is
in the direction of the original projectile. Each particle is assigned to one
hemisphere or the other according to the particle type and origin:

• the original projectile, or its substitute if charge or strangeness ex-
change occurs, is assigned to the forward hemisphere and the target
nucleon is assigned to the backward hemisphere;

• the remainder of the particles from the initial collision are assigned at
random to either hemisphere;

• pions and strange particles generated in the intra-nuclear cascade are
assigned 80% to the backward hemisphere and 20% to the forward
hemisphere;

• nucleons generated in the intra-nuclear cascade are all assigned to the
backward hemisphere.
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It is assumed that energy is separately conserved for each hemisphere. If
too many particles have been added to a given hemisphere, randomly chosen
particles are deleted until the energy budget is met. The final state momenta
are then generated according to two different algorithms, a cluster model for
the backward nucleons from the intra-nuclear cascade, and a fragmentation
model for all other particles. Several corrections are then applied to the final
state particles, including momentum re-scaling, effects due to Fermi motion,
and binding energy subtraction. Finally the de-excitation of the residual nu-
cleus is treated by adding lower energy protons, neutrons and light ions to
the final state particle list.

Fragmentation Model. This model simulates the fragmentation of the
highly excited hadrons formed in the initial projectile-nucleon collision. Par-
ticle momenta are generated by first sampling the average transverse mo-
mentum pT from an exponential distribution:

exp[−apT
b] (20.3)

where

1.70 ≤ a ≤ 4.00; 1.18 ≤ b ≤ 1.67. (20.4)

The values of a and b depend on particle type and result from a parame-
terization of experimental data. The value selected for pT is then used to set
the scale for the determination of x, the fraction of the projectile’s momen-
tum carried by the fragment. The sampling of x assumes that the invariant
cross section for the production of fragments can be given by

E
d3σ

dp3
=

K

(M2x2 + pT
2)3/2

(20.5)

where E and p are the energy and momentum, respectively, of the produced
fragment, and K is a proportionality constant. M is the average transverse
mass which is parameterized from data and varies from 0.75 GeV to 0.10
GeV, depending on particle type. Taking m to be the mass of the fragment
and noting that

pz ' xEproj (20.6)

in the forward hemisphere and

pz ' xEtarg (20.7)
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in the backward hemisphere, Eq. 20.5 can be re-written to give the sampling
function for x:

d3σ

dp3
=

K

(M2x2 + pT
2)3/2

1
√

m2 + pT
2 + x2E2

i

, (20.8)

where i = proj or targ.
x-sampling is performed for each fragment in the final-state candidate

list. Once a fragment’s momentum is assigned, its total energy is checked to
see if it exceeds the energy budget in its hemisphere. If so, the momentum
of the particle is reduced by 10%, as is pT and the integral of the x-sampling
function, and the momentum selection process is repeated. If the offending
particle starts out in the forward hemisphere, it is moved to the backward
hemisphere, provided the budget for the backward hemisphere is not ex-
ceeded. If, after six iterations, the particle still does not fit, it is removed
from the candidate list and the kinetic energies of the particles selected up to
this point are reduced by 5%. The entire procedure is repeated up to three
times for each fragment.

The incident and target particles, or their substitutes in the case of charge-
or strangeness-exchange, are guaranteed to be part of the final state. They
are the last particles to be selected and the remaining energy in their respec-
tive hemispheres is used to set the pz components of their momenta. The pT

components selected by x-sampling are retained.

Cluster Model. This model groups the nucleons produced in the intra-
nuclear cascade together with the target nucleon or hyperon, and treats
them as a cluster moving forward in the center of mass frame. The clus-
ter disintegrates in such a way that each of its nucleons is given a kinetic
energy

40 < Tnuc < 600MeV (20.9)

if the kinetic energy of the original projectile, Tinc, is 5 GeV or more. If Tinc

is less than 5 GeV,

40(Tinc/5GeV)2 < Tnuc < 600(Tinc/5GeV)2. (20.10)

In each range the energy is sampled from a distribution which is skewed
strongly toward the high energy limit. In addition, the angular distribution
of the nucleons is skewed forward in order to simulate the forward motion of
the cluster.

Momentum Re-scaling. Up to this point, all final state momenta have
been generated in the center of mass of the incident projectile and the target
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nucleon. However, the interaction involves more than one nucleon as evi-
denced by the intra-nuclear cascade. A more correct center of mass should
then be defined by the incident projectile and all of the baryons generated by
the cascade, and the final state momenta already calculated must be re-scaled
to reflect the new center of mass.

This is accomplished by correcting the momentum of each particle in the
final state candidate list by the factor T1/T2. T2 is the total kinetic energy in
the lab frame of all the final state candidates generated assuming a projectile-
nucleon center of mass. T1 is the total kinetic energy in the lab frame of the
same final state candidates, but whose momenta have been calculated by the
phase space decay of an imaginary particle. This particle has the total CM
energy of the original projectile and a cluster consisting of all the baryons
generated from the intra-nuclear cascade.

Corrections. Part of the Fermi motion of the target nucleons is taken into
account by smearing the transverse momentum components of the final state
particles. The Fermi momentum is first sampled from an average distribu-
tion and a random direction for its transverse component is chosen. This
component, which is proportional to the number of baryons produced in the
cascade, is then included in the final state momenta.

Each final state particle must escape the nucleus, and in the process
reduce its kinetic energy by the nuclear binding energy. The binding energy
is parameterized as a function of A:

EB = 25MeV
(

A − 1

120

)

e−(A−1)/120). (20.11)

Another correction reduces the kinetic energy of final state π0s when the
incident particle is a π+ or π−. This reduction increases as the log of the
incident pion energy, and is done to reproduce experimental data. In order to
conserve energy on average, the energy removed from the π0s is re-distributed
among the final state π+s, π−s and π0s.

Nuclear De-excitation. After the generation of initial interaction and
cascade particles, the target nucleus is left in an excited state. De-excitation
is accomplished by evaporating protons, neutrons, deuterons, tritons and
alphas from the nucleus according to a parameterized model. The total
kinetic energy given to these particles is a function of the incident particle
kinetic energy:

Tevap = 7.716GeV
(

A − 1

120

)

F(T)e−F(T)−(A−1)/120, (20.12)
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where
F (T ) = max[0.35 + 0.1304ln(T), 0.15], (20.13)

and

T = 0.1GeV for Tinc < 0.1GeV (20.14)

T = Tinc for 0.1GeV ≤ Tinc ≤ 4GeV (20.15)

T = 4GeV for Tinc > 4GeV. (20.16)

The mean energy allocated for proton and neutron emission is Tpn and that
for deuteron, triton and alpha emission is Tdta. These are determined by
partitioning Tevap :

Tpn = TevapR , Tdta = Tevap(1 − R) with

R = max[1 − (T/4GeV)2, 0.5]. (20.17)

The simulated values of Tpn and Tdta are sampled from normal distributions
about Tpn and Tdta and their sum is constrained not to exceed the incident
particle’s kinetic energy, Tinc.

The number of proton and neutrons emitted, Npn, is sampled from a
Poisson distribution about a mean which depends on R and the number of
baryons produced in the intranuclear cascade. The average kinetic energy
per emitted particle is then Tav = Tpn/Npn. Tav is used to parameterize an
exponential which qualitatively describes the nuclear level density as a func-
tion of energy. The simulated kinetic energy of each evaporated proton or
neutron is sampled from this exponential. Next, the nuclear binding energy
is subtracted and the final momentum is calculated assuming an isotropic an-
gular distribution. The number of protons and neutrons emitted is (Z/A)Npn

and (N/A)Npn, respectively.
A similar procedure is followed for the deuterons, tritons and alphas. The

number of each species emitted is 0.6Ndta, 0.3Ndta and 0.1Ndta, respectively.

Tuning of the High Energy Cascade The final stage of the high energy
cascade method involves adjusting the momenta of the produced particles
so that they agree better with data. Currently, five such adjustments are
performed, the first three of which apply only to charged particles incident
upon light and medium nuclei at incident energies above ' 65 GeV.

• If the final state particle is a nucleon or light ion with a momentum of
less than 1.5 GeV/c, its momentum will be set to zero some fraction
of the time. This fraction increases with the logarithm of the kinetic
energy of the incident particle and decreases with log10(A).
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• If the final state particle with the largest momentum happens to be a
π0, its momentum is exchanged with either the π+ or π− having the
largest momentum, depending on whether the incident particle charge
is positive or negative.

• If the number of baryons produced in the cascade is a significant frac-
tion (> 0.3) of A, about 25% of the nucleons and light ions already
produced will be removed from the final particle list, provided their
momenta are each less than 1.2 GeV/c.

• The final state of the interaction is of course heavily influenced by the
quantum numbers of the incident particle, particularly in the forward
direction. This influence is enforced by compiling, for each forward-
going final state particle, the sum

Sforward = ∆M + ∆Q + ∆S + ∆B, (20.18)

where each ∆ corresponds to the absolute value of the difference of the
quantum number between the incident particle and the final state par-
ticle. M , Q, S, and B refer to mass, charge, strangeness and baryon
number, respectively. For final state particles whose character is signif-
icantly different from the incident particle (S is large), the momentum
component parallel to the incident particle momentum is reduced. The
transverse component is unchanged. As a result, large-S particles are
driven away from the axis of the hadronic shower. For backward-going
particles, a similar procedure is followed based on the calculation of
Sbackward.

• Conservation of energy is imposed on the particles in the final state list
in one of two ways, depending on whether or not a leading particle has
been chosen from the list. If all the particles differ significantly from
the incident particle in momentum, mass and other quantum numbers,
no leading particle is chosen and the kinetic energy of each particle is
scaled by the same correction factor. If a leading particle is chosen,
its kinetic energy is altered to balance the total energy, while all the
remaining particles are unaltered.

20.3.4 High Energy Cluster Production

As in the high energy cascade model, the high energy cluster model randomly
assigns particles from the initial collision to either a forward- or backward-
going cluster. Instead of performing the fragmentation process, however,

278



the two clusters are treated kinematically as the two-body final state of the
hadron-nucleon collision. Each cluster is assigned a kinetic energy T which
is sampled from a distribution

exp[−aT 1/b] (20.19)

where both a and b decrease with the number of particles in a cluster. If the
combined total energy of the two clusters is larger than the center of mass
energy, the energy of each cluster is reduced accordingly. The center of mass
momentum of each cluster can then be found by sampling the 4-momentum
transfer squared, t, from the distribution

exp[t(4.0 + 1.6ln(pinc))] (20.20)

where t < 0 and pinc is the incident particle momentum. Then,

cosθ = 1 +
t− (Ec − Ei)

2 + (pc − pi)
2

2pcpi
, (20.21)

where the subscripts c and i refer to the cluster and incident particle, re-
spectively. Once the momentum of each cluster is calculated, the cluster
is decomposed into its constituents. The momenta of the constituents are
determined using a phase space decay algorithm.

The particles produced in the intra-nuclear cascade are grouped into a
third cluster. They are treated almost exactly as in the high energy cascade
model, where Eq. 20.2 is used to estimate the number of particles produced.
The main difference is that the cluster model does not generate strange par-
ticles from the cascade. Nucleon suppression is also slightly stronger, leading
to relatively higher pion production at large incident momenta. Kinetic en-
ergy and direction are assigned to the cluster as described in the cluster
model paragraph in the previous section.

The remaining steps to produce the final state particle list are the same
as those in high energy cascading:

• re-scaling of the momenta to reflect a center of mass which involves the
cascade baryons,

• corrections due to Fermi motion and binding energy,

• reduction of final state π0 energies,

• nuclear de-excitation and

• high energy tuning.
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20.3.5 Medium Energy Cascading

The medium energy cascade algorithm is very similar to the high energy cas-
cade algorithm, but it may be invoked for lower incident energies (down to 1
GeV). The primary difference between the two codes is the parameterization
of the fragmentation process. The medium energy cascade samples larger
transverse momenta for pions and smaller transverse momenta for kaons and
baryons.

A second difference is in the treatment of the cluster consisting of particles
generated in the cascade. Instead of parameterizing the kinetic energies and
angles of the outgoing particles, the phase space decay approach is used.

Another difference is that the high energy tuning of the final state distri-
bution is not performed.

20.3.6 Medium Energy Cluster Production

The medium energy cluster algorithm is nearly identical to the high energy
cluster algorithm, but it may be invoked for incident energies down to 10
MeV. There are three significant differences at medium energy: less nucleon
suppression, fewer particles generated in the intra-nuclear cascade, and no
high energy tuning of the final state particle distributions.

20.3.7 Elastic and Quasi-elastic Scattering

When no additional particles are produced in the initial interaction, either
elastic or quasi-elastic scattering is performed. If there is insufficient energy
to induce an intra-nuclear cascade, but enough to excite the target nucleus,
quasi-elastic scattering is performed. The final state is calculated using two-
body scattering of the incident particle and the target nucleon, with the
scattering angle in the center of mass sampled from an exponential:

exp[−2bpinpcm(1 − cosθ)]. (20.22)

Here pin is the incident particle momentum, pcm is the momentum in the
center of mass, and b is a logarithmic function of the incident momentum
in the lab frame as parameterized from data. As in the cascade and cluster
production models, the residual nucleus is then de-excited by evaporating
nucleons and light ions.

If the incident energy is too small to excite the nucleus, elastic scattering
is performed. The angular distribution of the scattered particle is sampled
from the sum of two exponentials whose parameters depend on A.
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20.4 Status of this document

7.10.02 re-written by D.H. Wright
1.11.04 new section on high energy model by D.H. Wright
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Chapter 21

Leading Particle Bias

21.1 Overview

G4Mars5GeV is an inclusive event generator for hadron (photon) interactions
with nuclei, and translated from the MARS code system (MARS13 (98)). To
construct a cascade tree, only a fixed number of particles are generated at
each vertex. A corresponding statistical weight is assigned to each secondary
particle according to its type and phase-space. Rarely-produced particles or
interesting phase-space region can be enhanced.

N.B. This inclusive simulation is implemented in Geant4 partially for the
moment, not completed yet.

MARS Code System
MARS is a set of Monte Carlo programs for inclusive simulation of particle
interactions, and high multiplicity or rare events can be simulated fast with
its sophisticated biasing techniques. For the details on the MARS code sys-
tem, see [1, 2].

21.2 Method

In G4Mars5GeV, three secondary hadrons are generated in the final state of
an hadron(photon)-nucleus inelastic interaction, and a statistical weight is
assigned to each particle according to its type, energy and emission angle.
In this code, energies, momenta and weights of the secondaries are sampled,
and the primary particle is simply terminated at the vertex. The allowed
projectile kinetic energy is E0 ≤ 5 GeV, and following particles can be sim-
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ulated;
p, n, π+, π−, K+, K−, γ, p̄ .

Prior to a particle generation, a Coulomb barrier is considered for projec-
tile charged hadrons (p, π+, K+ and p̄) with kinetic energy of less than 200
MeV. The coulomb potential Vcoulmb is given by

Vcolumb = 1.11 × 10−3 × Z/A1/3 (GeV), (21.1)

where Z and A are atomic and mass number, respectivelly.

21.2.1 Inclusive hadron production

The following three steps are carried out in a sequence to produce secondary
particles:

• nucleon production,

• charged pion/kaon production and

• neutral pion production.

These processes are performed independently, i.e. the energy and momentum
conservation law is broken at each event, however, fulfilled on the average
over a number of events simulated.

nucleon production

Projectiles K± and p̄ are replaced with π± and p, individually to generate the
secondary nucleon. Either of neutron or proton is selected randomly as the
secondary except for the case of gamma projectiling. The gamma is handled
as a pion.

charged pion/kaon production

If the incident nucleon does not have enough energy to produce the pion (>
280 MeV), charged and neutral pions are not produced. A charged pion is
selected with the equal probability, and a bias is eliminated with the appro-
priate weight which is assigned taking into account the difference between
π+ and π− both for production probability and for inclusive spectra. It is
replaced with a charged kaon a certain fraction of the time, that depends on
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the projectile energy if E0 > 2.1 GeV. The ratio of kaon replacement is given
by

Rkaon = 1.3 ×
{

Cmin + (C − Cmin)
log(E0/2)

log(100/2)

}

(2.1 ≤ E0 ≤ 5.2 GeV),

(21.2)
where Cmin is 0.03 (0.08) for nucleon (others) projectiling, and

Produced particle Projectile particle

C =

{

0.071 ( π+ )
0.083 ( π− )

}

×











1.3 ( π± )
2.0 ( K± )
1.0 ( others )











(21.3)

A similar strangeness replacement is not considered for nucleon production.

21.2.2 Sampling of energy and emission angle of the
secondary

The energy and emission angle of the secondary particle depends on projectile
energy. There are formulae depending on whether or not the interaction
particle (IP) is identical to the secondary (JP).

For IP 6= JP, the secondary energy E2 is simply given by

E2 = Eth ×
(

Emax

Eth

)ε

(MeV) , (21.4)

where Emax = max (E0, 0.5 MeV), Eth = 1 MeV, and ε is a uniform random
between 0 and 1.

For IP = JP,

E2 =











Eth + ε (Emax − Eth) E0 < 100Eth MeV
Eth × eε (β+99) (MeV) E0 ≥ 100Eth and ε < η
E0 × (β (ε− 1) + 1 + 99ε)/100 E0 ≥ 100Eth and ε ≥ η

(21.5)
Here, β = log(E0/100Eth) and η = β/(99 + β). If resulting E2 is less than
0.5 MeV, nothing is generated.

Angular distribution

The angular distribution is mainly determined by the energy ratio of the
secondary to the projectile (i.e. the emission angle and probability of the
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occurrence increase as the energy ratio decreases). The emission angle of the
secondary particle with respect to the incident direction is given by

θ = − log(1 − ε(1 − e−π τ ))/τ , (21.6)

where τ = E0/5(E0 + 1/2).

21.2.3 Sampling statistical weight

The kinematics of the secondary particle are determined randomly using the
above formulae (21.5,21.6). A statistical weight is calculated and assigned to
each generated particle to reproduce a true inclusive spectrum in the event.
The weight is given by

D2N = V 10(JP) ×DW (E) ×DA (θ) × V 1 (E, θ, JP), (21.7)

where
• V 10 is the statistical weight for the production rate based on neutral pion
production (V 10 = 1).

V 10 =

{

2.0 (2.5) nucleon production (the case of gamma projectile)
2.1 charged pion/kaon production

(21.8)

• DW and DA are dominantly determined by the secondary energy and emis-
sion angle, individually.

• V1 is a true double-differential production cross-section (divided by the to-
tal inelastic cross-section) [1], calculated in G4Mars5GeV::D2N2 according
to the projectile type and energy, target atomic mass, and simulated sec-
ondary energy, emission angle and particle type.

21.3 Status of this document

11.06.2002 created by N. Kanaya.
20.06.2002 modified by N.V.Mokhov.
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Chapter 22

Parton string model.

22.1 Reaction initial state simulation.

22.1.1 Allowed projectiles and bombarding energy range

for interaction with nucleon and nuclear tar-
gets.

The GEANT4 parton string models are capable to predict final states (pro-
duced hadrons which belong to the scalar and vector meson nonets and the
baryon (antibaryon) octet and decuplet) of reactions on nucleon and nuclear
targets with nucleon, pion and kaon projectiles. The allowed bombarding
energy

√
s > 5 GeV is recommended. Two approaches, based on diffractive

excitation or soft scattering with diffractive admixture according to cross-
section, are considered. Hadron-nucleus collisions in the both approaches
(diffractive and parton exchange) are considered as a set of the independent
hadron-nucleon collisions. However, the string excitation procedures in these
approaches are rather different.

22.1.2 MC initialization procedure for nucleus.

The initialization of each nucleus, consisting from A nucleons and Z pro-
tons with coordinates ri and momenta pi, where i = 1, 2, ..., A is performed.
We use the standard initialization Monte Carlo procedure, which is realized
in the most of the high energy nuclear interaction models:

• Nucleon radii ri are selected randomly in the rest of nucleus according
to proton or neutron density ρ(ri). For heavy nuclei with A > 16 [1]
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nucleon density is

ρ(ri) =
ρ0

1 + exp [(ri − R)/a]
(22.1)

where

ρ0 ≈
3

4πR3
(1 +

a2π2

R2
)−1. (22.2)

Here R = r0A
1/3 fm and r0 = 1.16(1 − 1.16A−2/3) fm and a ≈ 0.545

fm. For light nuclei with A < 17 nucleon density is given by a harmonic
oscillator shell model [2], e. g.

ρ(ri) = (πR2)−3/2 exp (−r2
i /R

2), (22.3)

where R2 = 2/3 < r2 >= 0.8133A2/3 fm2. To take into account
nucleon repulsive core it is assumed that internucleon distance d > 0.8
fm;

• The initial momenta of the nucleons are randomly choosen between
0 and pmax

F , where the maximal momenta of nucleons (in the local
Thomas-Fermi approximation [3]) depends from the proton or neutron
density ρ according to

pmax
F = h̄c(3π2ρ)1/3 (22.4)

with h̄c = 0.197327 MeVfm;

• To obtain coordinate and momentum components, it is assumed that
nucleons are distributed isotropicaly in configuration and momentum
spaces;

• Then perform shifts of nucleon coordinates r′j = rj − 1/A
∑

i ri and
momenta p′

j = pj − 1/A
∑

i pi of nucleon momenta. The nucleus must
be centered in configuration space around 0, i. e.

∑

i ri = 0 and the
nucleus must be at rest, i. e.

∑

i pi = 0;

• We compute energy per nucleon e = E/A = mN + B(A,Z)/A, where
mN is nucleon mass and the nucleus binding energy B(A,Z) is given
by the Bethe-Weizsäcker formula[4]:

B(A,Z) =
= −0.01587A+ 0.01834A2/3 + 0.09286(Z − A

2
)2 + 0.00071Z2/A1/3,

(22.5)

and find the effective mass of each nucleon meff
i =

√

(E/A)2 − p2′
i .
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22.1.3 Random choice of the impact parameter.

The impact parameter 0 ≤ b ≤ Rt is randomly selected according to the
probability:

P (b)db = bdb, (22.6)

where Rt is the target radius, respectively. In the case of nuclear projectile
or target the nuclear radius is determined from condition:

ρ(R)

ρ(0)
= 0.01. (22.7)

22.2 Sample of collision participants in nu-

clear collisions.

22.2.1 MC procedure to define collision participants.

The inelastic hadron–nucleus interactions at ultra–relativistic energies are
considered as independent hadron–nucleon collisions. It was shown long time
ago [5] for the hadron–nucleus collision that such a picture can be obtained
starting from the Regge–Gribov approach [6], when one assumes that the
hadron-nucleus elastic scattering amplitude is a result of reggeon exchanges
between the initial hadron and nucleons from target–nucleus. This result
leads to simple and efficient MC procedure [7] to define the interaction cross
sections and the number of the nucleons participating in the inelastic hadron–
nucleus collision:

• We should randomly distribute B nucleons from the target-nucleus on
the impact parameter plane according to the weight function T ([~bBj ]).
This function represents probability density to find sets of the nucleon
impact parameters [~bBj ], where j = 1, 2, ..., B.

• For each pair of projectile hadron i and target nucleon j with choosen
impact parameters ~bi and ~bBj we should check whether they interact

inelastically or not using the probability pij(~bi − ~bBj , s), where sij =
(pi + pj)

2 is the squared total c.m. energy of the given pair with the
4–momenta pi and pj, respectively.

In the Regge–Gribov approach[6] the probability for an inelastic collision
of pair of i and j as a function at the squared impact parameter difference
b2ij = (~bi −~bBj )2 and s is given by

pij(~bi −~bBj , s) = c−1[1 − exp {−2u(b2ij, s)}] =
∞
∑

n=1

p
(n)
ij (~bi −~bBj , s), (22.8)
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where

p
(n)
ij (~bi −~bBj , s) = c−1 exp {−2u(b2ij, s)}

[2u(b2ij, s)]
n

n!
. (22.9)

is the probability to find the n cut Pomerons or the probability for 2n strings
produced in an inelastic hadron-nucleon collision. These probabilities are de-
fined in terms of the (eikonal) amplitude of hadron–nucleon elastic scattering
with Pomeron exchange:

u(b2ij, s) =
z(s)

2
exp(−b2ij/4λ(s)). (22.10)

The quantities z(s) and λ(s) are expressed through the parameters of the
Pomeron trajectory, α

′

P = 0.25 GeV −2 and αP (0) = 1.0808, and the param-
eters of the Pomeron-hadron vertex RP and γP :

z(s) =
2cγP

λ(s)
(s/s0)

αP (0)−1 (22.11)

λ(s) = R2
P + α

′

P ln(s/s0), (22.12)

respectively, where s0 is a dimensional parameter.
In Eqs. (22.8,22.9) the so–called shower enhancement coefficient c is intro-

duced to determine the contribution of diffractive dissociation[6]. Thus, the
probability for diffractive dissociation of a pair of nucleons can be computed
as

pd
ij(
~bi −~bBj , s) =

c− 1

c
[ptot

ij (~bi −~bBj , s) − pij(~bi −~bBj , s)], (22.13)

where
ptot

ij (~bi −~bBj , s) = (2/c)[1 − exp{−u(b2ij, s)}]. (22.14)

The Pomeron parameters are found from a global fit of the total, elas-
tic, differential elastic and diffractive cross sections of the hadron–nucleon
interaction at different energies.

For the nucleon-nucleon, pion-nucleon and kaon-nucleon collisions the
Pomeron vertex parameters and shower enhancement coefficients are found:
R2N

P = 3.56 GeV −2, γN
P = 3.96 GeV −2, sN

0 = 3.0 GeV 2, cN = 1.4 and
R2π

P = 2.36 GeV −2, γπ
P = 2.17 GeV −2, and R2K

P = 1.96 GeV −2, γK
P = 1.92

GeV −2, sK
0 = 2.3 GeV 2, cπ = 1.8.

22.2.2 Separation of hadron diffraction excitation.

For each pair of target hadron i and projectile nucleon j with choosen im-
pact parameters~bi and~bBj we should check whether they interact inelastically
or not using the probability

pin
ij (~bi −~bBj , s) = pij(~bi −~bBj , s) + pd

ij(
~bAi −~bBj , s). (22.15)
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If interaction will be realized, then we have to consider it to be diffractive or
nondiffractive with probabilities

pd
ij(
~bi −~bBj , s)

pin
ij (~bAi −~bBj , s)

(22.16)

and
pij(~bi −~bBj , s)
pin

ij (~bAi −~bBj , s)
. (22.17)

22.3 Longitudinal string excitation

22.3.1 Hadron–nucleon inelastic collision

Let us consider collision of two hadrons with their c. m. momenta P1 =
{E+

1 , m
2
1/E

+
1 , 0} and P2 = {E−

2 , m
2
2/E

−
2 , 0}, where the light-cone variables

E±
1,2 = E1,2 ±Pz1,2 are defined through hadron energies E1,2 =

√

m2
1,2 + P 2

z1,2,
hadron longitudinal momenta Pz1,2 and hadron masses m1,2, respectively.
Two hadrons collide by two partons with momenta p1 = {x+E+

1 , 0, 0} and
p2 = {0, x−E−

2 , 0}, respectively.

22.3.2 The diffractive string excitation

In the diffractive string excitation (the Fritiof approach [9]) only momentum
can be transferred:

P ′
1 = P1 + q

P ′
2 = P2 − q,

(22.18)

where
q = {−q2

t /(x
−E−

2 ), q2
t /(x

+E+
1 ),qt} (22.19)

is parton momentum transferred and qt is its transverse component. We use
the Fritiof approach to simulate the diffractive excitation of particles.

22.3.3 The string excitation by parton exchange

For this case the parton exchange (rearrangement) and the momentum
exchange are allowed [10],[11],[7]:

P ′
1 = P1 − p1 + p2 + q

P ′
2 = P2 + p1 − p2 − q,

(22.20)

where q = {0, 0,qt} is parton momentum transferred, i. e. only its transverse
components qt = 0 is taken into account.
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22.3.4 Transverse momentum sampling

The transverse component of the parton momentum transferred is gener-
ated according to probability

P (qt)dqt =

√

a

π
exp (−aq2

t )dqt, (22.21)

where parameter a = 0.6 GeV−2.

22.3.5 Sampling x-plus and x-minus

Light cone parton quantities x+ and x− are generated independently and
according to distribution:

u(x) ∼ xα(1 − x)β, (22.22)

where x = x+ or x = x−. Parameters α = −1 and β = 0 are chosen for
the FRITIOF approach [9]. In the case of the QGSM approach [7] α = −0.5
and β = 1.5 or β = 2.5. Masses of the excited strings should satisfy the
kinematical constraints:

P ′+
1 P ′−

1 ≥ m2
h1 + q2

t (22.23)

and
P ′+

2 P ′−
2 ≥ m2

h2 + q2
t , (22.24)

where hadronic masses mh1 andmh2 (model parameters) are defined by string
quark contents. Thus, the random selection of the values x+ and x− is limited
by above constraints.

22.3.6 The diffractive string excitation

In the diffractive string excitation (the FRITIOF approach [9]) for each
inelastic hadron–nucleon collision we have to select randomly the transverse
momentum transferred qt (in accordance with the probability given by Eq.
(22.21)) and select randomly the values of x± (in accordance with distribution
defined by Eq. (22.22)). Then we have to calculate the parton momentum
transferred q using Eq. (22.19) and update scattered hadron and nucleon
or scatterred nucleon and nucleon momenta using Eq. (22.20). For each
collision we have to check the constraints (22.23) and (22.24), which can be
written more explicitly:

[E+
1 − q2

t

x−E−
2

][
m2

1

E+
1

+
q2
t

x+E+
1

] ≥ m2
h1 + q2

t (22.25)
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and

[E−
2 +

q2
t

x−E−
2

][
m2

2

E−
2

− q2
t

x+E+
1

] ≥ m2
h1 + q2

t . (22.26)

22.3.7 The string excitation by parton rearrangement

In this approach [7] strings (as result of parton rearrangement) should
be spanned not only between valence quarks of colliding hadrons, but also
between valence and sea quarks and between sea quarks. The each par-
ticipant hadron or nucleon should be splitted into set of partons: valence
quark and antiquark for meson or valence quark (antiquark) and diquark
(antidiquark) for baryon (antibaryon) and additionaly the (n− 1) sea quark-
antiquark pairs (their flavours are selected according to probability ratios
u : d : s = 1 : 1 : 0.35), if hadron or nucleon is participating in the n inelastic
collisions. Thus for each participant hadron or nucleon we have to generate
a set of light cone variables x2n, where x2n = x+

2n or x2n = x−2n according to
distribution:

fh(x1, x2, ..., x2n) = f0

2n
∏

i=1

uh
qi
(xi)δ(1 −

2n
∑

i=1

xi), (22.27)

where f0 is the normalization constant. Here, the quark structure functions
uh

qi
(xi) for valence quark (antiquark) qv, sea quark and antiquark qs and

valence diquark (antidiquark) qq are:

uh
qv

(xv) = xαv
v , uh

qs
(xs) = xαs

s , u
h
qq(xqq) = xβqq

qq , (22.28)

where αv = −0.5 and αs = −0.5 [10] for the non-strange quarks (antiquarks)
and αv = 0 and αs = 0 for strange quarks (antiquarks), βuu = 1.5 and
βud = 2.5 for proton (antiproton) and βdd = 1.5 and βud = 2.5 for neutron
(antineutron). Usualy xi are selected between xmin

i ≤ xi ≤ 1, where model
parameter xmin is a function of initial energy, to prevent from production
of strings with low masses (less than hadron masses), when whole selection
procedure should be repeated. Then the transverse momenta of partons
qit are generated according to the Gaussian probability Eq. (22.21) with
a = 1/4Λ(s) and under the constraint:

∑2n
i=1 qit = 0. The partons are

considered as the off-shell partons, i. e. m2
i 6= 0.
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22.4 Longitudinal string decay.

22.4.1 Hadron production by string fragmentation.

A string is stretched between flying away constituents: quark and anti-
quark or quark and diquark or diquark and antidiquark or antiquark and
antidiquark. From knowledge of the constituents longitudinal p3i = pzi and
transversal p1i = pxi, p2i = pyi momenta as well as their energies p0i = Ei,
where i = 1, 2, we can calculate string mass squared:

M2
S = pµpµ = p2

0 − p2
1 − p2

2 − p2
3, (22.29)

where pµ = pµ1 + pµ2 is the string four momentum and µ = 0, 1, 2, 3.
The fragmentation of a string follows an iterative scheme:

string ⇒ hadron+ new string, (22.30)

i. e. a quark-antiquark (or diquark-antidiquark) pair is created and placed
between leading quark-antiquark (or diquark-quark or diquark-antidiquark
or antiquark-antidiquark) pair.

The values of the strangeness suppression and diquark suppression factors
are

u : d : s : qq = 1 : 1 : 0.35 : 0.1. (22.31)

A hadron is formed randomly on one of the end-points of the string. The
quark content of the hadrons determines its species and charge. In the chosen
fragmentation scheme we can produce not only the groundstates of baryons
and mesons, but also their lowest excited states. If for baryons the quark-
content does not determine whether the state belongs to the lowest octet
or to the lowest decuplet, then octet or decuplet are choosen with equal
probabilities. In the case of mesons the multiplet must also be determined
before a type of hadron can be assigned. The probability of choosing a certain
multiplet depends on the spin of the multiplet.

The zero transverse momentum of created quark-antiquark (or diquark-
antidiquark) pair is defined by the sum of an equal and opposite directed
transverse momenta of quark and antiquark.

The transverse momentum of created quark is randomly sampled accord-
ing to probability (22.21) with the parameter a = 0.25 GeV−2. Then a
hadron transverse momentum pt is determined by the sum of the transverse
momenta of its constituents.

The fragmentation function fh(z, pt) represents the probability distribu-
tion for hadrons with the transverse momenta pt to aquire the light cone
momentum fraction z = z± = (Eh ± ph

z/(E
q ± pq

z), where Eh and Eq
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are the hadron and fragmented quark energies, respectively and ph
z and pq

z

are hadron and fragmented quark longitudinal momenta, respectively, and
z±min ≤ z± ≤ z±max, from the fragmenting string. The values of z±min,max are
determined by hadron mh and constituent transverse masses and the avail-
able string mass. One of the most common fragmentation function is used
in the LUND model [12]:

fh(z, pt) ∼
1

z
(1 − z)a exp [−b(m

2
h + p2

t )

z
]. (22.32)

One can use this fragmentation function for the decay of the excited string.
One can use also the fragmentation functions are derived in [13]:

fh
q (z, pt) = [1 + αh

q (< pt >)](1 − z)αh
q (<pt>). (22.33)

The advantage of these functions as compared to the LUND fragmentation
function is that they have correct three–reggeon behaviour at z → 1 [13].

22.4.2 The hadron formation time and coordinate.

To calculate produced hadron formation times and longitudinal coordi-
nates we consider the (1 + 1)-string with mass MS and string tension κ,
which decays into hadrons at string rest frame. The i-th produced hadron
has energy Ei and its longitudinal momentum pzi, respectively. Introduc-
ing light cone variables p±i = Ei ± piz and numbering string breaking points
consecutively from right to left we obtain p+

0 = MS, p+
i = κ(z+

i−1 − z+
i ) and

p−i = κx−i .
We can identify the hadron formation point coordinate and time as the

point in space-time, where the quark lines of the quark-antiquark pair forming
the hadron meet for the first time (the so-called ’yo-yo’ formation point [12]):

ti =
1

2κ
[MS − 2

i−1
∑

j=1

pzj + Ei − pzi] (22.34)

and coordinate

zi =
1

2κ
[MS − 2

i−1
∑

j=1

Ej + pzi − Ei]. (22.35)
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Chapter 23

Chiral Invariant Phase Space
Decay.

23.1 Introduction

The CHIPS computer code is a quark-level event generator for the frag-
mentation of hadronic systems into hadrons. In contrast to other parton
models [1] CHIPS is three-dimensional. It is based on the Chiral Invariant
Phase Space model [2, 3, 4] which employs quark-level SU(3); c, b, and t
quarks are not implemented. The model can be considered as a generaliza-
tion of the chiral bag model of hadrons [5] in which any hadron consists of a
few quark-partons. Interactions between hadrons are treated as purely kine-
matic effects of quark exchange, and the decay of excited hadronic systems is
treated as the fusion of two quark-partons within the system. This approach
does not pretend to be a dynamical model.

An important feature of the model is the homogeneous distribution of
asymptotically free quark-partons over the invariant phase space, as applied
to the fragmentation of various types of excited hadronic systems. The model
may be considered as a generalization of the well-known hadronic phase space
distribution [6] approach, because it generates not only angular and mo-
mentum distributions for a given set of hadrons, but also the multiplicity
distributions for different kinds of hadrons.

CHIPS may be applied to nucleon excitations, hadronic systems produced
in e+e− interactions and high energy nuclear excitations, among others. De-
spite its quark nature, the model can also be used successfully at very low
energies. It is valid for photon and hadron projectiles and for hadron and nu-
clear targets. Exclusive event generation models multiple hadron production
while conserving energy, momentum, and charge. This generally results in
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a good description of particle multiplicities and spectra in multihadron frag-
mentation processes. Thus, it is possible to use the CHIPS event generator
in exclusive modeling of hadron cascades in materials.

In this model, the result of a hadronic or nuclear interaction is the creation
of a quasmon which is essentially an intermediate state of excited hadronic
matter. When the interaction occurs in vacuum the quasmon can dissipate
energy by radiating particles according to the quark fusion mechanism [2]
described in section 23.4. When the interaction occurs in nuclear matter,
quasmon fragmentation can occur by quark exchange with surrounding nu-
cleons or clusters of nucleons [3] (section 23.5), in addition to the above
vacuum mechanism.

23.2 Fundamental Concepts

The CHIPS model is an attempt to use a set of simple rules which govern mi-
croscopic quark-level behavior to model macroscopic hadronic systems with
a large number of degrees of freedom. The invariant phase space distribu-
tion as a paradigm of thermalized chaos is applied to quarks, and simple
kinematic mechanisms are used to model the hadronization of quarks into
hadrons. Along with relativistic kinematics and the conservation of quantum
numbers, the following concepts are used:

• Quasmon: in the CHIPS model, a quasmon is any excited hadronic
system; it can be viewed as a generalized hadron. At the constituent
level, a quasmon may be thought of as a bubble of quark-parton plasma
in which the quarks are massless and the quark-partons in the quas-
mon are homogeneously distributed over the invariant phase space. It
may also be considered as a bubble of the three-dimensional Feynman-
Wilson [7] parton gas. The traditional hadron is a particle defined by
quantum numbers and a fixed mass or width. The quark content of the
hadron is a secondary concept constrained by the quantum numbers.
The quasmon, however, is defined by its quark content and mass, and
the concept of a well defined particle with quantum numbers is of sec-
ondary importance. A given quasmon hadronic state with fixed mass
and quark content can be considered as a superposition of traditional
hadrons, with the quark content of the superposition being the same
as the quark content of the quasmon.

• Quark fusion: the quark fusion hypothesis determines the rules of
final state hadron production, with energy spectra reflecting the mo-
mentum distribution of the quarks in the system. Fusion occurs when
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a quark-parton in a quasmon joins with another quark-parton from
the same quasmon and forms a hadron. If a neighboring quasmon is
present, quark-partons may also be exchanged between the two quas-
mons. The kinematic condition applied to these mechanisms is that
the resulting hadrons be produced on their mass shells. The model
assumes that the u, d and s quarks are massless, which allows the inte-
grals of the hadronization process to be done easily and the modeling
algorithm to be accelerated. The quark mass is taken into account in-
directly in the masses of outgoing hadrons. The type of the outgoing
hadron is selected using combinatoric and kinematic factors consistent
with conservation laws. In the present version of CHIPS all mesons with
three-digit PDG Monte Carlo codes [8] up to spin 4, and all baryons
with four-digit PDG codes up to spin 7

2
are implemented.

• Critical temperature the only non-kinematic concept of the model is
the hypothesis of the critical temperature of the quasmon. This has a
35-year history, starting with Ref. [9] and is based on the experimental
observation of regularities in the inclusive spectra of hadrons produced
in different reactions at high energies. Qualitatively, the hypothesis
of a critical temperature assumes that the quark-gluon hadronic sys-
tem (quasmon) cannot be heated above a certain temperature. Adding
more energy to the hadronic system increases only the number of con-
stituent quark-partons while the temperature remains constant. The
critical temperature Tc = 180 − 200 MeV is the principal parameter
of the model and is used to calculate the number of quark-partons in
a quasmon. In an infinite thermalized system, for example, the mean
energy of partons is 2T per particle, where T is the temperature of the
system.

23.3 Code Development

Because the CHIPS event generator was originally developed only for final
state hadronic fragmentation, the initial interaction of projectiles with tar-
gets requires further development. Hence, the first applications of CHIPS
described interactions at rest, for which the interaction cross section is not
important [2], [3], and low energy photonuclear reactions, for which the in-
teraction cross section can be calculated easily [4].

Formally, the CHIPS event generator can be used for all kinds of hadronic
interaction. This includes photonuclear and electronuclear reactions because
the photon can be considered as a superposition of vector mesons according to
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the Vector Dominance Model (VDM). As explained below, the photonuclear
and electronuclear reactions, as well as the hadron-nuclear cross sections, are
parameterized in other GEANT4 classes.

The Geant4 String Model interface to the CHIPS generator [10], [11]
also makes it possible to use the CHIPS code for nuclear fragmentation at
extremely high energies. Applications at intermediate energies (1-10 GeV)
require additional tuning of the interaction mechanism.

In the first published versions of the CHIPS event generator the class
G4Quasmon was the head of the model and all initial interactions were hidden
in its constructor. More complicated applications of the model such as anti-
proton capture at rest and the Geant4 String Model interface to CHIPS led
to the multi-quasmon version of the model. This required a change in the
structure of the CHIPS event generator classes. In the case of at-rest anti-
proton annihilation in a nucleus, for example, the first interaction occurs on
the nuclear periphery. After this initial interaction, a fraction (defined by a
special parameter of the model) of the secondary mesons independently pen-
etrate the nucleus. Each of these mesons can create a separate quasmon in
the interior of the nucleus. In this case the class G4Quasmon can no longer be
the head of the model. A new head class, G4QEnvironment, was developed
which can adopt a vector of projectile hadrons (G4QHadronVector) and cre-
ate a vector of quasmons, G4QuasmonVector. All newly created quasmons
then begin the energy dissipation process in parallel in the same nucleus.
The G4QEnvironment instance can be used both for vacuum and for nu-
clear matter. If G4QEnvironment is created for vacuum, only one instance of
G4Quasmon is allowed, leaving the model unchanged for hadronic interactions.

The convention adopted for the CHIPS model requires all its class names
to use the prefix G4Q in order to distinguish them from GEANT4 classes,
most of which use the G4 prefix. The intent is that the G4Q prefix will not
be used by other GEANT4 projects.

23.4 Nucleon-Antinucleon Annihilation at Rest

In order to generate hadron spectra from the annihilation of a proton with
an anti-proton at rest, the number of partons in the system must be found.
For a finite system of N partons with a total center-of-mass energy M , the
invariant phase space integral, ΦN , is proportional to M 2N−4. According to

the dimensional counting rule, 2N comes from
N
∏

i=1

d3pi

Ei
, and 4 comes from the

energy and momentum conservation function, δ4(P
¯
−∑p

¯
i). At a tempera-

ture T the statistical density of states is proportional to e−
M
T so that the
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probability to find a system of N quark-partons in a state with mass M is
dW ∝ M2N−4e−

M
T dM . For this kind of probability distribution the mean

value of M2 is
< M2 >= 4N(N − 1) · T 2. (23.1)

When N goes to infinity one obtains for massless particles the well-known
< M >≡

√
< M2 > = 2NT result.

After a nucleon absorbs an incident quark-parton, such as a real or virtual
photon, for example, the newly formed quasmon has a total of N quark-
partons, where N is determined by Eq. 23.1. Choosing one of these quark-
partons with energy k in the center of mass system (CMS) of N partons, the
spectrum of the remaining N − 1 quark-partons is given by

dW

kdk
∝ (MN−1)

2N−6, (23.2)

where MN−1 is the effective mass of the N − 1 quark-partons. This result
was obtained by applying the above phase-space relation (ΦN ∝ M2N−4) to
the residual N − 1 quarks. The effective mass is a function of the total mass
M ,

M2
N−1 = M2 − 2kM, (23.3)

so that the resulting equation for the quark-parton spectrum is:

dW

kdk
∝ (1 − 2k

M
)N−3. (23.4)

23.4.1 Meson Production

In this section, only the quark fusion mechanism of hadronization is consid-
ered; the quark exchange mechanism can take place only in nuclear matter
where a quasmon has neighboring nucleons. In order to decompose a quas-
mon into an outgoing hadron and a residual quasmon, one needs to calculate
the probability of two quark-partons combining to produce the effective mass
of the outgoing hadron. This requires that the spectrum of the second quark-
parton be calculated. This is done by following the same argument used to
determine Eq. 23.4. One quark-parton is chosen from the residual N − 1. It
has an energy q in the CMS of the N − 1 quark-partons. The spectrum is
obtained by substituting N − 1 for N and MN−1 for M in Eq. 23.4 and then
using Eq. 23.3 to get

dW

qdq
∝


1 − 2q

M
√

1 − 2k
M





N−4

. (23.5)
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Next, one of the residual quark-partons must be selected from this spec-
trum such that its fusion with the primary quark-parton makes a hadron
of mass µ. This selection is performed by the mass shell condition for the
outgoing hadron,

µ2 = 2
k

√

1 − 2k
M

· q · (1 − cos θ). (23.6)

Here θ is the angle between the momenta, k and q of the two quark-partons
in the CMS of N − 1 quarks. Now the kinematic quark fusion probability
can be calculated for any primary quark-parton with energy k:

P (k,M, µ) =
∫



1 − 2q

M
√

1 − 2k
M





N−4

× δ



µ2 − 2kq(1 − cos θ)
√

1 − 2k
M



 qdqd cos θ. (23.7)

Using the δ-function1 to perform the integration over q one gets:

P (k,M, µ) =
∫

(

1 − µ2

Mk(1 − cos θ)

)N−4

×




µ2
√

1 − 2k
M

2k(1 − cos θ)





2

d

(

1 − cos θ

µ2

)

, (23.8)

or

P (k,M, µ) =
M − 2k

4k

∫

(

1 − µ2

Mk(1 − cos θ)

)N−4

× d

(

1 − µ2

Mk(1 − cos θ)

)

. (23.9)

After the substitution z = 1 − 2q
MN−1

= 1 − µ2

Mk(1−cos θ)
, this becomes

P (k,M, µ) =
M − 2k

4k

∫

zN−4dz, (23.10)

where the limits of integration are 0 when cos θ = 1 − µ2

M ·k , and

zmax = 1 − µ2

2Mk
, (23.11)

1 If g(x0)=0,
∫

f(x)δ [g(x)] dx =
∫ f(x)δ[g(x)]

g′(x) dg(x) = f(x0)
g′(x0)
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when cos θ = −1. The resulting range of θ is therefore −1 < cos θ < 1− µ2

M ·k .
Integrating from 0 to z yields

M − 2k

4k · (N − 3)
· zN−3, (23.12)

and integrating from 0 to zmax yields the total kinematic probability for
hadronization of a quark-parton with energy k into a hadron with mass µ:

M − 2k

4k · (N − 3)
· zN−3

max . (23.13)

The ratio of expressions 23.12 and 23.13 can be treated as a random number,
R, uniformly distributed on the interval [0,1]. Solving for z then gives

z =
N−3
√
R · zmax. (23.14)

In addition to the kinematic selection of the two quark-partons in the
fusion process, the quark content of the quasmon and the spin of the candi-
date final hadron are used to determine the probability that a given type of
hadron is produced. Because only the relative hadron formation probabili-
ties are necessary, overall normalization factors can be dropped. Hence the
relative probability can be written as

Ph(k,M, µ) = (2sh + 1) · zN−3
max · Ch

Q. (23.15)

Here, only the factor zN−3
max is used since the other factors in equation 23.13

are constant for all candidates for the outgoing hadron. The factor 2sh + 1
counts the spin states of a candidate hadron of spin sh, and Ch

Q is the number
of ways the candidate hadron can be formed from combinations of the quarks
within the quasmon. In making these combinations, the standard quark wave
functions for pions and kaons were used. For η and η′ mesons the quark wave
functions η = ūu+d̄d

2
− s̄s√

2
and η′ = ūu+d̄d

2
+ s̄s√

2
were used. No mixing was

assumed for the ω and φ meson states, hence ω = ūu+d̄d√
2

and ϕ = s̄s.
A final model restriction is applied to the hadronization process: after a

hadron is emitted, the quark content of the residual quasmon must have a
quark content corresponding to either one or two real hadrons. When the
quantum numbers of a quasmon, determined by its quark content, cannot
be represented by the quantum numbers of a real hadron, the quasmon is
considered to be a virtual hadronic molecule such as π+π+ or K+π+, in which
case it is defined in the CHIPS model to be a Chipolino pseudo-particle.

To fuse quark-partons and create the decay of a quasmon into a hadron
and residual quasmon, one needs to generate randomly the residual quasmon
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mass m, which in fact is the mass of the residual N − 2 quarks. Using an
equation similar to 23.3) one finds that

m2 = z · (M2 − 2kM). (23.16)

Using Eqs. 23.14 and 23.11, the mass of the residual quasmon can be ex-
pressed in terms of the random number R:

m2 = (M − 2k) · (M − µ2

2k
) · N−3

√
R. (23.17)

At this point, the decay of the original quasmon into a final state hadron and
a residual quasmon of mass m has been simulated. The process may now be
repeated on the residual quasmon.

This iterative hadronization process continues as long as the residual
quasmon mass remains greater than mmin, whose value depends on the type
of quasmon. For hadron-type residual quasmons

mmin = mQC
min +mπ0 , (23.18)

where mQC
min is the minimum hadron mass for the residual quark content (QC).

For Chipolino-type residual quasmons consisting of hadrons h1 and h2,

mmin = mh1 +mh2 . (23.19)

These conditions insure that the quasmon always has enough energy to decay
into at least two final state hadrons, conserving four-momentum and charge.

If the remaining CMS energy of the residual quasmon falls below mmin,
then the hadronization process terminates with a final two-particle decay. If
the parent quasmon is a Chipolino consisting of hadrons h1 and h2, then a
binary decay of the parent quasmon into mh1 and mh2 takes place. If the
parent quasmon is not a Chipolino then a decay into mQC

min and mh takes
place. The decay into mQC

min and m0
π is always possible in this case because of

condition 23.18.
If the residual quasmon is not Chipolino-type, andm > mmin, the hadroniza-

tion loop can still be finished by the resonance production mechanism, which
is modeled following the concept of parton-hadron duality [12]. If the resid-
ual quasmon has a mass in the vicinity of a resonance with the same quark
content (ρ or K∗ for example), there is a probability for the residual quas-
mon to convert to this resonance.2 In the present version of the CHIPS event
generator the probability of convert to the resonance is given by

Pres =
m2

min

m2
. (23.20)

2When comparing quark contents, the quark content of the quasmon is reduced by
canceling quark-antiquark pairs of the same flavor.

304



Hence the resonance with the mass-squared value m2
r closest to m2 is selected,

and the binary decay of the quasmon into mh and mr takes place.
With more detailed experimental data, it will be possible to take into

account angular momentum conservation, as well as C-, P - and G-parity
conservation. In the present version of the generator, η and η ′ are suppressed
by a factor of 0.3. This factor was tuned using data from experiments on
antiproton annihilation at rest in liquid hydrogen and can be different for
other hadronic reactions. It is possible to vary it when describing other
reactions.

Another parameter, s/u, controls the suppression of heavy quark pro-
duction [13]. For proton-antiproton annihilation at rest the strange quark-
antiquark sea was found to be suppressed by the factor s/u = 0.1. In
the JETSET [13] event generator, the default value for this parameter is
s/u = 0.3. The lower value may be due to quarks and anti-quarks of colliding
hadrons initially forming a non-strange sea, with the strange sea suppressed
by the OZI rule [14]. This question is still under discussion [15] and demands
further experimental measurements. The s/u parameter may differ for other
reactions. In particular, for e+e− reactions it can be closer to 0.3.

Finally, the temperature parameter has been fixed at T = 180 MeV.
In earlier versions of the model it was found that this value successfully
reproduced spectra of outgoing hadrons in different types of medium-energy
reactions.

The above parameters were used to fit not only the spectrum of pions
Fig. 23.1,a and the multiplicity distribution for pions Fig. 23.1,b but also
branching ratios of various measured [16, 17] exclusive channels as shown in
Figs. 23.2, 23.3, 23.4. In Fig. 23.4 one can see many decay channels with
higher meson resonances. The relative contribution of events with meson
resonances produced in the final state is 30 - 40 percent, roughly in agreement
with experiment. The agreement between the model and experiment for
particular decay modes is within a factor of 2-3 except for the branching
ratios to higher resonances. In these cases it is not completely clear how
the resonance is defined in a concrete experiment. In particular, for the
a2ω channel the mass sum of final hadrons is 2100 MeV with a full width of
about 110 MeV while the total initial energy of the pp̄ annihilation reaction is
only 1876.5 MeV. This decay channel can be formally simulated by an event
generator using the tail of the Breit-Wigner distribution for the a2 resonance,
but it is difficult to imagine how the a2 resonance can be experimentally
identified 2Γ away from its mean mass value.
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Figure 23.1: (a) (left): momentum distribution of charged pions produced
in proton-antiproton annihilation at rest. The experimental data are from
[16], and the histogram was produced by the CHIPS Monte Carlo. The
experimental spectrum is normalized to the measured average charged pion
multiplicity, 3.0. (b) (right): pion multiplicity distribution. Data points were
taken from compilations of experimental data [17], and the histogram was
produced by the CHIPS Monte Carlo. The number of events with kaons in
the final state is shown in pion multiplicity bin 9, where no real 9-pion events
are generated or observed experimentally. In the model, the percentage of
annihilation events with kaons is close to the experimental value of 6% [17].
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Figure 23.2: Branching probabilities for different channels in proton-
antiproton annihilation at rest. The experimental data are from [17], and
the histogram was produced by the CHIPS Monte Carlo.
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23.4.2 Baryon Production

To model fragmentation into baryons the POPCORN idea [18] was used,
which assumes the existence of diquark-partons. The assumption of massless
diquarks is somewhat inconsistent at low energies, as is the assumption of
massless s-quarks, but it is simple and it helps to generate baryons in the
same way as mesons.

Baryons are heavy, and the baryon production in pp̄ annihilation reactions
at medium energies is very sensitive to the value of the temperature. If the
temperature is low, the baryon yield is small, and the mean multiplicity of
pions increases very noticeably with CMS energy as seen in Fig. 23.5. For
higher temperature values the baryon yield reduces the pion multiplicity at
higher energies. The existing experimental data [19], shown in Fig. 23.5, can
be considered as a kind of “thermometer” for the model. This thermometer
confirms that the critical temperature is about 200 MeV.

It can be used as a tool for the Monte Carlo simulation of a wide variety
of hadronic reactions. The CHIPS event generator can be used not only for
“phase-space background” calculations in place of the standard GENBOD
routine [6], but even for taking into account the reflection of resonances
in connected final hadron combinations. Thus it can be useful for physics
analysis too, even though its main range of application is the simulation of
the evolution of hadronic and electromagnetic showers in matter at medium
energies.

23.5 Nuclear Pion Capture at Rest and Pho-

tonuclear Reactions Below the Delta(3,3)

Resonance

When compared with the first “in vacuum” version of the model, described
in Section 23.4, modeling hadronic fragmentation in nuclear matter is more
complicated because of the much greater number of possible secondary frag-
ments. However, the hadronization process itself is simpler in a way. In
vacuum, the quark-fusion mechanism requires a quark-parton partner from
the external (as in JETSET [13]) or internal (the quasmon itself, Section
23.4) quark-antiquark sea. In nuclear matter, there is a second possibility:
quark exchange with a neighboring hadronic system, which could be a nu-
cleon or multinucleon cluster.

In nuclear matter the spectra of secondary hadrons and nuclear fragments
reflect the quark-parton energy spectrum within a quasmon. In the case of
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Figure 23.3: Branching probabilities for different channels with three-particle
final states in proton-antiproton annihilation at rest. The points are experi-
mental data [17] and the histogram is from the CHIPS Monte Carlo.
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Figure 23.4: Branching probabilities for different channels with two-particle
final states in proton-antiproton annihilation at rest. The points are experi-
ment data [17] and the histogram is from the CHIPS Monte Carlo.
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inclusive spectra that are decreasing steeply with energy, and correspond-
ingly steeply decreasing spectra of the quark-partons in a quasmon, only
those secondary hadrons which get the maximum energy from the primary
quark-parton of energy k contribute to the inclusive spectra. This extreme
situation requires the exchanged quark-parton with energy q, coming toward
the quasmon from the cluster, to move in a direction opposite to that of the
primary quark-parton. As a result the hadronization quark exchange process
becomes one-dimensional along the direction of k. If a neighboring nucleon
or nucleon cluster with bound mass µ̃ absorbs the primary quark-parton
and radiates the exchanged quark-parton in the opposite direction, then the
energy of the outgoing fragment is E = µ̃ + k − q, and the momentum is
p = k+ q. Both the energy and the momentum of the outgoing nuclear frag-
ment are known, as is the mass µ̃ of the nuclear fragment in nuclear matter,
so the momentum of the primary quark-parton can be reconstructed using
the approximate relation

k =
p+ E − B ·mN

2
. (23.21)

Here B is the baryon number of the outgoing fragment (µ̃ ≈ B · mN) and
mN is the nucleon mass. In Ref. [20] it was shown that the invariant in-
clusive spectra of pions, protons, deuterons, and tritons in proton-nucleus
reactions at 400 GeV [21] not only have the same exponential slope but al-
most coincide when they are plotted as a function of k = p+Ekin

2
. Using data

at 10 GeV [22], it was shown that the parameter k, defined by Eq. 23.21,
is also appropriate for the description of secondary antiprotons produced in
high energy nuclear reactions. This means that the extreme assumption of
one-dimensional hadronization is a good approximation.

The same approximation is also valid for the quark fusion mechanism. In
the one-dimensional case, assuming that q is the momentum of the second
quark fusing with the primary quark-parton of energy k, the total energy of
the outgoing hadron is E = q + k and the momentum is p = k − q. In the
one-dimensional case the secondary quark-parton must move in the opposite
direction with respect to the primary quark-parton, otherwise the mass of
the outgoing hadron would be zero. So, for mesons k = p+E

2
, in accordance

with Eq. 23.21. In the case of antiproton radiation, the baryon number of the
quasmon is increased by one, and the primary antiquark-parton will spend
its energy to build up the mass of the antiproton by picking up an anti-
diquark. Thus, the energy conservation law for antiproton radiation looks
like E + mN = q + k and k = p+E+mN

2
, which is again in accordance with

Eq. 23.21.
The one-dimensional quark exchange mechanism was proposed in 1984
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Q(M) CRQ(MN-1) RQ(Mmin)

PC(µ)˜ CF(µc) F(µ)

k q

Figure 23.6: Diagram of the quark exchange mechanism.

[20]. Even in its approximate form it was useful in the analysis of inclusive
spectra of hadrons and nuclear fragments in hadron-nuclear reactions at high
energies. Later the same approach was used in the analysis of nuclear frag-
mentation in electro-nuclear reactions [23]. Also in 1984 the quark-exchange
mechanism developed in the framework of the non-relativistic quark model
was found to be important for the explanation of the short distance features
of NN interactions [24]. Later it was successfully applied to K−p interactions
[25]. The idea of the quark exchange mechanism between nucleons was use-
ful even for the explanation of the EMC effect [26]. For the non-relativistic
quark model, the quark exchange technique was developed as an alternative
to the Feynman diagram technique at short distances [27].

The CHIPS event generator models quark exchange processes, taking into
account kinematic and combinatorial factors for asymptotically free quark-
partons. In the naive picture of the quark-exchange mechanism, one quark-
parton tunnels from the asymptotically free region of one hadron to the
asymptotically free region of another hadron. To conserve color, another
quark-parton from the neighboring hadron must replace the first quark-
parton in the quasmon. This makes the tunneling mutual, and the resulting
process is quark exchange.

The experimental data available for multihadron production at high en-
ergies show regularities in the secondary particle spectra that can be related
to the simple kinematic, combinatorial, and phase space rules of such quark
exchange and fusion mechanisms. The CHIPS model combines these mech-
anisms consistently.

Fig. 23.6 shows a quark exchange diagram which helps to keep track of
the kinematics of the process. It was shown in Section 23.4 that a quasmon,
Q is kinematically determined by a few asymptotically free quark-partons
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homogeneously distributed over the invariant phase space. The quasmon
mass M is related to the number of quark-partons N through

< M2 >= 4N(N − 1) · T 2, (23.22)

where T is the temperature of the system.
The spectrum of quark partons can be calculated as

dW

k∗dk∗
∝
(

1 − 2k∗

M

)N−3

, (23.23)

where k∗ is the energy of the primary quark-parton in the center-of-mass
system (CMS) of the quasmon. After the primary quark-parton is random-
ized and the neighboring cluster, or parent cluster, PC, with bound mass µ̃
is selected, the quark exchange process begins. To follow the process kine-
matically one should imagine a colored, compound system consisting of a
stationary, bound parent cluster and the primary quark. The primary quark
has energy k in the lab system,

k = k∗ · EN + pN · cos(θk)

MN
, (23.24)

where MN , EN and pN are the mass, energy, and momentum of the quasmon

in the lab frame. The mass of the compound system, CF , is µc =
√

(µ̃+ k)2,
where µ̃ and k are the corresponding four-vectors. This colored compound
system decays into a free outgoing nuclear fragment, F , with mass µ and a
recoiling quark with energy q. q is measured in the CMS of µ̃, which coincides
with the lab frame in the present version of the model because no cluster
motion is considered. At this point one should recall that a colored residual
quasmon, CRQ, with mass MN−1 remains after the radiation of k. CRQ is
finally fused with the recoil quark q to form the residual quasmon RQ. The
minimum mass of RQ should be greater than Mmin, which is determined by
the minimum mass of a hadron (or Chipolino double-hadron as defined in
Section 23.4) with the same quark content.

All quark-antiquark pairs with the same flavor should be canceled in the
minimum mass calculations. This imposes a restriction, which in the CMS
of µc, can be written as

2q · (E − p · cos θqCQ) +M2
N−1 > M2

min, (23.25)

where E is the energy and p is the momentum of the colored residual quasmon
with mass MN−1 in the CMS of µc. The restriction for cos θqCQ then becomes

cos θqCQ <
2qE −M2

min +M2
N−1

2qp
, (23.26)
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which implies

q >
M2

N−1 −M2
min

2 · (E + p)
. (23.27)

A second restriction comes from the nuclear Coulomb barrier for charged
particles. The Coulomb barrier can be calculated in the simple form:

ECB =
ZF · ZR

A
1
3
F + A

1
3
R

(MeV), (23.28)

where ZF and AF are the charge and atomic weight of the fragment, and
ZR and AR are the charge and atomic weight of the residual nucleus. The
obvious restriction is

q < k + µ̃− µ− ECB . (23.29)

In addition to 23.27 and 23.29, the quark exchange mechanism imposes
restrictions which are calculated below. The spectrum of recoiling quarks is
similar to the k∗ spectrum in the quasmon (23.23):

dW

q dq d cos θ
∝
(

1 − 2q

µ̃

)n−3

, (23.30)

where n is the number of quark-partons in the nucleon cluster. It is assumed
that n = 3AC , where AC is the atomic weight of the parent cluster. The
tunneling of quarks from one nucleon to another provides a common phase
space for all quark-partons in the cluster.

An additional equation follows from the mass shell condition for the out-
going fragment,

µ2 = µ̃2 + 2µ̃ · k − 2µ̃ · q − 2k · q · (1 − cos θkq), (23.31)

where θkq is the angle between quark-parton momenta in the lab frame. From
this equation q can be calculated as

q =
µ̃ · (k − ∆)

µ̃+ k · (1 − cos θkq)
, (23.32)

where ∆ is the covariant binding energy of the cluster ∆ = µ2−µ̃2

2µ̃
. The quark

exchange probability integral can be then written in the form:

P (k, µ̃, µ) =
∫

δ
[

µ2 − µ̃2 − 2µ̃ · k + 2µ̃ · q + 2k · q · (1 − cos θkq)
]

×
(

1 − 2q

µ̃

)n−3

qdq·d cos θkq. (23.33)
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Using the δ-function to perform the integration over q one obtains

P (k, µ̃, µ) =
∫

(

1 − 2(k − ∆)

µ̃+ k(1 − cos θkq)

)n−3

× µ̃(k − ∆)

2[µ̃+ k(1 − cos θkq)]2
dcos θkq (23.34)

or

P (k, µ̃, µ) =
∫

(

1 − 2(k − ∆)

µ̃+ k(1 − cos θkq)

)n−3

×
(

µ̃(k − ∆)

µ̃+ k(1 − cos θkq)

)2

× d

(

µ̃+ k(1 − cos θkq)

µ̃(k − ∆)

)

. (23.35)

The result of the integration is

P (k, µ̃, µ) =
µ̃

4k(n− 2)

×




(

1 − 2(k − ∆)

µ̃+ 2k

)n−2

high

−
(

1 − 2(k − ∆)

µ̃

)n−2

low



 . (23.36)

For randomization it is convenient to make z a random parameter

z = 1 − 2(k − ∆)

µ̃+ k(1 − cos θkq)
= 1 − 2q

µ̃
. (23.37)

From (23.36) one can find the high and the low limits of the randomization.
The first limit is a limit for k: k > ∆. It is similar to the restriction for
Quasmon fragmentation in vacuum: k∗ > µ2

2M
. The second limit is k = µ2

2µ̃
,

when the low limit of randomization becomes equal to zero. If k < µ2

2µ̃
, then

−1 < cos θkq < 1 and zlow = 1 − 2(k−∆)
µ̃

. If k > µ2

2µ̃
, then the range of cos θkq

is −1 < cos θkq <
µ2

kµ̃
− 1 and zlow = 0. This value of zlow should be corrected

using the Coulomb barrier restriction (23.29), and the value of zhigh should
be corrected using the minimum residual Quasmon restriction (23.27). In
the case of a Quasmon with momentum much less than k it is possible to
impose tighter restrictions than (23.27) because the direction of motion of
the CRQ is opposite to k. So cos θqCQ = − cos θkq , and from (23.32) one can
find that

cos θqCQ = 1 − µ̃ · (k − ∆ − q)

k · q . (23.38)
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So in this case the equation (23.27) can be replaced by the more stringent
one:

q >
M2

N−1 −M2
min + 2p·µ̃

k
(k − ∆)

2 · (E + p+ p·µ̃
k

)
. (23.39)

The integrated kinematical quark exchange probability (in the range from
zlow to zhigh) is

µ̃

4k(n− 2)
· zn−2, (23.40)

and the total kinematical probability of hadronization of the quark-parton
with energy k into a nuclear fragment with mass µ is

µ̃

4k(n− 2)
·
(

zn−2
high − zn−2

low

)

. (23.41)

This can be compared with the vacuum probability of the quark fusion mech-
anism from Section 23.4:

M − 2k

4k(N − 3)
zN−3
max . (23.42)

The similarity is very important, as the absolute probabilities define the
competition between vacuum and nuclear channels.

Equations (23.40) and (23.41) can be used for randomization of z:

z = zlow +
n−2
√
R · (zhigh − zlow), (23.43)

where R is a random number, uniformly distributed in the interval (0,1).
Equation (23.41) can be used to control the competition between different

nuclear fragments and hadrons in the hadronization process, but in contrast
to the case of “in vacuum” hadronization it is not enough to take into ac-
count only quark combinatorics of the Quasmon and the outgoing hadron. In
the case of hadronization in nuclear matter, different parent bound clusters
should be taken into account as well. For example, tritium can be radiated
as a result of quark exchange with a bound tritium cluster or as a result of
quark exchange with a bound 3He cluster.

To calculate the yield of fragments it is necessary to calculate the proba-
bility to find a cluster with certain proton and neutron content in a nucleus.
One could consider any particular probability as an independent parameter,
but in such a case the process of tuning the model would be difficult. We
proposed the following scenario of clusterization. A gas of quasi-free nucle-
ons is close to the phase transition to a liquid phase bound by strong quark
exchange forces. Precursors of the liquid phase are nuclear clusters, which
may be considered as “drops” of the liquid phase within the nucleus. Any
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cluster can meet another nucleon and absorb it (making it bigger), or it can
release one of the nucleons (making it smaller). The first parameter ε1 is the
percentage of quasi-free nucleons not involved in the clusterization process.
The rest of the nucleons (1 − ε1) clusterize. We assume that since on the
periphery of the nucleus the density is lower, one can consider only dibaryon
clusters, and neglect triple-baryon clusters. Still we denote the number of
nucleons clusterized in dibaryons on the periphery by the parameter ε2. In
the dense part of the nucleus, strong quark exchange forces make clusters out
of quasi-free nucleons with high probability. To characterize the distribution
of clusters the parameter ω of clusterization probability was used.

If the number of nucleons involved in clusterization is a = (1−ε1−ε2) ·A,
then the probability to find a cluster consisting of ν nucleons is defined by
the distribution

Pν ∝ Ca
ν · ων−1, (23.44)

where Ca
ν is the corresponding binomial coefficient. The coefficient of pro-

portionality can be found from the equation

a = b ·
a
∑

ν=1

ν · Ca
ν · ων−1 = b · a · (1 + ω)a−1. (23.45)

Thus, the number of clusters consisting of ν nucleons is

Pν =
Ca

ν · ων−1

(1 + ω)a−1
. (23.46)

For clusters with an even number of nucleons we used only isotopically sym-
metric configurations (ν = 2n, n protons and n neutrons) and for odd clusters
(ν = 2n+1) we used only two configurations: n neutrons with n+1 protons
and n+ 1 neutrons with n protons. This restriction, which we call “isotopic
focusing”, can be considered as an empirical rule of the CHIPS model which
helps to describe data. It is applied in the case of nuclear clusterization
(isotopically symmetric clusters) and in the case of hadronization in nuclear
matter. In the hadronization process the Quasmon is shifted from isotopic
symmetric state (e.g., by capturing a negative pion) and transfers excessive
charge to the outgoing nuclear cluster. This tendency is symmetric with
respect to the Quasmon and the parent cluster.

The temperature parameter used to calculate the number of quark-partons
in a Quasmon (see equation 23.22) was chosen to be T = 180 MeV, which is
the same as in Section 23.4.

The CHIPS model is mostly a model of fragmentation conserving energy,
momentum, and charge. But to compare it with experimental data one
needs to model also the first interaction of the projectile with the nucleus.
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For proton-antiproton annihilation this was easy, as we assumed that in the
interaction at rest, a proton and antiproton always create a Quasmon. In
the case of pion capture the pion can be captured by different clusters. We
assumed that the probability of capture is proportional to the number of
nucleons in a cluster. After the capture the Quasmon is formed, and the
CHIPS generator produces fragments consecutively and recursively, choosing
at each step the quark-parton four-momentum k, the type of parent and
outgoing fragment, and the four-momentum of the exchange quark-parton q,
to produce a final state hadron and the new Quasmon with less energy.

In the CHIPS model we consider this process as a chaotic process with
large number of degrees of freedom and do not take into account any fi-
nal state interactions of outgoing hadrons. Nevertheless, when the excita-
tion energy dissipates, and in some step the Quasmon mass drops below
mass shell, the quark-parton mechanism of hadronization fails. To model
the event exclusively, it becomes necessary to continue fragmentation at the
hadron level. Such fragmentation process is known as nuclear evaporation.
It is modeled using the non-relativistic phase space approach. In the non-
relativistic case the phase space of nucleons can be integrated as well as in
the ultra-relativistic case of quark-partons.

The general formula for the non-relativistic phase space can be found
starting with the phase space for two particles Φ̃2. It is proportional to the
CMS momentum:

Φ̃2(W2) ∝
√

W2, (23.47)

where W2 is a total kinetic energy of the two non-relativistic particles. If the
phase space integral is known for n−1 hadrons then it is possible to calculate
the phase space integral for n hadrons:

Φ̃n(Wn) =
∫

Φ̃n−1(Wn−1) · δ(Wn −Wn−1 − Ekin)

×
√

EkindEkindWn−1. (23.48)

Using (23.47) and (23.48) one can find that

Φ̃n(Wn) ∝ W
3
2
n− 5

2
n (23.49)

and the spectrum of hadrons, defined by the phase space of residual n − 1
nucleons, can be written as

dN√
EkindEkin

∝
(

1 − Ekin

Wn

)

3
2
n−4

. (23.50)

This spectrum can be randomized. The only problem is from which level
one should measure the thermal kinetic energy when most nucleons in nuclei
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are filling nuclear levels with zero temperature. To model the evaporation
process we used this unknown level as a parameter U of the evaporation
process. Comparison with experimental data gives U = 1.7 MeV. Thus, the
total kinetic energy of A nucleons is

WA = U · A+ Eex, (23.51)

where Eex is the excitation energy of the nucleus.
To be radiated, the nucleon should overcome the threshold

Uthresh = U + Ubind + ECB , (23.52)

where Ubind is a separation energy of the nucleon, and ECB is the Coulomb
barrier energy which is non-zero only for positive particles and can be calcu-
lated using formula (23.28).

Among several experimental investigations of nuclear pion capture at rest
we have selected four published results which constitute, in our opinion, a rep-
resentative data set covering a wide range of target nuclei, types of produced
hadrons and nuclei fragments, and their energy range. In the first publica-
tion [38] the spectra of charged fragments (protons, deuterons, tritium, 3He,
4He) in pion capture were measured on 17 nuclei within one experimental
setup. To verify the spectra we compared them for a carbon target with
detailed measurements of the spectra of charged fragments given in Ref. [39].
In addition, we took 6Li spectra for a carbon target from the same paper.

The neutron spectra were added from Ref. [40] and Ref. [41]. We present
data and Monte Carlo distributions as the invariant phase space function
f = dσ

pdE
depending on the variable k = p+Ekin

2
as defined in equation (23.21).

Spectra on 9Be, 12C, 28Si (27Al for secondary neutrons), 59Co (64Cu for
secondary neutrons), and 181Ta are shown in Figures 23.7 through 23.11. The
data are described well, including the total energy spent in the reaction to
yield the particular type of fragments.

The evaporation process for nucleons is described well, too. It is exponen-
tial in k, and looks especially impressive for Si/Al and Co/Cu data, where
the Coulomb barrier is low, and one can see proton evaporation as a con-
tinuation of the evaporation spectra from secondary neutrons. This way the
exponential behavior of the evaporation process can be followed over 3 orders
of magnitude. Clearly seen is the transition region at k ≈ 90 MeV (kinetic
energy 15 − 20 MeV) between the quark-level hadronization process and
the hadron-level evaporation process. For light target nuclei the evaporation
process becomes much less prominent.

The 6Li spectrum on a carbon target exhibits an interesting regularity
when plotted as a function of k: it practically coincides with the spectrum of
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Table 23.1: Clusterization parameters
9Be 12C 28Si 59Co 181Ta

ε1 0.45 0.40 0.35 0.33 0.33
ε2 0.15 0.15 0.05 0.03 0.02
ω 5.00 5.00 5.00 5.00 5.00

4He fragments, and shows exponential behavior in a wide range of k, corre-
sponding to a few orders of magnitude in the invariant cross section. To keep
the figure readable, we did not plot the 6Li spectrum generated by CHIPS.
It coincides with the 4He spectrum at k > 200 MeV, and underestimates
lithium emission at lower energies, similarly to the 3He and tritium data.

Between the region where hadron-level processes dominate and the kine-
matic limit all hadronic spectra slopes become close when plotted as a func-
tion of k. In addition to this general behavior there is an effect of strong
proton-neutron splitting. For protons and neutrons it reaches almost an
order of magnitude. To model such splitting in the CHIPS generator, the
mechanism of “isotopic focusing” was used, which locally transfers the neg-
ative charge from the pion to the first radiated nuclear fragment.

Thus, the model qualitatively describes all typical features of the pion cap-
ture process. The question is what can be extracted from the experimental
data with this tool. The clusterization parameters are listed in Table 23.1.
No formal fitting procedure has been performed. A balanced qualitative
agreement with all data was used to tune the parameters. The difference
between the ε2

ε1
ratio and the parameter ω (which is the same for all nuclei) is

an indication that there is a phase transition between the gas phase and the
liquid phase of the nucleus. The large value of the parameter ω, determining
the average size of a nuclear cluster, is critical in describing the model spectra
at large k, where the fragment spectra approach the kinematical limits.

Using the same parameters of clusterization we compared the data [42] on
γ absorption on Al and Ca nuclei (Fig. 23.12) with the CHIPS results. One
can see that the spectra of secondary protons and deuterons are qualitatively
described by the CHIPS model.

The CHIPS model covers a wide spectrum of hadronic reactions with a
large number of degrees of freedom. In the case of nuclear reactions the
CHIPS generator helps to understand phenomena such as an order of magni-
tude splitting of neutron and proton spectra, high yield of energetic nuclear
fragments, and emission of nucleons which kinematically can be produced
only if seven or more nucleons are involved in the reaction.

The CHIPS generator allows to extract collective parameters of a nucleus
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Pion capture on 9Be nucleus
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Figure 23.7: Comparison of the CHIPS model results with experimental
data on proton, neutron, and nuclear fragment production in the capture of
negative pions on 9Be. Proton [38] and neutron [40] experimental spectra are
shown in the upper left panel by open circles and open squares, respectively.
The model calculations are shown by the two corresponding solid lines. The
same arrangement is used to present 3He [38] and tritium [38] spectra in the
lower left panel. Deuterium [38] and 4He [38] spectra are shown in the right
panels of the figure by open squares and lines (CHIPS model). The average
kinetic energy carried away by each nuclear fragment is shown in the panels
by the two numbers: first is the average calculated using the experimental
data shown; second is the model result.
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Pion capture on 12C nucleus
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Figure 23.8: Same as in Figure 23.7, for pion capture on 12C. The experimen-
tal neutron spectrum is taken from [41]. In addition, the detailed data on
charged particle production, including the 6Li spectrum, taken from Ref. [39],
are superimposed on the plots as a series of dots.

323



Pion capture on 28Si nucleus

neutrons
〈Ekin〉e/m =  73.2 / 64.9 MeV

protons
〈Ekin〉e/m = 11.9 /13.3 MeV

dN
/p

dE
 (

M
eV

-2
 C

ap
tu

re
-1

) 
   

   
   

   
   

   
 

deuterons
〈Ekin〉e/m =  4.1 / 3.9 MeV

Helium-3
〈Ekin〉e/m =  0.4 / 0.4 MeV

tritium
〈Ekin〉e/m =  1.0 / 1.3 MeV

k = (p+Ekin)/2 (MeV)                                         

Helium-4
〈Ekin〉e/m =  1.0 / 1.5 MeV

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

0 200 400

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

0 200 400

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

0 200 400

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

0 200 400

Figure 23.9: Same as in Figure 23.7, for pion capture on 28Si nucleus. The
experimental neutron spectrum is taken from [41], for the reaction on 27Al.
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Pion capture on 59Co nucleus
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Figure 23.10: Same as in Figure 23.7, for pion capture on 59Co. The experi-
mental neutron spectrum is taken from [41], for the reaction on 64Cu.
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Pion capture on 181Ta nucleus
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Figure 23.11: Same as in Figure 23.7, for pion capture on 181Ta. The exper-
imental neutron spectrum is taken from [41].
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40Ca(γ,p) spectral cross section
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Figure 23.12: Comparison of CHIPS model with experimental data [42] on
proton and deuteron production at 90◦ in photonuclear reactions on 27Al and
40Ca at 59 – 65 MeV. Open circles and solid squares represent the experimen-
tal proton and deuteron spectra, respectively. Solid and dashed lines show
the results of the corresponding CHIPS model calculation. Statistical errors
in the CHIPS results are not shown and can be judged by the point-to-point
variations in the lines. The comparison is absolute, using the values of to-
tal photonuclear cross section 3.6 mb for Al and 5.4 mb for Ca, as given in
Ref. [43].
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such as clusterization. The qualitative conclusion based on the fit to the
experimental data is that the main fraction of nucleons is clusterized, at least
in heavy nuclei. The nuclear clusters can be considered as drops of a liquid
nuclear phase. The quark exchange makes the phase space of quark-partons
of each cluster common, stretching kinematic limits for particle production.

The hypothetical quark exchange process is important not only for the
nuclear clusterization, but for the nuclear hadronization process, too. The
quark exchange between the excited cluster (Quasmon) and a neighboring
nuclear cluster, even at low excitation level, operates with quark-partons at
energies comparable with the nucleon mass. As a result it easily reaches the
kinematic limits of the reaction, revealing the multinucleon nature of the
process.

Up to now the most underdeveloped part of the model has been the ini-
tial interaction between projectile and target. That is why we started with
proton-antiproton annihilation and pion capture on nuclei at rest, which do
not involve any interaction cross section. The further development of the
model will require a better understanding of the mechanism of the first in-
teraction. However, we believe that even the basic model will be useful in the
understanding the nature of multihadron fragmentation, and because of its
features, is a suitable candidate for the hadron production and hadron cas-
cade parts of the newly developed event generation and detector simulation
Monte Carlo computer codes.

23.6 Modeling of real and virtual photon in-

teractions with nuclei below pion pro-

duction threshold.

In the example of the photonuclear reaction discussed in the Appendix D,
namely the description of 90◦ proton and deuteron spectra in A(γ,X) reac-
tions at Eγ = 59−65 MeV, the assumption on the initial Quasmon excitation
mechanism was the same. The description of the 90◦ data was satisfactory,
but the generated data showed very little angular dependence, as the velocity
of Quasmons produced in the initial state was small, and the fragmentation
process was almost isotropic. Experimentally, the angular dependence of sec-
ondary protons in photo-nuclear reactions is quite strong even at low energies
(see, for example, Ref. [44]). This is a challenging experimental fact which
is difficult to explain in any model. It’s enough to say that if the angular
dependence of secondary protons in the γ40Ca interaction at 60 MeV is an-
alyzed in terms of relativistic boost, then the velocity of the source should
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reach 0.33c; hence the mass of the source should be less than pion mass. The
main subject of the present publication is to show that the quark-exchange
mechanism used in the CHIPS model can not only model the clusterization
of nucleons in nuclei and hadronization of intranuclear excitations into nu-
clear fragments, but can also model complicated mechanisms of interaction
of photons and hadrons in nuclear matter.

In Ref. Appendix D we defined a quark-exchange diagram which helps
to keep track of the kinematics of the quark-exchange process (see Fig. 1 in
Apendix D). To apply the same diagram to the first interaction of a photon
with a nucleus, it is necessary to assume that the quark-exchange process
takes place in nuclei continuously, even without any external interaction.
Nucleons with high momenta do not leave the nucleus because of the lack
of excess energy. The hypothesis of the CHIPS model is that the quark-
exchange forces between nucleons [24] continuously create clusters in normal
nuclei. Since a low-energy photon (below the pion production threshold)
cannot be absorbed by a free nucleon, other absorption mechanisms involving
more than one nucleon have to be used.

The simplest scenario is photon absorption by a quark-parton in the nu-
cleon. At low energies and in vacuum this does not work because there is
no corresponding excited baryonic state. But in nuclear matter there is a
possibility to exchange this quark with a neighboring nucleon or a nuclear
cluster. The diagram for the process is shown in Fig. 23.13. In this case
the photon is absorbed by a quark-parton from the parent cluster PC1, and
then the secondary nucleon or cluster PC2 absorbs the entire momentum of
the quark and photon. The exchange quark-parton q restores the balance
of color, producing the final-state hadron F and the residual Quasmon RQ.
The process looks like a knockout of a quasi-free nucleon or cluster out of
the nucleus. It should be emphasized that in this scenario the CHIPS event
generator produces not only “quasi-free” nucleons but “quasi-free” fragments
too. The yield of these quasi-free nucleons or fragments is concentrated in
the forward direction.

The second scenario which provides for an angular dependence is the
absorption of the photon by a colored fragment (CF2 in Fig. 23.14). In this
scenario, both the primary quark-parton with momentum k and the photon
with momentum qγ are absorbed by a parent cluster (PC2 in Fig. 23.14),
and the recoil quark-parton with momentum q cannot fully compensate the
momentum k + qγ . As a result the radiation of the secondary fragment in
the forward direction becomes more probable.

In both cases the angular dependence is defined by the first act of hadroniza-
tion. The further fragmentation of the residual Quasmon is almost isotropic.

It was shown in Section 23.4 that the energy spectrum of quark partons
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PC1(µ1)˜ CF1 RQ(Mmin)

PC2(µ2)˜ CF2 F(µ)

k q(ω,q
γ )

Figure 23.13: Diagram of photon absorption in the quark exchange mecha-
nism. PC1,2 stand for parent clusters with bound masses µ̃1,2, participating
in the quark-exchange. CF1,2 stand for the colored nuclear fragments in the
process of quark exchange. F(µ) denotes the outgoing hadron with mass µ in
the final state. RQ is the residual Quasmon which carries the rest of the exci-
tation energy and momentum. Mmin characterizes its minimum mass defined
by its quark content. Dashed lines indicate colored objects. The photon is
absorbed by a quark-parton k from the parent cluster PC1.

PC1(µ1)˜ CF1 RQ(Mmin)

PC2(µ2)˜

CF2

F(µ)

k q

(ω,q γ)

Figure 23.14: Diagram of photon absorption in the quark-exchange mecha-
nism. The notation is the same as in Fig. 23.13. The photon is absorbed by
the colored fragment CF2.
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in a Quasmon can be calculated as

dW

k∗dk∗
∝
(

1 − 2k∗

M

)N−3

, (23.53)

where k∗ is the energy of the primary quark-parton in the Center of Mass
System (CMS) of the Quasmon, M is the mass of the Quasmon, and N ,
the number of quark-partons in the Quasmon, can be calculated from the
equation

< M2 >= 4 ·N · (N − 1) · T 2. (23.54)

Here T is the temperature of the system.
In the first scenario of the γA interaction (Fig. 23.13), as both interacting

particles are massless, we assumed that the cross section for the interaction
of the photon with a particular quark-parton is proportional to the charge
of the quark-parton squared, and inversely proportional to the mass of the
photon-parton system s, which can be calculated as

s = 2ωk(1 − cos(θk)). (23.55)

Here ω is the energy of the photon, and k is the energy of the quark-parton
in the Laboratory System (LS):

k = k∗ · EN + pN · cos(θk)

MN
. (23.56)

In the case of a virtual photon, equation (23.55) can be written as

s = 2k(ω − qγ · cos(θk)), (23.57)

where qγ is the momentum of the virtual photon. In both cases equa-
tion (23.53) transforms into

dW

dk∗
∝
(

1 − 2k∗

M

)N−3

, (23.58)

and the angular distribution in cos(θk) converges to a δ-function: in the case
of a real photon cos(θk) = 1, and in the case of a virtual photon cos(θk) = ω

qγ
.

In the second scenario for the photon interaction (Fig. 23.14) we assumed
that both the photon and the primary quark-parton, randomized according
to equation (23.53), enter the parent cluster PC2, and after that the normal
procedure of quark exchange continues, in which the recoiling quark-parton
q returns to the first cluster.
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40Ca(γ,p) spectral cross section
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Figure 23.15: Comparison of the CHIPS model results (lines in the figure)
with the experimental data [42] on proton spectra at 90◦ in the photonuclear
reactions on 40Ca at 59–65 MeV (open circles), and proton spectra at 60◦

(triangles) and 150◦ (diamonds). Statistical errors in the CHIPS results are
not shown but can be judged by the point-to-point variations in the lines. The
comparison is absolute, using the value of total photonuclear cross section of
5.4 mb for Ca, as given in Ref. [43].
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12C(γ,p) reaction at Eγ = 123 MeV
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Figure 23.16: Comparison of the CHIPS model results (lines in the figure)
with the experimental data [46] on proton spectra at 57◦, 77◦, 97◦, 117◦, and
127◦ in the photonuclear reactions on 12C at 123 MeV (open circles). The
value of the total photonuclear cross section was set at 1.8 mb.
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12C(γ,p) reaction at Eγ = 151 MeV
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Figure 23.17: Same as in Fig. 23.16, for the photon energy 151 MeV.
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12C(γ*,p) spectral cross section
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Figure 23.18: Comparison of the CHIPS model results (line in the figure) with
the experimental data [47] (open circles) on the proton spectrum measured
in parallel kinematics in the 12C(e,e′p) reaction at an energy transfer equal
to 210 MeV and momentum transfer equal to 585 MeV/c. Statistical errors
in the CHIPS result are not shown but can be judged by the point-to-point
variations in the line. The relative normalization is arbitrary.
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An additional parameter in the model is the relative contribution of both
mechanisms. As a first approximation we assumed equal probability, but
in the future, when more detailed data are obtained, this parameter can be
adjusted.

We begin the comparison with the data on proton production in the
40Ca(γ,X) reaction at 90◦ at 59–65 MeV [42], and at 60◦ and 150◦ at 60 MeV
[45]. We analyzed these data together to compare the angular dependence
generated by CHIPS with experimental data. The data are presented as
a function of the invariant inclusive cross section f = dσ

ppdEp
depending on

the variable k = Tp+pp

2
, where Tp and pp are the kinetic energy and the

momentum of the secondary proton. As one can see from Fig. 23.15, the
angular dependence of the proton yield in photoproduction on 40Ca at 60
MeV is reproduced quite well by the CHIPS event generator.

The second set of measurements that we use for the benchmark compari-
son deals with the secondary proton yields in 12C(γ,X) reactions at 123 and
151 MeV [46], which is still below the pion production threshold on a free
nucleon. Inclusive spectra of protons have been measured in γ12C reactions
at 57◦, 77◦, 97◦, 117◦, and 127◦. Originally, these data were presented as a
function of the missing energy. We present the data in Figs. 23.16 and 23.17
together with CHIPS calculations in the form of the invariant inclusive cross
section dependent on k. All parameters of the model such as temperature
T and parameters of clusterization for the particular nucleus were the same
as in Appendix D, where pion capture spectra were fitted. The agreement
between the experimental data and the CHIPS model results is quite remark-
able. Both data and calculations show significant strength in the proton yield
cross section up to the kinematical limits of the reaction. The angular dis-
tribution in the model is not as prominent as in the experimental data, but
agrees well qualitatively.

Using the same parameters, we applied the CHIPS event generator to
the 12C(e,e′p) reaction measured in Ref.[47]. The proton spectra were mea-
sured in parallel kinematics in the interaction of virtual photons with energy
ω = 210 MeV and momentum qγ = 585 MeV/c. To account for the exper-
imental conditions in the CHIPS event generator, we have selected protons
generated in the forward direction with respect to the direction of the virtual
photon, with the relative angle Θqp < 6◦. The CHIPS generated distribution
and the experimental data are shown in Fig. 23.18 in the form of the invari-
ant inclusive cross section as a function of k. The CHIPS event generator
works only with ground states of nuclei so we did not expect any narrow
peaks for 1p3/2-shell knockout or for other shells. Nevertheless we found that
the CHIPS event generator fills in the so-called “1s1/2-shell knockout” region,
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which is usually artificially smeared by a Lorentzian [48]. In the regular frag-
mentation scenario the spectrum of protons below k = 300 MeV is normal;
it falls down to the kinematic limit. The additional yield at k > 300 MeV is
a reflection of the specific first act of hadronization with the quark exchange
kinematics. The slope increase with momentum is approximated well by the
model, but it is obvious that the yield close to the kinematic limit of the
2 → 2 reaction can only be described in detail if the excited states of the
residual nucleus are taken into account.

The angular dependence of the proton yield in low-energy photo-nuclear
reactions is described in the CHIPS model and event generator. The most
important assumption in the description is the hypothesis of a direct inter-
action of the photon with an asymptotically free quark in the nucleus, even
at low energies. This means that asymptotic freedom of QCD and dispersion
sum rules [37] can in some way be generalized for low energies. The knockout
of a proton from a nuclear shell or the homogeneous distributions of nuclear
evaporation cannot explain significant angular dependences at low energies.

The same mechanism appears to be capable of modeling proton yields in
such reactions as the 16C(e,e′p) reaction measured at MIT Bates [47], where
it was shown that the region of missing energy above 50 MeV reflects “two-
or-more-particle knockout” (or the “continuum” in terms of the shell model).
The CHIPS model may help to understand and model such phenomena.

23.7 Chiral invariant phase-space decay in high

energy hadron nuclear reactions

Chiral invariant phase-space decay can be used to deeccite an excited
hadronic system. This possibility can be exploited to replace the intra-
nuclear cascading after a high energy primary interaction took place. The
basic assumption in this is that the energy loss of the high energy hadron
in nuclear matter is approximately a constant per unit path length (about
0.7 GeV/fm). This energy is extracted from the soft part of the particle
spectrum of the primary interaction, and particles with formation times that
place them within the nuclear boundaries.

Several approaches of transfering this energy into quasmons were studied,
and comparisons with energy spectra of particles emitted in the backward
hemisphere were made for a range of materials. Best results were achieved
with a model that creates one quasmon per particle absorbed in the nucleus.

A first, beta level implementation is released in geant4 4.0. More infor-
mation is to be published in a refereed journal.
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23.8 Conclusion.

This Manual for the release of CHIPS in GEANT4 is made not only for
the blind im matter simulation of the hadronic processes, but for those users,
who would like to improve the interaction part of the CHIPS event generator
for their own specific reactions. For these users some advice concerning the
data presentation can be useful.

This is a good idea to use a normalized invariant function ρ(k)

ρ =
2E · d3σ

σtot · d3p
∝ dσ

σtot · pdE
,

where σtot is a total cross section of the reaction. So the simple rule is to
divide the distribution over the hadron energy (E) by the momentum and
by the reaction cross section. The argument k can be calculated for any
outgoing hadron or fragment as

k =
E + p− B ·mN

2
,

which has a meaning of the energy of the primary quark-parton. As the
spectrum of the quark partons is universal for all the secondary hadrons or
fragments, the distributions over this parameter have similar shape for all the
secondaries. They should differ only approaching the kinematic limits or in
the evaporation region. This feature is useful for any analysis of experimental
data independently of the CHIPS model.

The released version of the CHIPS event generator is not perfect yet, so
in case of an error it is necessary to distinguish between the error of the
test program (CHIPStest.cc) and the error in the body of the generator.
Usually the error printing contains the address of the routine, but sometimes
the name is abbreviated so that instead of the G4QEnvironment one can
find G4QE, instead of the G4Quasmon the G4Q is used, or instead of the
G4QNucleus only the G4QN appears. The errors in the CHIPStest.cc
can be easily analyzed. Even if sometimes energy or charge is not conserved,
just exclude this check and keep going. On the other hand, if the error is
in the body it is difficult to fix. The normal procedure is to uncomment the
flags of the debugging prints in the corresponding part of the source code
and try to find out the reason. Anyway inform authors about the error. Do
not forget to attach the CHIPStest.cc and the chipstest.in files.

The concluding remarks should be made about the parameters of the
model. The main parameter (the critical temperature Tc) should not be
varied. A big set of data confirms 180 MeV while from the mass spectrum
of hadrons it can be found more precisely as 182 MeV. The clusterization

338



parameter is 4. which is just about 4π/3. If the quark exchange starts at
the mean distance between baryons in the dense part of the nucleus, then
the radius of the clusterization sphere is twice bigger than ”the radius of the
space, occupied by the baryon”. It gives 8 for the parameter, but the space,
occupied by the baryon can not be spheric; only cubic subdivision of space is
possible so the factor π/6 appears. But this is a rough estimate, so 4 or even
5 can be tried. The surface parameter fD is slightly varying with A growing
from 0 to 0.04. For the present CHIPS version the recomended parameters
for low energies are

A T s/u eta noP fN fD Cp rM sA
Li 180. 0.1 0.3 223 .4 .00 4. 1.0 0.4
Be 180. 0.1 0.3 223 .4 .00 4. 1.0 0.4
C 180. 0.1 0.3 223 .4 .00 4. 1.0 0.4
O 180. 0.1 0.3 223 .4 .02 4. 1.0 0.4
F 180. 0.1 0.3 223 .4 .03 4. 1.0 0.4
Al 180. 0.1 0.3 223 .4 .04 4. 1.0 0.4
Ca 180. 0.1 0.3 223 .4 .04 4. 1.0 0.4
Cu 180. 0.1 0.3 223 .4 .04 4. 1.0 0.4
Ta 180. 0.1 0.3 223 .4 .04 4. 1.0 0.4
U 180. 0.1 0.3 223 .4 .04 4. 1.0 0.4

The parameter of the vacuum hadronization weight can be bigger for the
light nuclei and smaller for the heavy nuclei, but 1. is a good guess. The s/u
parameter is not yet tuned, as it demands the strange particles production
data. A guess is that if a lot of uū and dd̄ pairs come in the reaction as
in the pp̄ interaction the parameter can be 0.1, in other cases it is closer to
0.3 as in other event generators. But the best idea is just do not touch any
parameters for the first experience with the CHIPS event generator. Just
change the incident momentum, the PDG code of the projectile, and the
CHIPS stile PDG code of the target.

23.9 Status of this document

01.01.01 created by M.V. Kossov and H.P. Wellisch
26.04.03 first four sections re-written by D.H. Wright
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[13] T. Sjöstrand, Comp. Phys. Comm. 92 (1994) 74

[14] S. Ocubo, Phys. Lett. 5 (1963) 165; G. Zweig, CERN Preprint 8419/TH-
412 (1964); I. Iizuka, Progr. Theor. Phys. Suppl. 37 (1966) 21

[15] V.E. Markushin, M.P. Locher, Eur. Phys. J. A 1 (1998) 91

340



[16] J. Sedlak and V. Simak, Sov. J. Part. Nucl. 19 (1988) 191

[17] C. Amsler, Rev.Mod.Phys. 70 (1998) 1293; C. Amsler and F. Myher,
Annu. Rev. Nucl. Part. Sci. 41 (1991) 219

[18] B. Andersson, G. Gustafson, T. Sjöstrand, Nucl. Phys. B 197(1982) 45;
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Chapter 24

Bertini Intranuclear Cascade
Model in Geant4

24.1 Introduction

We present here a intranuclear cascade model implemented in Geant4 5.0.
The cascade model is based on re-engineering of INUCL code. Models in-
cluded are Bertini intra-nuclear cascade model with exitons, pre-equilibrium
model, nucleus explosion model, fission model, and evaporation model. In-
termediate energy nuclear reactions from 100 MeV to 5 GeV energy are
treated for proton, neutron, pions, photon and nuclear isotopes. We rep-
resent overview of the models, review results achived from simulations and
make comparisons with experimental data.

The intranuclear cascade model (INC) was was first proposed by Serber in
1947 [19]. His noticed that, in particle nuclear collisions the deBroglie wave-
lenght of the incident particle is comparaple (or shorter) than the average
intra-nucleon distance. Hence, the justification for describing the interactions
in terms of particle-particle collisions.

The INC has been succesfully used in the Monte Carlo simulations at
intermediate energy region since Goldberger made first calculations by hand
in 1947 [9]. First computer simulations were done by Metropolis et al. in
1958 [16]. Standard methods in INC implementations were formed when
Bertini published his results in 1968 [3]. Important addition to INC was
exiton model itroduced by Griffin in 1966 [10].

Our presentations describes implementation of Bertini INC model in
Geant4 hadronic physics framework [8]. Geant4 is a Monte Carlo parti-
cle detector simulation toolkit, having applications also in medical and space
science. Geant4 provides a flexible framework for the modular implemen-
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tation of various kinds of hadronic interactions. Geant4 exploits advanced
Software Engineering techniques and Object Oriented technology to achieve
the transparency of the physics implementation and to this way provide the
possibility of validating the physics results.

The hadronic models framework is based on concepts of physics processes
and models. While the process is a general concept, models are allowed to
have restrictions in process type, material, element and energy range. Several
models can be utilized by one model class; for instance, a process class for
inelastic collisions can use distinct models for different energies.

Process classes utilize model classes to determine the secondaries pro-
duced in the interaction and to calculate the momenta of the particles. Here
we preset a collection of such models providing medium-energy intranuclear
cascade treatment.

24.2 The Geant4 cascade model

In inelastic particle nucleus collision a fast phase (10−23 − 10−22s) of INC
results to highly exited nucleus, and is followed possible by fission and pre-
equilibrium emission. A slower 10−18 − 10−16s compound nucleus phase fol-
lows with evaportaion. A Boltzman equation must be solved to treat physical
proces of collision in detail.

The intranuclear cascade (INC) model developed by Bertini [3, 4] solves
the Boltzman equation on the average. The model had been implemented
in several codes such as HETC [1]. Our model is based on re-engineering of
INUCL code [20]. Models included are Bertini intranuclear cascade model
with exitons, pre-equilibrium model, simple nucleus explosion model, fission
model, and evaporation model.

Nuclear model consist of a three-region approximation to the continuously
changing density distribution of nuclear matter within nuclei. Reletivistic
kinematics is applied throughout the cascade. Cascade is stopped when all
the particles, which can escape the nucleus, do it. Then conformity with the
energy - conservation law is checked.

24.2.1 Model limits

Particles treated are proton, neutron, pions, photon and nuclear isotopes.
Bullet particle can be proton, neutron or pion. Range of targets allowed is
arbitrary.

The necessary condition of validity of the INC model is λB/v << τc <<
∆t, where δB is the de Broglie wavelenth of the nucleons, v is the average
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relative N-N velocity and ∆t is the time interval between collisions. So the
physical foundation comes approximate at energies less than 200MeV , and
needs to be supported with pre-quilibrium model. also at energies higher
than ≈ 10 GeV) the INC picture breaks down. Model has been tested against
experimental with bullet kinetic energy between 100 MeV and 5 GeV.

24.2.2 Intranuclear cascade model

Basic steps of the INC model are summarised below:

1. The spatial point, where the incident particle enters, is selected uni-
formly over the projected area of the nucleus.

2. Total particle-particle crossections and region-depenent nucleon densi-
ties are used to select a path lenght for the projectile particle.

3. The momentum of the struck nucleon, the type of reaction and four
momentum of the reaction products are determined.

4. Exiton model is updated as the cascade proceeds.

5. If Pauli exclusion principle allows and Eparticle > Ecutoff = 2 MeV, step
(2) is performed to transport the products.

After INC, the residual excitation energy of the resulting nucleus is used
as input for non-equilibrium model.

24.2.3 Nuclei model

Some of the basic features of the nuclei are:

• The nucleons are assumed to to have a Fermi gas momentum dis-
tribution. Fermi energy calculated in a local density approximation
i.e. Fermi energy is made radius dependent with Fermi momentum

pF (r) = (3π2ρ(r)
2

)
1
3 .

• Nucleons binding energies (BE) are calculated using mass formula.
A parametrization of the nuclear binding energy uses combination of
Kummel mass formula, and experimental data. Also, asymptotic high
temperature mass formula is used if it’s impossible to use experimental
data.
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Initialization

The initialization phase fixes of nucleus radius and momentum according to
Fermi gas model.

If target is Hydrogen (A = 1) direct particle-particle collision is per-
formed, and no nuclear modelling is used.

If 1 < A < 4, a nuclei model consisting one layer with radius of 8.0 fm is
created.

For 4 < A < 11, nuclei model is composed of three consentric spheres
i = {1, 2, 3} with radius

ri(αi) =

√

C2
1(1 − 1

A
) + 6.4

√

−log(αi)

Here αi = {0.01, 0.3, 0.7} and C1 = 3.3836A1/3

If A > 11, nuclei model with three consentric spheres is also used. The
shere radius is now defined as:

ri(αi) = C2 log(
1 + e

−C1
C2

αi

− 1) + C1

where C2 = 1.7234.
The potential energy V for nucleon N is

VN =
p2

F

2mN
+BEN (A,Z)

where pf is a Fermi momentum and BE a binding energy.
Impulse distribution in each region follows Fermi distribution with zero

temperature.

f(p) = cp2 (24.1)

where
∫ pF

0
f(p)dp = npornn (24.2)

where np and nn are the number of protons or neutrons in region. Pf is
impulse corresponding the Fermi energy

Ef =
p2

F

2mN
=

h̄2

2mN
(
3π2

v
)

2
3 (24.3)

which depend on the dencity n/v of particles. and which is different for
each particle and each region.
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Pauli exclusion principle

Pauli exclusion principle forbids interactions where the products would be
in occupied states. Following an assumption of completely degenerate Fermi
gas, the levels are filled from the lowest level. The minimum energy allowed
for the product of collision correspond to the lowest unfilled level of system,
which is the Fermi energy in the region. So in practice, Pauli exclusion
prinsiple is taken into account by accepting only secondary nucleons which
have EN > Ef .

Cross sections and kinematics

Path lengths of nucleons in the nucleus are sampled according to the lo-
cal density and to free N-N cross sections. Angles after collisions are sam-
pled from experimental differential cross sections. Tabulated total reaction
cross-sections are calculated by Letaw’s formulation [14, 15, 17]. For N-N
cross-sections parametrizations based on the experimental energy and isospin
dependent data. The parameterization described in [2] is used.

For pion the INC crossections are privded to treat elestic collisions and
following inelstics channels π−n → π0n, π0p → π+n and π0n → π−p. Multiple
particle production is also implemented.

Pion absorption cannels are π+nn → pn, π+pn → pp, π0nn → X , π0pn
→ pn, π0pp → pp, π−nn → X , π−pn → nn , and π−pp → pn.

24.2.4 Pre-equilibrium model

Geant4 cascade model implements exiton model proposed by Griffin [10,
11]. The his model nucleon states are characterized by the number of exited
particles and holes (the exitons). INC collisions give rise to a sequence of
states characterized by increasing exciton number, eventually leading to a
equilibrated nucleus. For practical implementation of exiton model we use
parameters from [18], (level densities) and [13] (matrix elements).

In exiton model the posible selection rules for a particle-hole configuara-
tions in the cource of the cascade are: ∆p = 0,±1 ∆h = 0,±1 ∆n = 0,±2,
where p is the number of particle, h is number of holes and n = p + h is the
number of exitons.

Cascade pre-equilibrium model uses target exitation data, exiton configu-
ration for neutron and proton to produce non-equilibrium evaporation. The
angular distribution is isotropic in the frame of rest of the exiton system.

Parametrisations of the level density, is tabulated both with A and Z
dependence and with high temperature behaviour (the nuclei binding energy
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using smooth liquid high energy formula).

24.2.5 Break-up models

Fermi break-up is allowed only in some extreme cases, i.e. for light nuclei
(A < 12 and 3(A− Z) < Z < 6 ) and Eexitation > 3Ebinding Simple explosion
model decays the nuleus into neutrons and protons and decreases exotic
evaporation processes.

Fission model is phenomenological model using potential minimization.
Binding energy paramerization is used and some features of the fission sta-
tistical model are incorporated [7].

24.2.6 Evaporation model

Statistical theory for particle emission of the exited nucleus remaining af-
ter the INC was originally developed by Weisskopf [21]. This model as-
sumes complete energy equilibration before the particle emission, and re-
equilibration of excitation energies between successive evaporations. As a
result the angular distribution of emitted particles is isotropic.

Geant4 evaporation model for cascade implementation adapts often
used computational method developed by Dostrowski [5, 6]. The emission
of particles is computed until the exitation energy fall below some spesific
cutoff. If light nucleus is higly exited Fermi break-up model is executed.
Also, fission is performed if channel is open. The main chain of evaporation
is followed until Eexitation falls below Ecutoff = 0.1 MeV. The evaporation
model ends with emission chain which is followed until Eexitation < Eγ

cutoff =
10−15 MeV.

24.3 Implementation

Cascade model is implemented in Geant4 hadronic physics framework.
Source code directory is geant4/source/processes/hadronic/models/cascade/-
cascade. All the models are used collectively through interface method Apply-
Yourself defined in a class G4CascadeInteface. Geant4 track (G4Track) and
a nucleus (G4Nucleus) are given as a parameters.

We have tested the cascade models for its first release in Geant4 5.0,
for energies 100 MeV – 5 GeV. Detailed comparisons with experimental data
has been made in energy range 160 – 800 MeV.
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24.4 Status of this document

01.12.02 created by Aatos Heikkinen, Nikita Stepanov and Hans-Peter Wellisch
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Chapter 25

The Geant4 Binary Cascade

25.1 Modeling overview

The Geant4 Binary Cascade is an intranuclear cascade propagating primary
and secondary particles in a nucleus. Interactions are between a primary or
secondary particle and an individual nucleon of the nucleus, leading to the
name Binary Cascade. Cross section data are used to select collisions. Where
available, experimental cross sections are used by the simulation. Propagat-
ing of particles is the nuclear field is done by numerically solving the equa-
tion of motion. The cascade terminates when the average and maximum
energy of secondaries is below threshold. The remaining fragment is treated
by precompound and de-excitation models documented in the corresponding
chapters.

25.1.1 The transport algorithm

For the primary particle an impact parameter is chosen random in a disk
outside the nucleus perpendicular to a vector passing through the center of
the nucleus coordinate system an being parallel to the momentum direction.
Using a straight line trajectory, the distance of closest approach dmin

i to each
target nucleon i and the corresponding time-of-flight tdi is calculated. In
this calculation the momentum of the target nucleons is ignored, i.e. the
target nucleons do not move. The interaction cross section σi with target
nucleons is calculated using total inclusive cross-sections described below.
For calculation of the cross-section the momenta of the nucleons are taken
into account. The primary particle may interact with those target nucleons
where the distance of closest approach dmin

i is smaller than dmin
i <

√

σi

π
.

These candidate interactions are called collisions, and these collisions are
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stored ordered by time-of-flight tdi . In the case no collision is found, a new
impact parameter is chosen.

The primary particle is tracked the time-step given by the time to the
first collision. As long a particle is outside the nucleus, that is a radius of the
outermost nucleon plus 3fm, particles travel along straight line trajectories.
Particles entering the nucleus have their energy corrected for Coulomb effects.
Inside the nucleus particles are propagated in the scalar nuclear field. The
equation of motion in the field is solved for a given time-step using a Runge-
Kutta integration method.

At the end of the step, the primary and the nucleon interact suing the
scattering term. The resulting secondaries are checked for the Fermi exclusion
principle. If any of the two particles has a momentum below Fermi momen-
tum, the interaction is suppressed, and the original primary is tracked to
the next collision. In case interaction is allowed, the secondaries are treated
like the primary, that is, all possible collisions are calculated like above, with
the addition that these new primary particles may be short-lived and may
decay. A decay is treated like others collisions, the collision time being the
time until the decay of the particle. All secondaries are tracked until they
leave the nucleus, or the until the cascade stops.

25.1.2 The description of the target nucleus and fermi
motion

The nucleus is constructed from A nucleons and Z protons with nucleon
coordinates ri and momenta pi, with i = 1, 2, ..., A. We use a common
initialization Monte Carlo procedure, which is realized in the most of the
high energy nuclear interaction models:

• Nucleon radii ri are selected randomly in the nucleus rest frame accord-
ing to nucleon density ρ(ri). For heavy nuclei with A > 16 [2] nucleon
density is

ρ(ri) =
ρ0

1 + exp [(ri − R)/a]
(25.1)

where

ρ0 ≈
3

4πR3
(1 +

a2π2

R2
)−1. (25.2)

Here R = r0A
1/3 fm and r0 = 1.16(1 − 1.16A−2/3) fm and a ≈ 0.545

fm. For light nuclei with A < 17 nucleon density is given by a harmonic
oscillator shell model [3], e. g.

ρ(ri) = (πR2)−3/2 exp (−r2
i /R

2), (25.3)
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where R2 = 2/3 < r2 >= 0.8133A2/3 fm2. To take into account
nucleon repulsive core it is assumed that internucleon distance d > 0.8
fm;

• The nucleus is assumed to be isotropic, i.e. we place each nucleon using
a random direction and the previously determined radius ri.

• The initial momenta of the nucleons pi are randomly choosen between
0 and pmax

F (r), where the maximal momenta of nucleons (in the local
Thomas-Fermi approximation [4]) depends from the proton or neutron
density ρ according to

pmax
F (r) = h̄c(3π2ρ(r))1/3 (25.4)

• To obtain momentum components, it is assumed that nucleons are
distributed isotropic in momentum space; i.e. the momentum direction
is chosen at random.

• The nucleus must be centered in momentum space around 0, i. e.
the nucleus must be at rest, i. e.

∑

i pi = 0; To achieve this, we
choose one nucleon to compensate the sum the remaining nucleon mo-
menta prest =

∑i=A−1
i=1 . If this sum is larger than maximum momentum

pmax
F (r), we change the direction of the momentum of a few nucleons.

If this does not lead to a possible momentum value, than we repeat the
procedure with a different nucleon having a larger maximum momen-
tum pmax

F (r). In the rare case this fails as well, we choose new momenta
for all nucleons.

This procedure gives special for hydrogen 1H, where the proton has
momentum p = 0, and for deuterium 2H, where the momenta of proton
and neutron are equal, and in opposite direction.

• We compute energy per nucleon e = E/A = mN + B(A,Z)/A, where
mN is nucleon mass and the nucleus binding energy B(A,Z) is given
by the tabulation of [5]: and find the effective mass of each nucleon

meff
i =

√

(E/A)2 − p2′
i .

25.1.3 Optical and phenomenological potentials

The effect of collective nuclear elastic interaction upon primary and sec-
ondary particles is approximated by a nuclear potential.
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For projectile protons and neutrons this scalar potential is given by the
local Fermi momentum pF (r)

V (r) =
p2

F (r)

2m
(25.5)

where m is the mass of the neutron mn or the mass of proton mp.
For pions the potential is given by the lowest order optical potential [6]

V (r) =
−2π(h̄c)2A

mπ
(1 +

mπ

M
)b0ρ(r) (25.6)

where A is the nuclear mass number, mπ, M are the pion and nucleon mass,
mπ is the reduced pion mass mπ = (mπmN)/(mπ +mN ), with mN is the mass
of the nucleus, and ρ(r) is the nucleon density distribution. The parameter
b0 is the effective s−wave scattering length and is obtained from analysis to
pion atomic data to be about −0.042fm.

25.1.4 Pauli blocking simulation

The cross sections used in this model are cross sections for free particles.
In the nucleus these cross sections are reduced to effective cross sections by
Pauli-blocking due to Fermi statistics.

For nucleons created by a collision, ie. an inelastic scattering or from
decay, we check that all secondary nucleons occupy a state allowed by Fermi
statistics. We assume that the nucleus in its ground state and all states
below Fermi energy are occupied. All secondary nucleons therefore must
have a momentum pi above local Fermi momentum pF (r), i.e.

pi > pmax
F (r). (25.7)

If any of the nucleons of the collision has a momentum below the local
Fermi momentum, then the collision is Pauli blocked. The reaction products
are discarded, and the original particles continue the cascade.

25.1.5 The scattering term

The basis of the description of the reactive part of the scattering amplitude
are two particle binary collisions (hence binary cascade), resonance produc-
tion, and decay. Based on the cross-section described later in this paper,
collisions will occur when the transverse distance dt of any projectile target
pair becomes smaller than the black disk radium corresponding to the total
cross-section σt

σt

π
> d2

t
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In case of a collision, all particles will be propagated to the estimated time
of the collision, i.e. the time of closest approach, and the collision final state
is produced.

25.1.6 Total inclusive cross-sections

Experimental data are used in the calculation of the total, inelastic and
elastic cross-section wherever available.

hadron-nucleon scattering

For the case of proton-proton(pp) and proton-neutron(pn) collisions, as well
as π= and π− nucleon collisions, experimental data are readily available as
collected by the Particle Data Group (PDG) for both elastic and inelastic
collisions. We use a tabulation based on a sub-set of these data for

√
S

below 3 GeV. For higher energies, parametrizations from the CERN-HERA
collection are included.

25.1.7 Channel cross-sections

A large fraction of the cross-section in individual channels involving meson
nucleon scattering can be modeled as resonance excitation in the s-channel.
This kind of interactions show a resonance structure in the energy depen-
dency of the cross-section, and can be modeled using the Breit-Wigner func-
tion

σres(
√
s) =

∑

FS

2J + 1

(2S1 + 1)(2S2 + 1)

π

k2

ΓISΓFS

(
√
s−MR)2 + Γ/4

,

Where S1 and S2 are the spins of the two fusing particles, J is the spin of

the resonance,
√

(s) the energy in the center of mass system, k the momentum

of the fusing particles in the center of mass system, ΓIS and Γ)FS the partial
width of the resonance for the initial and final state respectively. MR is the
nominal mass of the resonance.

The initial states included in the model are pion and kaon nucleon scatter-
ing. The product resonances taken into account are the Delta resonances with
masses 1232, 1600, 1620, 1700, 1900, 1905, 1910, 1920, 1930, and 1950 MeV,
the excited nucleons with masses of 1440, 1520, 1535, 1650, 1675, 1680, 1700,
1710, 1720, 1900, 1990, 2090, 2190, 2220, and 2250 MeV, the Lambda, and
its excited states at 1520, 1600, 1670, 1690, 1800, 1810, 1820, 1830, 1890,
2100, and 2110 MeV, and the Sigma and its excited states at 1660, 1670,
1750, 1775, 1915, 1940, and 2030 MeV.
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25.1.8 Mass dependent resonance width and partial

width

During the cascading, the resonances produced are assigned reall masses,
with values distributed according to the production cross-section described
above. The concrete (rather than nominal) masses of these resonances may
be small compared to the PDG value, and this implies that some channels
may not be open for decay. In general it means, that the partial and total
width will depend on the concrete mass of the resonance. We are using the
UrQMD[13][14] approach for calculating these actual width,

ΓR→12(M) = (1 + r)
ΓR→12(MR)

p(MR)(2l+1)

MR

M

p(M)(2l+1)

1 + r(p(M)/p(MR))2l
. (25.8)

Here MR is the nominal mass of the resonance, M the actual mass, p is
the momentum in the center of mass system of the particles, L the angular
momentum of the final state, and r=0.2.

25.1.9 Resonance production cross-section in the t-
channel

In resonance production in the t-channel, single and double resonance exci-
tation in nucleon-nucleon collisions are taken into account. The resonance
production cross-sections are as much as possible based on parametrizations
of experimental data[15] for proton proton scattering. The basic formula
used is motivated from the form of the exclusive production cross-section of
the ∆1232 in proton proton collisions:

σAB = 2αABβAB

√
s−√

s0

(
√
s−√

s0)2 + β2
AB

(√
s0 + βAB√

s

)γAB

The parameters of the description for the various channels are given in
table25.1. For all other channels, the parametrizations were derived from
these by adjusting the threshold behavior.

The reminder of the cross-section are derived from these, applying de-
tailed balance. Iso-spin invariance is assumed. The formalism used to apply
detailed balance is

σ(cd→ ab) =
∑

J,M

〈jcmcjdmd ‖ JM〉2

〈jamajbmb ‖ JM〉2
(2Sa + 1)(2Sb + 1)

(2Sc + 1)(2Sd + 1)

〈p2
ab〉

〈p2
cd〉
σ(ab→ cd)

(25.9)
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Reaction α β γ

pp → p∆1232 25 mbarn 0.4 GeV 3
pp → ∆1232∆1232 1.5 mbarn 1 GeV 1

pp → pp∗ 0.55 mbarn 1 GeV 1
pp → p∆∗ 0.4 mbarn 1 GeV 1

pp → ∆1232∆
∗ 0.35 mbarn 1 GeV 1

pp → ∆1232N
∗ 0.55 mbarn 1 GeV 1

Table 25.1: Values of the parameters of the cross-section formula for the
individual channels.

25.1.10 Nucleon Nucleon elastic collisions

Angular distributions for elastic scattering of nucleons are taken as closely as
possible from experimental data, i.e. from the result of phase-shift analysis.
They are derived from differential cross sections obtained from the SAID
database, R. Arndt, 1998.

Final states are derived by sampling from tables of the cumulative distri-
bution function of the centre-of-mass scattering angle, tabulated for a discrete
set of lab kinetic energies from 10 MeV to 1200 MeV. The CDF’s are tabu-
lated at 1 degree intervals and sampling is done using bi-linear interpolation
in energy and CDF values. Coulomb effects are taken into consideration for
pp scattering.

25.1.11 Generation of transverse momentum

Angular distributions for final states other than nucleon elastic scattering
are calculated analytically, derived from the collision term of the in-medium
relativistic Boltzmann-Uehling-Uhlenbeck equation, absed on the nucleon nu-
cleon elastic scattering cross-sections:

σNN→NN(s, t) =
1

(2π)2s
(D(s, t) + E(s, t) + (invertedt, u))

Here s, t, u are the Mandelstamm variables, D(s, t) is the direct term,
and E(s, t) is the exchange term, with

D(s, t) =
(gσ

NN )4(t−4m∗2)2

2(t−m2
σ)2

+
(gω

NN )4(2s2+2st+t2−8m∗2s+8m∗4)

(t−m2
ω)2

+

24(gπ
NN )4m∗2t2

(t−m2
π)2

− 4(gσ
NN gω

NN )2(2s+t−4m∗2)m∗2

(t−m2
σ)(t−m2

ω)
,
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and

E(s, t) =
(gσ

NN )4(t(t+s)+4m∗2(s−t))
8(t−m2

σ)(u−m2
σ)

+
(gω

NN )4(s−2m∗2)(s−6m∗2))

2(t−m2
ω)(u−m2

ω)
−

6(gπ
NN )4(4m∗2−s−t)m∗4t

(t−m2
π)(u=mpi2)

+
3(gσ

NN gπ
NN )2m∗2(4m∗2−s−t)(4m∗2−t)

(t−m2
σ)(u−m2

π)
+

3(gσ
NN gπ

NN )2t(t+s)m∗2

2(t−m2
π)(u−m2

σ)
+

(gσ
NN gω

NN )2t2−4m∗2s−10m∗2t+24m∗4

4(t−m2
σ)(u−m2

ω)
+

(gσ
NN gω

NN )2(t+s)2−2m∗2s+2m∗2t

4(t−m2
ω)(u−m2

σ)
+

3(gω
NN gπ

NN )2(t+s−4m∗2)(t+s−2m∗2)

(t−m2
ω)(u−m2

π)
+

3(gω
NN gπ

NN )2m∗2(t2−2m∗2t)

(t−m2
π)(u−m2

ω)
. (25.10)

(25.11)

Here, in this first release, the in-medium mass was set to the free mass, and
the nucleon nucleon coupling constants used were 1.434 for the π, 7.54 for the
ω, and 6.9 for the σ. This formula was used for elementary hadron-nucleon
differential cross-sections by scaling teh center of mass energy squared ac-
cordingly.

Finite size effects were taken into account at the meson nucleon vertex,
using a phenomenological form factor (cut-off) at each vertex.

25.1.12 Decay

In the simulation of decay of strong resonances, we use the nominal decay
branching ratios from the particle data book. The stochastic mass of a
individual resonance created is sampled at creation time from the Breit-
Wigner form, under the mass constraints posed by center of mass energy of
the scattering, and the mass in the lightest decay channel. The decay width
from the particle data book are then adjusted according to equation 25.8, to
take the stochastic mass value into account.

All decay channels with nominal branching ratios greater than 1% are
simulated.

25.1.13 The escaping particle and coherent effects

When a nucleon other than the incident particle leaves the nucleus, the
ground state of the nucleus changes. The energy of the outgoing particle
cannot be such that the total mass of the new nucleus would be below its
ground state mass. To avoid this, we reduce the energy of an outgoing nu-
cleons by the mass-difference of old and new nucleus.

Furthermore, the momentum of the final exited nucleus derived from
energy momentum balance may be such that its mass is below its ground
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state mass. In this case, we arbitrarily scale the momenta of all outgoing
particles by a factor derived from the mass of the nucleus and the mass of
the system of outgoing particles.

25.1.14 Light ion reactions

In simulating light ion reactions, the initial state of the cascade is prepared
in the form of two nuclei, as described in the above section on the nuclear
model.

The lighter of the collision partners is selected to be the projectile. The
nucleons in the projectile are then entered, with position and momenta, into
the initial state of the cascade. Note that before the first scattering of an
individual nucleon, a projectile nucleon’s Fermi-momentum is not taken into
account in the tracking inside the target nucleus. The nucleon distribution
inside the projectile nucleus is taken to be a representative distribution of
its nucleons in configuration space, rather than an initial state in the sense
of QMD. The Fermi momentum and the local field are taken into account
in the calculation of the collision probabilities and final states of the binary
collisions.

25.1.15 Transition to pre-compound modeling

Eventually, the cascade assumptions will break down at low energies, and the
state of affairs has to be treated by means of evaporation and pre-equilibrium
decay. This transition is not at present studied in depth, and an interesting
approach which uses the tracking time, as in the Liege cascade code, remains
to be studied in our context.

For this first release, the following algorithm is used to determine when
cascading is stopped, and pre-equilibrium decay is called: As long as there
are still particles above the kinetic energy threshold (75 MeV), cascading will
continue. Otherwise, when the mean kinetic energy of the participants has
dropped below a second threshold (15 MeV), the cascading is stopped.

The residual participants, and the nucleus in its current state are then
used to define the initial state, i.e. excitation energy, number of excitons,
number of holes, and momentum of the exciton system, for pre-equilibrium
decay.

In the case of light ion reactions, the projectile excitation is determined
from the binary collision participants (P ) using the statistical approach to-
wards excitation energy calculation in an adiabatic abrasion process, as de-
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scribed in [12]:
Eex =

∑

P

(EP
fermi − EP )

Given this excitation energy, the projectile fragment is then treated by
the evaporation models described previously.

25.1.16 Calculation of excitation energies and residu-

als

At the end of the cascade, we form a fragment for further treatment in
precompound and nuclear de-excitation models ([16]).

These models need information about the nuclear fragment created by
the cascade. The fragment is characterized by the number of nucleons in the
fragment, the charge of the fragment, the number of holes, the number of all
excitons, and the number of charged excitons, and the four momentum of
the fragment.

The number of holes is given by the difference of the number of nucleons
in the original nucleus and the number of non-excited nucleons left in the
fragment. An exciton is a nucleon captured in the fragment at the end of the
cascade.

The momentum of the fragment calculated by the difference between the
momentum of the primary and the outgoing secondary particles must be
split in two components. The first is the momentum acquired by coherent
elastic effects, and the second is the momentum of the excitons in the nu-
cleus rest frame. Only the later part is passed to the de-excitation models.
Secondaries arising from de-excitation models, including the final nucleus,
are transformed back the frame of the moving fragment.

25.2 Comparison with experiments

We add here a set of preliminary results produced with this code, focusing on
neutron and pion production. Given that we are still in the process of writing
up the paper, we apologize for the at release time still less then publication
quality plots.
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Figure 25.1: Double differential cross-section for neutrons produced in pro-
ton scattering off Aluminum. Proton incident energy was 113 MeV.
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Figure 25.2: Double differential cross-section for neutrons produced in pro-
ton scattering off Aluminum. Proton incident energy was 256 MeV. The
points are data, the histogram is Binary Cascade prediction.
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Figure 25.3: Double differential cross-section for neutrons produced in pro-
ton scattering off Aluminum. Proton incident energy was 597 MeV. The
points are data, the histogram is Binary Cascade prediction.
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Figure 25.4: Double differential cross-section for neutrons produced in pro-
ton scattering off Aluminum. Proton incident energy was 800 MeV. The
points are data, the histogram is Binary Cascade prediction.
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Figure 25.5: Double differential cross-section for neutrons produced in pro-
ton scattering off Iron. Proton incident energy was 113 MeV. The points are
data, the histogram is Binary Cascade prediction.
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Figure 25.6: Double differential cross-section for neutrons produced in pro-
ton scattering off Iron. Proton incident energy was 256 MeV. The points are
data, the histogram is Binary Cascade prediction.
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Figure 25.7: Double differential cross-section for neutrons produced in pro-
ton scattering off Iron. Proton incident energy was 597 MeV. The points are
data, the histogram is Binary Cascade prediction.
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Figure 25.8: Double differential cross-section for neutrons produced in pro-
ton scattering off Iron. Proton incident energy was 800 MeV. The points are
data, the histogram is Binary Cascade prediction.

368



Ekin (MeV)

cr
os

s 
se

ct
io

n 
(m

b/
sr

.M
eV

)

113 MeV  p + Pb - 7.5 deg

- 30 deg

- 60 deg

- 150 deg

10
-2

10
-1

1

10

10 2

10 3

1 10 10
2

Figure 25.9: Double differential cross-section for neutrons produced in pro-
ton scattering off Lead. Proton incident energy was 113 MeV. The points
are data, the histogram is Binary Cascade prediction.
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Figure 25.10: Double differential cross-section for neutrons produced in
proton scattering off Lead. Proton incident energy was 256 MeV. The points
are data, the histogram is Binary Cascade prediction.
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Figure 25.11: Double differential cross-section for neutrons produced in
proton scattering off Lead. Proton incident energy was 597 MeV. The points
are data, the histogram is Binary Cascade prediction.
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Figure 25.12: Double differential cross-section for neutrons produced in
proton scattering off Lead. Proton incident energy was 800 MeV. The points
are data, the histogram is Binary Cascade prediction.
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Figure 25.13: Double differential cross-section for pions produced at 45◦ in
proton scattering off various materials. Proton incident energy was 597 MeV
in each case. The points are data, the histogram is Binary Cascade predic-
tion.
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Chapter 26

Abrasion-ablation Model

26.1 Introduction

The abrasion model is a simplified macroscopic model for nuclear-nuclear
interactions based largely on geometric arguments rather than detailed con-
sideration of nucleon-nucleon collisions. As such the speed of the simulation
is found to be faster than models such as G4BinaryCascade, but at the cost
of accuracy. The version of the model implemented is interpreted from the
so-called abrasion-ablation model described by Wilson et al [1],[2] together
with an algorithm from Cucinotta to approximate the secondary nucleon en-
ergy spectrum [3]. By default, instead of performing an ablation process to
simulate the de-excitation of the nuclear pre-fragments, the Geant4 imple-
mentation of the abrasion model makes use of existing and more detailed nu-
clear de-excitation models within Geant4 (G4Evaporation, G4FermiBreakup,
G4StatMF) to perform this function (see section 26.5). However, in some
cases cross sections for the production of fragments with large ∆A from the
pre-abrasion nucleus are more accurately determined using a Geant4 imple-
mentation of the ablation model (see section 26.6).
The abrasion interaction is the initial fast process in which the overlap region
between the projectile and target nuclei is sheered-off (see figure 26.1) The
spectator nucleons in the projectile are assumed to undergo little change in
momentum, and likewise for the spectators in the target nucleus. Some of
the nucleons in the overlap region do suffer a change in momentum, and
are assumed to be part of the original nucleus which then undergoes de-
excitation.
Less central impacts give rise to an overlap region in which the nucleons can
suffer significant momentum change, and zones in the projectile and target
outside of the overlap where the nucleons are considered as spectators to the

376



initial energetic interaction.
The initial description of the interaction must, however, take into consid-
eration changes in the direction of the projectile and target nuclei due to
Coulomb effects, which can then modify the distance of closest approach
compared with the initial impact parameter. Such effects can be important
for low-energy collisions.

26.2 Initial nuclear dynamics and impact pa-

rameter

For low-energy collisions, we must consider the deflection of the nuclei as a
result of the Coulomb force (see figure 26.2). Since the dynamics are non-
relativistic, the motion is governed by the conservation of energy equation:

Etot =
1

2
µṙ2 +

l2

2µr2
+
ZPZT e

2

r
(26.1)

where:
Etot = total energy in the centre of mass frame;
r,ṙ = distance between nuclei, and rate of change of distance;
l = angular momentum;
µ = reduced mass of system i.e. m1m2/(m1 +m2);
e = electric charge (units dependent upon the units for Etot and r);
ZP , ZT = charge numbers for the projectile and target nuclei.

The angular momentum is based on the impact parameter between the nuclei
when their separation is large, i.e.

Etot =
1

2

l2

µb2
⇒ l2 = 2Etotµb

2 (26.2)

At the point of closest approach, ṙ=0, therefore:

Etot = Etotb2

r2 + ZP ZT e2

r

r2 = b2 + ZP ZT e2

Etot
r

(26.3)

Rearranging this equation results in the expression:

b2 = r(r − rm) (26.4)

where:

rm =
ZPZTe

2

Etot
(26.5)
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In the implementation of the abrasion process in Geant4, the square of the
far-field impact parameter, b, is sampled uniformly subject to the distance of
closest approach, r, being no greater than rP + rT (the sum of the projectile
and target nuclear radii).

26.3 Abrasion process

In the abrasion process, as implemented by Wilson et al [1] it is assumed
that the nuclear density for the projectile is constant up to the radius of the
projectile (rP ) and zero outside. This is also assumed to be the case for the
target nucleus. The amount of nuclear material abraded from the projectile
is given by the expression:

∆abr = FAP

[

1 − exp
(

−CT

λ

)]

(26.6)

where F is the fraction of the projectile in the interaction zone, λ is the
nuclear mean-free-path, assumed to be:

λ =
16.6

E0.26
(26.7)

E is the energy of the projectile in MeV/nucleon and CT is the chord-length
at the position in the target nucleus for which the interaction probability is
maximum. For cases where the radius of the target nucleus is greater than
that of the projectile (i.e. rT > rP ):

CT =







2
√

r2
T − x2 : x > 0

2
√

r2
T − r2 : x ≤ 0

(26.8)

where:

x =
r2
P + r2 − r2

T

2r
(26.9)

In the event that rP > rT then CT is:

CT =

{

2
√

r2
T − x2 : x > 0

2rT : x ≤ 0
(26.10)

where:

x =
r2
T + r2 − r2

P

2r
(26.11)

The projectile and target nuclear radii are given by the expression:
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rP ≈ 1.29
√

r2
RMS,P − 0.842

rT ≈ 1.29
√

r2
RMS,T − 0.842

(26.12)

The excitation energy of the nuclear fragment formed by the spectators in
the projectile is assumed to be determined by the excess surface area, given
by:

∆S = 4πr2
P

[

1 + P − (1 − F )
2/3

]

(26.13)

where the functions P and F are given in section 26.7. Wilson et al equate
this surface area to the excitation to:

ES = 0.95∆S (26.14)

if the collision is peripheral and there is no significant distortion of the nu-
cleus, or

ES = 0.95 {1 + 5F + ΩF 3}∆S

Ω =











0 : AP > 16
1500 : AP < 12

1500 − 320 (AP − 12) : 12 ≤ AP ≤ 16

(26.15)

if the impact separation is such that r << rP+rT . ES is in MeV provided
∆S is in fm2.
For the abraded region, Wilson et al assume that fragments with a nucleon
number of five are unbounded, 90% of fragments with a nucleon number of
eight are unbound, and 50% of fragments with a nucleon number of nine
are unbound. This was not implemented within the Geant4 version of the
abrasion model, and disintegration of the pre-fragment was only simulated by
the subsequent de-excitation physics models in the G4DeexcitationHandler
(evaporation, etc. or G4WilsonAblationModel) since the yields of lighter
fragments were already underestimated compared with experiment.
In addition to energy as a result of the distortion of the fragment, some energy
is assumed to be gained from transfer of kinetic energy across the boundaries
of the nuclei. This is approximated to the average energy transferred to a
nucleon per unit intersection pathlength (assumed to be 13 MeV/fm) and
the longest chord-length, Cl, and for half of the nucleon-nucleon collisions it
is assumed that the excitation energy is:

E∗
X =

{

13 ·
[

1 + Ct−1.5
3

]

Cl : Ct > 1.5fm

13 · Cl : Ct ≤ 1.5fm
(26.16)
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where:

Cl =

{

2
√

r2
P + 2rrT − r2 − r2

T r > rT

2rP r ≤ rT

(26.17)

Ct = 2

√

r2
P − (r2

P + r2 − r2
T )

2

4r2
(26.18)

For the remaining events, the projectile energy is assumed to be unchanged.
Wilson et al assume that the energy required to remove a nucleon is 10MeV,
therefore the number of nucleons removed from the projectile by ablation is:

∆abl =
ES + EX

10
+ ∆spc (26.19)

where ∆spc is the number of loosely-bound spectators in the interaction re-
gion, given by:

∆spc = APF exp
(

−CT

λ

)

(26.20)

Wilson et al appear to assume that for half of the events the excitation
energy is transferred into one of the nuclei (projectile or target), otherwise
the energy is transferred in to the other (target or projectile respectively).
The abrasion process is assumed to occur without preference for the nucleon
type, i.e. the probability of a proton being abraded from the projectile is
proportional to the fraction of protons in the original projectile, therefore:

∆Zabr = ∆abr
ZP

AP
(26.21)

In order to calculate the charge distribution of the final fragment, Wilson et al
assume that the products of the interaction lie near to nuclear stability and
therefore can be sampled according to the Rudstam equation (see section
26.6). The other obvious condition is that the total charge must remain
unchanged.

26.4 Abraded nucleon spectrum

Cucinotta has examined different formulae to represent the secondary protons
spectrum from heavy ion collisions [3]. One of the models (which has been
implemented to define the final state of the abrasion process) represents the
momentum distribution of the secondaries as:
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ψ(p) ∝
3
∑

i=1

Ci exp

(

− p2

2p2
i

)

+ d0
γp

sinh (γp)
(26.22)

where:
ψ(p) = number of secondary protons with momentum p per unit of

momentum phase space [c3/MeV3];
p = magnitude of the proton momentum in the rest frame of the

nucleus from which the particle is projected [MeV/c];
C1, C2, C3 = 1.0, 0.03, and 0.0002;

p1, p2, p3 =
√

2
5
pF ,

√

6
5
pF , 500 [MeV/c]

pF = Momentum of nucleons in the nuclei at the Fermi surface [MeV/c]
d0 = 0.1
1
γ

= 90 [MeV/c];
G4WilsonAbrasionModel approximates the momentum distribution for the
neutrons to that of the protons, and as mentioned above, the nucleon type
sampled is proportional to the fraction of protons or neutrons in the original
nucleus.
The angular distribution of the abraded nucleons is assumed to be isotropic
in the frame of reference of the nucleus, and therefore those particles from the
projectile are Lorentz-boosted according to the initial projectile momentum.

26.5 De-excitation of the projectile and tar-

get nuclear pre-fragments by standard

Geant4 de-excitation physics

Unless specified otherwise, G4WilsonAbrasionModel will instantiate the fol-
lowing de-excitation models to treat subsequent particle emission of the ex-
cited nuclear pre-fragments (from both the projectile and the target):

1 G4Evaporation, which will perform nuclear evaporation of (α-particles,
3He, 3H, 2H, protons and neutrons, in competition with photo-evaporation
and nuclear fission (if the nucleus has sufficiently high A).

2 G4FermiBreakUp, for nuclei with A ≤ 12 and Z ≤ 6.

3 G4StatMF, for multi-fragmentation of the nucleus (minimum energy for
this process set to 5 MeV).

As an alternative to using this de-excitation scheme, the user may provide
to the G4WilsonAbrasionModel a pointer to her own de-excitation handler,
or invoke instantiation of the ablation model (G4WilsonAblationModel).
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26.6 De-excitation of the projectile and tar-

get nuclear pre-fragments by nuclear ab-

lation

A nuclear ablation model, based largely on the description provided by Wil-
son et al [1], has been developed to provide a better approximation for the
final nuclear fragment from an abrasion interaction. The algorithm imple-
mented in G4WilsonAblationModel uses the same approach for selecting the
final-state nucleus as NUCFRG2 and determining the particles evaporated
from the pre-fragment in order to achieve that state. However, use is also
made of classes in Geant4’s evaporation physics to determine the energies of
the nuclear fragments produced.
The number of nucleons ablated from the nuclear pre-fragment (whether
as nucleons or light nuclear fragments) is determined based on the average
binding energy, assumed by Wilson et al to be 10 MeV, i.e.:

Aabl =

{

Int
(

Ex

10MeV

)

: APF > Int
(

Ex

10MeV

)

APF : otherwise
(26.23)

Obviously, the nucleon number of the final fragment, AF , is then determined
by the number of remaining nucleons. The proton number of the final nuclear
fragment (ZF ) is sampled stochastically using the Rudstam equation:

σ(AF , ZF ) ∝ exp



−R
∣

∣

∣ZF − SAF − TA2
F

∣

∣

∣

3/2



 (26.24)

Here R=11.8/AF 0.45, S=0.486, and T=3.8·10−4. Once ZF and AF have been
calculated, the species of the ablated (evaporated) particles are determined
again using Wilson’s algorithm. The number of α-particles is determined
first, on the basis that these have the greatest binding energy:

Nα =







Int
(

Zabl

2

)

: Int
(

Zabl

2

)

< Int
(

Aabl

4

)

Int
(

Aabl

4

)

: Int
(

Zabl

2

)

≥ Int
(

Aabl

4

) (26.25)

Calculation of the other ablated nuclear/nucleon species is determined in
a similar fashion in order of decreasing binding energy per nucleon of the
ablated fragment, and subject to conservation of charge and nucleon number.
Once the ablated particle species are determined, use is made of the Geant4
evaporation classes to sample the order in which the particles are ejected
(from G4AlphaEvaporationProbability, G4He3EvaporationProbability, G4TritonEvaporationProbability,
G4DeuteronEvaporationProbability, G4ProtonEvaporationProbability and G4NeutronEvaporationProbability)
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and the energies and momenta of the evaporated particle and the resid-
ual nucleus at each two-body decay (using G4AlphaEvaporationChannel,
G4He3EvaporationChannel, G4TritonEvaporationChannel, G4DeuteronEvaporationChannel,
G4ProtonEvaporationChannel and G4NeutronEvaporationChannel). If at
any stage the probability for evaporation of any of the particles selected by
the ablation process is zero, the evaporation is forced, but no significant
momentum is imparted to the particle/nucleus. Note, however, that any
particles ejected from the projectile will be Lorentz boosted depending upon
the initial energy per nucleon of the projectile.

26.7 Definition of the functions P and F used

in the abrasion model

In the first instance, the form of the functions P and F used in the abrasion
model are dependent upon the relative radii of the projectile and target and
the distance of closest approach of the nuclear centres. Four radius condtions
are treated.
rT > rP and rT − rP ≤ r ≤ rT + rP :

P = 0.125
√
µν

(

1

µ
− 2

)(

1 − β

ν

)2

−0.125

[

0.5
√
µν

(

1

µ
− 2

)

+ 1

](

1 − β

ν

)3

(26.26)

F = 0.75
√
µν

(

1 − β

ν

)2

− 0.125 [3
√
µν − 1]

(

1 − β

ν

)3

(26.27)

where:

ν =
rP

rP + rT

(26.28)

β =
r

rP + rT

(26.29)

µ =
rT

rP
(26.30)

rT > rP and r < rT − rP :

P = −1 (26.31)
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F = 1 (26.32)

rP > rT and rP − rT ≤ r ≤ rP + rT :

P = 0.125
√
µν

(

1

µ
− 2

)(

1 − β

ν

)2

(26.33)

− 0.125

{

0.5

√

ν

µ

(

1

µ
− 2

)

−
[√

1 − µ2

ν
− 1

]
√

2 − µ

µ5

}(

1 − β

ν

)3

F = 0.75
√
µν

(

1 − β

ν

)2

(26.34)

− 0.125













3

√

ν

µ
−

[

1 − (1 − µ2)
3/2
]

√

1 − (1 − µ)2

µ3













(

1 − β

ν

)3

rP > rT and r < rT − rP :

P =

[√
1 − µ2

ν
− 1

]

√

√

√

√1 −
(

β

ν

)2

(26.35)

F =



1 −
(

1 − µ2
)
3/2





√

√

√

√1 −
(

β

ν

)2

(26.36)

26.8 Status of this document

18.06.04 created by Peter Truscott
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Figure 26.1: In the abrasion process, a fraction of the nucleons in the pro-
jectile and target nucleons interact to form a fireball region with a velocity
between that of the projectile and the target. The remaining spectator nu-
cleons in the projectile and target are not initially affected (although they
do suffer change as a result of longer-term de-excitation).
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Figure 26.2: Illustration clarifying impact parameter in the far-field (b) and
actual impact parameter (r).
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Chapter 27

Electromagnetic Dissociation
Model

27.1 The Model

The relative motion of a projectile nucleus travelling at relativistic speeds
with respect to another nucleus can give rise to an increasingly hard spec-
trum of virtual photons. The excitation energy associated with this en-
ergy exchange can result in the liberation of nucleons or heavier nuclei (i.e.
deuterons, α-particles, etc.). The contribution of this source to the total
inelastic cross section can be important, especially where the proton number
of the nucleus is large. The electromagnetic dissociation (ED) model is im-
plemented in the classes G4EMDissociation, G4EMDissociationCrossSection
and G4EMDissociationSpectrum, with the theory taken from Wilson et al
[1], and Bertulani and Baur [2].
The number of virtual photons N(Eγ , b) per unit area and energy interval
experienced by the projectile due to the dipole field of the target is given by
the expression [2]:

N (Eγ , b) =
αZ2

T

π2β2b2Eγ

{

x2k2
1(x) +

(

x2

γ2

)

k2
0(x)

}

(27.1)

where x is a dimensionless quantity defined as:

x =
bEγ

γβh̄c
(27.2)

and:
α = fine structure constant
β = ratio of the velocity of the projectile in the laboratory frame to

the velocity of light
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γ = Lorentz factor for the projectile in the laboratory frame
b = impact parameter
c = speed of light
h̄ = quantum constant
Eγ = energy of virtual photon
k0 and k1 = zeroth and first order modified Bessel functions of the

second kind
ZT = atomic number of the target nucleus

Integrating Eq. 27.1 over the impact parameter from bmin to ∞ produces
the virtual photon spectrum for the dipole field of:

NE1 (Eγ) =
2αZ2

T

πβ2Eγ

{

ξk0(ξ)k1(ξ) −
ξ2β2

2

(

k2
1(ξ) − k2

0(ξ)
)

}

(27.3)

where, according to the algorithm implemented by Wilson et al in NUCFRG2
[1]:

ξ = Eγbmin

γβh̄c

bmin = (1 + xd)bc + πα0

2γ

α0 = ZP ZT e2

µβ2c2

bc = 1.34

[

A
1/3
P + A

1/3
T − 0.75

(

A
−1/3
P + A

−1/3
T

)]

(27.4)

and µ is the reduced mass of the projectile/target system, xd = 0.25, and AP

and AT are the projectile and target nucleon numbers. For the last equation,
the units of bc are fm. Wilson et al state that there is an equivalent virtual
photon spectrum as a result of the quadrupole field:

NE2 (Eγ) =
2αZ2

T

πβ4Eγ

{

2
(

1 − β2
)

k2
1(ξ) + ξ

(

2 − β2
)2
k0(ξ)k1(ξ) −

ξ2β4

2

(

k2
1(ξ) − k2

0(ξ)
)

}

(27.5)
The cross section for the interaction of the dipole and quadrupole fields is
given by:

σED =
∫

NE1 (Eγ)σE1 (Eγ) dEγ +
∫

NE2 (Eγ)σE2 (Eγ) dEγ (27.6)
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Wilson et al assume that σE1(Eγ) and σE2(Eγ) are sharply peaked at the
giant dipole and quadrupole resonance energies:

EGDR = h̄c
[

m∗c2R2
0

8J

(

1 + u− 1+ε+3u
1+ε+u

ε
)]− 1

2

EGQR = 63

A
1
/3

P

(27.7)

so that the terms for NE1 and NE2 can be taken out of the integrals in Eq.
27.6 and evaluated at the resonances.
In Eq. 27.7:

u = 3J
Q′A

−1/3
P

R0 = r0A
1/3
P

(27.8)

ε = 0.0768, Q′ = 17MeV, J = 36.8MeV, r0 = 1.18fm, and m∗ is 7/10 of
the nucleon mass (taken as 938.95 MeV/c2). (The dipole and quadrupole
energies are expressed in units of MeV.)
The photonuclear cross sections for the dipole and quadrupole resonances are
assumed to be given by:

∫

σE1 (Eγ) dEγ = 60
NPZP

AP

(27.9)

in units of MeV-mb (NP being the number of neutrons in the projectile) and:

∫

σE2 (Eγ)
dEγ

E2
γ

= 0.22fZPA
2/3
P (27.10)

in units of µb/MeV. In the latter expression, f is given by:

f =











0.9 AP > 100
0.6 40 < AP ≤ 100
0.3 40 ≤ AP

(27.11)

The total cross section for electromagnetic dissociation is therefore given by
Eq. 27.6 with the virtual photon spectra for the dipole and quadrupole fields
calculated at the resonances:

σED = NE1 (EGDR)
∫

σE1 (Eγ) dEγ +NE2 (EGQR)E2
GQR

∫

σE2 (Eγ)

E2
γ

dEγ

(27.12)
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where the resonance energies are given by Eq. 27.7 and the integrals for the
photonuclear cross sections given by Eq. 27.9 and Eq. 27.10.
The selection of proton or neutron emission is made according to the following
prescription from Wilson et al.

σED,p = σED ×























0.5 ZP < 6
0.6 6 ≤ ZP ≤ 8
0.7 8 < ZP < 14

min
[

ZP

AP
, 1.95 exp(−0.075ZP )

]

ZP ≥ 14























σED,n = σED − σED,p

(27.13)
Note that this implementation of ED interactions only treats the ejection

of single nucleons from the nucleus, and currently does not allow emission of
other light nuclear fragments.

27.2 Status of this document

19.06.04 created by Peter Truscott
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Chapter 28

Precompound model.

28.1 Reaction initial state.

The GEANT4 precompound model is considered as an extension of the
hadron kinetic model. It gives a possibility to extend the low energy range
of the hadron kinetic model for nucleon-nucleus inelastic collision and it pro-
vides a ”smooth” transition from kinetic stage of reaction described by the
hadron kinetic model to the equilibrium stage of reaction described by the
equilibrium deexcitation models.

The initial information for calculation of pre-compound nuclear stage
consists from the atomic mass number A, charge Z of residual nucleus, its
four momentum P0, excitation energy U and number of excitons n equals
the sum of number of particles p (from them pZ are charged) and number of
holes h.

At the preequilibrium stage of reaction, we following the [1] approach,
take into account all possible nuclear transition the number of excitons n
with ∆n = +2,−2, 0 [1], which defined by transition probabilities. Only
emmision of neutrons, protons, deutrons, thritium and helium nuclei are
taken into account.

28.2 Simulation of pre-compound reaction

The precompound stage of nuclear reaction is considered until nuclear
system is not an equilibrium state. Further emission of nuclear fragments or
photons from excited nucleus is simulated using an equilibrium model.
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28.2.1 Statistical equilibrium condition

In the state of statistical equilibrium, which is characterized by an eqilib-
rium number of excitons neq, all three type of transitions are equiprobable.
Thus neq is fixed by ω+2(neq, U) = ω−2(neq, U). From this condition we can
get

neq =
√

2gU. (28.1)

28.2.2 Level density of excited (n-exciton) states

To obtain Eq. (28.1) it was assumed an equidistant scheme of single-
particle levels with the density g ≈ 0.595aA, where a is the level density
parameter, when we have the level density of the n-exciton state as

ρn(U) =
g(gU)n−1

p!h!(n− 1)!
. (28.2)

28.2.3 Transition probabilities

The partial transition probabilities changing the exciton number by ∆n is
determined by the squared matrix element averaged over allowed transitions
< |M |2 > and the density of final states ρ∆n(n, U), which are really accessible
in this transition. It can be defined as following:

ω∆n(n, U) =
2π

h
< |M |2 > ρ∆n(n, U). (28.3)

The density of final states ρ∆n(n, U) were derived in paper [2] using the Eq.
(28.2) for the level density of the n-exciton state and later corrected for the
Pauli principle and indistinguishability of identical excitons in paper [3]:

ρ∆n=+2(n, U) =
1

2
g
[gU − F (p+ 1, h+ 1)]2

n + 1
[
gU − F (p+ 1, h+ 1)

gU − F (p, h)
]n−1,

(28.4)

ρ∆n=0(n, U) =
1

2
g
[gU − F (p, h)]

n
[p(p− 1) + 4ph+ h(h− 1)] (28.5)

and

ρ∆n=−2(n, U) =
1

2
gph(n− 2), (28.6)

where F (p, h) = (p2 + h2 + p− h)/4− h/2 and it was taken to be equal zero.
To avoid calculation of the averaged squared matrix element < |M |2 > it
was assumed [1] that transition probability ω∆n=+2(n, U) is the same as the
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probability for quasi-free scattering of a nucleon above the Fermi level on a
nucleon of the target nucleus, i. e.

ω∆n=+2(n, U) =
< σ(vrel)vrel >

Vint
. (28.7)

In Eq. (28.7) the interaction volume is estimated as Vint = 4
3
π(2rc + λ/2π)3,

with the De Broglie wave length λ/2π corresponding to the relative velocity

< vrel >=
√

2Trel/m, where m is nucleon mass and rc = 0.6 fm.

The averaging in < σ(vrel)vrel > is further simplified by

< σ(vrel)vrel >=< σ(vrel) >< vrel > . (28.8)

For σ(vrel) we take approximation:

σ(vrel) = 0.5[σpp(vrel) + σpn(vrel]P (TF/Trel), (28.9)

where factor P (TF/Trel) was introduced to take into account the Pauli prin-
ciple. It is given by

P (TF/Trel) = 1 − 7

5

TF

Trel

(28.10)

for TF

Trel
≤ 0.5 and

P (TF/Trel) = 1 − 7

5

TF

Trel
+

2

5

TF

Trel
(2 − Trel

TF
)5/2 (28.11)

for TF

Trel
> 0.5.

The free-particle proton-proton σpp(vrel) and proton-neutron σpn(vrel) in-
teraction cross sections are estimated using the equations [4]:

σpp(vrel) =
10.63

v2
rel

− 29.93

vrel

+ 42.9 (28.12)

and

σpn(vrel) =
34.10

v2
rel

− 82.2

vrel
+ 82.2, (28.13)

where cross sections are given in mbarn.
The mean relative kinetic energy Trel is needed to calculate < vrel >

and the factor P (TF/Trel) was computed as Trel = Tp + Tn, where mean
kinetic energies of projectile nucleons Tp = TF + U/n and target nucleons
TN = 3TF/5, respecively.
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Combining Eqs. (28.3) - (28.7) and assuming that < |M |2 > are the same
for transitions with ∆n = 0 and ∆n = ±2 we obtain for another transition
probabilities:

ω∆n=0(n, U) =

= <σ(vrel)vrel>
Vint

n+1
n

[ gU−F (p,h)
gU−F (p+1,h+1)

]n+1 p(p−1)+4ph+h(h−1)
gU−F (p,h)

(28.14)

and
ω∆n=−2(n, U) =

= <σ(vrel)vrel>
Vint

[ gU−F (p,h)
gU−F (p+1,h+1)

]n+1 ph(n+1)(n−2)
[gU−F (p,h)]2

.
(28.15)

28.2.4 Emission probabilities for nucleons

Emission process probability has been choosen similar as in the classical
equilibrium Weisskopf-Ewing model [5]. Probability to emit nucleon b in the
energy interval (Tb, Tb + dTb) is given

Wb(n, U, Tb) = σb(Tb)
(2sb + 1)µb

π2h3
Rb(p, h)

ρn−b(E
∗)

ρn(U)
Tb, (28.16)

where σb(Tb) is the inverse (absorption of nucleon b) reaction cross section,
sb and mb are nucleon spin and reduced mass, the factor Rb(p, h) takes into
account the condition for the exciton to be a proton or neutron, ρn−b(E

∗)
and ρn(U) are level densities of nucleus after and before nucleon emission are
defined in the evaporation model, respectively and E∗ = U − Qb − Tb is the
excitation energy of nucleus after fragment emission.

28.2.5 Emission probabilities for complex fragments

It was assumed [1] that nucleons inside excited nucleus are able to ”con-
dense” forming complex fragment. The ”condensation” probability to create
fragment consisting from Nb nucleons inside nucleus with A nucleons is given
by

γNb
= N3

b (Vb/V )Nb−1 = N3
b (Nb/A)Nb−1, (28.17)

where Vb and V are fragment b and nucleus volumes, respectively. The last
equation was estimated [1] as the overlap integral of (constant inside a vol-
ume) wave function of independent nucleons with that of the fragment.

During the prequilibrium stage a ”condense” fragment can be emitted.
The probability to emit a fragment can be written as [1]

Wb(n, U, Tb) = γNb
Rb(p, h)

ρ(Nb, 0, Tb +Qb)

gb(Tb)
σb(Tb)

(2sb + 1)µb

π2h3

ρn−b(E
∗)

ρn(U)
Tb,

(28.18)
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where

gb(Tb) =
Vb(2sb + 1)(2µb)

3/2

4π2h3
(Tb +Qb)

1/2 (28.19)

is the single-particle density for complex fragment b, which is obtained by
assuming that complex fragment moves inside volume Vb in the uniform po-
tential well whose depth is equal to be Qb, and the factor Rb(p, h) garantees
correct isotopic composition of a fragment b.

28.2.6 The total probability

This probability is defined as

Wtot(n, U) =
∑

∆n=+2,0,−2

ω∆n(n, U) +
6
∑

b=1

Wb(n, U), (28.20)

where total emission Wb(n, U) probabilities to emit fragment b can be ob-
tained from Eqs. (28.16) and (28.18) by integration over Tb:

Wb(n, U) =
∫ U−Qb

Vb

Wb(n, U, Tb)dTb. (28.21)

28.2.7 Calculation of kinetic energies for emitted par-
ticle

The equations (28.16) and (28.18) are used to sample kinetic energies of
emitted fragment.

28.2.8 Parameters of residual nucleus.

After fragment emission we update parameter of decaying nucleus:

Af = A− Ab;Zf = Z − Zb;Pf = P0 − pb;

E∗
f =

√

E2
f − ~P 2

f −M(Af , Zf).
(28.22)

Here pb is the evaporated fragment four momentum.

28.3 Status of this document

00.00.00 created by Vicente Lara
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Chapter 29

Evaporation Model

29.1 Introduction.

At the end of the pre-equilibrium stage, or a thermalizing process, the
residual nucleus is supposed to be left in an equilibrium state, in which the
excitation energy E∗ is shared by a large number of nucleons. Such an equili-
brated compound nucleus is characterized by its mass, charge and excitation
energy with no further memory of the steps which led to its formation. If
the excitation energy is higher than the separation energy, it can still eject
nucleons and light fragments (d, t, 3He, α). These constitute the low energy
and most abundant part of the emitted particles in the rest system of the
residual nucleus. The emission of particles by an excited compound nucleus
has been successfully described by comparing the nucleus with the evapora-
tion of molecules from a fluid [1]. The first statistical theory of compound
nuclear decay is due to Weisskopf and Ewing[2].

29.2 Model description.

The Weisskopf treatment is an application of the detailed balance principle
that relates the probabilities to go from a state i to another d and viceversa
through the density of states in the two systems:

Pi→dρ(i) = Pd→iρ(d) (29.1)

where Pd→i is the probability per unit of time of a nucleus d captures a particle
j and form a compound nucleus i which is proportional to the compound
nucleus cross section σinv. Thus, the probability that a parent nucleus i with
an excitation energy E∗ emits a particle j in its ground state with kinetic
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energy ε is

Pj(ε)dε = gjσinv(ε)
ρd(Emax − ε)

ρi(E∗)
εdε (29.2)

where ρi(E
∗) is the level density of the evaporating nucleus, ρd(Emax−ε) that

of the daugther (residual) nucleus after emission of a fragment j and Emax is
the maximum energy that can be carried by the ejectile. With the spin sj and
the mass mj of the emitted particle, gj is expressed as gj = (2sj +1)mj/π

2h̄2.
This formula must be implemented with a suitable form for the level den-

sity and inverse reaction cross section. We have followed, like many other
implementations, the original work of Dostrovsky et al. [3] (which represents
the first Monte Carlo code for the evaporation process) with slight modifi-
cations. The advantage of the Dostrovsky model is that it leds to a simple
expression for equation 29.2 that can be analytically integrated and used for
Monte Carlo sampling.

29.2.1 Cross sections for inverse reactions.

The cross section for inverse reaction is expressed by means of empirical
equation [3]

σinv(ε) = σgα

(

1 +
β

ε

)

(29.3)

where σg = πR2 is the geometric cross section.

In the case of neutrons, α = 0.76+2.2A− 1
3 and β = (2.12A− 2

3 − 0.050)/α
MeV. This equation gives a good agreement to those calculated from con-
tinuum theory [4] for intermediate nuclei down to ε ∼ 0.05 MeV. For lower
energies σinv,n(ε) tends toward infinity, but this causes no difficulty because
only the product σinv,n(ε)ε enters in equation 29.2. It should be noted, that
the inverse cross section needed in 29.2 is that between a neutron of kinetic
energy ε and a nucleus in an excited state.

For charged particles (p, d, t, 3He and α), α = (1 + cj) and β = −Vj,
where cj is a set of parameters calculated by Shapiro [5] in order to provide
a good fit to the continuum theory [4] cross sections and Vj is the Coulomb
barrier.

29.2.2 Coulomb barriers.

Coulomb repulsion, as calculated from elementary electrostatics are not
directly applicable to the computation of reaction barriers but must be cor-
rected in several ways. The first correction is for the quantum mechanical
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phenomenoon of barrier penetration. The proper quantum mechanical ex-
pressions for barrier penetration are far too complex to be used if one wishes
to retain equation 29.2 in an integrable form. This can be approximately
taken into account by multiplying the electrostatic Coulomb barrier by a
coefficient kj designed to reproduce the barrier penetration approximately
whose values are tabulated [5].

Vj = kj
ZjZde

2

Rc

(29.4)

The second correction is for the separation of the centers of the nuclei at
contact, Rc. We have computed this separation as Rc = Rj + Rd where

Rj,d = rcA
1/3
j,d and rc is given [6] by

rc = 2.173
1 + 0.006103ZjZd

1 + 0.009443ZjZd

(29.5)

29.2.3 Level densities.

The simplest and most widely used level density based on the Fermi
gas model are those of Weisskopf [7] for a completely degenerate Fermi gas.
We use this approach with the corrections for nucleon pairing proposed by
Hurwitz and Bethe [8] which takes into account the displacements of the
ground state:

ρ(E) = C exp
(

2
√

a(E − δ)
)

(29.6)

where C is considered as constant and does not need to be specified since
only ratios of level densities enter in equation 29.2. δ is the pairing energy
correction of the daughter nucleus evaluated by Cook et al. [9] and Gilbert
and Cameron [10] for those values not evaluated by Cook et al.. The level
density parameter is calculated according to:

a(E,A, Z) = ã(A)

{

1 +
δ

E
[1 − exp(−γE)]

}

(29.7)

and the parameters calculated by Iljinov et al. [11] and shell corrections of
Truran, Cameron and Hilf [12].

29.2.4 Maximum energy available for evaporation.

The maximum energy avilable for the evaporation process (i.e. the
maximum kinetic energy of the outgoing fragment) is usually computed
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like E∗ − δ − Qj where is the separation energy of the fragment j: Qj =
Mi −Md −Mj and Mi, Md and Mj are the nclear masses of the compound,
residual and evporated nuclei respectively. However, that expression does
not consider the recoil energy of the residual nucleus. In order to take into
account the recoil energy we use the expression

εmax
j =

(Mi + E∗ − δ)2 +M2
j −M2

d

2(Mi + E∗ − δ)
−Mj (29.8)

29.2.5 Total decay width.

The total decay width for evaporation of a fragment j can be obtained by
integrating equation 29.2 over kinetic energy

Γj = h̄
∫ εmax

j

Vj

P (εj)dεj (29.9)

This integration can be performed analiticaly if we use equation 29.6 for level
densities and equation 29.3 for inverse reaction cross section. Thus, the total
width is given by

Γj =
gjmjR

2
d

2πh̄2

α

a2
d

×










{(

βad −
3

2

)

+ ad(ε
max
j − Vj)

}

exp
{

−
√

ai(E∗ − δi)
}

+

{

(2βad − 3)
√

ad(ε
max
j − Vj) + 2ad(ε

max
j − Vj)

}

×

exp
{

2
[

√

ad(εmax
j − Vj) −

√

ai(E∗ − δi)
]}











(29.10)

where ad = a(Ad, Zd, ε
max
j ) and ai = a(Ai, Zi, E

∗).

29.3 GEM Model

As an alternative model we have implemented the generalized evaporation
model (GEM) by Furihata [13]. This model considers emission of fragments
heavier than α particles and uses a more accurate level density function for
total decay width instead of the approximation used by Dostrovsky. We use
the same set of parameters but for heavy ejectiles the parameters determined
by Matsuse et al. [14] are used.

Based on the Fermi gas model, the level density function is expressed as

ρ(E) =







√
π

12
e2
√

a(E−δ)

a1/4(E−δ)5/4 for E ≥ Ex

1
T
e(E−E0)/T for E < Ex

(29.11)
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where Ex = Ux + δ and Ux = 150/Md + 2.5 (Md is the mass of the daughter

nucleus). Nuclear temperature T is given as 1/T =
√

a/Ux − 1.5Ux, and E0

is defined as E0 = Ex − T (logT − log a/4 − (5/4) logUx + 2
√
aUx).

By substituting equation 29.11 into equation 29.2 and integrating over
kinetic energy can be obtained the following expression

Γj =

√
πgjπR

2
dα

12ρ(E∗)
×











{I1(t, t) + (β + V )I0(t)} for εmax
j − Vj < Ex

{I1(t, tx) + I3(s, sx)e
s+

(β + V )(I0(tx) + I2(s, sx)e
s)} for εmax

j − Vj ≥ Ex.
(29.12)

I0(t), I1(t, tx), I2(s, sx), and I3(s, sx) are expressed as:

I0(t) = e−E0/T (et − 1) (29.13)

I1(t, tx) = e−E0/TT{(t− tx + 1)etx − t− 1} (29.14)

I2(s, sx) = 2
√

2
{

s−3/2 + 1.5s−5/2 + 3.75s−7/2 −

(s−3/2
x + 1.5s−5/2

x + 3.75s−7/2
x )

}

(29.15)

I3(s, sx) =
1

2
√

2

[

2s−1/2 + 4s−3/2 + 13.5s−5/2 + 60.0s−7/2 +

325.125s−9/2 −
{

(s2 − s2
x)s

−3/2
x + (1.5s2 + 0.5s2

x)s
−5/2
x +

(3.75s2 + 0.25s2
x)s

−7/2
x + (12.875s2 + 0.625s2

x)s
−9/2
x +

(59.0625s2 + 0.9375s2
x)s

−11/2
x +

(324.8s2 + 3.28s2
x)s

−13/2
x +

}

]

(29.16)

where t = (εmax
j − Vj)/T , tx = Ex/T , s = 2

√

a(εmax
j − Vj − δj) and sx =

2
√

a(Ex − δ).

Besides light fragments, 60 nuclides up to 28Mg are considered, not only in
their ground states but also in their exited states, are considered. The excited
state is assumed to survive if its lifetime T1/2 is longer than the decay time,
i. e., T1/2/ ln 2 > h̄/Γ∗

j , where Γ∗
j is the emission width of the resonance

calculated in the same manner as for ground state particle emission. The
total emission width of an ejectile j is summed over its ground state and all
its excited states which satisfy the above condition.

401



29.4 Fission probability calculation.

The fission decay channel (only for nuclei with A > 65) is taken into
account as a competitor for fragment and photon evaporation channels.

29.4.1 The fission total probability.

The fission probability (per unit time)Wfis in the Bohr and Wheeler theory
of fission [15] is proportional to the level density ρfis(T ) ( approximation Eq.
(29.6) is used) at the saddle point, i.e.

Wfis = 1
2πh̄ρfis(E∗)

∫ E∗−Bfis

0 ρfis(E
∗ − Bfis − T )dT =

=
1+(Cf−1) exp (Cf )

4πafis exp (2
√

aE∗)
,

(29.17)

where Bfis is the fission barrier height. The value of Cf = 2
√

afis(E∗ −Bfis)
and a, afis are the level density parameters of the compound and of the fission
saddle point nuclei, respectively.

The value of the level density parameter is large at the saddle point, when
excitation energy is given by initial excitation energy minus the fission barrier
height, than in the ground state, i. e. afis > a. afis = 1.08a for Z < 85,
afis = 1.04a for Z ≥ 89 and af = a[1.04 + 0.01(89.− Z)] for 85 ≤ Z < 89 is
used.

29.4.2 The fission barrier.

The fission barrier is determined as difference between the saddle-point
and ground state masses.

We use simple semiphenomenological approach was suggested by Barashenkov
and Gereghi [16]. In their approach fission barrier Bfis(A,Z) is approximated
by

Bfis = B0
fis + ∆g + ∆p. (29.18)

The fission barrier height B0
fis(x) varies with the fissility parameter x =

Z2/A. B0
fis(x) is given by

B0
fis(x) = 12.5 + 4.7(33.5 − x)0.75 (29.19)

for x ≤ 33.5 and
B0

fis(x) = 12.5 − 2.7(x− 33.5)2/3 (29.20)

for x > 33.5. The ∆g = ∆M(N) + ∆M(Z), where ∆M(N) and ∆M(Z) are
shell corrections for Cameron’s liquid drop mass formula [17] and the pairing
energy corrections: ∆p = 1 for odd-odd nuclei, ∆p = 0 for odd-even nuclei,
∆p = 0.5 for even-odd nuclei and ∆p = −0.5 for even-even nuclei.
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29.5 The Total Probability for Photon Evap-

oration

As the first approximation we assume that dipole E1–transitions is the
main source of γ–quanta from highly–excited nuclei [11]. The probability to
evaporate γ in the energy interval (εγ , εγ + dεγ) per unit of time is given

Wγ(εγ) =
1

π2(h̄c)3
σγ(εγ)

ρ(E∗ − εγ)

ρ(E∗)
ε2γ , (29.21)

where σγ(εγ) is the inverse (absorption of γ) reaction cross section, ρ is a
nucleus level density is defined by Eq. (29.6).

The photoabsorption reaction cross section is given by the expression

σγ(εγ) =
σ0ε

2
γΓ

2
R

(ε2γ − E2
GDP )2 + Γ2

Rε
2
γ

, (29.22)

where σ0 = 2.5A mb, ΓR = 0.3EGDP and EGDP = 40.3A−1/5 MeV are
empirical parameters of the giant dipole resonance [11]. The total radiation
probability is

Wγ =
3

π2(h̄c)3

∫ E∗

0
σγ(εγ)

ρ(E∗ − εγ)

ρ(E∗)
ε2γdεγ. (29.23)

The integration is performed numericaly.

29.5.1 Energy of evaporated photon

The energy of γ-quantum is sampled according to the Eq. (29.21) distri-
bution.

29.6 Discrete photon evaporation

The last step of evaporation cascade consists of evaporation of photons
with discrete energies. The competition between photons and fragments as
well as giant resonance photons is neglected at this step. We consider the
discrete E1, M1 and E2 photon transitions from tabulated isotopes. There
are large number of isotopes [18] with the experimentally measured exited
level energies, spins, parities and relative transitions probabilities. This in-
formation is implemented in the code.
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29.7 Internal conversion electron emission

An important conpetitive channel to photon emission is internal con-
version. To take this into account, the photon evaporation data-base was
entended to include internal conversion coeffficients.

The above constitute the first six columns of data in the photon evap-
oration files. The new version of the data base adds eleven new columns
corresponding to:

7. ratio of internal conversion to gamma-ray emmission probability

8. - 17. internal conversion coefficients for shells K, L1, L2, L3, M1, M2,
M3, M4, M5 and N+ respectively. These coefficients are normalised to
1.0

The calculation of the Internal Conversion Coefficients (ICCs) is done by a
cubic spline interpolation of tabulalted data for the corresponding transition
energy. These ICC tables, which we shall label Band [19], Rösel [20] and
Hager-Seltzer [21], are widely used and were provided in electronic format
by staff at LBNL. The reliability of these tabulated data has been reviewed
in Ref. [22]. From tests carried out on these data we find that the ICCs
calculated from all three tables are comparable within a 10% uncertainty,
which is better than what experimetal measurements are reported to be able
to achive.

The range in atomic number covered by these tables is Band: 1 <= Z <=
80; Rösel: 30 <= Z <= 104 and Hager-Seltzer: 3, 6, 10, 14 <= Z <= 103.
For simplicity and taking into account the completeness of the tables, we
have used the Band table for Z <= 80 and Rösel for 81 <= Z <= 98.

The Band table provides a higher resolution of the ICC curves used in the
interpolation and covers ten multipolarities for all elements up to Z = 80,
but it only includes ICCs for shells up to M5. In order to calculate the
ICC of the N+ shell, the ICCs of all available M shells are added together
and the total divided by 3. This is the scheme adopted in the LBNL ICC
calculation code when using the Band table. The Rösel table includes ICCs
for all shells in every atom and for Z > 80 the N+ shell ICC is calculated
by adding together the ICCs of all shells above M5. In this table only eight
multipolarities have ICCs calculated for.

29.7.1 Multipolarity

The ENSDF data provides information on the multipolarity of the transition.
The ICCs included in the photon evaporation data base refer to the multi-
polarity indicated in the ENSDF file for that transition. Only one type of
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mixed mulltipolarity is considered (M1+E2) and whenever the mixing ratio
is provided in the ENSDF file, it is used to calculate the ICCs corresponding
to the mixed multipolarity according the the formula:

- fraction in M1 = 1/(1 + δ2)
- fraction in E2 = δ2/(1 + δ2)

where δ is the mixing ratio.

29.7.2 Binding energy

For the production of an internal conversion electron, the energy of the tran-
sition must be at least the binding energy of the shell the electron is being
released from. The binding energy corresponding to the various shells in all
isotopes used in the ICC calculation has been taken from the Geant4 file
G4AtomicShells.hh.

29.7.3 Isotopes

The list of isotopes included in the photon evaporation data base has been
extended from A <= 240 to A <= 250. The highest atomic number included
is Z = 98 (this ensures that Americium sources can now be simulated).
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Chapter 30

Fission model.

30.1 Reaction initial state.

The GEANT4 fission model is capable to predict final excited fragments
as result of an excited nucleus symmetric or asymmetric fission. The fission
process (only for nuclei with atomic number A ≥ 65) is considered as a com-
petitor for evaporation process, when nucleus transits from an excited state
to the ground state. Here we describe the final state generation. The cal-
culation of the relative probability of fission with respect to the evaporation
channels are described in the chapter concerning evaporation.

The initial information for calculation of fission decay consists from the
atomic mass number A, charge Z of excited nucleus, its four momentum P0

and excitation energy U .

30.2 Fission process simulation.

30.2.1 Atomic number distribution of fission products.

As follows from experimental data [1] mass distribution of fission products
consists of the symmetric and the asymmetric components:

F (Af) = Fsym(Af ) + ωFasym(Af ), (30.1)

where ω(U,A, Z) defines relative contribution of each component and it de-
pends from excitation energy U and A,Z of fissioning nucleus. It was found
in [2] that experimental data can be approximated with a good accuracy, if
one take

Fsym(Af ) = exp [−(Af − Asym)2

2σ2
sym

] (30.2)
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and
Fasym(Af ) = exp [− (Af−A2)2

2σ2
2

] + exp [−Af−(A−A2)
2

2σ2
2

]+

+Casym{exp [− (Af−A1)2

2σ2
1

] + exp [−Af−(A−A1)
2

2σ2
2

]},
(30.3)

where Asym = A/2, A1 and A2 are the mean values and σ2
sim, σ2

1 and σ2
2 are

dispertions of the Gaussians respectively. From an analysis of experimental
data [2] the parameter Casym ≈ 0.5 was defined and the next values for
dispersions:

σ2
sym = exp (0.00553U + 2.1386), (30.4)

where U in MeV,
2σ1 = σ2 = 5.6 MeV (30.5)

for A ≤ 235 and

2σ1 = σ2 = 5.6 + 0.096(A− 235) MeV (30.6)

for A > 235 were found.
The weight ω(U,A, Z) was approximated as follows

ω =
ωa − Fasym(Asym)

1 − ωaFsym((A1 + A2)/2)
. (30.7)

The values of ωa for nuclei with 96 ≥ Z ≥ 90 were approximated by

ωa(U) = exp (0.538U − 9.9564) (30.8)

for U ≤ 16.25 MeV,

ωa(U) = exp (0.09197U − 2.7003) (30.9)

for U > 16.25 MeV and

ωa(U) = exp (0.09197U − 1.08808) (30.10)

for z = 89. For nuclei with Z ≤ 88 the authors of [2] constracted the following
approximation:

ωa(U) = exp [0.3(227 − a)] exp {0.09197[U − (Bfis − 7.5)] − 1.08808},
(30.11)

where for A > 227 and U < Bfis − 7.5 the corresponding factors occuring in
exponential functions vanish.
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30.2.2 Charge distribution of fission products.

At given mass of fragment Af the experimental data [1] on the charge Zf

distribution of fragments are well approximated by Gaussian with dispertion
σ2

z = 0.36 and the average < Zf > is described by expression:

< Zf >=
Af

A
Z + ∆Z, (30.12)

when parameter ∆Z = −0.45 for Af ≥ 134, ∆Z = −0.45(Af −A/2)/(134−
A/2) for A− 134 < Af < 134 and ∆Z = 0.45 for A ≤ A− 134.

After sampling of fragment atomic masses numbers and fragment charges,
we have to check that fragment ground state masses do not exceed initial
energy and calculate the maximal fragment kinetic energy

Tmax < U +M(A,Z) −M1(Af1, Zf1) −M2(Af2, Zf2), (30.13)

where U and M(A,Z) are the excitation energy and mass of initial nucleus,
M1(Af1, Zf1), and M2(Af2, Zf2) are masses of the first and second fragment,
respectively.

30.2.3 Kinetic energy distribution of fission products.

We use the empiricaly defined [3] dependence of the average kinetic energy
< Tkin > (in MeV) of fission fragments on the mass and the charge of a
fissioning nucleus:

< Tkin >= 0.1178Z2/A1/3 + 5.8. (30.14)

This energy is distributed differently in cases of symmetric and asymmetric
modes of fission. It follows from the analysis of data [2] that in the asym-
metric mode, the average kinetic energy of fragments is higher than that in
the symmetric one by approximately 12.5 MeV. To approximate the average
numbers of kinetic energies < T sym

kin and < T asym
kin > for the symmetric and

asymmetric modes of fission the authors of [2] suggested empirical expres-
sions:

< T sym
kin >=< Tkin > −12.5Wasim, (30.15)

< T asym
kin >=< Tkin > +12.5Wsim, (30.16)

where
Wsim = ω

∫

Fsim(A)dA/
∫

F (A)dA (30.17)

and
Wasim =

∫

Fasim(A)dA/
∫

F (A)dA, (30.18)
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respectively. In the symmetric fission the experimental data for the ratio of
the average kinetic energy of fission fragments < Tkin(Af) > to this maximum
energy < Tmax

kin > as a function of the mass of a larger fragment Amax can be
approximated by expressions

< Tkin(Af) > / < Tmax
kin >= 1 − k[(Af − Amax)/A]2 (30.19)

for Asim ≤ Af ≤ Amax + 10 and

< Tkin(Af) > / < Tmax
kin >= 1 − k(10/A)2 − 2(10/A)k(Af − Amax − 10)/A

(30.20)
for Af > Amax + 10, where Amax = Asim and k = 5.32 and Amax = 134 and
k = 23.5 for symmetric and asymmetric fission respectively. For both modes
of fission the distribution over the kinetic energy of fragments Tkin is choosen
Gaussian with their own average values < Tkin(Af) >=< T sym

kin (Af) > or
< Tkin(Af) >=< T asym

kin (Af) > and dispersions σ2
kin equal 82 MeV or 102

MeV2 for symmetrical and asymmetrical modes, respectively.

30.2.4 Calculation of the excitation energy of fission

products.

The total excitation energy of fragments Ufrag can be defined according to
equation:

Ufrag = U +M(A,Z) −M1(Af1, Zf1) −M2(Af2, Zf2) − Tkin, (30.21)

where U and M(A,Z) are the excitation energy and mass of initial nucleus,
Tkin is the fragments kinetic energy, M1(Af1, Zf1), and M2(Af2, Zf2) are
masses of the first and second fragment, respectively.

The value of excitation energy of fragment Uf determines the fragment

temperature (T =
√

Uf/af , where af ∼ Af is the parameter of fragment level

density). Assuming that after disintegration fragments have the same tem-
perature as initial nucleus than the total excitation energy will be distributed
between fragments in proportion to their mass numbers one obtains

Uf = Ufrag
Af

A
. (30.22)

30.2.5 Excited fragment momenta.

Assuming that fragment kinetic energy Tf = P 2
f /(2(M(Af , Zf + Uf ) we

are able to calculate the absolute value of fragment c.m. momentum

Pf =
(M1(Af1, Zf1 + Uf1)(M2(Af2, Zf2 + Uf2)

M1(Af1, Zf1) + Uf1 +M2(Af2, Zf2) + Uf2
Tkin. (30.23)
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and its components, assuming fragment isotropical distribution.
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Chapter 31

Fermi break-up model.

31.1 Fermi break-up simulation for light nu-

clei.

The GEANT4 Fermi break-up model is capable to predict final states as
result of an excited nucleus with atomic number A < 17 statistical break-up.

For light nuclei the values of excitation energy per nucleon are often
comparable with nucleon binding energy. Thus a light excited nucleus breaks
into two or more fragments with branching given by available phase space.
To describe a process of nuclear disassembling the so-called Fermi break-up
model is used [1], [2], [3]. This statistical approach was first used by Fermi
[1] to describe the multiple production in high energy nucleon collision.

31.1.1 Allowed channel.

The channel will be allowed for decay, if the total kinetic energy Ekin of all
fragments of the given channel at the moment of break-up is positive. This
energy can be calculated according to equation:

Ekin = U +M(A,Z) − ECoulomb −
n
∑

b=1

(mb + εb), (31.1)

mb and εb are masses and excitation energies of fragments, respectively,
ECoulomb is the Coulomb barrier for a given channel. It is approximated
by

ECoulomb =
3

5

e2

r0
(1 +

V

V0
)−1/3(

Z2

A1/3
−

n
∑

b=1

Z2

A
1/3
b

), (31.2)

where V0 is the volume of the system corresponding to the normal nuclear
matter density and κ = V

V0
is a parameter ( κ = 1 is used).

412



31.1.2 Break-up probability.

The total probability for nucleus to break-up into n componets (nucleons,
deutrons, tritons, alphas etc) in the final state is given by

W (E, n) = (V/Ω)n−1ρn(E), (31.3)

where ρn(E) is the density of a number of final states, V is the volume of
decaying system and Ω = (2πh̄)3 is the normalization volume. The density
ρn(E) can be defined as a product of three factors:

ρn(E) = Mn(E)SnGn. (31.4)

The first one is the phase space factor defined as

Mn =
∫ +∞

−∞
...
∫ +∞

−∞
δ(

n
∑

b=1

pb)δ(E −
n
∑

b=1

√

p2 +m2
b)

n
∏

b=1

d3pb, (31.5)

where pb is fragment b momentum. The second one is the spin factor

Sn =
n
∏

b=1

(2sb + 1), (31.6)

which gives the number of states with different spin orientations. The last
one is the permutation factor

Gn =
k
∏

j=1

1

nj!
, (31.7)

which takes into account identity of components in final state. nj is a number
of components of j- type particles and k is defined by n =

∑k
j=1 nj).

In non-relativistic case (Eq. (31.10) the integration in Eq. (31.5) can be
evaluated analiticaly (see e. g. [5]). The probability for a nucleus with energy
E disassembling into n fragments with masses mb, where b = 1, 2, 3, ..., n
equals

W (Ekin, n) = SnGn(
V

Ω
)n−1(

1
∑n

b=1mb

n
∏

b=1

mb)
3/2 (2π)3(n−1)/2

Γ(3(n− 1)/2)
E

3n/2−5/2
kin ,

(31.8)
where Γ(x) is the gamma function.

31.1.3 Fermi break-up model parameter.

Thus the Fermi break-up model has only one free parameter V is the
volume of decaying system, which can be calculated as follows:

V = 4πR3/3 = 4πr3
0A/3, (31.9)

where r0 = 1.4 fm is used.
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31.1.4 Fragment characteristics.

We take into account the formation of fragments in their ground and low-
lying excited states, which are stable for nucleon emission. However, several
unstable fragments with large lifetimes: 5He, 5Li, 8Be, 9B etc are also con-
sidered. Fragment characteristics Ab, Zb, sb and εb are taken from [6].

31.1.5 MC procedure.

The nucleus break-up is described by the Monte Carlo (MC) procedure.
We randomly (according to probability Eq. (31.8) and condition Eq. (31.1))
select decay channel. Then for given channel we calculate kinematical quan-
tities of each fragment according to n-body phase space distribution:

Mn =
∫ +∞

−∞
...
∫ +∞

−∞
δ(

n
∑

b=1

pb)δ(
n
∑

b=1

p2
b

2mb

− Ekin)
n
∏

b=1

d3pb. (31.10)

The Kopylov’s sampling procedure [7] is applied. The angular distributions
for emitted fragments are considered to be isotropical.
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Chapter 32

Multifragmentation model.

32.1 Multifragmentation process simulation.

The GEANT4 multifragmentation model is capable to predict final states
as result of an highly excited nucleus statistical break-up.

The initial information for calculation of multifragmentation stage con-
sists from the atomic mass number A, charge Z of excited nucleus and its
excitation energy U . At high excitation energies U/A > 3 MeV the multi-
fragmentation mechanism, when nuclear system can eventually breaks down
into fragments, becomes the dominant. Later on the excited primary frag-
ments propagate independently in the mutual Coulomb field and undergo
de-excitation. Detailed description of multifragmentation mechanism and
model can be found in review [1].

32.1.1 Multifragmentation probability.

The probability of a breakup channel b is given by the expression (in the
so-called microcanonical approach [1], [2]):

Wb(U,A, Z) =
1

∑

b exp[Sb(U,A, Z)]
exp[Sb(U,A, Z)], (32.1)

where Sb(U,A, Z) is the entropy of a multifragment state corresponding to the
breakup channel b. The channels {b} can be parametrized by set of fragment
multiplicities NAf ,Zf

for fragment with atomic number Af and charge Zf .
All partitions {b} should satisfy constraints on the total mass and charge:

∑

f

NAf ,Zf
Af = A (32.2)
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and
∑

f

NAf ,Zf
Zf = Z. (32.3)

It is assumed [2] that thermodynamic equilibrium is established in every
channel, which can be characterized by the channel temperature Tb.

The channel temperature Tb is determined by the equation constraining
the average energy Eb(Tb, V ) associated with partition b:

Eb(Tb, V ) = U + Eground = U +M(A,Z), (32.4)

where V is the system volume, Eground is the ground state (at Tb = 0) energy
of system and M(A,Z) is the mass of nucleus.

According to the conventional thermodynamical formulae the average en-
ergy of a partitition b is expressed through the system free energy Fb as
follows

Eb(Tb, V ) = Fb(Tb, V ) + TbSb(Tb, V ). (32.5)

Thus, if free energy Fb of a partition b is known, we can find the channel
temperature Tb from Eqs. (32.4) and (32.5), then the entropy Sb = −dFb/dTb

and hence, decay probability Wb defined by Eq. (32.1) can be calculated.
Calculation of the free energy is based on the use of the liquid-drop de-

scription of individual fragments [2]. The free energy of a partition b can be
splitted into several terms:

Fb(Tb, V ) =
∑

f

Ff(Tb, V ) + EC(V ), (32.6)

where Ff (Tb, V ) is the average energy of an individual fragment including
the volume

F V
f = [−E0 − T 2

b /ε(Af)]Af , (32.7)

surface

F Sur
f = β0[(T

2
c − T 2

b )/(T 2
c + T 2

b )]5/4A
2/3
f = β(Tb)A

2/3
f , (32.8)

symmetry
F Sim

f = γ(Af − 2Zf)
2/Af , (32.9)

Coulomb

FC
f =

3

5

Z2
fe

2

r0A
1/3
f

[1 − (1 + κC)−1/3] (32.10)

and translational

F t
f = −Tb ln (gfVf/λ

3
Tb

) + Tb ln (NAf ,Zf
!)/NAf ,Zf

(32.11)
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terms and the last term

EC(V ) =
3

5

Z2e2

R
(32.12)

is the Coulomb energy of the uniformly charged sphere with charge Ze and
the radius R = (3V/4π)1/3 = r0A

1/3(1 + κC)1/3, where κC = 2 [2].
Parameters E0 = 16 MeV, β0 = 18 MeV, γ = 25 MeV are the coefficients

of the Bethe-Weizsacker mass formula at Tb = 0. gf = (2Sf + 1)(2If + 1)
is a spin Sf and isospin If degeneracy factor for fragment ( fragments with
Af > 1 are treated as the Boltzmann particles), λTb

= (2πh2/mNTb)
1/2 is

the thermal wavelength, mN is the nucleon mass, r0 = 1.17 fm, Tc = 18
MeV is the critical temperature, which corresponds to the liquid-gas phase
transition. ε(Af ) = ε0[1 + 3/(Af − 1)] is the inverse level density of the
mass Af fragment and ε0 = 16 MeV is considered as a variable model
parameter, whose value depends on the fraction of energy transferred to the
internal degrees of freedom of fragments [2]. The free volume Vf = κV =
κ4

3
πr4

0A available to the translational motion of fragment, where κ ≈ 1 and
its dependence on the multiplicity of fragments was taken from [2]:

κ = [1 +
1.44

r0A1/3
(M1/3 − 1)]3 − 1. (32.13)

For M = 1 κ = 0.
The light fragments with Af < 4, which have no excited states, are con-

sidered as elementary particles characterized by the empirical masses Mf ,
radii Rf , binding energies Bf , spin degeneracy factors gf of ground states.
They contribute to the translation free energy and Coulomb energy.

32.1.2 Direct simulation of the low multiplicity mul-

tifragment disintegration.

At comparatively low excitation energy (temperature) system will disin-
tegrate into a small number of fragments M ≤ 4 and number of channel is
not huge. For such situation a direct (microcanonical) sorting of all decay
channels can be performed. Then, using Eq. (32.1), the average multiplicity
value < M > can be found. To check that we really have the situation with
the low excitation energy, the obtained value of < M > is examined to obey
the inequality < M >≤ M0, where M0 = 3.3 and M0 = 2.6 for A ∼ 100
and for A ∼ 200, respectively [2]. If the discussed inequality is fulfilled, then
the set of channels under consideration is belived to be able for a correct
description of the break up. Then using calculated according Eq. (32.1)
probabilities we can randomly select a specific channel with given values of
Af and Zf .
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32.1.3 Fragment multiplicity distribution.

The individual fragment multiplicities NAf ,Zf
in the so-called macrocanon-

ical ensemble [1] are distributed according to the Poisson distribution:

P (NAf ,Zf
) = exp (−ωAf ,Zf

)
ω

NAf ,Zf

Af ,Zf

NAf ,Zf
!

(32.14)

with mean value < NAf ,Zf
>= ωAf ,Zf

defined as

< NAf ,Zf
>= gfA

3/2
f

Vf

λ3
Tb

exp [
1

Tb
(Ff (Tb, V ) − F t

f (Tb, V ) − µAf − νZf )],

(32.15)
where µ and ν are chemical potentials. The chemical potential are found by
substituting Eq. (32.15) into the system of constraints:

∑

f

< NAf ,Zf
> Af = A (32.16)

and
∑

f

< NAf ,Zf
> Zf = Z (32.17)

and solving it by iteration.

32.1.4 Atomic number distribution of fragments.

Fragment atomic numbers Af > 1 are also distributed according to the
Poisson distribution [1] (see Eq. (32.14)) with mean value < NAf

> defined
as

< NAf
>= A

3/2
f

Vf

λ3
Tb

exp [
1

Tb

(Ff(Tb, V ) − F t
f(Tf , V ) − µAf − ν < Zf >)],

(32.18)
where calculating the internal free energy Ff(Tb, V ) − F t

f(Tb, V ) one has to
substitute Zf →< Zf >. The average charge < Zf > for fragment having
atomic number Af is given by

< Zf(Af) >=
(4γ + ν)Af

8γ + 2[1 − (1 + κ)−1/3]A
2/3
f

. (32.19)
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32.1.5 Charge distribution of fragments.

At given mass of fragment Af > 1 the charge Zf distribution of fragments
are described by Gaussian

P (Zf(Af)) ∼ exp [−(Zf(Af )− < Zf(Af) >)2

2(σZf
(Af))2

] (32.20)

with dispertion

σZf (Af ) =

√

√

√

√

AfTb

8γ + 2[1 − (1 + κ)−1/3]A
2/3
f

≈
√

AfTb

8γ
. (32.21)

and the average charge < Zf(Af ) > defined by Eq. (32.17).

32.1.6 Kinetic energy distribution of fragments.

It is assumed [2] that at the instant of the nucleus break-up the kinetic
energy of the fragment T f

kin in the rest of nucleus obeys the Boltzmann dis-
tribution at given temperature Tb:

dP (T f
kin)

dT f
kin

∼
√

T f
kin exp (−T f

kin/Tb). (32.22)

Under assumption of thermodynamic equilibrium the fragment have isotropic
velocities distribution in the rest frame of nucleus. The total kinetic energy
of fragments should be equal 3

2
MTb, where M is fragment multiplicity, and

the total fragment momentum should be equal zero. These conditions are
fullfilled by choosing properly the momenta of two last fragments.

The initial conditions for the divergence of the fragment system are de-
termined by random selection of fragment coordinates distributed with equal
probabilities over the break-up volume Vf = κV . It can be a sphere or pro-
longated ellipsoid. Then Newton’s equations of motion are solved for all
fragments in the self-consistent time-dependent Coulomb field [2]. Thus the
asymptotic energies of fragments determined as result of this procedure differ
from the initial values by the Coulomb repulsion energy.

32.1.7 Calculation of the fragment excitation energies.

The temparature Tb determines the average excitation energy of each frag-
ment:

Uf (Tb) = Ef (Tb) − Ef (0) =
T 2

b

ε0
Af + [β(Tb) − Tb

dβ(Tb)

dTb
− β0]A

2/3
f , (32.23)
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where Ef (Tb) is the average fragment energy at given temperature Tb and
β(Tb) is defined in Eq. (32.8). There is no excitation for fragment with
Af < 4, for 4He excitation energy was taken as U4He = 4T 2

b /εo.
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Chapter 33

Low Energy Neutron
Interactions

33.1 Introduction

The neutron transport class library described here simulates the interactions
of neutrons with kinetic energies from thermal energies up to O(20 MeV).
The upper limit is set by the comprehensive evaluated neutron scattering
data libraries that the simulation is based on. The result is a set of sec-
ondary particles that can be passed on to the tracking sub-system for further
geometric tracking within Geant4.

The interactions of neutrons at low energies are split into four parts in
analogy to the other hadronic processes in Geant4. We consider radiative
capture, elastic scattering, fission, and inelastic scattering as separate models.
These models comply with the interface for use with the Geant4 hadronic
processes which enables their transparent use within the Geant4 tool-kit
together with all other Geant4 compliant hadronic shower models.

33.2 Physics and Verification

33.2.1 Inclusive Cross-sections

All cross-section data are taken from the ENDF/B-VI[1] evaluated data li-
brary.

All inclusive cross-sections are treated as point-wise cross-sections for
reasons of performance. For this purpose, the data from the evaluated data
library have been processed, to explicitly include all neutron nuclear reso-
nances in the form of point-like cross-sections rather than in the form of
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parametrisations. The resulting data have been transformed into a linearly
interpolable format, such that the error due to linear interpolation between
adjacent data points is smaller than a few percent.

The inclusive cross-sections comply with the cross-sections data set in-
terface of the Geant4 hadronic design. They are, when registered with the
tool-kit at initialisation, used to select the basic process. In the case of fis-
sion and inelastic scattering, point-wise semi-inclusive cross-sections are also
used in order to decide on the active channel for an individual interaction.
As an example, in the case of fission this could be first, second, third, or
forth chance fission.

33.2.2 Elastic Scattering

The final state of elastic scattering is described by sampling the differen-
tial scattering cross-sections dσ

dΩ
. Two representations are supported for the

normalised differential cross-section for elastic scattering. The first is a tab-
ulation of the differential cross-section, as a function of the cosine of the
scattering angle θ and the kinetic energy E of the incoming neutron.

dσ

dΩ
=

dσ

dΩ
(cos θ, E)

The tabulations used are normalised by σ/(2π) so the integral of the differ-
ential cross-sections over the scattering angle yields unity.

In the second representation, the normalised cross-section are represented
as a series of legendre polynomials Pl(cos θ), and the legendre coefficients al

are tabulated as a function of the incoming energy of the neutron.

2π

σ(E)

dσ

dΩ
(cos θ, E) =

nl
∑

l=0

2l + 1

2
al(E)Pl(cos θ)

Describing the details of the sampling procedures is outside the scope of
this paper.

An example of the result we show in figure 33.1 for the elastic scattering
of 15 MeV neutrons off Uranium a comparison of the simulated angular
distribution of the scattered neutrons with evaluated data. The points are
the evaluated data, the histogram is the Monte Carlo prediction.

In order to provide full test-coverage for the algorithms, similar tests
have been performed for 72Ge, 126Sn, 238U, 4He, and 27Al for a set of neutron
kinetic energies. The agreement is very good for all values of scattering angle
and neutron energy investigated.

422



Figure 33.1: Comparison of data and Monte Carlo for the angular distribu-
tion of 15 MeV neutrons scattered elastically off Uranium (238U). The points
are evaluated data, and the histogram is the Monte Carlo prediction. The
lower plot excludes the forward peak, to better show the Frenel structure of
the angular distribution of the scattered neutron.
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33.2.3 Radiative Capture

The final state of radiative capture is described by either photon multiplic-
ities, or photon production cross-sections, and the discrete and continuous
contributions to the photon energy spectra, along with the angular distribu-
tions of the emitted photons.

For the description of the photon multiplicity there are two supported
data representations. It can either be tabulated as a function of the energy
of the incoming neutron for each discrete photon as well as the eventual
continuum contribution, or the full transition probability array is known, and
used to determine the photon yields. If photon production cross-sections are
used, only a tabulated form is supported.

The photon energies Eγ are associated to the multiplicities or the cross-
sections for all discrete photon emissions. For the continuum contribution,
the normalised emission probability f is broken down into a weighted sum
of normalised distributions g.

f (E → Eγ) =
∑

i

pi(E)gi(E → Eγ)

The weights pi are tabulated as a function of the energy E of the incoming
neutron. For each neutron energy, the distributions g are tabulated as a
function of the photon energy. As in the ENDF/B-VI data formats[1], several
interpolation laws are used to minimise the amount of data, and optimise the
descriptive power. All data are derived from evaluated data libraries.

The techniques used to describe and sample the angular distributions are
identical to the case of elastic scattering, with the difference that there is
either a tabulation or a set of legendre coefficients for each photon energy
and continuum distribution.

As an example of the results is shown in figure33.2 the energy distribution
of the emitted photons for the radiative capture of 15 MeV neutrons on
Uranium (238U). Similar comparisons for photon yields, energy and angular
distributions have been performed for capture on 238U, 235U, 23Na, and 14N
for a set of incoming neutron energies. In all cases investigated the agreement
between evaluated data and Monte Carlo is very good.

33.2.4 Fission

For neutron induced fission, we take first chance, second chance, third chance
and forth chance fission into account.

Neutron yields are tabulated as a function of both the incoming and out-
going neutron energy. The neutron angular distributions are either tabulated,
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or represented in terms of an expansion in legendre polynomials, similar to
the angular distributions for neutron elastic scattering. In case no data are
available on the angular distribution, isotropic emission in the centre of mass
system of the collision is assumed.

There are six different possibilities implemented to represent the neu-

Figure 33.2: Comparison of data and Monte Carlo for photon energy distri-
butions for radiative capture of 15 MeV neutrons on Uranium (238U). The
points are evaluated data, the histogram is the Monte Carlo prediction.
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tron energy distributions. The energy distribution of the fission neutrons
f(E → E ′) can be tabulated as a normalised function of the incoming and
outgoing neutron energy, again using the ENDF/B-VI interpolation schemes
to minimise data volume and maximise precision.

The energy distribution can also be represented as a general evaporation
spectrum,

f(E → E ′) = f (E ′/Θ(E)) .

Here E is the energy of the incoming neutron, E ′ is the energy of a fission
neutron, and Θ(E) is effective temperature used to characterise the sec-
ondary neutron energy distribution. Both the effective temperature and the
functional behaviour of the energy distribution are taken from tabulations.

Alternatively energy distribution can be represented as a Maxwell spec-
trum,

f(E → E ′) ∝
√
E ′eE′/Θ(E),

or a evaporation spectrum

f(E → E ′) ∝ E ′eE′/Θ(E).

In both these cases, the temperature is tabulated as a function of the incom-
ing neutron energy.

The last two options are the energy dependent Watt spectrum, and the
Madland Nix spectrum. For the energy dependent Watt spectrum, the energy
distribution is represented as

f(E → E ′) ∝ e−E′/a(E) sinh
√

b(E)E ′.

Here both the parameters a, and b are used from tabulation as function of
the incoming neutron energy. In the case of the Madland Nix spectrum, the
energy distribution is described as

f(E → E ′) =
1

2
[g(E ′, < Kl >) + g(E ′, < Kh >)] .

Here

g(E ′, < K >) =
1

3
√
< K > Θ

[

u
3/2
2 E1(u2) − u

3/2
1 E1(u1) + γ(3/2, u2) − γ(3/2, u1)

]

,

u1(E
′, < K >) =

(
√
E ′ −

√
< K >)2

Θ
, and

u2(E
′, < K >) =

(
√
E ′ +

√
< K >)2

Θ
.
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Here Kl is the kinetic energy of light fragments and Kh the kinetic energy of
heavy fragments, E1(x) is the exponential integral, and γ(x) is the incomplete
gamma function. The mean kinetic energies for light and heavy fragments
are assumed to be energy independent. The temperature Θ is tabulated as
a function of the kinetic energy of the incoming neutron.

Fission photons are describes in analogy to capture photons, where evalu-
ated data are available. The measured nuclear excitation levels and transition
probabilities are used otherwise, if available.

As an example of the results is shown in figure33.3 the energy distribu-
tion of the fission neutrons in third chance fission of 15 MeV neutrons on
Uranium (238U). This distribution contains two evaporation spectra and one
Watt spectrum. Similar comparisons for neutron yields, energy and angular
distributions, and well as fission photon yields, energy and angular distri-
butions have been performed for 238U, 235U, 234U, and 241Am for a set of
incoming neutron energies. In all cases the agreement between evaluated
data and Monte Carlo is very good.

33.2.5 Inelastic Scattering

For inelastic scattering, the currently supported final states are (nA→) nγs
(discrete and continuum), np, nd, nt, n3He, nα, nd2α, nt2α, n2p, n2α, npα,
n3α, 2n, 2np, 2nd, 2nα, 2n2α, nX, 3n, 3np, 3nα, 4n, p, pd, pα, 2p d, dα,
d2α, dt, t, t2α, 3He, α, 2α, and 3α.

The photon distributions are again described as in the case of radiative
capture.

The possibility to describe the angular and energy distributions of the fi-
nal state particles as in the case of fission is maintained, except that normally
only the arbitrary tabulation of secondary energies is applicable.

In addition, we support the possibility to describe the energy angular
correlations explicitly, in analogy with the ENDF/B-VI data formats. In
this case, the production cross-section for reaction product n can be written
as

σn(E,E ′, cos(θ)) = σ(E)Yn(E)p(E,E ′, cos(θ)).

Here Yn(E) is the product multiplicity, σ(E) is the inelastic cross-section,
and p(E,E ′, cos(θ)) is the distribution probability. Azimuthal symmetry is
assumed.

The representations for the distribution probability supported are isotro-
pic emission, discrete two-body kinematics, N-body phase-space distribution,
continuum energy-angle distributions, and continuum angle-energy distribu-
tions in the laboratory system.
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The description of isotropic emission and discrete two-body kinematics is
possible without further information. In the case of N-body phase-space dis-
tribution, tabulated values for the number of particles being treated by the
law, and the total mass of these particles are used. For the continuum energy-
angle distributions, several options for representing the angular dependence
are available. Apart from the already introduced methods of expansion in
terms of legendre polynomials, and tabulation (here in both the incoming
neutron energy, and the secondary energy), the Kalbach-Mann systematic is
available. In the case of the continuum angle-energy distributions in the lab-
oratory system, only the tabulated form in incoming neutron energy, product
energy, and product angle is implemented.

First comparisons for product yields, energy and angular distributions
have been performed for a set of incoming neutron energies, but full test cov-

Figure 33.3: Comparison of data and Monte Carlo for fission neutron energy
distributions for induced fission by 15 MeV neutrons on Uranium (238U).
The curve represents evaluated data and the histogram is the Monte Carlo
prediction.
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erage is still to be achieved. In all cases currently investigated, the agreement
between evaluated data and Monte Carlo is very good.

33.3 Summary

By the way of abstraction and code reuse we minimised the amount of code
to be written and maintained. The concept of container-sampling lead to
abstraction and encapsulation of data representation and the corresponding
random number generators. The Object Oriented design allows for easy
extension of the cross-section base of the system, and the ENDF-B VI data
evaluations have already been supplemented with evaluated data on nuclear
excitation levels, thus improving the energy spectra of de-excitation photons.
Other established data evaluations have been investigated, and extensions
based on the JENDL[2], CENDL[4], and Brond[5] data libraries are foreseen
for next year.
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Chapter 34

Radioactive Decay

34.1 The Radioactive Decay Module

G4RadioactiveDecay and associated classes are used to simulate the decay of
radioactive nuclei by α, β+, and β− emission and by electron capture (EC).
The simulation model is empirical and data-driven, and uses the Evaluated
Nuclear Structure Data File (ENSDF) [1] for information on:

· nuclear half-lives,· nuclear level structure for the parent or daughter nuclide,· decay branching ratios, and· the energy of the decay process.

If the daughter of a nuclear decay is an excited isomer, its prompt nuclear
de-excitation is treated using the G4PhotoEvaporation class [2].

34.2 Sampling

Sampling of the β-spectrum, which includes the coordinated energies and
momenta of the β±, ν, or ν̄ and residual nucleus, is performed either from
histogrammed data, or through a three-body decay algorithm. In the latter
case, the effect of the Coulomb barrier on the probability of β±-emission can
also be taken into account using the Fermi function:

F (E0) =
γ

1 − e−γ











Z2(E0 + 1)2

1372
+
E2

0 + 2E0

4











√

1− Z2

1372
−1

. (34.1)
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Here E0 is the energy of the β-particle given as a fraction of the end-point
energy, Z is the atomic number of the nucleus, and γ is given by the expres-
sion:

γ =
2πZ

137

1 + E0
√

E2
0 + 2E0

. (34.2)

Due to the level of imprecision of the rest-mass energy of the nuclei gen-
erated by G4IonTable :: GetNucleusMass, the mass of the parent nucleus
is modified to a minor extent just before performing the two- or three-body
decay so that the Q for the transition process equals that identified in the
ENSDF data.

34.2.1 Biasing Methods

By default, sampling of the times of radioactive decay and branching ratios is
done according to standard, analogue Monte Carlo modeling. The user may
switch on one or more of the following variance reduction schemes, which can
provide significant improvement in the modelling efficiency:

1. The decays can be biased to occur more frequently at certain times,
for example, corresponding to times when measurements are taken in a real
experiment. The statistical weights of the daughter nuclides are reduced
according to the probability of survival to the time of the event, t, which is
determined from the decay rate. The decay rate of the nth nuclide in a decay
chain is given by the recursive formulae:

Rn(t) =
n−1
∑

i=1

An:if(t, τi) + An:nf(t, τn) (34.3)

where:

An:i =
τi

τi − τn
An:i ∀i < n (34.4)

An:n = −
n−1
∑

i=1

τn
τi − τn

An:i − yn (34.5)

f(t, τi) =
e
− t

τi

τi

t
∫

− inf

F (t′)e
t′

τi dt′. (34.6)

The values τi are the mean life-times for the nuclei, yi is the yield of the
ith nucleus, and F (t) is a function identifying the time profile of the source.
The above expression for decay rate is simplified, since it assumes that the
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ith nucleus undergoes 100% of the decays to the (i + 1)th nucleus. Similar
expressions which allow for branching and merging of different decay chains
can be found in Ref. [3].

A consequence of the form of equations 34.4 and 34.6 is that the user may
provide a source time profile so that each decay produced as a result of a
simulated source particle incident at time t = 0 is convolved over the source
time profile to derive the actual decay rate for that source function.

This form of variance reduction is only appropriate if the radionuclei can
be considered to be at rest with respect to the geometry when decay occurs.

2. For a given decay mode (α, β+ + EC, or β−) the branching ratios to
the daughter nuclide can be sampled with equal probability, so that some
low probability branches which may have a disproportionately greater effect
on the measurement are sampled with increased probability.

3. Each parent nuclide can be split into a user-defined number of nuclides
(of proportionally lower statistical weight) prior to treating decay in order t
o increase the sampling of the effects of the daughter products.

34.3 Status of this document

00.00.00 created by ?
21.11.03 bibliography added, minor re-wording by D.H. Wright
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