Deluxe Amateur TRANSMITTER

By JAMES N. WHITAKER, W2BFH

Part 1. Design data for a 1-kw. transmitter. The most practical circuits for amateur service are incorporated in building this unit.

WITH the resumption of radio amateur activities following the conclusion of World War II, the amateur is confronted with a great variety of available component parts consisting of new items as well as war surplus materials from which he must select a few useful items to be incorporated in his postwar station. He has also been presented with a rather bewildering array of technical literature released as a result of the removal of wartime secrecy restrictions. These two factors coming along together as they do are quite bewildering to say the least and before starting out on a shopping expedition it will be wise for him to consider very carefully just what end result is desired. The cost of component parts on the surplus market is low enough to make possible the selection of high quality items which will permit the construction of equipment often dreamed about but seldom realized in amateur circles. A few of the most desirable features to be incorporated in a transmitter for amateur service can be roughly listed as follows:

1. The radiated signal must be as pure as possible. The a.c. ripple and spurious noise modulation must be below 1%. The harmonic content of the emitted carrier must be relatively low. There must be no radiations at spurious frequencies (parasitic oscillations, etc.). Modulation of the carrier must be linear and free from parasitic oscillations which so frequently are present during the modulation peaks.

2. The p.a. efficiency must be high. Since amateur transmitters are limited in power to 1000 watts of plate input to the final amplifier, considerable time should be allotted to obtaining the highest possible efficiency in this stage. This immediately rules out the typical "ham" method of operating the output tubes at considerably beyond the manufacturer's published ratings.

3. The frequency must be stable.

April, 1947

Even a slow drift in one direction is likely to cause considerable annoyance not only to the receiving station where the receiver must be continually tuned to follow the transmitted signal, but also to other stations which might be receiving interference from the transmitter. To achieve real stability the old concept of a high-powered crystal controlled oscillator must be discarded. The more recent understanding of the prime reason for the use of crystals. They are a frequency stabilizing element rather than a source of power. The same is generally true of self-excited oscillators. Any oscillator will provide a maximum of stability only when it is supplying a minimum of power.

4. The method of power control must be positive and properly sequenced. This usually indicates the use of several relays interconnected with each other in such a manner as to apply power to the various sections of the transmitter in a proper sequence for starting up the transmitter and for removing the power in an order not necessarily reverse of the starting sequence, when shutting down the transmitter, as will be shown later.

5. The speech amplifier should be a separate unit and should not have a linear frequency characteristic. This may sound strange, but a careful analysis of the problem will disclose the truth of this statement. All modulation applied to the carrier tends to distribute the emitted power in the form of sideband energy. The entire audio frequency range is not required for good voice intelligibility. The more power used in needless sidebands the less power will be available for the necessary speech frequencies. The speech amplifier should, therefore, discriminate against frequencies below 200 cycles and above 3000 cycles. Such an amplifier will permit a higher average of modulation before the peaks of the voice frequencies cause serious over-modulation. The peaks in voice frequencies are generally in the form of high frequency transients against which such an amplifier will discriminate.

6. A very definite and simple over-modulation indication must be provided. The indicator must show any overmodulation peak no matter of how short duration rather than the average modulation. Overmodulation peaks are the cause of serious sideband "splatter" and contribute greatly to the interference often experienced in nearby broadcast receivers. The overmodula-
Fig. 2. Complete schematic diagram of the 1-kw. deluxe transmitter. Outstanding features are a voltage doubler final amplifier supply, the use of a copper oxide rectifier to supply d.c. for operation of relays, a positive overmodulation indicator, and control of input power. Parts list is shown on page 71.
tion indicator should provide a positive indication of overmodulation regardless of the power used, and should not require adjustment when the power is increased or decreased.

7. The transmitter should not be unnecessarily large. Compactness is essential not only from the standpoint of the conservation of space but also for the purpose of obtaining the shortest possible electrical connections between components within the equipment.

8. Shielding and isolation of circuits. All r.f. sections should be carefully and completely shielded to prevent spurious radiations and to prevent reaction between the various circuits within the transmitter. It is impossible to overstress the importance of complete isolation of circuits in a transmitter. Academically, perfect isolation of circuits can probably never be realized, but the careful use of shielding and r.f. bypassing and filtering will result in practical perfection along these lines. In any event, the isolation of circuits should be carried out to the extent that no spurious oscillations will occur in any circuit or combination of circuits during normal operation, or the event of failure of the oscillator.

A solid ground connection between units is required, and all bypass connections should be made directly to the chassis at the nearest possible point, as well as to the running ground. Although this does not mean that the chassis may be steel or other relatively low conducting material, the mass of the chassis will provide a lower resistance path than a copper conductor of convenien size. It is wise to use both a running ground and chassis connection, or a chassis connection and a running ground between chassis.

In most instances a running ground will offer little if any improvement when the chassis is used for a ground connection, and all chassis are bonded together.

With these eight requirements in mind, the writer set out to design and construct the transmitter to be described. The overall operation and the results obtained have proven how very worthwhile it is to allot an appreciable amount of time to the careful planning of the transmitter before parts are purchased and the actual construction is started.

The transmitter will be described briefly as a composite unit followed by specific descriptions of each section and will include reasons for the selection of the particular system or circuit used as well as other suitable circuits which may be substituted. It

Complete parts list for schematic diagram appearing on opposite page.

Fig. 3. Schematic diagram of several oscillators that were tried. Circuit shown in (A) proved most satisfactory and was the one finally adopted. Circuits (B), (C), and (D) could be used. The advantages and disadvantages of each are covered in text.

April, 1947
The Oscillator

During the past several years it has been the writer's good fortune to have the opportunity of investigating oscillator circuits too numerous to mention. Each circuit has been carefully analyzed and data taken on output power, frequency stability, crystal current, etc. Each circuit was found to possess advantages and disadvantages. Any circuit used represents a compromise of some sort. The problem resolves itself into the selection of the most favorable compromise for the application in mind. In order to make an intelligent selection, the requirements must be studied carefully. In this case the requirements were briefly as follows:

1. The oscillator must be stable and free from self-oscillation when the crystal is removed or when the crystal is in place but ceases to oscillate.
2. The power required from the crystal must be so small that there will be negligible internal heating of the crystal. The r.f. current through the crystal must be as low as possible and must not exceed 10 ma. of r.f. current under normal operating conditions and 25 ma. under any condition. (The r.f. current through the crystal must not be confused with the d.c. grid current of the oscillator tube although the two may bear some relationship.) The r.f. potential developed across the crystal must never reach a value sufficient to produce a corona discharge or any burning of the crystal or the electrodes.
3. The crystal must start oscillating immediately upon the application of power to the oscillator plate and screen circuits. There must be no sluggishness in the crystal action. A good test for sluggishness is to key the oscillator circuit at high speed with the keying arranged to open and close the cathode-to-ground circuit of the oscillator tube.)
4. The tuning of the oscillator circuits must not be critical and the oscillator must not be affected materially by the loading produced by the following stage whether or not the following stage is operating properly.
5. The oscillator must deliver sufficient power to drive a multiplier stage and at the same time fulfill the requirements set forth in the preceding paragraph.

A careful analysis of all circuits tested indicated that the most satisfactory circuit was one that was developed early in 1941 and which is shown schematically in Fig. 3A. (A similar circuit a 7C5LT beam tube is used in a more or less conventional crystal oscillator circuit. A 6V6 tube may be used in the same circuit with almost, but not quite, as good results. The new 50B5 tube will perform as well as or possibly better than the 7C5 tube and is useful in connection with a 50B5 multiplier tube where it is desirable to connect the heaters in series for operation from a 110 volt power line to eliminate a filament transformer. (If this is done a 100 ohm, 10 watt res...
HAS THE BARGAINS

SAVE $10.00 ON THIS PROFESSIONAL RELAY RACK

Add professional appearance to your transmitter, PA system or any electronic equipment.
42" H x 22" W x 16½" D - panel size 36½" for standard nitched panels. Made of 1-16" cold rolled steel, rounded vertical corners, rear door with loose joint hinges and flush snap catch. Finished in Black Ripple Enamel.

Pos-Metal ER 213, Brand New, shipped KD in original factory pkg. Cate with all lowe. Wt. 100 lbs. Regularly a Net $28.90 Value. Stk No. 1A52 Special Each $18.50

ORDER NOW, from this ad while these Outstanding Values are still available. CHECK ALSO the big new B-A Catalog No. 471—84 pages of more Bargains and everything you need in Radio. WRITE US if you did not receive it.

For 19 years, thousands upon thousands have found B-A as the place for honest, dependable and friendly service—a firm in which they have complete confidence. You, too, can buy everything from B-A with the confidence—it will be right as described—or your money will be refunded.

"RCA" Audio Oscillator

Range 30 to 15000 CPS Continuous

Provides audio signal for checking fidelity curves; testing speakers, PA systems, etc. Choice of 250, 500 and 1000 ohm output impedance. Output Voltage of 5 to 18.75 volts max. Distortion under 5%. 8½" dial. Case 9½" x 12½" x 3½", wt. 19 lbs. Furnished Complete.

Comparable instruments at today's prices sell at over $100.00. You get these Brand New in original factory packing.

Stk No. 5A164

While They Last, Each.............$59.95

BARGAINS in Aluminum Can Screw Neck Electrolytics

Direct Replacement for Upright Wet and Dry Electrolytics

475 V, 1000 Peak Volts

Bargain Price.............$2.95

List Price.............$4.35

Johson variable, dual section, 300 microfd. per section. Spacing 0.05".

List Price.............$5.95

Did You Get It?

The New B-A Catalog No. 471

BUSSTEIN-APPLEBEE

Company

1012-14 McGee Street

KANSAS CITY 6, MISSOURI

A miniature type beam tube such as the 5085 is undoubtedly superior as an oscillator tube in this circuit where it is desired to use crystals having a fundamental frequency above 3000 Mc.
With a plate potential of 350 volts, and an r.f. load of 6 watts, the plate current is 31 ma., the screen grid current is 4 ma., the r.f. crystal current is approximately 1 ma., and the plate efficiency is approximately 46%.

Other Oscillators
For those wishing to use other oscillator circuits, the following circuits and operating data is offered.

Harmonic Oscillator. (Fig. 3B)
This is one of the many versions of the controlled oscillator type, where the circuit is either self-oscillating or where the regeneration is almost sufficient to produce self-oscillations, and where output is obtained at multiples of the crystal frequency. There are so many versions of this type of oscillator that space does not permit the inclusion of all data and other pertinent information. The circuit shown was selected because of its general performance and stability, together with a relatively safe value of crystal current. The output will vary between 2 and 5 watts, depending upon the output frequency.

With a 3.5 mc. crystal, any multiple of the crystal frequency up to 21 mc. may be obtained with an output power of 2 watts or over. The plate current will range from 20 ma. at 7 mc. to 40 ma. at 21 mc., and the r.f. crystal current will range from 2.5 ma. at 7 mc. to 38 ma. at 21 mc.

When testing oscillator circuits of this type or any other type employing regeneration a 60 ma. pilot bulb should be connected in the crystal-to-ground circuit as a protection against accidental overloading of the crystal.

802 Crystal Oscillator. (Fig. 3C)
One of the more popular crystal oscillators utilizes the 802 type tube. If properly shielded, this oscillator provides a relatively high output with low crystal current. The regeneration within the tube is of such a low value that an external feedback capacitor is required to produce and sustain oscillations. Care must be exercised in the selection of the feedback capacitor, as too much feedback will produce high r.f. crystal currents which may damage the crystal.

With a plate potential of 475 volts and a screen grid potential of 250 volts, and an r.f. load of 8 watts, (3.5 mc. crystal, and output at the fundamental frequency) the plate current will be 3 ma., the screen grid current 15 ma., and the r.f. crystal current will be 6 ma. The plate efficiency under these conditions is approximately 49%.

6V6 Oscillator. (Fig. 3D)
Using a 6V6 oscillator in the circuit shown in Fig. 3D, the following data was obtained: (3.5 mc. operation)

With a plate potential of 345 volts, and a screen potential of 250 volts, the plate current is 49 ma., the screen current is 8 ma., and the r.f. crystal current is 1 ma. with a 6 watt r.f.

(Continued on page 154)
Television 1947!

Amateurs, Experimenters, Radio Servicemen...Now you have access to the secrets of post-war television. Vision Research Laboratories now brings you in its new series of television booklets complete and detailed plans for the construction of a 5- or 7-inch television-FM receiver! The plans in these books incorporate all of the latest design features plus a detailed parts list. There is no need to wade through textbooks to get this necessary information. These booklets furnish you with all of the information needed for the construction of television receivers, sweep alignment generator, etc.

NOW AVAILABLE "Design and Construction of a Modern 5- or 7-inch TELEVISION RECEIVER" and "Design and Construction of a Visual Alignment SWEEP SIGNAL GENERATOR."

Each booklet contains: Many pages of theory and practical design information. Detailed sketches, layout photographs and schematic diagrams. In addition, each booklet is furnished with an 11 x 17 inch wall chart working diagram.

Order direct or through your local distributor!

Deluxe Transmitter
(Continued from page 76)

load. The plate efficiency is approximately 38%.

Higher Power Triode Oscillator.

Among the triode oscillators, the HK24 or Eimac 25T or similar tube appears to have the most promising characteristics. The circuit is shown in Fig. 44.

The data is as follows: (3.5 mc. operation).

With a plate potential of 750 volts, and an r.f. load of 17 watts, the plate current is 42 ma., the r.f. crystal current is 8 ma., and the plate efficiency is approximately 53%.

With a plate potential of 1000 volts, and an r.f. load of 30 watts, the plate current is 60 ma., the r.f. current 16 ma., and the plate efficiency is approximately 50%.

From the above data it will be seen that for lowest crystal current, which results in the greatest frequency stability, the choice lies between the circuits using the 802, 6V6, or 7CS tubes.

In the 802 circuit, the regeneration control may require adjustment for operation on different frequencies. Since this control is rather critical, a tube not requiring external regeneration is preferable. There is little choice between the 6V6 and 7CS oscillators at 3.5 mc., but at higher frequencies, the 7CS type offers some advantages, since the base insulation is superior, and the internal leads of the tube are shorter.

It is very important when using beam tubes or pentodes, to take care that the screen dissipation is not exceeded. If the tube is overdriven, or if the voltage is too high, secondary emission will result.

Frequency Multiplier Stage

With the tubes now available, it is no longer necessary to use a series of frequency doubling stages in order to obtain the desired output frequency. It is a relatively simple matter to obtain multiplication of from 2 to 20 in a single stage. The selection of the multiplier tube will depend upon the amount of multiplication desired as well as the output required from the multiplier. The most satisfactory tubes for use in a multiplier circuit appear to be either a 7CS or the new 2E26 beam tetrode. The new 50B5 beam tube would probably be even more satisfactory than the 7CS where a higher order of multiplication is required and where the power output can be relatively low.

If the following amplifier stage requires very low driving power as in the case of a beam power amplifier and where the multiplication is not greater than 5 to 8, the 7CS (and also the 50B5) tube will be quite satisfactory. Where a power of 10 to 15 watts is required from the multiplier stage, the 2E26 tube will be found more satisfactory. Where it is desirable to obtain high orders of multiplication a single 2E26 may be used as a multiplier to drive a 2E26 amplifier. With this combination an output of 15 to 20 watts is obtainable at multiples of the oscillator frequency up to and including 25.

For the transmitter being described a 7CS multiplier tube follows the oscillator stage and supplies more than sufficient drive to the 4E27 amplifier stage at multiples of 2, 3, and 4 times the crystal frequency. The circuit is shown schematically in Fig. 4B. In the original setup, a 2E26 was used in the multiplier stage but it was found difficult to reduce the drive to the 4E27 stage to a sufficiently low level for satisfactory operation. For this reason the 2E26 was replaced by a 7CS multiplier tube. The plate tank circuit of the multiplier stage is arranged with a tap switch in such a manner that operation at 14, 21, and 28 mc. may be obtained without physically changing the coils. When the transmitter was placed into operation it was found necessary to further reduce the drive to the 4E27 amplifier. This was done by dropping the plate voltage applied to the 7CS multiplier to 150 volts.

Other Frequency Multiplier Systems

Frequency multiplier systems are generally so well-known and have been treated so thoroughly in previous publications that little more need be said about the subject in this general way. Almost any single-ended amplifier circuit will operate satisfactorily as a frequency multiplier at frequencies up to 30 mc., with the pentode and beam tubes probably heading the list in performance. At the higher
frequencies, the problem of obtaining satisfactory operation of frequency multipliers becomes more difficult, if any appreciable output power is required. If an extremely low output will be sufficient, the low capacity receiving type of tube may be used quite satisfactorily.

For those desiring to operate on the higher frequencies, and particularly where the multiplier is to be used as a driver and must supply an appreciable amount of power, the push-pull tripler will be found very satisfactory. The basic circuit is shown schematically in Fig. 5.

In this system, the ability of a push-pull amplifier to suppress the second harmonic and at the same time generate third harmonics is utilized.

The grid bias should be somewhat higher than in a conventional doubler stage for proper operation. This system is particularly suited to the frequencies where best operation dictates a conversion from the conventional coil tank circuits to resonant lines, such as from 48 mc. to 144 mc. A conventional coil is used in the grid circuit, while a tuned line is used in the plate circuit. This provides an arrangement with the tube capacities effectively in series, and permits the use of a sufficiently high inductance in the plate circuit for efficient operation.

With this arrangement, using two HK24s or similar tubes with a plate potential of 650 volts, an output power of 25 watts is available at frequencies up to 370 mc.

A modification of this system provides output at 1, 2, and 3 times the input frequency. This arrangement is shown in Fig. 6, and is a combination of a push-pull amplifier or push-pull tripler, and the almost forgotten "push-push" doubler arrangement, which may have been popular if the proposed 21 mc. band is opened up to the amateurs, as it will provide output on 7 mc. for instance, as a neutralized amplifier, 14 mc. as "push-push" doublers, and 21 mc. as a push-pull tripler.

The "push-push" doubler is an old standard whose low output is desired from a doubler, but with the high efficiency of the pentode and beam type of tubes, and has all but been forgotten. It should be remembered however that the new tubes having high power gain will also operate exceedingly well in this circuit. Just as a reminder, the "push-push" doubler circuit is shown schematically in Fig. 7. It is particularly well suited to the 829B type of tube, as well as any of the twin triode types.

(Concluded next month)

ANSWERS TO BIZ QUIZ

1. c 2. b 3. b 4. a 5. c
6. b 7. c 8. b 9. b 10. c
11. c 12. c 13. a 14. b 15. a
16. c 17. b 18. a 19. b 20. c

ARE YOU A SALESMAN? Give yourself 5 points for each answer you had checked correctly. A score of 45 is average, and 75 or better is very good indeed.
Deluxe Amateur TRANSMITTER

By JAMES N. WHITAKER, W2BFB

Part 2. Concluding article covering the design principles for a 1-kw. amateur type transmitter.

grid power for the driver stage is obtained from the high voltage power supply which supplies plate power to the final amplifier. The full potential is applied directly to the anode of the tube while the screen grid potential is applied to the tube through a 100-000 ohm resistor. A 1200 ohm cathode biasing resistor is connected between the filament center tap and ground to provide normal operating bias for the tube. A 250,000 ohm grid resistor is also used to prevent excessive grid current when the plate potential is reduced and the drop across the cathode biasing resistor decreases correspondingly.

There has been much controversy regarding the use of the new beam type of tubes versus a neutralized triode. Unquestionably much of the reluctance to incorporate these new and wonderful tubes in equipment is due largely to a lack of understanding as to just how they may be satisfactorily incorporated in the equipment. The general complaint seems to be the difficulty in eliminating the tendency toward self oscillation.

In designing any equipment using a beam tube, always bear in mind the fact that the power sensitivity of this new type of tube exceeds by far the power sensitivity of any tube heretofore known. It is this extremely high power sensitivity that makes this tube so highly desirable, and at the same time so apparently difficult to operate satisfactorily.

In order to successfully design an amplifier using a high-powered beam tube, it is extremely important to bear in mind that a very small amount of feedback, which in a triode amplifier would be practically undetectable will be a very serious amount indeed for a high gain beam tube.

The isolation of the input and output circuits must be as nearly perfect as possible. The r.f. bypassing must be complete with all leads as short as possible. Each filament terminal must be bypassed directly to the chassis as close to the socket terminal as possible. The screen grid must be bypassed to the filament terminals as well as to the chassis, and if the suppressor grid is not directly connected to the filament, it must also be bypassed directly to the filament as well as to the chassis.

If the isolation between input and output circuits is complete, the amplifier will operate as smoothly as a conventional neutralized triode amplifier and the driving power required will be almost unbelievably small compared to the power required to drive any other type of amplifier having an equivalent power output.

If the designer is unable to eliminate feedback entirely, there are several ways to suppress spurious oscillations. One way is to insert a 50 ohm, non-inductive resistor in the screen grid circuit, between the screen grid terminal and the bypass condenser. Another method is to insert a 50 ohm resistor (around 500 ohms has been wound eight or ten turns of wire forming a small inductance shunted by a 50 ohm resistor) in the grid or plate circuit.

Any of these suppression methods are subterfuges, serving to remove the symptoms rather than the ailment, and are, in reality, an admission that the equipment has not been properly designed.

It is possible to obtain satisfactory operation from a triode amplifier when departing widely from the manufacturer's recommended ratings regarding driving power, grid bias, and plate voltage.

In a beam power amplifier, such departures are a direct invitation to trouble, and should be attempted only by those completely familiar with every detail of the operational theory of a beam tube. Perhaps one of the most difficult things for the amateur to grasp is that the grid drive must be kept well within the maximum limits specified by the manufacturer.
available for use in the power amplifier stage. The choice of tubes depends largely upon the efficiency desired and the power output needed. Since the 4E27 driver stage is capable of supplying sufficient power to drive almost any 1 kw. amplifier stage, any tube or tubes of sufficient power capabilities may be used. One point to bear in mind is that amateur transmitters are limited to a maximum plate input of 1000 watts. For this reason one must consider the efficiency of the final amplifier rather than economy of tubes in order to obtain the greatest possible power output with the permissible input. In order to obtain the best possible efficiency it is necessary to use tubes capable of considerably more power than is required. Another very good reason for using relatively high powered tubes is that the output need not be decreased in order to obtain satisfactory high-level modulation. This is not necessarily the most economical way to design a transmitter but it is the most satisfactory way of obtaining a maximum power output from a given input.

The power amplifier stage in a telephone transmitter should be a push-pull stage in order to discriminate against second harmonic radiations. Some objection may be raised because of the possibility of a third harmonic radiation from a push-pull amplifier but these radiations are never as serious as the second harmonic radiations because of discrimination against the higher frequencies in both the plate tank and antenna circuits.

In designing the power amplifier it is important to consider very carefully some arrangement for completely shielding the input and output circuits from each other and from the rest of the transmitter. The most satisfactory method of shielding is to arrange the power amplifier so that the input circuit, the tubes, and the output circuit are effectively in separate compartments with the neutralizing system in the compartment with the tubes. It will be found that with this arrangement the nearest approach to true neutralization is obtainable. If the shielding is not complete, the apparent neutralization will not be true neutralization since a certain amount of input-output coupling will be compensated for in the neutralizing. When this occurs there is danger of feedback, parasitic oscillations, and various other difficulties when the plate power, grid drive, or output coupling is changed. This is a condition which most commonly produces parasitic oscillations during modulation peaks which is easily understood when one remembers that high-level modulation actually varies the input power to the amplifier in accordance with the applied modulating power.

In a push-pull amplifier it is necessary to very carefully design the circuits to provide equal grid driving power to both tubes. The plate loading must also be equal. In practice it is very difficult to design a center tapped coil in such a way as to obtain a perfect electrical balance in each half of the coil. This may not be too serious at frequencies below 15 mc. but at higher frequencies irregularities which are almost unnoticeable may produce a serious unbalance. For this reason it is well to depend on a split stator tuning capacitor to provide electrical center tap rather than to bypass the center tap of the coil to ground. Tuning capacitors are manufactured to very close tolerances and are generally assembled with the aid of very accurate jigs and therefore for all practical purposes, may be...
is always a certain amount of loss in even the highest grade of mica capacitors. This is also important in high power stages as it prevents grounding the high voltage power supply in the event that a flash-over of the capacitor occurs.

The antenna coupling circuit should be variable by means of a dial or knob accessible from the front panel. The number of turns and diameter of the coupling coil will depend upon the method of feeding the antenna and if the connection to the transmitter is by means of a coaxial transmission line, the coupling coil will be smaller or will contain fewer turns than if a higher impedance line is used. Where the same antenna is to be used for the receiver and the transmitter, the antenna changeover relay should be mounted inside the transmitter and as close as possible to the coupling coil. The relay and the connection should be adequately shielded from the power amplifier plate tank circuit. The location of the antenna changeover relay adjacent to the output coupling coil is very important where coaxial transmission line is used. If the relay is located outside the transmitter, it will cause a discontinuity of impedance which may result in serious standing waves along the transmission line.

Power Supply System

The power supply systems for a high-powered transmitter do not necessarily have to be complicated. Primary consideration should be given to designing the power supplies so that there will be a minimum of reaction between stages. This is particularly true of the reaction between the oscillator and the amplifier stages. It is always well to provide a separate power supply for the oscillator and multiplier stages rather than to attempt to use a common power supply for the entire transmitter. It is also well to use some sort of voltage regulation in the oscillator power supply although this is not absolutely necessary when using the oscillator circuit previously described. It should not be necessary in any case to use an elaborate vacuum tube voltage regulator. A regulator tube such as the OD3/VR150 or two such tubes connected in series should be ample. The intermediate or driver amplifier and the final amplifier may be operated successfully from a common power supply. It is very desirable to do this where a varicore or some other means of primary power control is used.

The class "B" modulator tubes should be operated from a separate power supply unless the main power supply has unusually good regulation and the class "B" modulator tubes are operated with zero bias. Where grid bias is required for the modulator tubes a power supply should be provided to supply this bias and this power supply should be very heavily loaded to prevent a change in bias due to varying grid current.

In the transmitter being described a small power supply provides the power for both the oscillator and multiplier stages. The main high voltage power supply provides power for the driver and final amplifier stages. The main power supply is equipped with a variac in the primary circuit to permit easy adjustment of the input power. The class "B" modulator stage has its own power supply and a bias rectifier system provides 60 volts of negative bias for the modulators. The bias supply is loaded with a 250 ohm resistance causing a normal drain of approximately 0.24 amperes. This high bleeder current assures a minimum of fluctuation in the bias supply due to the varying grid current of the modulator tubes. The bias supply also provides power for some of the relays.
Remote Control System

A positive acting remote control system should be provided in any transmitter in order that the transmitter may be started and stopped from the operating position by means of a toggle switch or other simple device.

A number of relay combinations may be worked out to suit the particular installation once the proper sequence of operations has been determined. The system should provide a means for applying power to the various parts of the transmitter in such a sequence as to prevent the application of power to the stages of the transmitter before power has been applied to the oscillator and multiplier stages. It must also provide means of transferring the antenna from the receiver to the transmitter before power is applied to the final stages. The system must also provide a means for removing the power from the final stages before the power is removed from the oscillator and multiplier stages and sufficient time must elapse between the removal of the power from the final stages and the operation of the antenna changeover relay to assure that there will be no power in the antenna circuit when the antenna changeover relay is operated.

The control system in the transmitter being described uses a total of five relays for performing all operations. A copper oxide rectifier supplies power for the remote control relay and the antenna changeover relay. The circuit is shown in Fig. 2.

Relay RLA is the remote control relay, receiving its power from the copper oxide rectifier, through the remote control switch. The operating coil of relay RLA is connected in the oscillator power supply circuit as a filter section, and receives power when the oscillator power supply is energized. Power for relays RL and RLA is obtained from the bias supply, through contacts B of relay RLA.

The operation of the system is as follows: When the remote control switch is closed, relay RLA operates, closing contacts A and B. Contacts A are in the center tap of the oscillator power supply transformer. When these contacts close, the power builds up in the oscillator power supply, energizing the operating coil of relay RLA. Relay RLA operates closing contacts C and D. Contacts C close the primary power circuit of the bias supply, through the time delay switch, and contacts D operate the antenna changeover relay. When the power builds up in the bias supply, relays RL and RLA operate, since contacts B of relay RLA are closed. When contacts E, F, and G, H of relays RL and RLA close, power is applied to the modulator and the main high voltage supplies, and the transmitter is in operation.

Fig. 7. Schematic diagram of speech amplifier. The unit has an over-all gain of 100 db, and an undistorted output of 31 watts.
As we have shown, the sequence of operation is as follows: The oscillator power supply comes up first, then the antenna changeover relay operates, then the bias supply comes up, and finally the power comes up in the modulator and p.a. power supplies.

When the transmitter is shut down, the zero-throw control switch removes the operating power from relay R12, which immediately opens contacts A and B of relay R12. Contacts B of relay R12 open, removing operating power from relays R2 and R14, causing contacts E, F, G, H to open, removing the primary power from the modulator and main power supply.

As the power in the oscillator power supply dies down, the operating coil of relay R12 is de-energized, permitting contacts C and D to open. The opening of contacts C removes the power from the bias supply, and the opening of contacts D operates the antenna changeover relay R12.

From the above, we find that the sequence of operation for shutting down the transmitter is not exactly the reverse of the starting sequence, but is as follows: The oscillator and all voltage power supplies are shut off simultaneously. Then the antenna relay operates and the bias supply is shut off after the oscillator power supply dies down, whereas in starting up, the oscillator power comes on, then the bias comes on and the antenna changeover relay operates, and lastly to high voltage power supplies come on.

With this arrangement, failure of the bias supply will remove the high voltages, and failure of the oscillator supply will shut down the entire transmitter. In this manner, the tubes are all protected from loss of bias, and from loss of excitation due to oscillator power supply failures.

Over-Modulation Indicator

Any transmitter used for telephony should be equipped with a very positive means for indicating over-modulation. An indicator which shows average modulation is not satisfactory for voice operation because of peaks which occur in normal voice frequencies. In order to be certain that serious over-modulation does not occur during the peaks of the voice frequencies, the over-modulation indicator must indicate over-modulation peaks. When an r.f. amplifier is fully modulated, the plate voltage swings from zero to twice the normal value. When over-modulation occurs, the plate voltage will actually swing from the negative value to more than twice the normal positive value. Because of this action a negative peak over-modulation indicator may consist of simply a high voltage rectifier and a neon glow lamp as shown. In Fig. 3 with a bias voltage applied between the neon lamp and grid. The rectifier filament supply transformer should be insulated for approximately three times the normal plate supply voltage of the transmitter. The filament of the rectifier is connected to the side of

NEWARK ELECTRIC
242-250 West 55th St., New York 19, N. Y.
Company, Inc. 323 W. Madison St., Chicago 6, Illinois
NOW AVAILABLE FOR IMMEDIATE SHIPMENT!

SCR-274-N COMMAND SET
This unit consists of 3 receivers, 2 transmitters, 4 dynamos, 1 modulator, 2 tuning control boxes, 1 antenna coupling box with RF ammeter, antenna relay and 5000 v., 50 mfd. W.E. vacuum condenser. Also complete set of 29 tubes with each unit. The receivers cover frequencies of 190-550 kc; 3-6 mc; 6.91 mc; Tubes included are: 125K7—RF amp.; 12K8—mixer; 125K7—1st IF; 125K7—2nd IF; 125K7—diode det. and CW osc.; 12A6 output or AF; Xmr's cover freq. of 3-4 mc, and 4.5-5.3 mc.; tubes included are 1626 master oscillator driving 2 parallel 1625's; a 1629 and a calibrating crystal also included. Each receiver has its own dynamotor and another dynamotor powers the transmitter and modulator. Terrific Value. Complete, ready to operate. $39.00

SCR 522 100-156 MC RECEIVER AND TRANSMITTER
Transmitter output 8-9 watts, voice amplitude modulated on any one of four xtal controlled frequencies. Receiver is readily switched to either one of the 4 present xtal controlled channels. Tubes used: 2-832's; 3-12A6's; 1-6G6; 1-6SS7; 1-12S5GT; 1-12C8B; 1-9002; 3-9003's; 1-12AH7GT; 3-12S5GT's. Super Special. Complete with tubes. $39.95

BC 375-E TRANSMITTER
A complete transmitter giving 75 Watts output to the antenna, with a freq. coverage of 200 to 12,000 KC (except for Broadcast Band) in seven tuning units. Also included is the BC 306A antenna tuning unit with variable and switch, plus PE 73-C dynamotor including relay switches and fuses, etc. Unit comes complete with 5 tubes, 211 oscillator, 211 RF amplifier, 10 speech amplifiers, and 2 211 push-pull modulators. A Bargain at. $45.00

BC-221 FREQUENCY METER
A superb frequency standard, this stable, heterodyne freq. meter checks up to the 125th harmonic. Fundamental ranges 125-250 and 2000 to 4000 KC. Makes a wonderful VFO accuracy that cannot be beat. Stability better than .005%. Comes complete with tubes, crystal and calibration chart from 125 kc. to 20,000 kc. A simple matter to meet FCC regulations on freq. measurements with this unit. $39.50

BC 348 RECEIVER
Built for continuous duty, this band switching, six band receiver with a freq. range of 200 to 300 kc. and complete 1,500 kc. to 18,000 kc. Has automatic noise compensator constant sensitivity on all bands—output at 300 or 400 ohms—xtal filter AVC-MVC-BFO; Smooth vernier tuning; 90 turns of tuning for ea. band. Tubes include 1st RF—6K7; 2nd RF—6K7; RF Osc.—6C5; 1st Det.—6J7; 1st IF—6K7; 2nd IF and CW Osc.—6F7; 3rd IF and 2nd Det.—688; Aud. Out.—41. Complete with built-in dynamotor for 28 v. DC. (Conversion kit available for 110 v. operation 60 cy.—price on request.) Conversion instructions and schematics furnished with each unit. $49.50

20% deposit or full amount required with all orders.

Mail Your Order Today! Write for Our Latest Bulletin

RADIO HAM SHACK Inc.
63 DEY ST., NEW YORK 7, N. Y.
regularly; the morning beam, 7-8:15 a.m., is carried on 11.53, 11.72, 15.18, 17.82. (Cooley)

Vatican—HVIJ, 9.660 and 5.970, has English news daily at 10 a.m.; English talks are radiated daily at 1:15 p.m. on these frequencies. On Sundays, commentaries are heard in French, Spanish, English, German, and Polish, at 5:15 a.m., followed at 5:30 a.m. by Holy Mass. On Tuesdays, English news is radiated at 10:30 a.m. on 17.445. (Salmon)

Yugoslavia—Radio Belgrade, 9.42, is being heard again at 12 midnight in New York; very weak. (Beck)

Acknowledgement
Sincere thanks go to all contributors to this issue of ISW.

Deluxe Transmitter
(Continued from page 78)
cated in the accompanying curve (Fig. 6) falls off rapidly below 300 cycles, reaching minus 15 db, at 100 cycles. On the high frequency end, the response falls off rapidly after 3000 cycles reaching minus 15 db, at approximately 8500 cycles and is minus 20 db, at 10,000 cycles. The complete schematic diagram of this amplifier is shown in Fig. 7. Because of this lack of linearity very startling reports are continually being received regarding the speech quality of transmissions.

The apparent improvement in speech fidelity is brought about by a combination of transmitter and receiver characteristics.

A receiver must have a relatively narrow pass band to be very satisfactory for amateur communication purposes. The pass band in most amateur receivers is either limited to 300 cycles, or is adjusted to approximately that value by the operator. Under these conditions, all frequencies above 3000 cycles represent wasted energy if actually emitted by the transmitter.

If the a.f. response of the transmitter is linear, the effect so far as the listener is concerned is an accentuation of the lower frequencies, since the receiver has eliminated the higher frequency components. It is then apparent that if the lower frequencies are attenuated at the transmitter, the middle range will be accentuated, and the over-all effect as noted at the receiving station will be that of a much higher quality of reproduction than would be possible with a linear audio frequency response at the transmitter.