Chapter 7
 Bridging
 RIVER CROSSING

Operations
River crossing operations may be hasty, deliberate, or retrograde. Deliberate crossings are always conducted in three phases: assault, rafting (Table 7-1), and bridging.

Table 7-1. Planning factors for rafting operations

RIVER WIDIH		
M (FI)	MINUTES PER ROUND IRIP	MAXIMUM MUMBER OF RAFTS
$75(246)$	7	1
$100(328)$	8	1
$125(410)$	9	1
$150(492)$	10	2
$225(738)$	12	2
$300(984)$	16	3.5
$450(1.476)$	22	5.7

NOTES: 1. This table provides apprximate crossing times for LTR, Ribbon, M4T6. and Class 60 rafts in currents of 0.5MPS ($0-1.5 \mathrm{FPS}$).
2. All round trip times include the time required to load and unload the rafts.
3. Increase crossing times by 50 percent at night.
4. Interpolate crossing times as necessary.

Table 7-2. Assault crossing equipment

EQUIPMENT	allocation	transportation	CAPABILITIES	ASSY/PROPUISION	REMARKS/LIMITAIIONS
Pneumatic 15-man assault boat	J series TOE provides: - 18/Div Eng Bn - 27/Corps Float Bridge Co - $9 /$ Sep Bde Eng Co	- 20 deflated boats per $2^{1 / 2}$-ton truck - Inflated boat is an 8 -man carry - Deflated boat weighs 250 lb.	Carties - 12 Inf and 3 Eng w/paddies or - 12 Int and 2 Eng w/OBM or - 3.375 lb of equipment	- Inflation time is 5-10 minutes with pumps - Paddled speed is 15 MPS (5 FPS) - Speed with OBM is 4 6MPS (15 fPS)	- Max current velocity w/paddle - 15 MPS (5 FPS) w/OBM-3.5MPS (11FPS) - 3 pumps. 11 paddles per boat - OBMs must be requested separately
$\begin{gathered} \text { Pneumatic } \\ 3 \text {-man } \\ \text { reconnaissance } \\ \text { boat } \end{gathered}$	J series TOE provides - 3/Cbt Eng Co - 10 Corps float Bradge Co (L Series) - 18: Div Ribbon Co	- Carried by back-pack(1-man carry) - Boat and backpack weigh 37 lb	Carries - 3 soldiers with equipment or - 600 lb of equipment	- Intlation time is 5 minutes with a pump - Paddie speed is 1 OMPS (3 FPS)	- Max current velocity 1.5 MPS (5 FPS) - 1 pump. 3 paddles per boat - No provisions for OBMs
Armored personnel cartier (APC)	J series TOE provides: - 12 /Eng Co of Div Eng Bn - 1/Int Co (Mech) (BIFV) - 14/Inf Co (Mech) (M113)	- Self-propelied - Class 13 vehicle	Carries - 12 soldiers with equipment	- Preparation time for swimming is 10 minutes - Track propulsion in the water - Swim speed is 1 GMPS (5.3FPS) - Can ford up to $15 \mathrm{M}(5 \mathrm{ft})$	

Table 7-2. Assault crossing equipment (continued)

EQUIPMENT	ALLOCATION	IRANSPORTATION	CAPABILITIES	ASSY/PROPUISION	REMARKS/LIMITAIIONS
Bradley infantry fighting vehicle (BIFV)	J series TOE provides: - 13/Inf Co(Mech) (BIFV) - 12/Cav Troop of an ACR - 19/Car Irood of an Div Cav Sqdn	- Self-propelied - Class 25 vehicle	Carries - 10 soldiers with equipment	- Preparation time for swimming is 18 minutes	
Armored vehicle launched bridge (AVLB)	Engr Bn of Heavy Div: - 16 launchers - 16 bridges Engr Co of Arm/Inf (M) Sep Bde: - 3 launchers - 3 bridges	Bridge carried on launcher (modified) M48A5 or M60A1 chassis) Bridge weighs 151 201 crane transters to launcher in 20-30 minutes	Class 60 vehicle One vehicle crossing at a time AVLB (19.2M.63 tt) spans: - 18.3 (60 ft) using prepared abutments or - 17M (57 ft) using unprepared abutments	launched in 2.5 min by buttoned up 2 -man crew Retrieved from either end: one soldier exposed. guide and connect Allow 9 OM (3 ft) bearing for an unprepared abutment: $0.5 \mathrm{M}(1.5 \mathrm{tt})$ for a prepared abur. ment	m48A2 requires gas while M60 and M48A5 are diesel Scissors launch requires 10M (32.8 tt) overhead clearance Max launch slope - Uphill 2 7M (9 fi) - Downhill 2 7M (9 fi) - Sideslope 0 3m (i ft) AVIB fords 1.2 m (4 ft)

Bridging/Rafting

Boats. The current standard is the Bridge Erection Boat Shallow Draft (BEB-SD).
Also still in use is the older 27 -foot Bridge Erection Boat (BEB). Refer to TM 5-210 for additional information.

Table 7-3. Bridge erection boats

EQUIPMENT	Allocation	IRANSPORTATION	CAPABILITIES	ASSY/PROPULSION	REMARKS/LIMITATIONS
Bridge erection boat shallow draft (BEB-SD)	J series TOE provides - 12/Dir Ribbon Company - 14/Corps Ribbon Company - 10 Corps Float Bradge Company (M4I6)	Carried by: - One 5-ton bridge truck w/ cradle or - One medium lift helicopter Boal weighs 8.800 lb	Carries a 3-man crew and: - 12 soldiers with equipment or -4.400 lb of equipment	- Launch time from the cradle is 5 minutes - Maximum speed is 25 knots	Draft - For normal operation 22 in - When tully loaded26 in - For launch trom the cradle-48 in
27 foot bridge erection boat (BEB)	Same as above Note: Units will nor mally have esther the BEB-SD or the $27-\mathrm{ft}$ BEB	Carried by: - One 5 -ton bridge truck w/cradle or - One 2: 2 -ton truck w/pole trailer or - One medium lift helicoptet when procedures are certitied	Carries a 3 -man crew and - 9 soldiers with equipment or -3.000 lb of equipment	- Launch time from the cradle is 5 minutes - Launch time from the 2% ton truck when using a crane or wrecker is 30 minutes - Maximum speed is 15 knots	Draft is 40 in

Improved Float Bridge (Ribbon). The Ribbon major components are the interior bay which weighs 12,000 pounds (5,443 kilograms) and the ramp bay which weighs 11,700 pounds (5,307 kilograms). Refer to TM 5-5420-209-12 for additional information.

Allocation.

Table 7-4. Allocation of Ribbon bridge (J series TOE)

	DIVISIONAL RIBBON COMPANY	CORPS RIBBON COMPANY
Number of bridge platoons		
Number of interior bays	2	2
Number of ramp bays	20	30
Number of bridge erection boats	8	12
Longest bridge that can be constructed m ($f t)$	12	215

Methods of launch from the 5-ton bridge truck.

	FREE LAUNCH	CONTROLLED LAUNCH	HIGH BANK LAUNCH
Minimum depth of water required CM (in)	Ramp bay 112 (44) Interior 92,36) bay (Note l)	$\begin{aligned} & 76(30) \\ & \text { (Note } 2) \end{aligned}$	$\begin{aligned} & 76 \text { (30) } \\ & \text { (Note } 2 \text {) } \end{aligned}$
Bank height restrictions M (ft)	$0.15(0.5)$	0	$\begin{aligned} & 1.5 \cdot 8.5 \\ & (5 \cdot 28) \end{aligned}$
Bank slope restrictions	$0 \cdot 30^{\circ}$	$0 \cdot 0{ }^{0}$	Level ground unless the front of the truck is restrained

NOTE:

1. The launch is based upon a 10 percent slope with the transporter backed into the water The required water depth for a 30 percent slope with a 5 foot bank height is 183CM (72 in). Interpolate between these values when needed.
2. This is recommended water depth launch could technically be conducted in $43 \mathrm{CM}(17 \mathrm{in})$ of water.

Table 7-6. Ribbon raft design

CAPABILIIIES	ASSEMBLY IIME	$\begin{aligned} & \text { LOAD } \\ & \text { SPACE } \end{aligned}$	CURRENT VELOCITY (MPS/FPS) AND LOAD CLASS								
Raft	(Increase by 50% at night)	M (FT)		0.9 0.3	12 4	15 5	175 6	2 7	25 8	27 9	3 10
$\begin{aligned} & -3 \text { bay } \\ & \text { (2 ramps/1 interior) } \end{aligned}$	8 min	$\begin{aligned} & 6.7 \\ & (22) \end{aligned}$	l	45 45	45 45	$\begin{aligned} & 45 \\ & 35 \end{aligned}$	$\begin{aligned} & 40 \\ & 25 \end{aligned}$	$\begin{aligned} & 40 \\ & 15 \end{aligned}$	35 10	30 0	25 0
4 bay (2 ramps/2 interiors)	12 mm	$\begin{gathered} 13 \\ (44) \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{l} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & 70 \\ & 60 \\ & \hline \end{aligned}$	70 60	$\begin{aligned} & 70 \\ & 60 \end{aligned}$	$\begin{array}{r}60 \\ .55 \\ \hline\end{array}$	60 -40	60 $\cdot 30$	55 $\cdot 15$	45 0
```. 5 bay (2 ramps 3 interiors)```	15 mm	$\begin{aligned} & 20.1 \\ & (66) \end{aligned}$	1	75 75	75 70	75 70	70 $\cdot 70$	70 .60	70 $\cdot$ 50	$\begin{array}{r}60 \\ \cdot 25 \\ \hline\end{array}$	60 0
$6 \text { bay }$   (2 ramps 4 interiors)	20 min	$\begin{aligned} & 26.8 \\ & (88) \end{aligned}$	L	W96/ 180 w96 175	$\begin{aligned} & 96 \\ & 80 \\ & 96 \\ & 70 \end{aligned}$	96 80 96 70	96 70 $\cdot$ 70 70	96 70 $\cdot 70$ 70	96 70 -55 55	70 70 30 30	$\begin{aligned} & 70 \\ & 70 \\ & 0 \end{aligned}$
CONVENTIONAL	LONGITUDINAL										

NOTES: 1. The asterisk (*) indicates that 3 bridge erection boats are required for conventional rafting of 4 5. or 6 bay rafts in currents greater than $1.5 \mathrm{MPS} / 5$ FPS.

2 When determining raft classification. $L$ refers to longitudinal rafting and $C$ refers to conventional rafting.
3. If the current velocity in the loading/unloading areas is greater than $1.5 \mathrm{MPS} / 5 \mathrm{FPS}$, then conventional rafting must be used.
4. The roadway width of a Ribbon raftis is 4.1 M ( 13 ft 5 in ).
5. The draft of a fully loaded Ribbon raft is $61 \mathrm{CM}(24 \mathrm{in})$.
6. NEVER load vehicles on Ribbon ramp bays. Only interior bays may be loaded.

Bridge design. The number of Ribbon interior bays requlred are-

```
gap (meters) - 14
 6.7
```

        OR
    $\frac{\text { gap(feet) }-45}{22}=$ number of interior bays

Two ramp bays are required for all Ribbon bridges.
E During daylight hours a Ribbon bridge can be constructed at the rate of 200 meters ( 600 feet) per hour (Add 50 percent at n!ght.) See Table 7-7 for bridge classification.

Table 7-7. Determination of bridge classification (wheel/track)

	CURRENT VELOCITY (MPS/FPS)   AND LOAD CLASS							
TYPE OF CROSSING	$\begin{aligned} & 0.9 \\ & 0.3 \end{aligned}$	$\begin{gathered} 12 \\ 4 \end{gathered}$	$\begin{gathered} 15 \\ 5 \end{gathered}$	$\begin{gathered} 175 \\ 6 \end{gathered}$	$\begin{aligned} & 2 \\ & 7 \end{aligned}$	$\begin{gathered} 25 \\ 8 \end{gathered}$	$\begin{gathered} 27 \\ 9 \end{gathered}$	3 10
Normal (W/T)	$\begin{aligned} & 96 \\ & 75 \end{aligned}$	$\begin{aligned} & 96 \\ & 75 \end{aligned}$	$\begin{aligned} & 96 \\ & 70 \end{aligned}$	$\begin{aligned} & 96 \\ & 70 \end{aligned}$	$\begin{aligned} & 82 \\ & 70 \end{aligned}$	$\begin{aligned} & 65 \\ & 60 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \end{aligned}$
Caution (W/I)	$\begin{gathered} 105 / \\ 85 \\ \hline \end{gathered}$	$\begin{gathered} 105 / \\ 85 \\ \hline \end{gathered}$	$\begin{array}{r} 100 \\ 80 \\ \hline \end{array}$	$\begin{gathered} 100 \\ 80 \\ \hline \end{gathered}$	$\begin{aligned} & 96 / \\ & 80 \\ & \hline \end{aligned}$	$\begin{aligned} & 75 \\ & 65 \\ & \hline \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & \hline \end{aligned}$	$\begin{aligned} & 35 \\ & 35 \end{aligned}$
Risk (W/T)	$\begin{aligned} & 110 \\ & 100 \end{aligned}$	$\begin{gathered} 110 \\ 95 \end{gathered}$	$\begin{gathered} 105 \\ 90 \end{gathered}$	$\begin{gathered} 105 \\ 90 \end{gathered}$	$\begin{gathered} 100 \\ 90 \end{gathered}$	$\begin{aligned} & 82 \\ & 75 \end{aligned}$	65	40

- Anchorage of Ribbon bridges is normally accomplished by tying BEBs to the downstream slde of rhe bridge. The number of boats required is shown in Table 7- 8.

Table 7-8. Determination of number of boats needed for the anchorage of a Ribbon bridge

CURRENT VELOCIIY   (MPS $/ F P S$ )	MUMBER OF BOATS : NUMBER OF BRIDGE BAYS
$0 \cdot 18 / 0 \cdot 6$	$1: 6$
212578	$1: 3$
$27 / 9$	$1: 2$
Over $2.7 /$ Over 9	Bridge must be anchored using an   overhead cable system.

## M4T6 Floating Aluminum Bridge

## Allocation

Each corps float brldge company (M4T6) has five sets of M4T6 and 10 BEBs. One set provides - 141 feet ( 43 meters) normal bridge.

## OR

96 feet (29 meters) reinforced bridge,

OR
one 4 float normal raft,

OR
one 5 float normal raft,

OR
one 4 -float reinforced raft and one 5 -float reinforced raft,

## OR

one 6 float reinforced raft.

## Transportation

The M4T6 is normally transported using 5 -ton bridge trucks. One bay of bridge disassembled, can be loaded on one 5 -ton truck. Bays can also be preassembled and flown to the river, using medium lift helicopters.

Raft design
Table 7-9. M4T6 raft design and determination of raft classification (wheel track)

RAFT	$\begin{gathered} \text { LOAD SPACE } \\ M(F T) \end{gathered}$	CURRENT VELOCITY (MPS/FPS) AND IOAD CLASS				ASSEMBLY TIMES
		$\begin{gathered} 1.5 \\ 5 \end{gathered}$	2 7	2.5 8	$\begin{aligned} & 3.5 \\ & 11 \end{aligned}$	
4 float normal	157(51.6)	$\frac{50}{55}$	$\frac{45}{50}$	$\frac{40}{45}$	$\frac{30}{35}$	Per 4 float raft   5 brg trucks   2 BEB-SD
5-float normal	20.3 (66.6)	$\frac{55}{60}$	$\frac{50}{55}$	$\frac{45}{50}$	$\frac{35}{40}$	1 plt. 2'، hr (when preassembled. $1 \cdot \mathrm{ht}$ )
4 float reinforced	11.6(383)	$\frac{50}{55}$	$\frac{50}{55}$	$\frac{45}{50}$	$\frac{35}{40}$	Per 5-float raft 6 brg trucks 2 BEB.SD
5-float reinforced	152 (50)	$\frac{60}{65}$	$\frac{60}{65}$	$\frac{55}{60}$	$\frac{45}{50}$	$1 \mathrm{plt}, 3 \mathrm{hr}$ (when preassembled. $1^{\prime}$; hr)
6.110at reinforced	$162(533)$	$\frac{65}{70}$	$\frac{65}{70}$	$\frac{65}{70}$	$\frac{45}{50}$	Per 6-float raft   7 brg trucks   2 BEB-SD   $1 \mathrm{ptt} 3^{3}$, hr   (when preassembled.   1', hr)

NOTES: 1. Refer to TM 5210 for methods of constructing M4T6 rafts.
2. Roadway width of an M4T6 raft is 4.2 M ( 13 ft 10 in ).
3. Draft of a fully loaded M4T6 raft is 66 CM (29 in).
4. Construction times increase by 50 percent at night.

Bridge design
Floats (bays) required for normal bridges are-


Floats required for reinforced bridges are-


NOTE: For reinforced bridges, two-thirds of the total number of floats must be equipped with offset saddle adaptors.

Site and personnel requirements.

Table 7-10. Determination of site and personnel requirements

LENGIH   (Normal Assy)   M (FI)	UNITS NEEDED   FOR ASSY	NUMBER OF   ASSY SITES	IIME   (HR)
$45.5(150)$	1 Company	2	4
$61(200)$	1 Company	2	5
$76(250)$	1 Company	2	6
$91.5(300)$	2 Companies	3	4
$106.5(350)$	2 Companies	3	5
$122(400)$	2 Companies	4	$51 / 2$
$152(500)$	2 Companies	5	6
$183(600)$	3 Companies	6	4
$213(700)$	3 Companies	6	$5-7$
$244(800)$	3 Companies	6	$6-8$
$305(1.000)$	3 Companies	6	$7-10$
$366(1.200)$	3 Companies	6	8.12

NOTES:1. Refer to TM 5-210 for methods of constructing M4T6 bridges.
2. Increase construction times by 50 percent for reinforced bridges.
3. Increase all construction times by 50 percent at night.
4. Draft of an M4T6 bridge is 101.6 CM (40 in).

Table 7-11. Determination of bridge classification (wheel/track) for M4T6 normal and M4T6 reinforced bridges

M4T6 NORMAL BRIDGE					M4T6 REINFORCED BRIDGE				
	CURRENT VELOCITY (MPS/FPS) ANO LOAD CLASS				TYPE CROSSING	$\begin{aligned} & \text { CURRENT VELOCITY (MPS/FPS) } \\ & \text { AMD LOAD CLASS } \end{aligned}$			
TYPE CROSSIMG	$\begin{gathered} 1.5 \\ 5 \end{gathered}$	$\begin{aligned} & 2 \\ & 7 \end{aligned}$	$\begin{gathered} 2.5 \\ 8 \end{gathered}$	$\begin{aligned} & 3.5 \\ & 11 \end{aligned}$		$\begin{gathered} 1.5 \\ 5 \end{gathered}$	2 7	$\begin{gathered} 2.5 \\ 8 \end{gathered}$	$\begin{aligned} & 3.5 \\ & 11 \\ & \hline \end{aligned}$
Normal   (W/T)	$\frac{45}{55}$	$\frac{40}{50}$	$\frac{35}{45}$	$\frac{25}{30}$	Mormal   ( $\mathbf{W} / \mathrm{T}$ )	75	$\frac{70}{75}$	$\frac{65}{70}$	$\frac{27}{30}$
Caution (W/T)	$\frac{58}{59}$	$\frac{54}{55}$	$\frac{49}{51}$	$\frac{35}{37}$	Caution (W/T)	80	79	73	$\frac{43}{45}$
Risk $(W / T)$	$\frac{66}{67}$	$\frac{62}{63}$	$\frac{59}{60}$	$\frac{43}{45}$	Risk $(W / T)$	90	90	87	$\frac{59}{60}$

## Class 60 Steel Floating Bridge

One standard bridge set contains the components for the complete assembly of one floating brldge capable of spanning a 135 -foot (41-meter) gap OR one 4 -, 5 -, or 6 - bay raft.

## Transportation

Class 60 bridges may be palletized and loaded on M172 semitrailers. Additionally, one 15 -foot bay of bridge may be transported on one 5 -ton bridge truck.

Raft design
Table 7-12. Class 60 raft design and determination of raft classification (wheel/track)

RAFT	LOAD SPACE	CURRENT VELOCITY (MPS/FPS)   M (FT)			
		1.5   5	2	2.5	3.5
4.float   normal	$15(51)$	$\frac{40}{45}$	$\frac{40}{45}$	$\frac{35}{40}$	$\frac{25}{30}$
5-float   normal	$20(66)$	$\frac{50}{55}$	$\frac{50}{55}$	$\frac{45}{50}$	$\frac{40}{45}$
5-float   reinforced	$15(51)$	$\frac{55}{60}$	$\frac{50}{55}$	$\frac{50}{55}$	$\frac{45}{50}$
6-float   reinforced	$16(54)$	$\frac{65}{75}$	$\frac{65}{75}$	$\frac{65}{70}$	$\frac{50}{50}$

NOTES: 1. Refer to TM 5-210 for methods of constructing Class 60 rafts.
2. One air compressor, one crane, and two bridge erection boats are needed for raft construction and propulsion.
3. Roadway width of a Class 60 raft is 4.1 M ( 13 ft 6 in )
4. Draft of a fully loaded Class 60 raft is 73.6 CM (29 in).

Bridge design
Floats (bays) required for normal bridges are-


OR
(Round UP to next higher number)
$\left(-\frac{\text { gap (feet) }}{15}\right) \times 1.1=$ number of floats $)$

Floats (bays) required for normal bridges with reinforced end spans are-


Site and personnel requirements.
Table 7-13. Class 60 bridge site and personnel requirements

BRIDGE LENGTH   M (FT)	UNITS REQUIRED   FOR ASSEMBLY	NUMBER   OF   ASSY SITES	TIME (HR)
$0-75(0-250)$	1 company	2	3
$76-160(251-525)$	2 companies	$3-5$	3.5
$161-300(526-1.000)$	1 battalion plus 2 companies	6	5.8

NOTES: 1. Refer to TM 5-210 for methods of constructing Class 60 bridges.
2. One air compressor, one crane, and two bridge erection boats are required at each assembly site.
3. Roadway width of a Class 60 bridge is 4.1 M ( 13 ft 6 in )
4. Draft of a Class 60 bridge is 101.6 CM ( 40 in ).
5. Construction time increases by 50 percent at night.

Bridge classifications.
Table 7-14. Bridge classification (wheel/track)

CLASS 60 NORMAL BRIDGE					CLASS 60 NORMAL BRIDGE W/REIMFORCED END SPANS				
	CURRENT VELOCITY (MPS/FPS) AMD LOAD CLASS				TYPE CROSSING	CURRENT VELOCITY (MPS/FPS) and load class			
TYPE CROSSING	$\begin{gathered} 1.5 \\ 5 \end{gathered}$	$\begin{aligned} & 2 \\ & 7 \end{aligned}$	$\begin{gathered} 2.5 \\ 8 \end{gathered}$	$\begin{aligned} & 3.5 \\ & 11 \end{aligned}$		$\begin{gathered} 1.5 \\ 5 \end{gathered}$	2	2.5 8	3.5 11
Normal   (W/T)	55	$\frac{45}{55}$	$\frac{40}{50}$	$\frac{22}{25}$	Normal (W/T)	$\frac{55}{65}$	$\frac{45}{55}$	$\frac{40}{50}$	$\frac{22}{25}$
Caution   (W/T)	60	$\frac{56}{60}$	$\frac{52}{56}$	$\frac{34}{37}$	Caution   (W/T)	$\frac{62}{67}$	$\frac{56}{61}$	$\frac{52}{56}$	$\frac{34}{37}$
Risk   (W/T)	70	$\frac{67}{70}$	$\frac{62}{67}$	$\frac{46}{50}$	Risk   (W/T)	$\frac{72}{77}$	$\frac{67}{72}$	$\frac{62}{67}$	$\frac{46}{50}$

NOTE: Classifications are based upon a 15 ft end span. Refer to TM 5-210 for bridges with longer end spans.

Light Tactical Raft (LTR)
One set of LTR can provide-
one 4-ponton, 3-bay raft,
OR
one 4-ponton, 4-bay raft,
OR

44 feet ( 13.4 meters) of bridge.

## Transportation

One set of LTR is transported on two $21 / 2$-ton trucks and one pole trailer

Table 7-15. Raft/bridge design and classification determination

RAFT	ASSEMBLY TIME	LOAD SPACE (FI)	CURRENT VELOCITY (MPS/FPS)AMD LOAD CLASS					
			$\begin{array}{\|c\|} \hline 1.5 \\ 5 \\ \hline \end{array}$	2 7	2.5   8	$\begin{gathered} 2.75 \\ 9 \\ \hline \end{gathered}$	3 10	3.5   11
4-ponton/3bay w/artic. ulators	30 min	9.15 (30)	12	12	12	8	4	0
4-ponton/3bay w/o articulators	25 min	9.15 (30)	16	16	12	8	4	0
4-ponton/4. bay w/artic. ulators	36 min	12.5 (41)	$\cdot 10$	10	10	6	2	0
$\begin{aligned} & \text { 5-ponton/5- } \\ & \text { bay w/ } \\ & \text { articulators } \\ & \hline \end{aligned}$	40 min	15.85 (52)	9	9	9	8	5	2
$\begin{aligned} & \text { 5-ponton } / 5 \text { - } \\ & \text { bay } w / o \\ & \text { articulators } \end{aligned}$	35 min	15.85 (52)	16	14	11	8	5	2
6-ponton/4bay w/artic. ulators	45 min	12.5 (41)	13	13	13	13	12	5
$\begin{aligned} & 6 \text {-ponton } / 5 \text {. } \\ & \text { bay } w / 0 \\ & \text { articulators } \end{aligned}$	45 min	15.85 (52)	18	18	18	18	12	6
Bridge	$150 \mathrm{ft} / \mathrm{hr}$ $45.7 \mathrm{M} / \mathrm{hr}$	NA	16	13	11	8	5	2

NOTES: 1. Refer to TM 5-210 for methods of construction.
2. Articulators allow the ramps to be adjusted up $1 \mathrm{M}(41 \mathrm{in})$ or down $.48 \mathrm{M}(19 \mathrm{in})$.
3. Roadway width is normally 9 ft .
4. All classifications are based upon a Normal crossing.
5. Construction times increase by 50 percent at night.
6. The draft of a LTR raft with outboard motors is $61 \mathrm{CM}(24 \mathrm{in})$.
7. To determine the number of LTR sets required to bridge a given gap, use the formula:

$$
\frac{\text { Gap (M) }}{14}=\text { number of sets OR } \frac{\text { Gap ( } \mathrm{ft} \text { ) }}{44}=\text { number of sets. }
$$

## Long-Term Anchorage Systems

All heavy floating bridges require the construction of long-term anchorage systems. All long-term anchorage systems include three baste components approach guys, upstream (primary) anchorage, and downstream (secondary) anchorage. Refer to TM 5-210 for additional information.

Approach guys
Approach guys are attached at one end to the first floating support of all floating bridges. The approach guy is secured at the other end using deadmen, pickets, or natural holdfasts. A minimum of $1 / 2$ inch Improved Plough Steel (IPS) cable should be used. When installed, the approach guys should form a 45 -degree angle with the bridge.

Upstream anchorage
See Table 7-16. The upstream anchorage system holds the bridge in position against the river's main current. Upstream anchorage systems should be designed based primarily upon current velocity and bottom conditions.

Table 7-16. Design of upstream (primary) anchorage systems

CURRENT   VELOCITY   (MPS/FPS)	BOTIOM CONDITIONS	
	SOFT	SOLID/ROCKY
$0.0 .9 / 0.3$	Kedge anchors every float upstream   or   shore guys every 6th float upstream	Shore guys every 6th   float upstream
$1.0 \cdot 1.5 / 3.1-5$	Combination system (kedge anchors   and shore guys)	Overhead cable system
$1.6 \cdot 3.5 / 5.1-11$	Overhead cable system	Overhead cable system

Downstream anchorage
The downstream anchorage system protects floating bridges from reverse currents (tides) as well as from storms or severe winds which might change the direction of river flow.

Table 7-17. Design of downstream (secondary) anchorage systems

REVERSE   CURRENT   (MPS/FPS)	BOTIOM CONDITIONS	
	SOFT	SOLID/ROCKY
None expected	Kedge anchors every 3d float   downstream   or   shore guys every 10th float   downstream	Shore guys every 10th   float downstream
$0.0 .9 / 0-3$	Kedge anchors every float downstream   of   shore guys every 6th float downstream	Shore guys every 6th   float downstream
$1.0-1.5 / 3.1-5$	Combintion system (kedge anchors   and shore guys)	Overhead cable system
$1.6-3.5 / 5.1 \cdot 11$	Overhead cable system	

## Installation

Table 7-18. Installation of long-term anchorage systems

SYSIEM	METHOD OF INSTALLATION
Kedge anchor system	1. Attach anchors to anchor lines. Anchor lines must be a minimum of $1^{\prime \prime}$ manila rope.   2. Set or lay anchors. The horizontal distance from the anchor to the float must be at least 10 times the depth of the river.   3. Attach anchor lines to floats.
Shore guy system	1. Attach shore guys to floats.   2. Shore guys must be a minimum of $1 / 2$ " Improved Plough Steel (IPS) cable and placed at an angle of $45^{\circ}$ with the bridge.   3. Shore guys must be held above the water. Use floating supports if necessary.   4. Attach shore guys to deadman or holdfasts.
Combination system	1. Emplace a kedge anchor system as described above. Anchor lines must be attached to every float.   2. Once kedges are installed, emplace a shore guy system as described above. Shore guys must be attached to every sixth float.
Over-   head   cable   system	1. Design the system.   2. Construct Class 60 towers and install deadman.   3. Install master cable. Chech initial sag.   4. Using bridie lines, attach every float to the master cable.

## Design

The following information must be calculated or determined when designing an overhead cable anchorage system:

1. Cable data

Number of master cables.
Size of master cable(s) ( $\mathrm{C}_{0}$ )
Length of the master cable(s) $\left(\mathrm{C}_{\mathrm{t}}\right)$.
Number of clips at each end of the cable
Spacing of cable clips
Initial sag (S)
2. Tower data

Actual tower height (H)
near shore.
far shore.
Tower-waterline distance (A)
near shore
far shore.
Tower-bridge offset $\left(\mathrm{O}_{1}\right)$
near shore.

$$
\begin{aligned}
& \text { near shore } \\
& \text { far shore. }
\end{aligned}
$$

3. Deadman data

Depth of deadman ( $D_{D}$ )
near shore
far shore.
Tower-deadman distance (C)
near shore
far shore.
$\left(\mathrm{O}_{2}\right)$
near shore
far shore
Deadman face ( $\mathrm{D}_{\mathrm{t}}$ )
Deadman thickness (D)
Deadman length ( $D_{L}$ )
near shore
far shore

ickness (x]
Bearing plate thicknes $(\mathrm{y})$
Bearing plate face $(z)$

## Design sequence

Use Figure $7-1$ to determine where to take the required measurements for an overhead cable anchorage system.


Figure 7-1. Dimensions for overhead cable design

Step 1. Determine the size and number of master cables required. See Table 7-19 for M4T6, Class 60, and Ribbon bridges. See Table 7-20 for light tactical bridges.

Number of cables $=$

$$
\mathrm{C}_{\mathrm{D}}=\ldots \ldots \ldots .
$$

Table 7-19. Determination of cable size $\left(C_{0}\right)$ and number of cables
for M4T6, Class 60, and Ribbon bridges

WET GAP   WIDTH (G)   FEET	TYPE BRIDGE ASSE MBLIY	SIZE (IN) AMD NUMBER OF CABLES FOR SPECIFIED RIVER VELOCITIES											
		5 FPS			7 FPS			9FPS			11 FPS		
		SINGLE	DUAL	TRIPLE									
200	Normal Reinforced	$\begin{aligned} & 1 / 2 \\ & 5 / 8 \end{aligned}$	$\begin{aligned} & 3 / 8 \\ & 1 / 2 \end{aligned}$	$\begin{aligned} & 3 / 2 \\ & 3 / 1 \end{aligned}$	$\begin{aligned} & 5 / 8 \\ & 3 / 4 \end{aligned}$	$\begin{aligned} & 1 / 2 \\ & 5 / 8 \end{aligned}$	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \end{aligned}$	$\begin{aligned} & 3 / 4 \\ & 1 / 8 \end{aligned}$	$\begin{aligned} & 5 / 8 \\ & 3 / 4 \end{aligned}$	$\begin{aligned} & 1 / 2 \\ & 5 / 8 \end{aligned}$	$\begin{array}{r} 7 / 8 \\ 11 / 8 \end{array}$	$\begin{aligned} & 3 / 4 \\ & 1 / 1 \end{aligned}$	$3 / 14$
400	Normal Reinforced	$\begin{aligned} & 5 / 8 \\ & 3 / 4 \end{aligned}$	$\begin{aligned} & 1 / 2 \\ & 5 / 8 \end{aligned}$	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \end{aligned}$	$1^{3 / 4}$	$\begin{aligned} & 5 / 8 \\ & 3 / 4 \end{aligned}$	$\begin{aligned} & 1 / 2 \\ & 5 / 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 11 / 4 \end{aligned}$	$1^{7 / 8}$	$\begin{aligned} & 5 / 3 \\ & 3 / 4 \end{aligned}$	$\begin{aligned} & 11 / 4 \\ & 11 / 2 \end{aligned}$	$\begin{aligned} & 1 \\ & 1^{1 / 4} \end{aligned}$	3/4 $7 / 8$
600	Normal Reinforced	$1^{3 / 4}$	$\begin{aligned} & 5 / 2 \\ & 3 / 4 \end{aligned}$	$\begin{aligned} & 1 / 2 \\ & 5 / 1 \end{aligned}$	$\begin{aligned} & 11 / 8 \end{aligned}$	$1^{3 / 4}$	$\begin{aligned} & 5 / 8 \\ & 3 / 4 \end{aligned}$	$\begin{aligned} & 11 / 4 \\ & 11 / 2 \end{aligned}$	$\begin{aligned} & 1 \\ & 11 / 4 \end{aligned}$	$\begin{aligned} & 3 / 4 \\ & 7 / 6 \end{aligned}$	$11 / 2$	$\begin{aligned} & 11 / 4 \\ & 11 / 2 \end{aligned}$	$7 / 8$ $1 / 8$
800	Normal Reinforced	$\begin{array}{r} 1 / 8 \\ 11 / 8 \end{array}$	$\begin{aligned} & 3 / 4 \\ & 7 / 8 \end{aligned}$	$\begin{aligned} & 5 / 3 \\ & 3 / 4 \end{aligned}$	$\begin{aligned} & 11 / 8 \\ & 1^{31 / 8} \end{aligned}$	$\begin{array}{r} 1 / 8 \\ 11 / 8 \end{array}$	$\begin{aligned} & 3 / 4 \\ & 1 / 2 \end{aligned}$	$13 / 8$	$\begin{aligned} & 11 / 8 \\ & 13 / 8 \end{aligned}$	$1^{1 / 8}$	-	$11 / 2$	$11 / 8$ $11 / 4$
1.000	Normal Reinforced	$\begin{aligned} & 1 \\ & 11 / 4 \end{aligned}$	$1^{1 / 0}$	$\begin{aligned} & 3 / 4 \\ & 3 / 4 \end{aligned}$	$\begin{aligned} & 11 / 4 \\ & 11 / 2 \end{aligned}$	$\begin{aligned} & 1 \\ & 11 / 4 \end{aligned}$	$1^{1 / 3}$	$11 / 2$	$13 / 8$	1 $11 / 2$	-	-	$11 / 4$ $13 / 4$
1.200	Normal Reinforced	$\begin{aligned} & 11 / 8 \\ & 1^{3 / 3} \end{aligned}$	$\begin{array}{r} 7 / 8 \\ 11 / 8 \end{array}$	$\begin{aligned} & 3 / 4 \\ & 1 / 8 \end{aligned}$	$13 /$	$\begin{aligned} & 1^{1 / 3} \\ & 1^{3 / 8} \end{aligned}$	$1^{1 / 6}$	-	$11 / 2$	$11 / 8$ $11 / 4$	-	-	$13 / 8$

NOTES: 1. All values are based upon IPS cable and a 2 percent initial sag.
2. Asterisks (*) indicate that is is unsafe to construct that system.

Step 2. Determine the distance between towers (L) in feet.
$\mathrm{L}=1.1(\mathrm{G})+100^{\prime}$
Where $\mathrm{G}=$ the width of the wet gap in feet

Table 7-20. Determination of cable size $\left(C_{0}\right)$ for light tactical bridges

WET GAP   WIDTH (G)   FEET	CURRENT VELOCITY			
	5 FPS	7 FPS	9 FPS	11 FPS
200	$3 / 3$	$3 / 3$	$1 / 2$	$1 / 2$
300	$3 / 8$	$1 / 2$	$5 / 4$	$3 / 4$
400	$1 / 2$	$1 / 2$	$5 / 3$	$3 / 4$
500	$1 / 2$	$5 / 3$	$5 / 8$	$3 / 4$
600	$5 / 3$	$5 / 6$	$3 / 4$	$7 / 8$

NOTE: All values are based upon IPS cable and a 2 percent sag.

Step 3. Determine the length of the master cable $\left(\mathrm{C}_{\mathrm{L}}\right)$ in feet.
$C_{L}=L+250^{\prime}$
$C_{1}=\ldots . .$.
Where $L=$ the distance between towers in feet

NOTE. This is an approximation based upon the most extreme circumstances

Step 4. Determine the number of cable clips required to secure one end of the master cable.

Number of clips $=\left(3 \times \mathrm{C}_{\mathrm{D}}\right)+1$
Where $C_{D}=$ the cable diameter in inches

Step 5. Determine the spacing of cable clips in inches

Clip spacing $=6 \times \mathrm{C}_{\mathrm{D}}$
Clip spacing = . . . . . . . . . .
Where $C_{0}=$ the cable diameter in inches

Step 6. Determine initial sag (S) in feet.
$S=.02(\mathrm{~L})$
S = . . . . . . . . .
Where $L=$ the distance between towers in feet

Step 7. Determine tower height $(\mathrm{H})$ in feet

```
a.H}\mp@subsup{H}{R}{\prime}=\mp@subsup{3}{}{\prime}+S-B
```

Where $H_{R}=$ the REQUIRED tower height in feet
$S=$ initial sag in feet
$\mathrm{BH}=$ bank height in feet

NOTE. This calculation must be done for both the near shore and the far shore since bank heights may be different.
b. Determine actual tower height $(\mathrm{H})$. See Table 7-21 Compare the required tower height to the possible tower height. Select the smallest possible tower that is greater than or equal to the required height.

NOTE. If the near shore and the far shore towers are determined to have different heights, steps 9 through 16 must be calculated separately for both near and far shores.

H near shore $=\ldots .$. H far shore $=$. . . . . . .

Table 7-21. Possible tower heights (H)

NUMBER OF TOWER SECTIONS	TOWER HEIGHT (H)
Cap. base. and pivot unit	$3^{1} 81 /{ }^{\prime \prime}$
With 1 tower section	$14^{\circ} 61 / 4^{\prime \prime}$
With 2 tower sections	$25^{1 / 4}$
With 3 tower sections	$36^{\prime} 21 / 4$
With 4 tower sections	$47^{\prime} 1 / 4$
With 5 tower sections	$57^{\prime} 10^{1 / 4}$
With 6 tower sections	$68^{\prime} 8{ }^{1 / 4}$

Step 8. Determine the distance from each tower to the waterline $(A)$ in feet.
$A=\frac{L-G}{2}$
A near shore
A far shore
Where $L=$ the distance between towers in feel $\mathrm{G}=$ the gap width in feet

Step 9. Determine the offset from each tower to the bridge centerline $\left(O_{1}\right)$ in feet 0 , near shore $=\ldots \ldots . .$. 0 far shore $=\ldots \ldots \ldots$.
a. If the bank height $(\mathrm{BH})$ is less than or equal to $15^{\prime}$, then $\mathrm{O}_{1}=\mathrm{H}+50^{\prime}$.
b. If the bank height $(\mathrm{BH})$ is greater than $15^{\prime}$, then $0_{1}=H+B H+35^{\prime}$.

Where $\mathrm{H}=$ the actual tower height in feet
$\mathrm{BH}=$ the bank height in feet

Step 10. Identify deadman dimensions. Select a deadman from the available timbers and logs. Generally, the timber with the largest timber face/log diameter is selected. The largest face of the deadman is defined as $D_{i}$, and the thickness is $D_{1}$.

$$
\begin{aligned}
& D_{1}=\ldots \ldots \ldots \\
& D_{1}=\ldots \ldots \ldots \ldots
\end{aligned}
$$

Step 11. Determine mean depth of deadman $\left(D_{D}\right)$ in feet.
$D_{0}$ near shore $=$
$D_{0}$ far shore =
$\qquad$
$\qquad$

Where $D_{1}=$ the deadman face in feet GWL = depth of ground water level in feet
b. The minimum deadman depth is always 3 feet
c. The maximum deadman depth is always 7 feet
d. Compare $D_{\text {bmax }}$ to these minimum and maximum values to determine the actual mean depth of deadman $\left(D_{0}\right)$.

Step 12. Determine length of deadman $\left(D_{L}\right)$ in feet.

$$
D_{L}=\left(\frac{C C}{H P \times D_{f}}\right)+1
$$

$D_{\mathrm{L}}$ near shore $=$
D far shore $=$

Where $\mathrm{CC}=$ the capacity of the anchorage cable in $\mathrm{lb} / 1,000$ from Table $7-22$ $\mathrm{HP}=$ required holding power in $\mathrm{lb} / 1,000 \mathrm{sq} \mathrm{ft} \mathrm{from} \mathrm{Table} \mathrm{7-23}$ $D_{1}=$ deadman face in feet (for log deadman use log diameter (d))

Table 7-22. Determination of capacity
of anchorage cable (CC) in lb/1,000

TYPE OF CABLE	SIZE (IN) OF CABLE ( $\mathrm{C}_{\mathrm{D}}$ )									
	3/8	1/2	5/8	$3 / 4$	7/8	1	$11 / 8$	$11 / 4$	$13 / 3$	$11 / 2$
IPS	1.26	21.6	33.2	47.4	64.4	84.0	106.0	130.0	157.0	185.0
PS	11.0	18.8	28.8	41.2	56.0	73.0	92.0	113.0	136.0	161.0
MPS	10.0	17.0	26.2	37.4	50.8	66.0	83.0	102.0	123.0	145.0

a. There must be a minimum of 1 foot of undisturbed soil between the bottom of the deadman and the ground water level (GWL). The deepest the deadman can be ( $D_{\text {omax }}$ ) is calculated as:

$$
D_{D \max }=G W L-1^{\prime}-\frac{D_{1}}{2}
$$

Table 7-23. Determination of required holding power (HP)
in lb/1,000 sq ft

DEPTH OF   DEADMAN   (D $)$ FEET	IOWER TO DEADMAN SLOPE			
	$1: 1$	$1: 2$	$1: 3$	1.4
3	.95	1.3	1.45	1.5
4	1.75	2.2	2.6	2.7
5	2.8	3.6	4.0	4.1
6	3.8	5.1	5.8	6.0
7	5.1	7.0	8.0	8.4

Step 13. Check minimum thickness of deadman $\left(D_{\mathrm{t}}\right)$ in feet

For timber: $\underline{D}_{L}$ must be less than or equal to 9
D.

For logs: $\underline{D}_{\text {}}$ must be less than or equal to 5
d

Step 14. Determine the tower to deadman distance (C) in feet.

$$
C=\frac{H+D_{D}}{\text { slope }}
$$

$$
\text { C near shore }=\ldots \ldots \ldots \ldots
$$

Where $\mathrm{H}=$ the actual tower height in feet

$$
D_{D}=\text { the mean depth of deadman in feet }
$$ slope $=$ the tower to deadman slope

C far shore = . . . . . . . . . . . .
C far shore =

Step 15. Determine the tower to deadman offset $\left(0_{2}\right)$ in feet.

$$
\mathrm{O}_{2}=\left(\mathrm{C}\left(\mathrm{O}_{2}{ }^{\prime}\right)\right)
$$

$\mathrm{O}_{2}$ near shore $=$
0 , far shore = . . . . . . . . . . . . .
.......... . . .

Where $\mathrm{C}=$ the tower to deadman distance in feet
$0_{2}{ }^{\prime}=$ a factor determined from Table 7-24

Table 7-24. Determination of $\mathrm{O}_{2}{ }^{\prime}$

TYPE OF ASSEMBLY	CURRENT VELOCITY				
	3 FPS	5 FPS	7 FPS	9 FPS	11 FPS
Mormal	.09	.11	.14	.17	.19
Reinforced	.11	.14	.17	.19	.23

Step 16. Design a bearing plate for each deadman. Given deadman face $\left(D_{i}\right)$ or $\log$ diameter (d) and the size of the master cable (CD), refer to Table 7-25 page 7-20) to determine the length, thickness and face of the deadman bearing plate.
$\qquad$
$\qquad$

Table 7-25. Determination of bearing plate dimensions
$x, y$, and $z$ (inches)

DEADMAN FACE ( $D_{f}$ )		CABLE SILE ( $\mathrm{C}_{\mathrm{D}}$ ) (IM INCHES)								
		3/8	1/2	5/8	$3 / 4$	7/8	1	$1^{1 / 8}$	$11 / 4$	$11 / 2$
8	$x$	1/16	7/8	$11 / 4$						
	y	4	8	11						
	1	6	6	6						
10	$x$	7/16	11/16	1	$13 / 8$					
	y	4	6	9	12					
	2	8	8	8	8					
12	$x$	7/16	9/16	13/16	$11 / 4$	$17 / 10$				
	y	4	5	7	10	13				
	2	10	10	10	10	10				
14	$\times$	7/16	1/16	11/16	7/1	$11 / 4$	$19 / 16$	2		
	$y$	4	4	6	8	11	14	18		
	2	12	12	12	12	12	12	12		
16	$x$	7/16	7/18	9/16	13/16	1 1/8	$1^{3 / 8}$	111/16	$21 / 8$	
	y	4	4	5	7	10	12	15	19	
	2	14	14	14	14	14	14	14	14	
18	x	7/16	7/16	7/16	11/16	7/8	$11 / 4$	19/16	$1^{13 / 16}$	
	y	4	4	4	6	8	11	14	16	
	2	16	16	16	16	16	16	16	16	
20	$x$	1/16	1/16	1/16	11/16	1/6	$11 / 8$	$13 / 8$	$1^{11 / 16}$	
	y	4	4	4	6	8	10	12	15	
	2	18	18	18	18	18	18	18	18	
24	$x$	7/16	7/16	1/16	9/16	11/16	7/8	$11 / 8$	$13 / 8$	1\%
	y	4	4	4	5	6	8	10	12	17
	2	22	22	22	22	22	22	22	22	22

NOTE: The values in this table are based upon the use of IPS cable.
For former bearing plates refer to TM 5-210
Where $x=$ bearing plate thickness
$y=$ bearing plate length
$z=$ bearing plate face


## M4T6 FIXED SPAN

Refer to TM 5-210 for more detailed information.

## Single Span Bridge

Single span bridge design is for 15 feet to 45 feet unsupported H -frames.

1. Classification of bridge (designated in the mission
2. CL $\qquad$ statement).
3. Gap as measured during reconnaissance.
4. $\qquad$
5. Safety setback for near shore (NS) and far shore (FS) is a constant of $3^{\prime}$ for both prepared and unprepared abutments

3a. $N S+3^{\prime}$
3b. $\mathrm{FS}+3^{\prime}$
4. Initial bridge length (add steps 2, 3a, and 3b). $\qquad$
5. Round UP to next highest standard H-frame configu- 5. ration (Table 7-26)
6. Determine deck/roadway (D/R) ratio required to
carry load (Table 7-26)
7. Final design of bridge
a. H -frame (from step 5 )
b. D/R roadway ratio (from step 6)
c. Classification (Table 7-26)

7a.
7b.

Table 7-26. Deck balk fixed span data

CAPACITY FOR SPECIFIED SPAN IENGTH IN MEIERS (ft) and deck/roadway ratio																			
LENGIH	4.6 (15)			7.1 (23.4)		8.1 (30)			11.7 (38.4)				13.7 (45)						
DECK WIDIH	22	22	26	22	22	22	22	24	22	22	24	26	20	22	22	24	24	26	26
ROADWAY WIDTH	18	18	22	18	16	18	16	18	18	16	18	18	16	18	16	18	16	18	16
IYPE CROSSING																			
Normal	100	100	100	100	100	85	90	90	45	50	56	65	24	24	30	30	40	40	45
	100	100	100	100	100	65	70	70	35	40	45	50	25	25	30	30		35	40
Caution	100	100	100	100	100	100	100	100	70	70	75	82	40	46	46	51	51	56	56
	100	100	100	100	100	80	80	85	51	51	55	50	35	40	40	43	43	46	46
Risk	100	100	100	100	106	100	100	100	78	78	85	90	47	54	54	60	60	66	66
	100	100	10G	100	100	90	90	95	57	57	62	67	40	45	45	49	49	53	53

[^0]NOTES:
I. Figures 7-2 through 7-6 show H -frame layout and components for all lengths of M4T6 unsupported spans.
2. All bridges require four short and four long cover plates if roadway is 18 balk wide. For 16 balk roadway use four long and two short cover plates. For 22 balk roadway use four long and eight short cover plates. All bridges require four bearing plates.






7-2 5
assemblies as needed and repeat the design sequence. Add as many trestle


 This must meet or exceed the MLC requrrements as
stated in step 1 and is always based on a NORMAL may be used with a trestle)
NOTES: 1 . This must meet



Ldass ol pazsord '.0.gt ol jenba

$$
\text { 3. When the value obtained in step } 6 \mathrm{~b} \text { is less than or }
$$

 You are not limited to adding only four trestle
assemblies as maybe implied by step 5 Only four are


[^1] $15^{\prime}$ from the total bridge length obtained in step 4 (This distance
must be accounted for as it will be part of the bridge roadway) 5 Initially. enter the " 2 trestle assemblies" column and subtract
4. Initial bridge length (add steps $2+3 a+3 b)$
Sivaminqe pasedasdun pue pasedasd
2. Gap as measured during reconnaissance

(FOR CLASS 60 AND BELOW) WITH EXAMPLE FILLED IN FOR SUPPORT WITH CLASS 60 TRESTLE ARRANGEMEN Class 60 Trestle Arrangement
M4T6 FIXED SPAN BRIDGE DESIGN

sə!

sə!|quasse ә!san ом1 L-L aлn6!y

$$
\text { (G dels wод) parinber sä|qwasse əןsen } 09 \text { sselo p }
$$
b. DR ratio (from step 8a)
a. H-frame end span configuration (from step 7).
\[

$$
\begin{aligned}
& \text { c. MLC of bridge (from step } 8 \mathrm{~b} \text {; however, this value can NEVER } \\
& \text { exceed MLC } 60 \text { because this is the capacity of the trestle) }
\end{aligned}
$$
\]

b. H-frame end span $D / R$ ratio (from step $8 a$ ).
c. Number of trestle arrangement(s) required (f

ubisep abpisq leuly 6



 7 $\forall$ WYON e uo paseq stemie si pue $!$ dals ui parlis





$$
\begin{aligned}
& \text { 3. When the value obtained in step } 6 \mathrm{~b} \text { is less than or } \\
& \text { equal to } 30^{\prime} 0^{\prime \prime} \text {, proceed to step } 7 \text {. }
\end{aligned}
$$

trestle arrangements are shown due to space limita-
tions on this form. arrangements as may be implied by step 5 . Only three 2. You are not limited to adding only three trestle you MUST return to step 5, enter the next column.
and repeat the design sequence.





1. Classification of the bridge that needs to be buitt (obtained from
the mission statement)
2. Gap as measured during reconnaissance.

3 Safety setback for both the FS and NS is a constant of $3^{\prime}$ for both
prepared and unprepared abutments.


 MOR SUPPORT WITH CLASS 100 TRESTLE ARRANGEMENT



   әu!leseq әлоุе 146 !ey din esou ssep peol Aдel!!um auoz buipus, श्रכel 14B!! les Bu!כлоци!es ॠu!	2N.. LN. N OTW 27 17 S47
    	dy
    	987
	87
Aneay asou 6u!	HNT
Jәрл6 ssodכ әsou 6u!чวune!	OכNT
	N7
	7
146!84	1 H
	H
әu!pseq pue 6өd 0 บәemieq eכueis!p	0
шeeq selfos \%uor	88J
Bad	
	. 1
6ad $y$	
	4
e6ping jo pua	3
ıuи 》э्р	no
uolionnssuov e6puq hails PqTop	so
s6ed f pue	
 	0
uo!ıэnısuov 6ulunp abp!sq eч!	885
 	د0\#dew 95
 	0
ureq rees xueq	8S8
(SO pue SS) olejdaseq (Aןuo SS) jeiseped Bu!ping ruiod Bu!y une!/6ulwooq ixau	d8
	seypew woog
les uoutje  	S38
s6ed (xusq seau)	deg y
	UV
	dV
Alquasse joчכue po xulf wous	(S)
Alqursse soyoue fo xuli 6uol	(7) $V$ V
Alquasse ıoपכue	$\forall \forall$
yueq seau 'de6 go abpe serso!pu!	V
suolfeinesq9y	$\forall$

For more detailed information pertaining to component descriptions, construction
palletizing, and maintenance procedures, refer to TM 5-5420-212-12 for the MGB
and to TM 5-5420-212-12-1 for the link reinforcement set (LRS).



## Design

Measure
Measure the angle of repose (AR) gap. See Figure 7-13 Select a bridge centerline Measure a distance from the firm ground on the home bank to the firm ground on the far bank.


NOTES: $1.1 f$ actual slope of bank does not exceed $45^{\circ}$ from the horizontal, place $A, A^{\prime}$ peg as shown in $A$ or $B$.
2. If actual slope of bank does exceed $45^{\circ}$ from the horizontal, place $A, A^{\prime}$ peg a distance equal to the height of the bank which is measured from the toe of slope. This is illustrated in $C$ by the distance $X$.
3. Gaps above are shown with one prepared and one unprepared abutment. Actual sites may be any combination of examples shown.

Figure 7-13. Measuring AR gap

Single story MGB design - 4 to 12 bays long


Figure 7-14. Single story MGB site layout (4 through 12 bays)
7 Slope check Ensure that the difference in elevation between the $F$, and the $F$ pegs does not exceed 1 . 10 th of the
total bridge length if it does. you are either going to have to crib up. undertake a major construction project. or find c. Check bearing. Bearing FB + AR gap + bearing HB $=\mathrm{L}$
7 Slope check Ensure that the difference in elevation betw



5. Nose construction
әouersip y y
3. Bridge length
NOTE Use Table 1 or 2 to obtain the answers to the following
2. Select bridge

1. Measure $A R \operatorname{gap} A$ to $A^{\circ}$




T	WORKING PARTIES AND BUILDING TIMES ON GOOD SITES (FIRM DRY GROUMD)			
	(a)	Single Story		
B $L$ $L$		$\begin{gathered} 5 \text { Bays } \\ 9.8 \mathrm{~m} \\ \text { WLC } 60 \\ \text { (b) } \end{gathered}$	8 8ays 15.2M   MIC 30   (c)	$\begin{gathered} \hline 12 \text { Bays } \\ 22.6 \mathrm{~m} \\ \text { MLC } 16 \\ \text { (d) } \end{gathered}$
	Working Party	1+8	1+16	$1+16$
4	Time by Day (hours)	$1 / 2$	3/4	1
	Time by Night (hours)	3/4	1	$1^{1 / 4}$

11. Construction times and manpower requirements. From Table 4, extract the following information


12. Loads required. From Table 3. determine the truck and trailer loads required for the bridge.

Double story MGB ( $2 \mathrm{E}+1$ through $2 \mathrm{E}+12$ )


Figure 7-15. Double story MGB site layout ( $2 \mathrm{E}+1$ through $2 \mathrm{E}+12$ bays)

10. Rule 2. Use a LNCG setting to give $N>H$ and $T>G$.
Choose a LNCG setting so that $N>H$.
9. Rule 1. (If both bank heights $>0.6 \mathrm{M}$, go to Rule 2.)
Choose a LNCG setting that ensures
depth of $C>$ depth of $D$.
$(190 \cdot 7)-7 M H=0$

8. Calculate H, G, and C: 7. Slope check. Ensure that the difference in elevation between the $F$ ' and $F$ peg does not exceed $1 / 10$ th of the total
bridge length. If it does, you are either going to have to crib up, undertake a major construction project, or find
another centerline.
-- Minimum

## (ENTER ACTUAL beARING ABOVE)



$\pi \stackrel{m}{2}$
6. Key construction points, dimensions, and elevations
—_uolionissuos eson $G$
4. R distance

2. Select bridge $\quad 2 E+\quad$ bays
NOTE: Use Table 1 to obtain the answers to the following

1. Measure $A R \operatorname{gap} A$ to $A^{\prime}$ ______________

MGB DESIGN PROFORMA DS 2E+1 THROUGH 2E+12 BAYS

If $\mathrm{N} \triangleright \mathrm{H}$ and/or $\mathrm{T} \triangleright \mathrm{G}$, go to Rule 3.
11. Rule 3. Raise the FRB and RRB by 0.69 M .
"Rule 3 "Rule $2+0.69 \mathrm{M}$
$N=$ $\qquad$

Check $\mathrm{T}>\mathrm{G}-\mathrm{Yes} /$ No (Column p )
$T=$ $\qquad$

If yes, design is all right.

If $N_{\text {Rubes }} H \downarrow$ go to Rule 4A.
If $T_{\text {Rues }} G \stackrel{\text { go }}{ }$ to Rule 4B.

DS MGB DESIGN 2E + 1 THROUGH 2E + 12 BAYS (all measurements are in meters)																						
TABLE1	Site Dimensions						RULE 1   D for Given INCG Setting with FRB in Lowest Position				Launch Design											
							RULE 2   Nose lift N. Using Various LNCG Settings and FRB in Lowest Position				Other Methods of Adjusting N and T											
							RU Rais and 0.6	$E 3$   FRB   RB by	RUIE 4A Lowering to Increase $N$	48   Lowering   FRB to Increase T												
	AR Gap   (a)	Brg Lg th   (b)	$2 E+$   \# of   Bays   (c)	MLC   (d)	Nose   Const   Note 1   (e)	R Dist   (f)					$\underset{\text { Dist }}{W}$   ( E )	Hole \#6 Note 2   (h)	Hole   \#4 Note 2   (i)	Hole \#2 Note 2 (j)	Tall   Lift I   (k)	Hole \#6 Note 2   (I)	Hole \#4 Note 2 (m)	Hole \#2 Note 2 (n)	(0)	$\begin{gathered} 1 \\ (p) \end{gathered}$	$\begin{gathered} N \\ (\mathrm{q}) \end{gathered}$	$\begin{gathered} \mathrm{T} \\ \text { (r) } \end{gathered}$
	6.7 .90	11.3	1		2N1	10.0	-	-	-	-	0.55	1.02	1.48	2.04		1.24	1.75 (1.24-6)	$\begin{aligned} & \underline{x} \\ & \text { n } \\ & \text { n } \\ & \frac{ \pm}{3} \\ & \mathbf{x} \\ & \underset{0}{2} \end{aligned}$				
	8.5-10.8	13.1	2		3N1	11.9	-	-	-	-		0.89	1.53	2.30								
	10.3-12.6	14.9	3			12.2	-	-	-	-		0.86	1.50	2.28								
	12.2.14.5	16.8	4			13.1	-	-	-	-		0.81	1.45	2.23								
	14.0.16.3	18.6	5		4NI	14.9	-	-	-	-	0.52	0.70	1.52	2.51								
	15.8.18.1	20.4	6			14.9	-	-	-	-		0.65	1.48	2.47		1.21	1.75 (1.21-G)					
	17.7.20.0	22.3	7			15.8	13.1	0.70	0.31	-0.09		0.53	1.36	2.36								
	19.5-21.8	24.1	8		5N1	16.8	15.0	0.67	0.25	-0.20	0.46	0.49	1.48	2.69								
	21.3-23.6	25.9	9			17.7	16.5	0.64	0.21	-0.30		0.33	1.35	2.55		1.15	1.75 (1.15-G)					
	23.1-25.4	27.7	10			19.5	17.6	0.60	0.12	-0.40		0.25	1.28	2.49								
	25.0.27.3	29.6	11		6N1	20.4	18.5	0.50	0.04	-0.43	0.40	0.16	1.23	2.63		1.09	1.75 (1.09-6)					
	26.8.29.1	31.4	12			21.6	19.2	0.46	-0.06	-0.58		0.20	1.02	2.47								

NOTES:1. Each nose includes a light nose complete.
2. Nose cross girder setting $-6,4$, and 2 is the position of the cross girder resting on the 6 th, 4 th, and 2 d hole from the bottom of the LNCG post.
pasinbes samoduew 6
——speol selyen pue xons1 it


T	WORKING PARTIES AND BUILDING TIMES ON GOOD SITES			
A		Double Story Single Span		
B $L$	(a)	4 Bays 16.8 m MLC 60   (b)	$\begin{aligned} & \hline 8 \text { Bays } \\ & 24.1 \mathrm{Im} \\ & \text { MLC } 60 \\ & \text { (c) } \end{aligned}$	$\begin{aligned} & 12 \text { 8ays } \\ & 31.4 \mathrm{M} \\ & \text { MLC } 60 \end{aligned}$   (d)
3	Working Party   Iime by Day (hours)   Time by Night (hours)	$\begin{gathered} 1+24 \\ 3 / 4 \\ 11 / 4 \end{gathered}$	$\begin{gathered} 1+24 \\ 1 \\ 11 / 2 \end{gathered}$	$\begin{gathered} 1+24 \\ 11 / 2 \\ 2 \end{gathered}$
NOTES: 1 . All timings exclusive of work on approaches and so forth.   2. Add 20 percent for unskilled personnel.   3. Add 30 percent for adverse site conditions.				

b. Manpower requirements
15. Construction time and manpower requirements

paлınbas speof 71
< 1 »วอบว

13. Rule 4B. Lower FRB
Check $\mathrm{N}>\mathrm{H}$
$N=N$ Rule $3^{+}$answer to Column $q$
12. Rule 4A. Lower RRB


Figure 7-16. Double story MGB site layout $(2 E+13$ through $2 E+22$ bays) without LRS

Then check if $T>G$.
9. Rule 1. Use a LNCG setting to give $N>H$ and $T>G$
Choose a LNCG setting so that $N>H$.
$\mathrm{G}=\mathrm{HtO} \cdot \frac{\mathrm{HtRRB} \times R \mathrm{dist}}{13.7}$
$H=H t F+\frac{H t R R B \times(L-0.5)}{13.7}$
8. Calculate H and G bridge length. If it does, you are either going to have to crib up. undertake a major construction project. or find
another centerline. 7. Slope check. Ensure that the difference in elevation between the $F$ ' and $F$ peg does not exceed $1 / 10$ th of the total ${ }^{-}=$MINIMUM $\frac{M}{\text { (ENTER ACTUAL BEARING ABOVE) }}$


10. Rule 2. Raise the CRB and RRB by 0.253 M .

Check $\mathrm{N}=\mathrm{H}-\mathrm{Yes} / \mathrm{No}$ (Column k)
Check T > G - Yes/No (Column I)
If yes, design is all right.
If $\mathrm{N}>\mathrm{H}$, go to Rule 3 A .
If $T \backsim G$, go to Rule $3 B$.

T	OS MGB 2E + 13 THROUGH $2 E+22$ BAYS WITHOUT LRS WHERE WATER OR ANY OBSTRUCTIONS ARE AT LEAST 2.7M BELOW BANK HEIGHIS													
	Site Dimensions						Launch Design							
							RULE 1   Nose Lift $\boldsymbol{N}$ with Nose Cross Girder at:				Other Methods of Adjusting N and T			
							RULE 2Raise RRBand CRB by0.25 m		RULE 3 Lowering RRB to Increase N	RULE 3B   Lowering CRB to Increase I $\qquad$				
A	AR Gap   (a)	Brg Lgth   (b)	$\begin{array}{\|l\|} \hline 2 \mathrm{E}+ \\ \# \text { of } \\ \text { Bays } \\ \text { (c) } \end{array}$	MIC   (d)	Nose   Const   Note 1   (e)	$R$ Dist   (f)			Tail Lift I (g)		Hole \#6 Note 2   (h)	Hole   "4   Note 2   (i)	Hole   \#2   Note 2   (j)	
L							$\begin{gathered} N \\ (\mathbf{k}) \end{gathered}$	$\begin{aligned} & \hline \mathbf{T} \\ & \text { (I) } \end{aligned}$		$\begin{gathered} \mathrm{N} \\ (\mathrm{~m}) \end{gathered}$				$\begin{aligned} & \hline \text { T } \\ & \text { (n) } \end{aligned}$
E	28.6-30.9	33.2	13	50	6M1	27.4	0.40	-0.07	1.49	2.68	2.93	0.65	1.9 (0.82-6)	0.2 (2.93-H)
	30.5-32.8	35.1	14			28.7	0.37	-0.38	1.00	2.65	2.90	0.62	1.9 (0.79-6)	$0.2(2.90-\mathrm{H})$
1	32.3-34.6	36.9	15	40	7N1	28.7	0.34	-0.49	0.90	2.55	2.80	0.59	1.9 (0.76-G)	0.2 (2.80-H)
	34.1-36.4	38.7	16			29.6	0.30	-0.61	0.79	2.43	2.68	0.55	1.9 (0.72-6)	0.2 (2.68-H)
	35.9.38.2	40.5	17	30	8N1	29.3	0.27	-0.15	0.75	2.69	2.94	0.52	1.9(0.69-G)	0.2 (2.94-H)
	378.419	42.4	18			29.3	0.24	-1.33	0.54	2.54	2.79	0.49	1.9 (0.66-G)	$0.2(2.79-\mathrm{H})$
	39.6-40.1	44.2	19	24		34.8	0.21	-2.04	-0.19	1.72	1.97	0.46	1.9 (0.63-G)	$0.2(1.97 . \mathrm{H})$
	41.4-43.7	46.0	20		$\stackrel{\text { ¢ }}{+}$	38.4	0.21	-1.93	-0.31	1.61	1.86	0.46	1.9 (0.63-6)	$0.2(1.86 \cdot \mathrm{H})$
	43 3-44.6	47.9	21	20	$\underset{6}{8}$	38.4	0.18	-2.65	-0.52	1.17	1.42	0.43	1.9 (0.60-6)	0.2 (1.42-H)
	45.1-47.4	49.7	22	16		40.1	0.15	-2.58	-0.68	1.04	1.29	0.40	1.9 (0.57-6)	$0.2(1.29 . \mathrm{H})$

NOTES: 1. Each nose includes a light nose complete
2. Nose cross girder setting $-6,4$, and 2 is the position of the cross girder resting on the 6 th, 4 th, and 2 d hole from the bottom of the LNCG post.

a. $2 E+$ Bays
15. Final design.

## a. Construction time______ b. Manpower requirements

 From Table 3, extract the following information: 14. Construction time and manpower requirements

From Table 2, determine the truck and trailer loads required for the bridge.
13. Loads required. Check $\mathbf{T}>G$
12. Rule 3B. Lower CRB

## Check $\mathrm{N}>\mathrm{H}$

$\mathrm{N}=\mathrm{N}_{\text {Rule } 2}+$ answer to Column m
11. Rule 3A. Lower RRB

Double story ( $2 \mathrm{E}+13$ through $2 \mathrm{E}+22$ ) with LRS


Figure 7-17. Double story MGB site layout ( $2 \mathrm{E}+13$ through $2 \mathrm{E}+22$ bays) with LRS
8．Calculate $H$ and $G$ ：
$H=H t F+\frac{H t R R B \times(L-0.5)}{13.7}$
$G=H t O-\frac{H t R R B \times R \text { dist }}{13.7}$


W9＇L	W911	skeq $2 乙$
WヤL•	WもL	skeq LZ
WL＇	WL＇L	skeq Sl
W6 0	W6 0	sKeq 0Z प6noدપl 91＇カレ＇$\varepsilon$ し
．1901．7	$\pm 018$	


5．Nose construction＿＿＿＿＿＿＿＿＿＿
asuersip y $\downarrow$
3．Bridge length
2．Select bridge $\quad 2 E+\quad$ Bays
NOTE：Use Table 1 to obtain the answers to the following
1．Measure $A R \operatorname{gap} A$ to $A^{\prime}$

Grid＿＿＿	Recon Officer	Map Ref
Unit		MLC

Where Water Level or Any Obstructions
are at Least 3．7M Below Bank Heights （With LRS）
（With LRS）
MGB DESIGN PROFORMA DS 2E＋ 13 THROUGH 2E＋ 22 BAYS



10. Rule 2. Lower RRB


## BAILEY BRIDGE TYPE M-2

Truss
The Bailey bridge trusses are formed from 10-foot panels and may be constructed in any configuration shown in Table 7-28.

Table 7-28. Truss/story configuration

TYPE			
TRUSS	STORY		ABBREVIATION
Single	Single	Single-Single	SS
Double	Single	Double-Single	DS
Triple	Single	Triple-Single	TS
Double	Double	Double-Double	DD
Triple	Doudle	Triple-Double	TD
Double	Triple	Double-Triple	DT
Triple	Triple	Triple-Triple	IT



Figure 7-18. Layout of bridging equipment at site


Figure 7-19. Plan and profile views of a typical roller layout for a triple- truss or multistory bridge 7-51


Bridge-Design (with example)
See Figure 7-20 and Tables 7-29throuah 7.45 (oages 7.54 throuah 7-68)
See Figure 7.20 and Tables $7-29$ throuah 7.45 pages 7.54 throuah 7.68 )


Table 7-31. Types of grillage needed




14. Final bridge requirements

$$
\begin{aligned}
& \text { 13. Slope check. } \\
& \text { a The maximum allowable bank height difference is } 1 \text { to } 30 \\
& \text { Therefore, maximum allowable bank height difference = } \\
& \text { final bridge length - } 30 \\
& \text { b. If } \\
& \text { (1) The step } 13 \text { a value } \geqslant \text { actual bank height difference, the } \\
& \text { slope is all right } \\
& \text { (2) The step } 13 a \text { value actual bank height difference: } \\
& \text { (a) Choose another site, or } \\
& \text { (b) Crib up excavate the FS or NS until the bridge slope is } \\
& \text { within acceptable limits. }
\end{aligned}
$$

step 13
matches the value in step 12 c of the previous design Then go to design sequence until the value obtained in a particular step 12c in step 12 c of the previous Try -. column if the same. go to
step 13 If different, use the same methodology and repeat the 2 For Try 2 and Higher. Compare the value in step 12 c to the value the Try 2 column with the bridge length from step 12 c of Try 1
columnto determine the truss/story type in step 9 .
 and 4.3 Make your decision and go to step 13 exceed the BP and RRT capacities listed in FM 5-277. Tables 4-2 than allowed within step 11 c . however, you must be careful not to
 procedure could reduce the roller clearance on one or both banks
so that the required bridge length/final truss/story may be at the number grillage than originally selected in step 7c. The latter final bridge as shown in the Try 1 column or choose a higher reduced In these cases. you will have to ether overdesign a longer you in an endless circle untess the final bridge length can be using the bridge length from step 12 c of Try 1 column. will place situation Repeating the design sequence under the Try 2 column. If these are the same. the designer is placed in a judgmental (step 12c) to the value in step 4b step 8 c If the same, go to step 13 If different. compare this value NOTES 1 For Try 1 Compare the value in step 12 c to the value in round UP to the next highest $10^{\circ}$
c If the value determined in step 12 b is not a multiple of 10 .

$$
\text { b Add steps } 1+2+12 \text { a }
$$気

13a. $110 \div 30=3.7^{\prime}>3^{\prime}$



Table 7-33. Launching-nose composition for SS bridges


Table 7-34. Launching-nose composition for DS bridges


Table 7-35. Launching-nose composition for TS bridges




$\stackrel{\text { N }}{0}$	\%	$\stackrel{\rightharpoonup}{8}$	$\stackrel{\rightharpoonup}{\text { ® }}$	Ј	$\stackrel{\rightharpoonup}{\circ}$	$\stackrel{\rightharpoonup}{\circ}$	$\stackrel{\rightharpoonup}{0}$	$\stackrel{\rightharpoonup}{0}$	SPAN (FEET)
$\stackrel{\rightharpoonup}{\stackrel{\rightharpoonup}{\mathrm{N}}}$	$\begin{aligned} & \vec{\rightharpoonup} \\ & \stackrel{0}{0} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\mathrm{J}} \\ & \stackrel{0}{0} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\stackrel{\rightharpoonup}{\infty}} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	$\stackrel{\rightharpoonup}{\stackrel{\rightharpoonup}{0}}$	$\begin{gathered} \stackrel{\rightharpoonup}{\vec{N}} \\ \dot{0} \end{gathered}$	守	$\stackrel{\rightharpoonup}{\mathbf{a}}$	$\stackrel{\rightharpoonup}{\circ}$	LAUNCHING WT (TONS)
\%	N	8	$\stackrel{*}{*}$	$\stackrel{\rightharpoonup}{*}$	$\stackrel{\text { A }}{ }$	$\stackrel{ }{\omega}$	N	N	$\begin{gathered} \text { SAG } \\ \text { INCHES) } \end{gathered}$



Table 7-38. Launching-nose composition for DT bridges


 	可管
hatmentann	
- - - annann	N


d Position of launching nose link (Table 7-40) 16d._30'from tip of nose
NOTE：See FM $5-277$ for criteria and drawings Ramp
lengths must be estimated from the site sketch．
e．Support for end transom（check one）
（1）Final bridge class $\leqslant 39=$ not needed．（ ）
（2）Final bridge class $>39=$ needed．$(x)$ d．Pedestal supports（check one）
（1）Not needed（ ）
（2）Needed（x）
 （1）Final bridge class $\leqslant 44=$ not needed $\{$
（2）Final bridge class $>44=$ needed．$(x)$
 NOTE Only one end of the bridge
will be jacked down at any one
time．
19 Jacks required（Table 7－43）

$$
\text { c Add steps } 18 \mathrm{a}+18 \mathrm{~b}
$$

	気管
$\omega \omega \sim$	$\approx$
	0
－－monnon	动
$\cdots \cdots \cdots \omega^{*}$	둥은
$\cdots \mathrm{u}$	অ
$\cdots$－－$\omega$	$\exists$

Table 7－42．Rows of plain rollers needed for bridge

a．The SS and DS br
18．Plain rollers needed：

E01 $L$	L6 L	871 L	2zI 1	$26 \quad 9$	$99 \quad 5$	$85 \quad 5$	で，	$6 \varepsilon$	$\downarrow$	1810］
$\checkmark$	$\dagger$	$\dagger$	－	＊	t	＊	＊	＊		pueqquy pue ssay
8	8	8	8	8	8	8	8	8		د28u14
211	21 ！	21 I	211	ZI I	21 I	2 I	ZI I	21	1	8urpa
$\dagger$	＊	9	9							ºddns prayrano
$\dagger$		＊		＊		2				गए¢ ${ }^{\text {a }}$
－I	01	tI	01	8	－					1109 prous
8	OI	8	8	＊	－	2	2			
$\tau$	2	2	2	2	2	2	2	2		saxey
9	9	9	9	2	2	2	2	2		дJesq fems
$8 \varepsilon \quad 1$	2\＆I	0t 1	2¢ I	021	211	81	91		1	8uirerg
$\dagger$	＊	t	＊	$\tau$	2	2	2	I		
91	91	ャ	$\checkmark 2$	8	8	8	8	8		8utánes
022	022	$82 \quad 2$	$82 \quad 2$	011	01 I	01 I	01 I		I	wosuen
9	9	8	9	9	$\dagger$	－	2	2		$\mathrm{UIO}_{\mathrm{d}}$
－2	12	09	＊	t	82	t2	21	21		Sulajej
$0 \mathcal{E}$	$0 \varepsilon \quad \varepsilon$	89 \＆			2\＆ 2	$82 \quad 2$	－1 1		1	pued
1	I									uew yooh
1	I									1018．ado aues
1	I									ләлир ұכпл
$\varepsilon \quad 0$	$\varepsilon \quad 0$									วuejo
W3 00w	W］03N	W3 05N	W3 00N	W3 03N｜	W3 05w	W3 05N	W3 05N	w］	05N	
．3NYYO JMO SWISN										117130
11	10	11	10	01	00	SI	SO	SS		
NOIIJNYISNOS 10 3dAl										



NOTE The differences between manpower and crane construction
22. Assembly time (Table 7-45). $\qquad$
22. 5 hr

NOTE: This time allows for ideal bridge construction conditions and does not allow for site preparation or roller layout.

Table 7-45. Estimated time for assembly


## HASTY NONSTANDARD FIXED BRIDGES

This paragraph describes the procedures for designing a hasty, one-lane fixed bridge. MLC 30 or MLC 70.

NOTE: This is only a temporary design. Refer to TM 5-312 for design of a semipermanent timber trestle bridge.

## Nomenclature

## Superstructure

The load carrying component of the superstructure is the stringer system, which may be rectangular timber, round timber, or steel beams.

## Substructure

Intermediate supports are required if the available material is not long enough or of sufficient capacity to cross the required gap. Abutments are always required a each end of the bridge.

## Superstructure Design - Timber Stringers

Step 1. Determine the gap length and MLC (either MLC 30 or MLC 70).

Step 2. Determine the size of available structural timber. For round timbers, use the average diameter.

Step 3. Use Table 7-46, enter at the top with the stringer size (round DOWN if available size is not listed), then read down to appropriate gap size and desired MLC to find the number of stringers per span required. If no number is listed, use two or more shorter spans.

Table 7-46. Number of timber stringers required

		RECTANGULAR - bxd															ROUND - d						
SPAM LENGTH M (FT)	$=M(I N)$   MLC		\|			-											$\begin{aligned} & \underset{=}{\Xi} \\ & \text { in } \end{aligned}$	$\begin{aligned} & \underset{\mathrm{E}}{\mathrm{E}} \end{aligned}$	$\begin{aligned} & \underline{\underline{o}} \\ & \overline{=} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{=} \\ & \bullet \end{aligned}$	$\begin{aligned} & \text { 응 } \\ & \text { ज } \end{aligned}$	$\begin{aligned} & \underset{\sim}{\mathrm{N}} \\ & \sim \end{aligned}$	-   -   -
3 (10)	30 70	4	4	4	4	$4$	4	$4$	$4$	$4$	$4$	$4$	$4$	$4$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	$4$	5	$\begin{aligned} & 4 \\ & 7 \end{aligned}$	$4$	$4$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	4	4
4.5 (15)	30 70	4	4	6	4	$4$	5	$\begin{aligned} & 4 \\ & 5 \end{aligned}$	$4$	$\begin{aligned} & 4 \\ & 8 \end{aligned}$	$\begin{aligned} & 4 \\ & 5 \end{aligned}$	$4$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	$4$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$		6	$\begin{aligned} & 4 \\ & 9 \end{aligned}$	$\begin{aligned} & 4 \\ & 6 \end{aligned}$	4	4	4
6 (20)	30 70	6	4		5	4		10	4 5		$\begin{aligned} & 4 \\ & 8 \\ & \hline \end{aligned}$	4	$\begin{aligned} & 4 \\ & 7 \end{aligned}$	$4$	$\begin{array}{r} 4 \\ 6 \\ \hline \end{array}$	4			7	$\begin{array}{r} 5 \\ 11 \\ \hline \end{array}$	$\begin{aligned} & 4 \\ & 8 \\ & \hline \end{aligned}$	4	4
7.5 (25)	30 70	8	4			$\begin{gathered} 4 \\ 11 \end{gathered}$			4 8			$\begin{aligned} & 4 \\ & 6 \end{aligned}$		$\begin{aligned} & 4 \\ & 5 \end{aligned}$		$\begin{aligned} & 4 \\ & 4 \end{aligned}$						4	4

Lateral bracing required
(Chart assumes structural quality timbers in good condition.)

Step 4. Use Table 7-47 to determine the required deck thickness based on MLC and number of stringers.

	4	5	6	7	8	9	10	12	14	16
30	$\begin{array}{r} 13.9 \\ (5.5) \end{array}$	$\begin{gathered} 11.3 \\ (4.5) \end{gathered}$	$\begin{aligned} & 10.1 \\ & (4) \end{aligned}$	$\begin{gathered} 8.8 \\ (3.5) \end{gathered}$	$7.6$   (3)	$\begin{aligned} & 7.6 \\ & (3) \end{aligned}$	$7.6$   (3)	$7.6$   (3)	$7.6$   (3)	$\begin{aligned} & 7.6 \\ & (3) \end{aligned}$
70	$20.2$   (8)	$\begin{gathered} 17.6 \\ (7) \end{gathered}$	$15.1$ (6)	$\begin{gathered} 12.6 \\ (5) \end{gathered}$	10.1   (4)	$\left\|\begin{array}{l} 7.6 \\ (3) \end{array}\right\|$	$\begin{aligned} & 7.6 \\ & (3) \end{aligned}$			

Step 5. Lateral braces are required for those stringers listed with an asterick in Table $7-46$ (page $7-69$ ) or if $d$ is greater than $2 b$. If lateral braces are needed, they should have a depth of half the stringer depth and a minimum width of 3 inches. Locate the braces at the ends and the midpoint of the span and in the top half of the stringer (Figure 7-21).


Figure 7-21. Lateral bracing for timber stringers

Step 6. Curbs, handrails and a wearing surface can be omitted for hasty bridges Figure 7-22 illustrates a cross-section of a hasty MLC 30 to MLC 70 one-lane timber stringer bridge.


Figure 7-22. One-lane hasty timber stringer fixed bridge

## Superstructure Design - Steel Stringers

Step 1. Determine the gap length and MLC (either MLC 30 or MLC 70)
Step 2. Measure the depth (d) and the base (b) of the available steel sections to the nearest quarter inch or centimeter.

Step 3. Use Table 7-48, enter at the top with the stringer size (round DOWN if the exact dimensions are not listed), then read down to the appropriate gap size and desired MLC to find the number of stringers per span required. If no number is listed. use two or more shorter spans.

Step 4. Use Table 7-47 (page 7-69) to determine the required deck thickness based on MLC and number of stringers.

Table 7-48. Number of steel stringers required
(number of lateral braces)


		$\begin{aligned} & \tilde{N} \\ & \underset{\sim}{n} \\ & \\ & \underset{\sim}{n} \\ & \stackrel{0}{2} \end{aligned}$		$\frac{0}{2}$							$\begin{aligned} & \text { an } \\ & \frac{x}{2} \\ & \frac{0}{2} \\ & \frac{x}{6} \end{aligned}$		을 N N N $\infty$ $\infty$					
7.5 (25)	$\begin{aligned} & 30 \\ & 70 \end{aligned}$	$\begin{array}{r} 10 \\ (5) \end{array}$	$\begin{array}{\|c\|} \hline 8 \\ (3) \\ \hline \end{array}$	$\begin{gathered} 8 \\ (6) \end{gathered}$	$\begin{gathered} 4 \\ (3) \\ 6 \end{gathered}$	$\begin{gathered} 5 \\ (5) \\ 15 \end{gathered}$	$\begin{gathered} 4 \\ (3) \\ 5 \end{gathered}$	$\begin{gathered} 4 \\ (5) \\ 10 \\ \hline \end{gathered}$	$\begin{gathered} 4 \\ (3) \\ 4 \end{gathered}$	$\begin{gathered} 4 \\ (5) \\ 7 \end{gathered}$	$\begin{gathered} 4 \\ (4) \\ 5 \end{gathered}$	$\begin{gathered} 4 \\ (3) \\ 4 \end{gathered}$	$\begin{gathered} 4 \\ (4) \\ 1 \end{gathered}$	$\begin{gathered} 4 \\ (4) \end{gathered}$	$\begin{gathered} 4 \\ (4) \\ 4 \end{gathered}$	$\begin{gathered} 4 \\ (3) \\ 4 \end{gathered}$	$\begin{gathered} 4 \\ (4) \end{gathered}$ $1$	(3) $4$
9 (30)	$\begin{aligned} & 30 \\ & 70 \end{aligned}$			$\begin{aligned} & 10 \\ & (6) \end{aligned}$	$\begin{gathered} 4 \\ (3) \\ 8 \end{gathered}$	$\begin{gathered} 6 \\ (6) \end{gathered}$	(3) $7$	4   (5)   14		$\begin{gathered} 4 \\ (5) \\ 10 \end{gathered}$	$\begin{gathered} 4 \\ (5) \\ 6 \end{gathered}$	$\begin{gathered} 4 \\ (4) \\ 4 \end{gathered}$	(5) $4$	$\begin{gathered} 4 \\ \text { (5) } \\ 4 \end{gathered}$	$\begin{gathered} 4 \\ (4) \\ 4 \end{gathered}$	$\begin{array}{\|c\|} \hline 4 \\ \text { (3) } \\ 4 \\ \hline \end{array}$	$\begin{gathered} 4 \\ \text { (4) } \\ 4 \end{gathered}$	$\begin{gathered} 4 \\ (3) \\ 4 \end{gathered}$
10.5 (35)	30   70				(3)   11	$\begin{array}{c\|} \hline 8 \\ (7) \end{array}$	$\begin{gathered} 4 \\ (3) \\ 9 \\ \hline \end{gathered}$	$\begin{gathered} 6 \\ (6) \end{gathered}$	$\begin{gathered} 4 \\ (3) \\ 4 \end{gathered}$	$\begin{gathered} \hline 4 \\ (6) \\ 12 \\ \hline \end{gathered}$	$\begin{gathered} \hline 4 \\ (6) \\ 8 \end{gathered}$	$\begin{gathered} 4 \\ (4) \\ 5 \end{gathered}$	$\begin{array}{c\|} \hline 4 \\ (5) \\ 5 \end{array}$	$\begin{gathered} 4 \\ (5) \\ 4 \end{gathered}$	$\begin{gathered} 4 \\ (5) \\ 4 \end{gathered}$	$\begin{gathered} 4 \\ (3) \\ 4 \end{gathered}$	$\begin{gathered} 4 \\ (5) \\ 4 \end{gathered}$	$\begin{gathered} 4 \\ (3) \\ 4 \end{gathered}$
12 (40)	$\begin{aligned} & 30 \\ & 70 \end{aligned}$				$\begin{array}{\|c\|} \hline 4 \\ (3) \\ 13 \\ \hline \end{array}$	10   (8)	$\begin{gathered} \hline 4 \\ \text { (3) } \\ 11 \end{gathered}$	$\begin{gathered} 7 \\ \text { (7) } \end{gathered}$	$\begin{array}{\|c} \hline 4 \\ \text { (3) } \\ 5 \end{array}$	$\begin{gathered} 5 \\ (6) \\ 14 \end{gathered}$	$\begin{array}{\|c} \hline 4 \\ (6) \\ 10 \end{array}$	$\begin{gathered} 4 \\ (4) \\ 6 \end{gathered}$	$\begin{gathered} \hline 4 \\ (6) \\ 6 \end{gathered}$	(6) $5$	$\begin{gathered} 4 \\ (5) \\ 4 \end{gathered}$	$\begin{gathered} 4 \\ (4) \\ 4 \\ \hline \end{gathered}$	$\begin{gathered} 4 \\ (5) \\ 4 \end{gathered}$	$\begin{gathered} 4 \\ (4) \\ 4 \end{gathered}$
13.5 (45)	30   70				$\begin{array}{\|c} \hline 5 \\ (3) \\ 15 \\ \hline \end{array}$	$11$   (8)	$\begin{array}{\|c\|} \hline 4 \\ (3) \\ 13 \\ \hline \end{array}$	(7)	$\begin{array}{\|c} \hline 4 \\ (3) \\ 6 \end{array}$	$5$   (7)	$\begin{gathered} 4 \\ (7) \\ 11 \end{gathered}$	$\begin{gathered} 4 \\ (5) \\ 7 \end{gathered}$	$\begin{array}{c\|} \hline 4 \\ (6) \\ 8 \end{array}$	$\begin{gathered} 4 \\ (6) \\ 6 \end{gathered}$	$\begin{gathered} 4 \\ (6) \\ 4 \end{gathered}$	$\begin{gathered} 4 \\ (4) \\ 4 \\ \hline \end{gathered}$	$\begin{gathered} 4 \\ (6) \\ 4 \end{gathered}$	$\begin{gathered} 4 \\ (4) \\ 4 \end{gathered}$
15.1(50)	$30$   70				(3)		$\begin{gathered} \hline 5 \\ (4) \\ 15 \end{gathered}$	$\begin{gathered} 9 \\ (8) \end{gathered}$	$\begin{gathered} 4 \\ \text { (4) } \\ 7 \end{gathered}$	$6$ (8)	$\begin{gathered} 4 \\ (7) \\ 13 \end{gathered}$	$\begin{gathered} 4 \\ (5) \\ 8 \end{gathered}$	$\begin{gathered} 4 \\ (7) \\ 9 \end{gathered}$		$\begin{gathered} 4 \\ (6) \\ 4 \end{gathered}$	$\begin{gathered} 4 \\ \text { (4) } \\ 4 \end{gathered}$	$\begin{gathered} 4 \\ (6) \\ 4 \end{gathered}$	$\begin{gathered} 4 \\ \text { (4) } \\ 4 \end{gathered}$


(Chart assumes structural quality steel fy 33 KSI )

Step 5. Lateral braces are always required for steel stringers. Use Table 7-48 (page 7-71 (to determine the number of braces between each stringer. Figure 7-23 shows how to install hasty lateral braces. If steel is used for bracing, it is not necessary to weld it as long as the bridge is of a temporary nature. Attach steel as shown in Figure 7-24 for timber.

Step 6. Curbs, handrails, and a wearing surface can be omitted for hasty bridges Figure 7-23 illustrates a cross-section of a hasty MLC 30 or MLC 70 one-lane steel strtnger bridge.


Figure 7-23. One-lane hasty steel stringer fixed bridge


## Substructure Design - Abutments

Abutments act as the interface between the bridge and the ground and must be able to adequately spread the bridge loads into the soil without danger of soil failure, abutment overturning, or abutment sliding. The easiest design for hasty temporary construction is a timber sil abutment (Figure 7-25). Piles or concrete abutments should be used for permanent design Refer to TM 5-312 for design procedures.

## Substructure Design - Intermediate Supports

For hasty temporary construction, a crib pier can be constructed from available materials. Crib piers will be rarely used in heights over 15 feet ( 4.6 meters). When small sized timber is the only available material, cribs can be successfully built to heights of 20 feet ( 6 meters) or more. Hasty piers can also be constructed of rubble, rocks, vehicles. Bailey bridge parts, or any other available support material. The TM 5-312 outlines the design procedure for timer trestle, timber pile and steel framed intermediate supports.


Figure 7-25. Timber sill abutment


Figure 7-26. Timber crib piers


Figure 7-27. Leveling the top of a damaged pier


Figure 7-28. Timber spar bridges


Figure 7-29. Use of sandbags to repair damaged bridge


[^0]:    22_ Deck Width
    18 Roadway Width \} Number of balk

[^1]:    
    of the two end span H -frames
    NOTES 1 If the value obtaine
    6. Divide the value obtained in step 5 b by 2 to determine the lengths

