
OddMix TECHNOLOGY NOTES

| Home | Arts | Books | Computers | Electronics | Free | Philately | OddMix Magazin | Specials | Technology |

Primary Voltaic Electrolytic Galvanic Chemical Cells General Information

OddMix.com - Power Technical Note - PWRN0803 - by Karl Nagy

Voltaic or galvanic cell - **Fig. 1**. - result when two primary conductors are immersed into an electrolyte. All voltaic cells utilize one or more electrolyte and one or more different primary conductors, metals. All electrolytic cells generate electricity by chemical action. Chemical action results in the change of substances from their original form to a new substance with new properties. Voltaic cells produce electrical energy by direct conversion that is a result of a redox chemical reaction.

Fig 1. Voltaic Primary Cell

At the beginning of our current electronics age, primary cells were the only source of useable electricity. After a slow evolution voltaic cells are a form of often used convenient source of portable electric energy. Voltaic cells are usually the most expensive form of electric energy.

The open circuit voltage of a galvanic cell is independent of the size of the electrodes, their distance or the volume of electrolyte and it only dependent on the electrode materials and the type of electrolyte. Electrode polarization opposes current flow. The most difficult part to develop a primary cell is to find suitable depolarizer materials. That is why some cells use a single electrolyte and others use two or more.

The rapid development for the postal, rail and transportation sectors required a large number of primary cells. The Daniell type cells with their depolarizer were immensely popular from their introduction in 1850 in the Morse telegraph service. In some special service they are still in use to this very day. The chromium acid Bunsen cells were widely used in 1910 for laboratory experiments. They often charged the newly invented first lead acid cells until steam powered dynamos became available. The Lalande type copper cells also in 1910 were often powered small electric motors, and the rail services for signaling were used some of them until recently.

Single Fluid Primary cell types:										
	Cell Name	Pos. Pole	Neg. Pole	Electrolyte	v	Comments				
	Air	C	Amal. Zn	20% NaOH	1.45	Air depolarized				
	Bichromate	C	Zn	120g CrSO ₄ +H2SO ₄	2	Medium current				
	Clark Std	${\tt Hg+Hg}_2{\tt SO}_4\&{\tt ZnSO}_4$	Amal. Zn	100% ZnSO ₄	1.43					
	Cupron	CuO	Zn	20-22 Be° NaOH	0.8	Strong current 1A long time				
	Fery	С	Amal. Zn	100% NH ₄ Cl	1.4	Air depolarized				
	Gassner dry	С	Zn	${\tt ZNO+NH_4Cl+ZnCl_2}$	1.4	${\rm MnO}_2$ depolarizer				
	Law	C	Zn	15% NH ₄ Cl	1.4	Air depolarized				
	Lalande-Edison	CuO	Amal. Zn	20% NaOH	1.1					
	Lechlance	C	Zn	NH ₄ Cl	1.5	Strong current short time				
	Lechlance dry	С	Amal. Zn	$\mathrm{NH_4Cl} + \mathrm{ZnCl_2}$	1.6	MnO ₂ +C depolarizer				
	Main	PBO ₂	Amal. Zn	${\rm H_2SO_4}$ - density 1.1	2.5					
	Meidinger	Cu	Zn	$ZnCl_2 - 170g/L$	1	Weak current for long time				
	Mercury	Нд	Zn	HgO_ZnO	1.2	Med current for long time				
	Poggendorf	C	Amal. Zn	$\mathrm{K_{2}Cr_{2}O_{7}}\mathrm{+H_{2}SO_{4}}\mathrm{+H_{2}O}$	2.0	MnO ₂ +C depolarizer				
	Regnault	Cd	Amal. Zn	$\mathrm{H_{2}SO_{4}+CaSO_{4}+H_{2}O}$	0.34	Strong current				
	Siver Chloride	Ag+AgCl	Zn	23% NH ₄ Cl	1.0					
	Volta couple	Cu	Zn	NaCl solution	1.0	First cell made				
	Weston normal	${\rm Hg+HgSO_4+CdSO_4}$	Cdam	100% CdSO ₄	1.02	Lab standard				

Double Fluid	ble Fluid Primary cell types:								
Cell Name	+Pole	Catholyte	Neg. Pole	Anolyte	v	Comments			
Bunsen	C	100% HNO ₃	Amal. Zn	10% H ₂ SO ₄	1.9	Strong current galv. Lab			
Daniel	Cu	CuSO ₄	Zn	25% H ₂ SO ₄	2.0	Weak current for long time			
Fuller	C	$\mathrm{K_{2}Cr_{2}O_{7}+H_{2}SO_{4}}$	Amal. Zn	8% H ₂ SO ₄	2.0				
Grove	Pt	100% HNO ₃	Zn	8% H ₂ SO ₄	1.5	Strong current short time			
Marie Davy	С	Hg ₂ SO ₄	Amal. Zn	12% H ₂ SO ₄	2				
Partz	C	$\mathrm{K_{2}Cr_{2}O_{7}+H_{2}SO_{4}}$	Amal. Zn	${ m MgSO}_4$	2	Modified Bunsen			

The Lechlance type cell survived relatively unchanged since its invention in 1868. All dry cells are descendents to the original wet cell. Dry cells are not dry. Instead of the liquid electrolyte, dry cells have their electrolyte in a gel or paste form. It increases the cell resistance, but makes it possible to have portable cells for flashlights, radios, and other items.

Previous Page

Web www.oddmix.com

Copyright © 2008 K Nagy - http://www.OddMix.com - All Rights Reserved Page Revised: - 081204 - Privacy Policy - Site Map - Support