A Long-Term Survival Guide – How To Make Lever Traps:

Anyone interested in survival skills should know how to make animal traps and snares, for emergency food-gathering. Useful trap designs include den traps, deer snares, wire snares, box traps, tidal fish traps, and dozens of others, and it would be wise to become skilled at making and using such traps before you actually need them.

There are many types of trigger mechanisms used to activate traps and snares. You may have heard of some of these, such as the figure four, or the cord and toggle, but the simplest design, and perhaps the least well-known, is probably the lever trigger, or lever trap.

Paracord and a throwing weight are two basic items used for setting lever traps.

Lever traps use a trigger mechanism that consists of one part, a stick, but this design is as reliable, adjustable, and versatile as more complex triggers. A generalized lever trap would be made by throwing a strong cord over a high tree branch, using a small throwing weight, which could be a small metal weight, a large fishing sinker, or a small bag with rocks or sand inside.

Here a throwing weight has been successfully thrown over a high tree branch.

Once the cord is over the high branch, and you have control of both sides of the cord, a weight is tied to the end of the cord that had the throwing weight on it. I usually use a hefty rock as my weight, but you can substitute a bag full of dirt or gravel, or a section of a log, if you wish.
Once the weight is tied to the cord, it is hoisted up into the tree, by pulling on the other side of the cord. The weight will be the motive power for the trap, dropping when the trigger is activated, so it must be heavy enough to do the job that the trap is designed to do. It must be able to drop freely, without striking any tree branches on the way down, and it must be high enough that it will travel far enough to take up any slack in the cord, and activate the trap end, or lift snared game up high enough that they will not be stolen by any predators, before you collect it.

Here is a completed trigger mechanism (the rock was left low, for the picture)

Now the trigger, which is just a simple stick, is added to the cord. The cord coming back over the branch is tied to the stick near one end, then run along the stick and tied again near the other end.

Close-up of trigger stick, with end positioned under a branch stub.

The first end of the stick is positioned under a side-branch, stub, knot, or notch in the bark, near the tree, and the other end of the stick is positioned under a handy side-branch, with the free end of the cordage hanging down from it. Pressure on the cord from the rock holds the stick in place.
Upper end of trigger stick, positioned under a side-branch, with free cordage hanging down.

Basic leverage causes the end of the stick near the tree trunk to take most of the weight from the hanging rock, while the other end of the stick holds very little weight, and is easy to dislodge, creating a very sensitive trigger that can hold very heavy weights quite securely, until released.

Trigger lever traps use basic leverage principles, to create an adjustable trigger mechanism.

The free cordage hanging from the outer end of the stick is now run to the actual trap position, and either made into a noose, or attached to a wire snare, or connected to some other trap, which needs a strong tug to be activated. This can be anything from a noose to an explosive charge, limited only by your imagination, and your need to have a task triggered by a remote activator.

The sensitivity of the lever trigger is almost infinitely adjustable, by making the lever stick longer or shorter, or by tying the cord (that runs up to the hanging rock) closer to the end of the stick (easier to release), or closer to the center of the stick (harder to release). It is much easier to make this trap trigger than to describe it. Once you try this design, you may never want to use any other type of trap trigger, for trap applications that use a moving cord.
Lever Trap Variation # 2: Here is a second way to make a lever trap, which is very similar to the first example (again, the stone was left much lower than normal, just to get it into the picture). In this example, the end of the stick tied to the hanging rock (and holding most of the weight) is set into a shallow notch cut into the tree bark. This variation works just well as any other, and the notch can be made with a hatchet, large chopping knife, chisel, or brace and bit style auger.

The weight-bearing end of the stick is set in a notch, cut into the tree bark. The notch can be quite shallow, one inch is plenty deep, and half an inch is usually adequate. This variation is used when there is no handy projection to hook the first end of the stick under.
Again, the outer end of the trigger stick is positioned under a handy side-branch.

Any tiny branchlets on either side of this side-branch will be enough to keep the trigger from shifting, if wind makes the tree branches sway while the trap is set.

Here is the completed trigger mechanism, seen from the side, with the free cordage on the outer end of the trigger stick going down to the actual trap. Normally the rock weight would be way up in the tree, out of sight, so that it would have more travel distance before reaching the ground.
Lever Trap Variation # 3: The trigger lever doesn’t have to be positioned against the tree trunk, like in the first two examples. The trigger lever can be set between any two branches, or between the forks of a forked branch, and it will work just as well. This allows you to position your hanging weight and your trigger mechanism farther apart, when it is advantageous to do so.

Lever Trap Variation # 4: In this variation, two large rocks have been used to hold the ends of the trigger lever. The hanging weight stone, suspended in a nearby tree, is not shown here.
The left side of the trigger lever is tied to the cord that runs up to the suspended weight, so this end of the stick is supporting the most weight, and is positioned under the curve of a large rock.

The right side of the trigger lever holds the least amount of weight, and is positioned just under the edge of a smaller rock, which was set in place across the trail, to create the trigger site. This stone was set on a bed of smaller rocks, to elevate it slightly. You can also elevate flat slabs of rock on other stones, to create gaps underneath, to hook the trigger lever ends under, if needed.
Here is the completed trap, showing everything except the hanging weight. If you look closely, you can see that the free cordage was made into a noose, and positioned under the trigger lever. Any animal that disturbs the trigger lever will cause the lever to release on the right side, then the noose will close around the animal’s legs, and hoist it into the air.

Although this trap is finished and ready to operate, it would normally be disguised by a layer of leaves, so that the noose would not be visible at all. More leaves could also be carefully piled around the trigger lever, if desired, to conceal it as well.

A noose under the trigger lever is only one possible way to rig a trap, using this variation of the trigger lever. It could just as easily activate a spiked whip, bow trap, set gun, or live-catch net. Another variation is to use a spiked weight, instead of a simple rock, and to position the spiked weight so that it falls on the game that releases the trigger lever.

The trigger lever, or lever trap, is one of the best trap trigger mechanisms ever invented, due to its reliability, adjustability, and versatility. Nobody knows how old this trigger design actually is, because there is no way to tell if early man used simple sticks as triggers, unless a cave painting turns up somewhere. But this trap design should definitely be part of your survival knowledge.

Note: Like everything else fun and effective, traps such as these may be illegal, or may become illegal as new laws are passed, so use these trapping methods for survival situations only.