THE PATTERN ON
THE STONE

oo

The Simple Ideas That
Make Computers Work

W. DANIEL HILLIS
c 1 EN ¢

&

QP

4,\ 4

4 s7¢ "

BASIC

BOOKS

A Member of the
Perseus Books Group

PREFACE: MAGIC IN THE STONE

d8ncetencs0sestaereININTEILRIIOONERORERROS RS etevecssnseccccnentecson 0 saoew

1 etch a pattern of geometric shapes onto a stone. To the
uninitiated, the shapes look mysterious and complex, but I
know that when arranged correctly they will give the stone a
special power, enabling it to respond to incantations in a lan-
guage no human being has ever spoken. I will ask the stone
questions in this language, and it will answer by showing me
a vision: a world created by my spell, a world imagined
within the pattern on the stone.

A few hundred years ago in my native New England, an
accurate description of my occupation would have gotten me
burned at the stake. Yet my work involves no witchcraft; 1
design and program computers. The stone is a wafer of sili-
con, and the incantations are software. The patterns etched
on the chip and the programs that instruct the computer may
look complicated and mysterious, but they are generated
according to a few basic principles that are easily explained.

Computers are the most complex objects we human beings
have ever created, but in a fundamental sense they are remark-
ably simple. Working with teams of only a few dozen people, I
have designed and built computers containing billions of
active parts. The wiring diagram of one of these machines, if it
were ever to be drawn, would fill all the books in a good-sized
public library, and nobody would have the patience to scan
the whole of it. Fortunately, such a diagram is unnecessary,
because of the regularity of a computer’s design. Computers

vii

vii

THE PATTERN ON THE STONE

are built up in a hierarchy of parts, with each part repeated
many times over. All you need to understand a computer is an
understanding of this hierarchy.

Another principle that makes computers easy to under-
stand is the nature of the interactions among the parts. These
interactions are simple and well-defined. They are also usu-
ally one-directional, so that the actions of the computer can
be sorted neatly into causes and effects, making the inner
workings of a computer more comprehensible than, say, the
inner workings of an automobile engine or a radio. A com-
puter has a lot more parts than a car or a radio does, but it’s
much simpler in the way the parts work together. A com-
puter is not dependent so much on technology as on ideas.

Moreover, the ideas have almost nothing to do with the
electronics out of which computers are built. Present-day
computers are built of transistors and wires, but they could
just as well be built, according to the same principles, from
valves and water pipes, or from sticks and strings. The prin-
ciples are the essence of what makes a computer compute.
One of the most remarkable things about computers is that
their essential nature transcends technology. That nature is
what this book is about.

This is the book I wish I had read when I first started
learning about the field of computing. Unlike most books on
computers——which are either about how to use them or about
the technology out of which they're built (ROM, RAM, disk
drives, and so on)—this is a book about ideas. It explains, or
at least introduces, most of the important ideas in the field of
computer science, including Boolean logic, finite-state ma-
chines, programming languages, compilers and interpreters,
Turing universality, information theory, algorithms and al-
gorithmic complexity, heuristics, uncomutable functions,
parallel computing, quantum computing, neural networks,
machine learning, and self-organizing systems. Anyone in-
terested enough in computers to be reading this book will
probably have encountered many of these ideas before, but

MAGIC IN THE STONE

outside of a formal education in computer science there are
few opportunities to see how they all fit together. This book
makes the connections—all the way from simple physical
processes like the closing of a switch to the learning and
adaptation exhibited by self-organizing parallel computers.

A few general themes underlie an exposition of the nature
of computers: the first is the principle of functional abstrac-
tion, which leads to the aforementioned hierarchy of causes
and effects. The structure of the computer is an example of
the application of this principle—over and over again, at
many levels. Computers are understandable because you can
focus on what is happening at one level of the hierarchy
without worrying about the details of what goes on at the
lower levels. Functional abstraction is what decouples the
ideas from the technology.

The second unifying theme is the principle of the univer-
sal computer—the idea that there is really only one kind of
computer, or, more precisely, that all kinds of computers are
alike in what they can and cannot do. As near as we can tell,
any computing device, whether it's built of transistors, sticks
and strings, or neurons, can be simulated by a universal
computer. This is a remarkable hypothesis: as I will explain,
it suggests that making a computer think like a brain is just a
matter of programming it correctly.

The third theme in this book, which won't be fully
addressed until the last chapter, is in some sense the antithe-
sis of the first. There may be an entirely new way of design-
ing and programming computers—a way not based on the
standard methods of engineering. This would be exciting,
because the way we normally design systems begins to break
down when the systems become too complicated. The very
principles that enable us to design computers lead ultimately
to a certain fragility and inefficiency. This weakness has
nothing to do with any fundamental limitations of informa-
tion-processing machines—it’s a limitation of the hierarchi-
cal method of design. But what if instead we were to use a

X

X THE PATTERN ON THE STONE

MAGIC IN THE STONE X!

design process analogous to biological evolution—that is, a These days, computers are popularly thought of as multi-
process in which the behaviors of the system emerge from media devices, capable of incorporating and combining all
the accumulation of many simple interactions, without any previous forms of media—text, graphics, moving pictures,
“top-down” control? A computing device designed by such sound. I think this point of view leads to an underestimation

an evolutionary process might exhibit some of the robustness of the ec

mputer’s potential. It is certainly true that a com-
and flexibility of a biological organism-—at least, that’s the puter ca

n incorporate and manipulate all other media, but

hope. This approach is not yet well understood, and it may the true power of the computer is that it is capable of manip-
turn out to be impractical. It is the topic of my current ulating not just the expression of ideas but also the ideas
research. themselves. The amazing thing to me is not that a computer

In an explanation of the nature of computers, there are can hold the contents of all the books in a library but that it
some fundamentals that have to be dealt with before we can can notice relationships between the concepts described in

move on to the good stuff. The first two chapters introduce the book
the fundamentals: Boolean logic, bits, and finite-state
machines. The payoff is that by the end of chapter 3 you’ll
understand how computers work, top to bottom. This sets

the stage for the exciting ideas about universal computing paintbrush; rather, it is a device that accelerates and extends

machines, which begin in chapter 4. our processes of thought. It is an imagination machine,
The philosopher Gregory Bateson once defined informa- which starts with the ideas we put into it and takes them far-
tion as “the difference that makes a difference.” Another way ther than we ever could have taken them on our own.
of saying this is that information is in the distinctions we
choose to make significant. In a primitive electrical calcula-
tor, say, information is indicated by light bulbs that go on or
off depending on whether a current is flowing or not. The
voltage of the signal doesn’t matter, nor does the direction of
current flow. All that matters is that a wire carries one of two
possible signals, one of which causes a bulb to light. The dis-
tinction that we choose to make significant—the difference
that makes a difference, in Bateson’s phrase—is between cur-
rent flowing and not flowing. Bateson’s definition is a good
one, but the phrase has always meant something more to me.
In my lifetime of four decades, the world has been trans-
formed. Most of the changes we've seen in business, politics,
science, and philosophy in that time have been caused by, or
enabled by, developments in information technology. A lot
of things are different in the world today, but the difference
that has made the difference has been computers.

s—not that it can display a picture of a bird in flight
or a galaxy spinning but that it can imagine and predict the
consequences of the physical laws that create these wonders.
The computer is not just an advanced calculator or camera or

CHAPTER |

O e e 000N sean et rsasaersrnorstssacneecotonasssessesssnsrssssesnesosenonsss

NUTS AND BOLTS

When 1 was a child, I read a story about a boy who built a
robot out of parts he found lying around a junkyard. The boy’s
robot could move, talk, and think, just like a person, and it
became his friend. For some reason, I found the idea of bujld-
ing a robot very appealing, so I decided to build one myself. [
remember collecting body parts—tubes for the arms and legs,
motors for the muscles, lightbulbs for the eyes, and a big paint
can for the head—in the full and optimistic expectation that
after they were assembled and the contraption was plugged in,
I'would end up with a working mechanical man.

After nearly electrocuting myself a few times, I began to
get my parts to move, light up, and make noises. I felt I was
making progress. I began to understand how to construct
movable joints for the arms and legs. But something even
more important was beginning to dawn on me: I didn’t have
the slightest idea how to control the motors and the lights,
and I realized that something was missing in my knowledge
of how robots worked. I now have a name for what was miss-
ing: it's called computation. Back then, I called it “thinking,”
and I saw that I didn't have a clue about how to get some-
thing to think. It seems obvious to me now that computation
is the hardest part of building a mechanical man, but as a
child this came as a surprise.

2 THE PATTERN ON THE STONE

BOOLEAN LOGIC

cseetnseesssscercnansnne

Fortunately, the first book I ever read on the subject of com-
putation was a classic. My father was an epidemiologist, and
we were living in Calcutta at the time. Books in English were
hard to come by, but in the library of the British consulate 1
found a dusty copy of a book written by the nineteenth-
century logician George Boole. The title of the book was
what attracted me: An Investigation of the Laws of Thought.
This grabbed my imagination. Could there really be laws that
governed thought? In the book, Boole tried to reduce the
logic of human thought to mathematical operations. Al-
though he did not really explain human thinking, Boole
demonstrated the surprising power and generality of a few
simple types of logical operations. He invented a language
for describing and manipulating logical statements and
determining whether or not they are true. The language is
now called Boolean algebra.

Boolean algebra is similar to the algebra you learned in
high school, except that the variables in the equations repre-
sent logic statements instead of numbers. Boole’s variables
stand for propositions that are either true or false, and the
symbols #, v, and - represent the logical operations And, Or,
and Not. For example, the following is a Boolean algebraic
equation

~(AY B) = (~A)\(-B)

This particular equation, called De Morgan’s theorem (after
Boole’s colleague Augustus De Morgan), says that if neither
A nor B is true, then both A and B must be false. The vari-
ables A and B can represent any logical (that is, true or false)
statement. This particular equation is obviously correct, but
Boolean algebra also allows much more complex logical
statements to be written down and proved or disproved.

NUTS AND BOLTS

Boole’s work found its way into computer science
through the master’s thesis of a young engineering student
at the Massachusetts Institute of Technology named Claude
Shannon. Shannon is best known for having invented a
branch of mathematics called information theory, which
defines the measure of information we call a bit. Inventing
the bit was an impressive accomplishment, but what Shan-
non did with Boolean logic was at least as important to the
science of computation. With these two pieces of work,
Shannon laid the foundation for the developments that
were to occur in the field of computing for the next fifty
years.

Shannon was interested in building a machine that could
play chess—and more generally in building mechanisms
that imitated thought. In 1940, he published his master’s
thesis, which was titled “A Symbolic Analysis of Relay
Switching Circuits.” In it, he showed that it was possible to
build electrical circuits equivalent to expressions in
Boolean algebra. In Shannon’s circuits, switches that were
open or closed corresponded to logical variables of Boolean
algebra that were true or false. Shannon demonstrated a way
of converting any expression in Boolean algebra into an
arrangement of switches. The circuit would establish a con-
nection if the statement was true and break the connection
if it was false. The implication of this construction is that
any function capable of being described as a precise logical
statement can be implemented by an analogous system of
switches. :

Rather than presenting the detailed formalisms developed
by Boole and Shannon, I will give an example of their appli-
cation in the design of a very simple kind of computing
device, a machine that plays the game of tic-tac-toe. This
machine is much simpler than a general-purpose computer,
but it demonstrates two principles that are important in any
type of computer. It shows how a task can be reduced to logi-
cal functions and how such functions can be implemented as

4 THE PATTERN ON THE STONE NUTS AND BOLTS &

a circuit of connected switches. I actually built a tic-tac-toe J/
machine out of lights and switches shortly after I read
Boole’s book in Calcutta, and this was my introduction to
computer logic. Later, when I was an undergraduate at MIT, X
Claude Shannon became a friend and teacher, and I discov-
ered that he, too, had used lights and switches to build a
machine that could play tic-tac-toe.

As most readers know, the game is played on a 3 x 3 X
square grid. Players take turns marking the squares, one y/
player using an X, the other an O. The first player to place
three symbols in a row (horizontally, vertically, or diago-
nally) wins the game. Young children enjoy tic-tac-toe Xpx x
because it seems to offer limitless possible strategies for win- ,L
ning. Eventually they realize that only a small number of xlo

0
o

olx

ojx X Moves

Q|0 €

o

X O moves

ofx

olo

x

QX

Q0 %—
b d

X X moves

o]

patterns can occur, and the game consequently loses its
charm: once both players learn the patterns, each game X
invariably ends in a tie. Tic-tac-toe is a good example of a O wiNs O WINS
computation precisely because it wavers on this line X
between the complex and the simple. Crossing that line is
what computation is all about. Computation is about per-
forming tasks that seem to be complex (like winning a game TE
of tic-tac-toe) by breaking them down into simple operations
(like closing a switch).

In tic-tac-toe, the situations that occur are few enough so
that it's practical to write them all down, and therefore to

X 0 moves

x
X{O|Xx

%
X X Mmoves

(o}

x
o o
X10|0 4— X|0|0 €« X|O|O

FIGURE !

Part of a game tree for tic-tac-toe

build the correct response in every case into the machine. We fill the grid. But most of these patterns would never occur in
can use a simple two-step process for designing the machine: the course of a game. A better method of listing the possibili-
first, reduce the play to a series of cases defining the correct ties is to draw up a game tree—a configuration that traces
response to each pattern of moves; second, convert those cases every possible line of play. The game tree starts. with a blank
into electrical circuits by wiring the switches to recognize the grid at the root and has a branch for every possible alternative
pattern and indicate the appropriate response. , line of play, determined by the move of the human player.

One way to proceed would be to write down every con- (The tree does not need to branch when the machine plays,
ceivable arrangment of X’s and O’s which could be placed on because the response of the machine to any given move is
the grid and then decide how the computer would play in always predetermined.) Figure 1 shows a small part of such a
each instance. Since each of the nine squares has three possi- tree. For every possible move made by X, the human player,
ble states (X, O, and blank), there are 3° (or 19,683) ways to there is a predetermined O response to be made by the

6 THE PATTERN ON THE STONE

machine. {For some strange reason, computer scientists
always draw trees upside-down, with the “root” at the top.)

The tree in Figure 1 illustrates the strategy that I always
use in tic-tac-toe: I play in the center whenever I can. The
machine’s moves are determined by the human player’s
moves, which vastly reduces the number of possibilities to
be considered. A full game tree, showing what the machine
should do in every situation, has about five hundred or six
hundred branches, the exact number depending on the
details of strategy. Following the tree will cause the machine
to win, or at least tie, every game. The rules of the game are
built into the responses, so by following the tree the machine
will always obey the rules. From this game tree, we can write
down specifications that say exactly when the machine
should play in any particular position. These specifications
constitute the Boolean logic of the machine.

Once we have defined the desired behavior, we can trans-
late that behavior into electrical circuits built out of batteries,
wires, switches, and lights. The basic circuit in the machine
is the same circuit used in a flashlight: when the switch is
pressed down—that is, closed—the light goes on, because a
complete path has been formed between the bulb and the bat-
tery. (The connections to the battery are indicated by the + and
— signs.) Most important, these switches can be wired either in
series or in parallel. For instance, we can put two switches
together in series to make a light that works only when both
switches are closed. This circuit implements one of the basic
switching functions of the computer—the “logic block”
known as the And function, so called because the bulb lights
only when the first and the second switches are closed.
Switches connected in parallel form the Or function, which
connects the circuit (and thus lights the bulb) whenever
either or both of the switches are closed (see Figure 2).

These simple patterns of serial and parallel wiring can be
used in combinations to form connections that follow vari-
ous logical rules. In the tic-tac-toe machine, chains of

NUTS AND BOLTS
Dt

&
/
®) 5

/

PARA LLEL.

FIGURE 2

Switches in series and parallel

switches connected in series are used to detect patterns, and
these chains are connected in parallel to lights, so that sev-
eral patterns can light the same bulb—that is, produce the
same response from the machine.

The tic-tac-toe machine 1 built has four banks of nine
switches each, and each switch corresponds to one of the nine
squares on the tic-tac-toe grid. It also has nine lightbulbs,
arranged in the pattern of a tic-tac-toe board. The machine,
which always plays first, makes its moves by lighting a bulb.
The human player moves by closing a switch—using the first
bank of switches to make his first move, the second bank for
his second move, and so on. In my version, the machine
always begins by playing in the upper left corner of the board,
a scheme that reduces the number of cases considerably. The
human player responds by closing one of the switches in the
first bank (say, the one corresponding to the center square in
the grid), and the game proceeds. The machine’s strategy is
embodied in the wiring between the switches and the lights,

The wiring that produces the machine’s first response is
easy (see Figure 3). Each switch in the first bank is con-
nected to a light that corresponds to the machine’s reply. For
instance, a play in the center causes a response in the lower

7

8 THE PATTERN ON THE STONE

FIRST SECOND LowER LEFT 8NLE

moveE MovE
NY

- / /
X
X)
- / /
X
X
- / /
X
X
Y
7O
OTHER
FATTERNS
FIGURE 3

Several different patterns that produce the same response

right, so the center switch is wired to the lower-right light.
Since my machine always responds in the center square if it
can, most of the first bank of switches is wired in parallel to
the middle light.

Each pattern for the second round of play depends on the
human player’s first and second moves. To recognize this
combination of human moves, the corresponding switches
are wired in series. For example, if the player’s first move is
in the center and second move in the upper right, the
machine is then supposed to respond by playing in the lower

NUTS AND BOLTS

left. This pattern is accomplished by wiring the center
switch in the first bank in series with the upper-right switch
in the second bank (“if center and upper-right squares are
filled, then . .. "), with the chain of two switches being con-
nected to the lightbulb in the lower left. Each parallel con-
nection to a bulb specifies a different combination that will
cause the bulb to light {“this move or that move will provoke

this response”). Whenever it was necessary to use the same
switch in two different circuits, T used a “double throw”
switch—two switches mechanically linked to the same but-
ton, so that they switch together—which allows the same
move to be part of two different patterns. The wiring of the
third and fourth banks of switches follows the same princi-
ple, but there are even more combinations. As you can imag-
ine, the wiring gets complicated, even though the principles
are simple. There are fewer choices open on the grid, but the
chains of switches are longer.

The tic-tac-toe machine I built has about a hundred and
fifty switches. This seemed like a lot to me at the time (I
made the switches out of wood and nails), but the computer
chips I design today have millions of switches, most of them
connected in patterns very similar to those used in the tic-
tac-toe machine. Most modern computers use a different
kind of electrical switch—a transistor, which I will describe
later—but the basic notion of connecting switches in series
to produce the And function and connecting switches in par-
allel to produce the Or function is exactly the same.

While the logic of the tic-tac-toe machine is similar to the
logic of a computer, there are several important differences.
One is that the tic-tac-toe machine has no notion of events
happening sequentially in time; therefore, the entire
sequence of the game—that is, the entire game tree—must be
determined in advance. This is cumbersome enough where
tic-tac-toe is concerned and practically impossible for a more
complicated game, like chess, or even checkers. Modern
computers are very good at playing checkers and pretty good

1¢ THE PATTERN ON THE STONE

at playing chess (see chapter 5), because in place of the pre-
determined game tree they use a different method—one that
involves examining patterns sequentially in time.

Another difference between the tic-tac-toe machine and a
general-purpose computer is that the tic-tac-toe machine can
perform only one function. The “program” of the machine is
built into its wiring. The tic-tac-toe machine has no software.

BITS AND LOGIC BLOCKS

L R Y Y

As I noted in the Introduction, there is no reason the tic-tac-
toe machine (or any other computer) has to be built out of
electrical switches. A computer can represent information
using electrical currents, fluid pressures, or even chemical
reactions. Whether you build a computer out of transistors,
hydraulic valves, or a chemistry set, the principles on which
it operates are much the same. The key idea of the tic-tac-toe
machine is that the And function is implemented by con-
necting two switches in series and the Or function is imple-
mented by connecting two switches in parallel, but there are
many other ways to implement And and Or.

Here 1 must pause to mention the bit. The smallest “dif-
ference that makes a difference” (to use Bateson's phrase
again) is a difference that splits all signals into two distinct
classes. In the tic-tac-toe machine, the two classes are “cur-
rent flowing” and “no current flowing.” By convention, we
call the two possible classes 1 and 0. These are just names;
we could as easily call them True and False, or Alice and
Bob. Even the choice of which class is called 0 and which is
called 1 is arbitrary. A signal that can carry one of two differ-
ent messages (like 1 or 0) is called a binary signal, or a bit. A
computer uses combinations of bits to represent all kinds of
sets of alternatives—different moves in tic-tac-toe, say, or dif-
ferent colors to be displayed on a screen. Since the conven-

NUTS AND BOLTS

SPRING
A

INPUT B
FIGURE 4

Mechanical implementation of the OR function

tion is to designate the bits by 1's and 0’s, people often think
of these bit patterns as numbers, hence the old chestnut “The
computer does everything with numbers.” But this conven-
tion is simply a way of thinking about what’s going on. If we
had named the two possible messages conveyed by the bit
the letters X and Y, people would be saying, “The computer
does everything with letters.” The more accurate statement is
“The computer represents numbers, letters, and everything
else with patterns of bits.”

Instead of using the flow of electricity to represent a bit,
we could have used mechanical motion. Figure 4 shows how
the Or function is implemented using a technology that rep-
resents 1 by sliding a stick to the right. As long as both the A
and the B input sticks stay to the left, representing 0, then
the spring will keep the output stick pushed to the left, but if
either input stick slides to the right, then the output stick
will slide to the right also. The object in Figure 5 computes
another useful function, that of inversion: The inverter turns
every signal into its opposite: for example, it turns a push to
the right into a pull to the left, and vice versa.

These And, Or, and Invert functions are logic blocks,
and they can be connected in order to create other func-
tions. For instance, the output of an Or block can be con-
nected to an Invert block to create a Nor function: the Nor

12 THE PATTERN ON THE STONE

ourprr

FIGURE 5

Mechanical inverter

output will be a 1 when neither of its inputs is 1. In
another example (using De Morgan’s theorem), we can
make an And block by connecting two Invert blocks to the
inputs of an Or block and connecting a third Invert block
to the output (see Figure 6). These four work together to
implement the And function, so the final output is 1 only
when both the inputs are 1.

Early computing devices were made with mechanical
components. In the seventeenth century, Blaise Pascal built
a mechanical adding machine, which inspired both Gott-
fried Wilhelm Leibniz and the English polymath Robert
Hooke to build improved machines that could multiply,
divide, and even take square roots. These machines were
not programmable, but in 1833 another Englishman, the
mathematician and inventor Charles Babbage, designed and
partially constructed a programmable mechanical com-
puter. Even as late as my own childhood in the sixties,
most arithmetic calculators were mechanical. I've always
liked these mechanical machines, because you can see
what's happening, which is not the case with electronic

NUTS AND BOLTS

[
ey
INPUT A

FIGURE 6

An And block constructed by connecting an Or block to inverters

computers. When I'm designing an electronic computer
chip, I imagine the operation of the circuits as moving
mechanical parts.

THE FLUID COMPUTER

L R Y Y TR PR

The picture I have in my mind when I design a logic circuit
is of hydraulic valves. A hydraulic valve is like a switch that
controls and is controlled by the flow of water. Each valve
has three connections: the input, the output, and the control.
Pressure on the control connection pushes on a piston that
turns off the water flow from input to output. Figure 7 shows
a circuit for the Or function, built out of hydraulic valves.

In this circuit, water pressure is used to distinguish
between the two possible signals. Notice that in a hydraulic
valve the control pipe can affect the output pipe but the out-
put pipe cannot affect the control pipe. This restriction estab-
lishes a forward flow of information through the switch; in a
sense, it establishes a direction in time. Also, since the valve is

4 THE PATTERN ON THE STONE

INPUT A
HYDRAULIC.
/ VALVE
[
o
HigH
PRESSURE ™™ -
WATER | SRS OUTPLIT
SuPPLY ("
*.
! \ J
]
[
SPRING KEEPS VALVE
SHUT UNLESS OPENED
BY INPUT PRESSURE

JNPUT 8

FIGURE 7
An Or block built with hydraulic valves

either open or closed, it serves an additional function of
amplification, which allows the strength of the signal to be
restored to its maximum value at every stage. Even if the input
is a little low on pressure—because it goes through a long, thin
pipe, say, or because of a leak—the output will always be at
full pressure thanks to the on/off operation of the valve. This
is the fundamental difference between digital and analog: A
digital valve is either on or off; an analog valve, like your
kitchen faucet, can be anything in between. In the hydraulic
computer, all that is required of the input signal is that it be

NUTS AND BOLTS

strong enough to move the valve. In this case, the difference
that makes a difference is the difference in water pressure suf-
ficient to switch the valve on. And since a weakened signal
entering an input will still produce a full-strength output, we
can connect thousands of layers of logic, the output of one
layer controlling the next, without worrying about a gradual
decrease in pressure. The output of each gate will always be at
full pressure.

This type of design is called restoring logic, and the exam-
ple in hydraulic technology is particularly interesting, because
it corresponds almost exactly to the logic used in modern elec-
tronic computers. The water pressure in the pipes is analo-
gous to the voltage on the wires, and the hydraulic valve is
analogous to the metal-oxide transistor. The control, input,
and output connections on the valve correspond closely to the
three connections (called gate, source, and drain) on a transis-
tor. The analogy between water valves and transistors is so
exact that you could translate the design for a modern micro-
processor directly into a design for a hydraulic computer. To
do so, you would need to look at the pattern of wires on the
silicon chip under a microscope and then bend a set of pipes
into the same shapes as the wires on the chip and connect
them in exactly the same pattern. In place of each transistor,
you would use a hydraulic valve. The pipe that corresponds to
the power-supply voltage on your chip would be connected to
a pressurized water supply, and the pipe that corresponds to
the ground connection could empty down a drain.

To use the hydraulic computer, you would have to connect
hydraulic equivalents of its inputs and outputs—you would
need to build a hydraulic keyboard, a hydraulic display,
hydraulic memory chips, and so on—but if you did all this, it
would go through exactly the same switching events as the
electronic chip. Of course, the hydraulic computer would be
much slower than your latest microprocessor (to say nothing
of larger), because water pressure travels down pipes much
more slowly than electricity travels down wires. As to the

THE PATTERN ON THE STONE

size: Since the modern microchip has several million transis-
tors, its hydraulic equivalent would require several million
valves. A transistor in a chip is about a millionth of a meter
across; a hydraulic valve is about 10 centimeters on a side. If
the pipes scale proportionally, then the hydraulic computer
would cover about a square kilometer with pipes and valves.
From an airplane, it would look roughly the same as the elec-
tronic chip does under a microscope.

When I design a computer chip, I draw lines on a com-
puter screen, and the pattern is reduced (in a process analo-
gous to photographic reduction) and etched onto a chip of
silicon. The lines on the screen are my pipes and valves.
Actually, most computer designers don't even bother draw-
ing lines; instead, they specify the connections between
Ands and Ors and let a computer work out the details of
placement and geometry of the switches. Most of time, they
forget about the technology and concentrate on the function.
I do this, too, sometimes, but I still prefer to draw my own
shapes. Whenever I design a chip, the first thing I want to do
is look at it under a microscope—not because I think I can
learn something new by looking at it but because I am
always fascinated by how a pattern can create reality.

TINKER TOYS

seccosscsssssccsse

Except for the miracle of reduction, there is no special rea-
son to build computers with silicon technology. Building a
computer out of any technology requires a large supply of
only two kinds of elements: switches and connectors. The
switch is a steering element (the hydraulic valve, or the tran-
sistor), which can combine multiple signals into a single sig-
nal. Ideally, the switch should be asymmetrical, so that the
input signal affects the output signal but not vice versa, and
it should have a restoring quality, so that a weak or degraded

NUTS AND BOLTS

FIGURE 8

Tinker Toy computer

input signal will not result in a degraded output. The second
element, the connector, is the wire or pipe that carries a sig-
nal between switches. This connecting element must have
the ability to branch, so that a single output can feed many
inputs. These are the only two elements necessary to build a
computer. Later we will introduce one more element—a reg-
ister, for storing information—but this can be constructed of
the same steering and connecting components.

I have never built a hydraulic computer, but once, with
some friends, I did construct a computer out of sticks and
strings. The pieces came from a children’s construction set
called Tinker Toys. Readers may remember this as a set of
cylindrical wooden sticks that fit into fat little wooden hubs
with holes in them. The logic of my Tinker Toy computer
worked much like that shown in Figure 8. Like the switches-
and-lights computer, the Tinker Toy computer played tic-tac-
toe. It never lost. The computer was a lot of trouble to make,

18 THE PATTERN ON THE STONE

requiring tens of thousands of pieces from more than a hun-
dred Tinker Toy “Giant Engineer” construction sets, and the
finished product (now sitting in the Computer Museum in
Boston, Massachusetts) looks incomprehensibly complex.
Yet the principles on which it operates are just the simple
combination of And and Or functions described above.

The big mistake I made in designing the Tinker Toy com-
puter is that I did not use restoring logic—that is, there was
no amplification from one stage of logic to the next. The
implementation of the logic was based on sticks pressing
against sticks, in a design similar to the one illustrated in fig-
ure 4. Because of this design choice, all the force required to
move the hundreds of elements in the machine had to be
supplied by the press of the input switch. The accumulated
force tended to stretch the strings that transmitted the
motion, and because there was no restoration at each stage,
the errors caused by the stretching accumulated from one
logic element to the next. Unless the strings were constantly
tuned, the machine would make mistakes.

I constructed a later version of the Tinker Toy computer
which fixed the problem, but I never forgot the lesson of that
first machine: the implementation technology must produce
perfect outputs from imperfect inputs, nipping small errors
in the bud. This is the essence of digital technology, which
restores signals to near perfection at every stage. It is the
only way we know—at least, so far—for keeping a compli-
cated system under control.

FREE TO WORRY ABOUT THE DIFFERENCE
THAT MAKES A DIFFERENCE

FEENBLILISOIINSELIONLIROILILIOIIISIRRESIIRERS

Naming the two signals in computer logic 0 and 1 is an
example of functional abstraction. It lets us manipulate
information without worrying about the details of its under-

NUTS AND BOLTS

lying representation. Once we figure out how to accomplish
a given function, we can put the mechanism inside a “black
box,” or'a “building block” and stop thinking about it. The
function embodied by the building block can be used over
and over, without reference to the details of what’s inside.
This process of functional abstraction is a fundamental in
computer design—not the only way to design complicated
systems but the most common way (later, I'll describe an
alternate method). Computers are built up of a hierarchy of
such functional abstractions, each one embodied in a build-
ing block. The blocks that perform functions are hooked
together to implement more complex functions, and these
collections of blocks in turn become the new building blocks
for the next level.

This hierarchical structure of abstraction is our most
powerful tool in understanding complex systems, because it
lets us focus on a single aspect of a problem at a time. For
instance, we can talk about Boolean functions like And and
Or in the abstract, without worrying about whether they are
built out of electrical switches or sticks and strings or water-
operated valves. For most purposes, we can forget about
technology. This is wonderful, because it means that almost
everything we say about computers will be true even when
transistors and silicon chips become obsolete.

CHAPTER 2

tss0cacens 4ecessescens ssesvece S 000N 0NN EREREIEON0ONBEENC00008085088000

UNIVERSAL BUILDING BLOCKS

From now on, we can forget about wires and switches and
work with the abstraction of logic blocks operating on 1’s
and 0’s, a simple step that allows us to pass from the realm
of engineering into the realm of mathematics. This is the
most abstract chapter in the book; it will show you how the
methods used to construct a tic-tac-toe machine can be used
to construct almost any function. In it, we’ll define a power-
ful set of building blocks: logical functions and finite-state
machines. With these elements, it's easy to build a com-
puter.

LOGICAL FUNCTIONS

L Y P Y YRR aey

In constructing the tic-tac-toe machine, we began by writing
the game tree, whch gave us a set of rules for generating the
outputs from the inputs. This turns out to be a generally use-
ful method of attack. Once we write down the rules that
specify what outputs we want for each combination of
inputs, we can build a device that implements these rules
using And, Or, and Invert functions. The logic blocks And,

2t

22 THE PATTERN ON THE STONE

Or, and Invert form a universal construction set, which
can be used to implement any set of rules. (These primi-
tive types of logic blocks are sometimes also called logic
gates.)

This idea of a universal set of blocks is important: it
means that the set is general enough to build anything. My
favorite toy when I was a child was a set of interlocking plas-
tic bricks called Lego blocks, with which I built all kinds of
toys: cars, houses, spaceships, dinosaurs. I loved to play
with these blocks, but they were not quite universal, since
the only objects you could build with them had a certain
squarish, stair-steppy look. Building something with a differ-
ent shape—a cylinder or a sphere, for example—would
require a new type of block. Eventually, I had to switch to
another medium in order to build the things I wanted. But
the And, Or, and Invert blocks of Boolean logic are a univer-
sal construction set for converting inputs to outputs. The
best way to see how they form a universal set is to under-
stand a general method for using them to implement rules.
To start, we will consider binary rules—rules that specify
inputs and outputs that are either 1 or 0. The tic-tac-toe
machine is a good example of a function specified by binary
rules, because the input switches and the output lights are
either on or off—that is, either 1 or 0. (Later, we will discuss
rules for handling letters, numbers, or even pictures and
sounds as inputs and outputs.) Any set of binary rules can be
completely specified by showing a table of the outputs for
each possible combination of 1’s and 0’s on the inputs. For
example, the rules for the Or function are specified by the
following table:

Input A Input B Output

0 0 0
OR Function 0 1 1
1 0 1
1 1 1

UNIVERSAL BUILDING BLOCKS

The Invert function is specified by an even simpler table:

Input Output
Invert Function 0 1
1 0

For a binary function with n inputs, there are 2r possible
combinations of input signals. Sometimes we won't bother to
specify all of them, because we don’t care about certain com-
binations of inputs. For example, in specifying the function
performed by the tic-tac-toe machine, we don’t care what
happens if the human player plays in all squares simultane-
ously. This move would be disallowed, and we don’t need to
specify the function's output for this combination of inputs.

Complex logic blocks are constructed by connecting And,
Or, and Invert blocks. In drawings of the connection pattern,
the three blocks are conventionally represented by boxes of
different shape (see Figure 9); the lines connecting on the left
side represent inputs to the blocks, and the lines connecting
on the right represent the output. Figure 10 shows how a
pair of two-input Or blocks can be connected to form a three-
input Or function; the output of this function will be 1 if any
one of its three inputs is 1. It’s also possible to string several
And blocks together in a similar manner to make an And
block with any number of inputs.

INPUT A INPUT A
AAID ourrur oureur
INPUT B INPUT 8§~

ourrur

INPUT {>O

INVERT

FIGURE ¢
And, Or, and Invert Blocks

23

24

THE PATTERN ON THE STONE

OR

FIGURE |0
A three-input Or block made from a pair of two-input Or blocks

Figure 11 shows how an And block can be constructed by
connecting an Inverter to the inputs and output of an Or
block. (Here is De Morgan'’s theorem again.) The best way to
get a feeling for how this works is to trace through the 1’s and
0’s for every combination of inputs. Notice that this illustra-
tion is essentially the same as Figure 6 in the previous chap-
ter. It points up an interesting fact: we don’t really need And
blocks in our universal building set, because we can always
construct them out of Or blocks and Inverters.

I

FIGURE ||
Making And out of Or

As in the tic-tac-toe playing machine, And blocks are
used to detect each possible combination of inputs for which
the output is 1, while Or blocks provide a roster of these
combinations. For example, let’s start with a simple function
of three inputs. Imagine that we want to build a block that
allows the three inputs to vote on the output. In this new

UNIVERSAL BUILDING BLOCKS

block, majority wins—that is, the output will be 1 only if two
or more of the inputs are 1.

Majority

Inputs Output
ABC

000 0
001 0
010 0
011 1
100 0
101 1
110 1
111 1

Figure 12A shows how this function is implemented.An
And block with the appropriate Invert blocks as input is
used to recognize each combination of inputs for which the
output is 1; these blocks are connected by an Or block,
which produces the output. This strategy can be used to cre-
ate any transformation of inputs to outputs:

Of course, this particular method of using a separate And
gate to recognize each combination of inputs is not the only
way to implement the function, and it is often not the sim-
plest way. Figure 12B shows a simpler way to produce the
majority function. The great thing about the method de-
scribed is not that it produces the best implementation but
that it always produces an implementation that works. The
important conclusion to draw is that it is possible to com-
bine And, Or, and Invert blocks to implement any binary
function—that is, any function that can be specified by an
input/output table of 0's and 1’s.

Restricting the inputs and output to binary numbers is
not really much of a restriction, because the combinations of
1’s and 0’s can be used to represent other things—Iletters,

25

26 THE PATTERN ON THE STONE

@ 4

[/

AND

Anp

MATORITY
DO—— AND
AND
4
V]
B N oR MATORITY
an
c

FIGURE 12

How the voting function is implemented by
And, Or, and Invert Blocks

larger numbers, any entity that can be encoded. As an exam-
ple of a nonbinary function, suppose we want to build a
machine to act as a judge of the children’s game of Scis-
sors/Paper/Rock. This is a game for two players in which
each chooses, in secret, one of three “weapons”—scissors,

UNIVERSAL BUILDING BLOCKS

paper, or rock. The rules are simple: scissors cuts paper, paper
covers rock, rock crushes scissors. If the two children choose
the same weapon, they tie. Rather than building a machine
that plays the game (which would involve guessing which
weapon the opponent is going to choose), we will build a
machine that judges who wins. Here's the input/output table
for the function that takes the choices as inputs and declares
the winner as output. The table encodes the rules of the game:

Input A Input B Output
Scissors Scissors Tie
Scissors Paper A wins
Scissors Rock B wins
Paper Scissors B wins
Paper Paper Tie

Paper Rock A wins
Rock Scissors A wins
Rock Paper B wins
Rock Rock Tie

The Scissors-Paper-Rock judging function is a combinational
function, but it is not a binary function, since its inputs and
output have more than two possible values. To implement this
function as a combinational logic block, we must convert it to
a function of 1's and 0’s. This requires us to establish some
convention for representing the inputs and outputs. A simple
way to do this would be to use a separate bit for each of the
possibilities. There would be three input signals for each
weapon: a 1 on the first input represents Scissors, a 1 on the
second input represents Rock, and a 1 on the third input rep-
resents Paper. Similarly, we could use separate output lines to
represent a win for player A, a win for player B, or a tie. So the
hox would have six inputs and three outputs.

Using three input signals for each weapon is a perfectly
good way to build the function, but if we were doing it
inside a computer we would probably use some kind of

27

28 THE PATTERN ON THE STONE

encoding that required a smaller number of inputs and out-
puts. For example, we could use two bits for each input and
use the combination 01 to represent Scissors, 10 to represent
Paper, and 11 to represent Rock. We could similarly encode
each of the possible outputs using two bits. This encoding

would result in the simpler three-input/two-output table
shown below:

Alnputs B Inputs Outputs

01 01 00
01’ 10 10
Scissors = 01 01 11 01
Paper = 10 10 01 01
Rock = 11 10 10 00
A wins =10 10 11 10
B wins = 01 11 01 10
Tie = 00 11 10 01
11 11 00

Computers can use combinations of bits to represent any-
thing; the number of bits depends on the number of messages
that need to be distinguished. Imagine, for example, a com-
puter that works with the letters of the alphabet. Five-bit
input signals can represent thirty-two different possibilities
(25 = 32). Functions within the computer that work on letters
sometimes use such a code, although they more often use an
encoding with seven or eight bits, to allow representation of
capitals, punctuation marks, numerals, and so on. Most mod-
ern computers use the standard representation of alphabet
letters called ASCII (an acronym for American Standard Code
for Information Interchange). In ASCII, the sequence 1000001
represents the capital letter A, and 1000010 represents the
capital B, and so on. The convention, of course, is arbitrary.

Most computers have one or more conventions for repre-
senting numbers. One of the most common is the base 2 rep-
resentation of numbers, in which the bit sequence 0000000

UNIVERSAL BUILDING BLOCKS

represents zero, the sequence 0000001 represents the num-
ber 1, the sequence 0000010 represents 2, and so on. The
description of computers as “64-bit” or “32-bit” indicates the
number of bit positions in the representation used by the
computer’s circuits: a 32-bit computer uses a combination of
thirty-two bits to represent a base-2 number. The base-2
number system is a common convention, but there is nothing
that requires its use. Some computers don't use it at all, and
most computers that do also represent numbers in other
ways for various purposes. For instance, many computers
use a slightly different convention for representing negative
numbers and also have a convention called a floating point
to represent numbers that have decimal points. (The position
of the decimal point “floats” relative to the digits, so that a
fixed number of digits can be used to represent a wide range
of numbers.) The particular representation schemes are often
chosen in such a way as to simplify the logic of the circuits
that perform arithmetical operations, or to make it easy to
convert from one representation to another.

Because any logical function can be implemented as a
Boolean logic block, it is possible to build blocks that per-
form arithmetical operations like addition or multiplication
by using numbers with any sort of representation. For
instance, imagine that we want to build a functional block
that will add numbers on an eight-bit computer. An eight-bit
adder block must have sixteen input signals (eight for each
of the numbers to be added), and eight output signals for the
sum. Since each number is represented by eight bits, there
are 256 possible combinations, and each can represent a dif-
ferent number. For example, we could use these combina-
tions to represent the numbers between 0 and 255, or
between —~100 and +154. Defining the function of the block
would be just a matter of writing down the addition table
and then converting it to 1's and 0's, using the chosen repre-
sentation. The table of 1's and 0’s could then be converted to
And and Or blocks by the methods described above,

29

30 THE PATTERN ON THE STONE

By adding two more inputs to the block, we could use
similar techniques to build a block that not only adds but
also subtracts, multiplies, and divides. The two extra control
inputs would specify which of these operations was to take
place. For instance, on every line of the table where the con-
trol inputs were 01, we would specify the output to be the
sum of the input numbers, whereas in every combination
where the control inputs were 10, we would specify the out-
puts to be the product, and so on. Most computers have logi-
cal blocks of this type inside them called arithmetic units.

Combining Ands and Ors according to this strategy is one
way to build any logical function, but it is not always the
most efficient way. Often, by clever design, you can imple-
ment a circuit using far fewer building blocks than the pre-
ceding strategy requires. It may also be desirable to use other
types of building blocks or to design circuits that min-
imize the delay from input to output. Here are some typical
puzzles in logic design: How do you use And blocks and
Inverters to construct Or blocks? (Easy.) How do you use a
collection of And and Or blocks, plus only two Inverters, to
construct the function of three Inverters? (Hard, but possi-
ble.) Puzzles like this come up in the course of designing a
computer, which is part of what makes the process fun,

FINITE-STATE MACHINES

A A Y T T I T T T T

The methods I've described can be used to implement any
function that stays constant in time, but a more interesting
class of functions are those that involve sequences in time. To
handle such functions, we use a device called a finite-state
machine. Finite-state machines can be used to implement
time-varying functions—functions that depend not just on the
current input but also on the previous history of inputs. Once
you learn to recognize a finite-state machine, you’ll notice

UNIVERSAL BUILDING BLOCKS

them everywhere—in combination locks, ballpoint pens, even
legal contracts. The basic idea of a finite-state machine is to
combine a look-up table, constructed using Boolean logic,
with a memory device. The memory is used to store a sum-
mary of the past, which is the state of the finite-state machine.

A combination lock is a simple example of a finite-state
machine. The state of a combination lock is a summary of
the sequence of numbers dialed into the lock. The lock
doesn’t remember all the numbers that have ever been dialed
into it, but it does remember enough about the most recent
numbers to know when they form the sequence that will
open the lock. An even simpler example of a finite-state
machine is the retractable ballpoint pen. This finite-state
machine has two possible states—extended and retracted—
and the pen remembers whether its button has been pressed
an odd or an even number of times. All finite-state machines
have a fixed set of possible states, a set of allowable inputs
that change the state (clicking a pen’s button, or dialing a
number into a combination lock), and a set of possible out-
puts (retracting or extending the ballpoint, opening the lock).
The outputs depend only on the state, which in turn

depends only on the history of the sequence of inputs.

Another simple example of a finite-state machine is a
counter, such as the tally counter on a turnstile indicating
the number of people who have passed through. Each time a
new person goes through, the counter’s state is advanced by
one. The counter is a finite state because it can only count up
to a certain number of digits. When it reaches its maximum
count—say, 999—the next advance will cause it to return to
zero. Odometers on automobiles work like this. I once drove
an old Checker cab with an odometer that read 70,000, but I
never knew if the cab had traveled 70,000 miles, 170,000
miles, or 270,000 miles, because the odometer had only
100,000 states; all those histories were equivalent as far as
the odometer was concerned. This is why mathematicians
often define a state as “a set of equivalent histories.”

31

32

THE PATTERN ON THE STONE

Other familiar examples of finite-state machines include
traffic lights and elevator-button panels. In these machines,
the sequence of states is controlled by some combination of
an internal clock and input buttons such as the “Walk” but-
ton at the crosswalk and the elevator call and floor-selection
buttons. The next state of the machine depends not only on
the previous state but also on the signals that come from the
input button. The transition from one state to another is
determined by a fixed set of rules, which can be summarized
by a simple state diagram showing the transition between
states. Figure 13 shows a state diagram for a traffic-light

® OO

FRESSED

FIGURE i3
State diagram for a traffic-light controller

5|00 @

UNIVERSAL BUILDING BLOCKS

—s i
mrarts — ovrrUTS

vy

Loagre
BLocx

>\ REGISTER

i

NEXT STATE

FIGURE 14

Finite-state machine, with logic block feeding register

controller at an intersection where the light turns red in both
directions after the Walk button is pressed. Each drawing of
light represents a state and each arrow represents a transition
between states. The transition depends on whether or not the
“walk” button is pressed.

To store the state of the finite-state machine, we need to
introduce one last building block—a device called a register,
which can be used to store bits. An n-bit register has n inputs
and n outputs, plus an additional timing input that tells the
register when to change state. Storing new information is
called “writing” the state of the register. When the timing
signal tells the register to write a new state, the register
changes its state to match the inputs. The outputs of the reg-
ister always indicate its current state. Registers can be imple-
mented in many ways, one of which is to use a Boolean logic
block to steer the state information around in a circle. This
type of register is often used in electronic computers, which
is why they lose track of what they’re doing if their power is
interrupted.

A finite-state machine consists of a Boolean logic block
connected to a register, as shown in Figure 14. The finite-
state machine advances its state by writing the output of the

33

34 THE PATTERN ON THE STONE

BooJean logic block into the register; the logic block then
computes the next state, based on the input and the current
state. This next state is then written into the register on the
next cycle. The process repeats in every cycle.

The function of a finite-state machine can be specified by
a table that shows, for every state and every input, the state
that follows. For example, we can summarize the operation
of the traffic-light controller by the following table:

Inputs: Outputs:

Walk Current Main Cross Next
Button State Road Read State
Not Pressed A Red Green B
Not Pressed B Red Yellow D
Not Pressed C Yellow Red A
Not Pressed D Green Red C
Not Pressed Walk Walk Walk D
Pressed A Red Green B
Pressed B Red Yellow Walk
Pressed C Yellow Red Walk
Pressed D Green Red C
Pressed Walk Walk Walk Walk

The first step in implementing a finite-state machine is to
generate such a table. The second step is to assign a different
pattern of bits to each state. The five states of the traffic-light
controller will require three bits. (Since each bit doubles the
number of possible patterns, it is possible to store up to 2n
states using n bits.) By consistently replacing each word in the
preceding table with a binary pattern, we can convert the table
to a function that can be implemented with Boolean logic.

In the traffic-light system, a timer controls the writing of
the register, which causes the state to change at regular inter-
vals. Another example of a finite-state machine that advances
its state at regular intervals is a digital clock. A digital clock
with a seconds indicator can be in one of 24 x 60 x 60 = 86,400

UNIVERSAL BUILDING BLOCKS

possible display states—one for each second of the day. The
timing mechanism within the clock causes it to advance
its state exactly once per second. Many other types of digital
computing devices, including most general-purpose comput-
ers, also advance their state at regular intervals, and the rate at

which they advance is called the clock rate of the machine.
Within a computer, time is not a continuous flow but a fixed
sequence of transitions between states. The clock rate of the
computer determines the rate of these transitions, hence the
correspondence between physical and computational time.
For instance, the laptop computer on which I am writing this
book has a clock rate of 33 megahertz, which means that it
advances its state at a rate of 33 million times per second. The
computer would be faster if the clock rate were higher, but its
speed is limited by the time required for information to propa-
gate through the logic blocks to compute the next state. As
technology improves, the logic tends to become faster and the
clock rate increases. As I write these words, my computer is
state-of-the-art, but by the time you read this book computers
with 33 megahertz clock rates will probably be considered
slow. This is one of the wonders of silicon technology: as we
learn to make computers smaller and smaller, the logic
becomes faster and faster.

One reason finite-state machines are so useful is that they
can recognize sequences. Consider a combination lock that
opens only when it is given the sequence 0-5-2. Such a
lock, whether it is mechanical or electronic, is a finite-state
machine with the state diagram shown in Figure 15.

A similar machine can be constructed to recognize any
finite sequence. Finite-state machines can also be made to rec-
ognize sequences that match certain patterns. Figure 16 shows
one that recognizes any sequence starting with a 1, followed by
a sequence of any number of 0s, followed by a 3. Such a com-
bination will unlock the door with the combination 1-0-3, or
a combination such as 1-0-0-0-3, but not with the combina-
tion 1-0-2-3, which doesn’t fit the pattern. A more complex

35

36 THE PATTERN ON THE STONE

ANYTHING Bur A

FIGURE I5

State diagram for a lock
with combination 0-5-2

finite-state machine could recognize a more complicated pat-
tern, such as a misspelled word within a stream of text,

As powerful as they are, finite-state machines are not
capable of recognizing all types of patterns in a sequence. For
instance, it is impossible to build a finite-state machine that
will unlock a lock whenever you enter any palindrome—a
sequence that is the same forward and backward, like
3-2-1-1-2-3. This is because palindromes can be of any
length, and to recognize the second half of a palindrome you
need to remember every character in the first half. Since
there are infinitely many possible first halves, this would
require a machine with an infinite number of states.

A similar argument demonstrates the impossibility of
building a finite-state machine that recognizes whether a given
English sentence is grammatically correct. Consider the sim-

UNIVERSAL BUILDING BLOCKS

ANYTHING,
Bur
A 1

ANYTHING
l» 1 Bur
Agorad

=

LOOKkIN G
FoR,

ZEROS

e
FIGURE 16

State diagram to
recognize sequences
like 1,0,3 and 1,0,0,0,:

ple sentence “Dogs bite.” The meaning of this sentence can be
changed by putting a qualifier between the noun and the verb;
for instance, “Dogs that people annoy bite.” This sentence can
in turn be modified by putting another phrase in the middle:
“Dogs that people with dogs annoy bite.” Although the mean-
ing of such sentences might be expressed more clearly, and
although they become increasingly difficult to understand,
they are grammatically correct. In principle, this process of
nesting phrases inside of one another can go on forever, pro-
ducing absurd sentences like “Dogs that dogs that dogs that
dogs annoy ate bit bite.” Recognizing such a sentence as gram-
matically correct is impossible for a finite-state machine, and
for exactly the same reason it’s difficult for a person: you need
a lot of memory to keep track of all those dogs. The fact that
human beings seem to have trouble with the same kinds of
sentences that stump finite-state machines has caused some
people to speculate that we may have something like a finite-
state machine inside our head for understanding language. As
you will see in the next chapter, there are other types of com-
puting devices that seem to fit even more naturally with the
recursive structure of human grammar.

37

38 THE PATTERN ON THE STONE

I was introduced to finite-state machines by my mentor
Marvin Minsky. He presented me with the following famous
puzzle, called the firing squad problem: You are a general in
charge of an extremely long line of soldiers in a firing squad.
The line is too long for you to shout the order to “fire,” and so
you must give your order to the first soldier in the line, and
ask him to repeat to the next soldier and so on. The hard part
is that all the soldiers in the line are supposed to fire at the
same time. There is a constant drumbeat in the background;
however, you can't even specify that the men should all fire
after a certain number of beats, because you don’t know how
many soldiers are in the line. The problem is to get the entire
line to fire simultaneously; you can solve it by issuing a com-
plex set of orders which tells each soldier what to say to the
soldiers on either side of him. In this problem, the soldiers are
equivalent to a line of finite-state machines with each
machine advancing its state by the same clock (the drumbeat),
and each receiving input from the output of its immediate
neighbors. The problem is therefore to design a line of identi-
cal finite-state machines that will produce the “fire” output at
the same time in response to a command supplied at one end.
{The finite-state machines at either end of the line are allowed
to be different from the others.) I won't spoil the puzzle by giv-
ing away the solution, but it can be solved using finite-state
machines that have only a few states.

Before showing you how Boolean logic and finite-state
machines are combined to produce a computer, I'll skip ahead
in this bottom-up description and tell you where we're going.
The next chapter starts by setting out one of the highest levels
of abstraction in the function of a computer, which is also the
level at which most programmers interact with the machine.

CHAPTER 3

tovsosnesovoneessnesessensanns vececencss bcossascsecesecrscsccsce asscssesc00

PROGRAMMING

The magic of a computer lies in its ability to become almost
anything you can imagine, as long as you can explain exactly
what that is. The hitch is in explaining what you want. With
the right programming, a computer can become a theater, a
musical instrument, a reference book, a chess opponent. No
other entity in the world except a human being has such an
adaptable, universal nature. Ultimately all these functions
are implemented by the Boolean logic blocks and finite-state
machines described in the previous chapter, but the human
computer programmer rarely thinks about these elements;
instead, programmers work with a more convenient tool
called a programming language.

Just as Boolean logic and finite-state machines are the
building blocks of computer hardware, a programming lan-
guage is a set of building blocks for constructing computer
software. Like a human language, a programming language
has a vocabulary and a grammar, but unlike a human
language there is an exact meaning in the programming
language for every word and sentence. Most programming
languages are universal, in the same sense that Boolean logic
is universal: they can be used to describe anything a com-
puter can do. Anyone who has ever written a program—or
debugged a program—knows that telling a computer what

39

