APPENDIX

Figures and Tables of Useful

Information

Note: Permissible rope dlameters are for new rope used under favorable conditions. As rope ages or deteriorates, increase the factor of safety progressively to 8 when selecting rope size. Lead line pull is not affected by age or condition.

Figure A-1. Simple block-and-tackle rigging for manila rope (FS 3)

Table A-1. Simple block and tackle rigging for plow steel wire rope (FS 6)

Load to be Lifted (tons)	Smallest Permissible Rope Diameter (Inches)/ Lead Line Pull (pounds)	Total Number of Sheaves in Blocks				
		2 (2 Single Blocks)	$\begin{aligned} & 3 \text { (1-Single } \\ & \text { 1-Double) } \end{aligned}$	$\begin{gathered} 4 \text { (2-Double } \\ \text { Blocks) } \end{gathered}$	$\begin{aligned} & 5 \text { (1-Double } \\ & \text { 1-Triple) } \end{aligned}$	6 (2-Triple Blocks)
1	Rope	3/8	3/8	3/8	3/8	3/8
	Pull	1,000	720	560	460	400
2	Rope	1/2	3/8	3/8	3/8	3/8
	Pull	2,100	1,400	1,100	920	800
4	Rope	5/8	1/2	1/2	3/8	3/8
	Pull	4,200	2,900	2,200	1,800	1,600
6	Rope	3/4	5/8	5/8	1/2	1/2
	Pull	6,200	4,300	3,400	2,800	2,400
8	Rope	7/8	3/4	5/8	5/8	5/8
	Pull	8,300	5,800	4,500	3,700	3,200
10	Rope	1	7/8	3/4	5/8	5/8
	Pull	10,400	7,200	5,600	4,600	4,000
15	Rope	1 1/8	1	7/8	3/4	3/4
	Pull	15,600	10,800	8,400	6,900	6,000
20	Rope	$11 / 2$	$11 / 8$	1	7/8	7/8
	Pull	20,800	14,400	11,200	9,200	8,000

Table A-2. Recommended sizes of tackle blocks

Wire Rope		Manila Rope	
Rope Diameter (inches)	Outside Diameter of Sheave (inchee)	Rope Dlameter (inches)	Length of Shell (inches)
$3 / 8$	$6-8$	$1 / 2$	4
$1 / 2$	$8-10$	$5 / 8$	6
$5 / 8$	$10-12$	$3 / 4$	$6-7$
$3 / 4$	$12-16$	$7 / 8$	$7-8$
$7 / 8$	$14-18$	1	$8-10$
1	$14-20$	$11 / 8$	$8-10$
		$11 / 4$	$10-12$
		$11 / 2$	$12-14$
		$13 / 4$	$14-16$
Note: Largest diameter of sheave for a given size of rope is proferred, when avaliable, except that for 6×37 wire rope, the smaller diamoter of sheave is suitable.			

Table A-3. Bearing capacity of soils

General Description	Condition	Safe Allowable Pressure (PSI)
Fine-grained soils: clays, silts, very fine sands, or mixtures of these containing few coarse particles of sand or gravel. Classification: $\mathrm{MH}, \mathrm{CH}, \mathrm{OH}, \mathrm{ML}$, CL , and OL .	Soft, unconsolidated, having high moisture content (mud)	1,000
	Stiff, partly consolidated, medium moisture content	4,000
	Hard, well consolidated, low moisture content (slightly damp to dry)	8,000
Sands and well-graded sandy soils, containing some silt and clay. Classification: SW, SC, SP, and SF.	Loose, not confined	3,000
	Loose, confined	5,000
	Compact	10,000
	Loose, not confined	4,000
Gravel and well-graded gravelly soils containing some sand, silt and clay. Classification: GW, GC, and GP.	Loose, confined	6,000
	Compact	12,000
	Cemented sand and gravel	16,000
Rock	Poor quality rock, soft and fractured; also hardpan	10,000
	Good quality; hard and solid	20,000

Figure A-2. Safe loads on screw-pin shackles

A	Stress (pounds) in Guy for W = 1,000 Pounds				
	$B=1 / 2 L$	$B=1 / 2 L$	$B=L$	$B=11 / 2 L$	$B=2 \mathrm{~L}$
0	0	0	0	0	0
1/10L	230	180	150	130	120
1/8L	300	220	190	160	150
1/6L	400	300	260	220	200
1/4L	630	480	410	350	320
1/3L	890	680	580	480	440
Stress (pounds) in Spar for W=1,000 Pounds					
0	1,000	1,000	1,000	1,000	1,000
1/10L	1,210	1,140	1,100	1,070	1,050
1/8L	1,260	1,180	1,140	1,090	1,070
1/6L	1,350	1,240	1,180	1,130	1,100
1/4L	1,550	1,380	1,290	1,210	1,160
1/3L	1,770	1,530	1,420	1,300	1,240
W = Weight to be lifted plus $1 / 2$ the weight of the pole $\mathrm{A}=$ Drift B = Horizontal distance from the base of the pole to the guy L = Length of the gin pole					

Figure A-3. Stresses in guys and spars of gin poles

Figures and Tables of Useful Information A-5

A	Stress (pounds) in Guy for $\mathrm{F}=1,000$ Pounds				
	$B=1 / 2 \mathrm{~L}$	$\mathrm{B}=3 / 4 \mathrm{~L}$	$B=L$	$B=11 / 2 L$	$B=2 L$
0	2,240	1,670	1,420	1,200	1,120
0.50	2,000	1,490	1,260	1,080	1,000
0.667	1,860	1,390	1,180	1,000	930
1.00	1,570	1,180	1,000	850	790
1.33	1,340	1,000	850	720	670
2.00	1,000	750	630	540	500
Stress (pounds) in Mast for $F=\mathbf{1 , 0 0 0}$ Pounds					
0	2,000	1,330	1,000	670	500
0.50	2,240	1,640	1,340	1,040	900
0.667	2,220	1,660	1,390	1,110	970
1.00	2,120	1,650	1,410	1,180	1,060
1.33	2,000	1,600	1,400	1,200	1,100
2.00	1,800	1,490	1,340	1,190	1,120
F = Total force on boom lift falls $A=$ Vertical distance for each unit of horizontal distance $B=$ Horizontal distance from the base of the mast to the guy $\mathrm{L}=$ Length of the mast					

Figure A-4. Stresses in guys and mast of guy derrick

