
Java Security

Bastiaan Bakker

Preliminary Investigation
Department of Computer Science

Technical University of Delft

Performed at NTEX Harbinger
Rotterdam

Java Security

Table of Contents

1. INTRODUCTION..

2. JAVA...

2.1 THE JAVA RUNTIME ENVIRONMENT...
2.2 THE JAVA LANGUAGE...

3. JAVA SECURITY..

3.1 THE SANDBOX MODEL..
3.2 RESTRICTING CLASS VISIBILITY..
3.3 OBJECT VISIBILITY AND ACCESS MODIFIERS...
3.4 EXPLICIT AUTHORIZATION CHECKS...
3.5 INTER APPLET COMMUNICATION..
3.6 AUDITING AND ACCOUNTING...
3.7 ATTACK TARGETS...
3.8 CONCLUSIONS...

4. CRYPTOGRAPHY..

4.1 INTRODUCTION..
4.2 CRYPTO BUILDING BLOCKS...
4.3 CERTIFICATE BASED AUTHENTICATION...
4.4 THE SECURE SOCKETS LAYER..
4.5 THE SSL HANDSHAKE PROTOCOL..
4.6 CRYPTO IN JAVA...
4.7 KEY MANAGEMENT..
4.8 COMBINING SSL AND JAVA..
4.9 CONCLUSIONS...

5. VISUAL WEB..

6. CONCLUSIONS...

7. ACKNOWLEDGMENTS...

APPENDIX A: PERILS OF THE SECURITY MANAGER...

APPENDIX B: REPORT OF A SECURITY BUG IN HOTJAVA 1.0 PREBETA 2....

APPENDIX C: AN HTML BASED ATTACK ON HOTJAVA......................................

REFERENCES...

ABBREVIATIONS..

Java Security

1 Introduction

In the summer of 1995 Sun MicroSystems introduced Java, a new technology for
Client/Server based programming that circumvents disadvantages of traditional
Client/Server systems. This paper investigates the security concerns raised by
using Java and how Java tries to counter these.

In traditional Client/Server technology two approaches are commonly used:
1. In a fat client system the client performs a significant part of the functionality

of the application. The server is relatively passive. An example is a
WWW browser / HTTP server.

2. In a thin client system the client only provides an interface to the application
that is running (remotely) at the server. A populair implementation of this
strategy is the X-Windows system.

Fat clients can de taylored optimally to the application, since the functionality can
be put wherever is the most efficient and the features of the client environment
can be utilized maximally. But building specialized clients has its drawbacks too:
· the client has to be ported to any platform it should run on.
· the client has to be installed on all computers it has to run on.
· the client is specific for the application: for each new application a new client

has to be written.
· care has to be taken to keep versions of the client and the server in sync,

updating an application is difficult.

A thin client system like the X-Windows system avoids a lot of the fat client
problems by offering an environment in which the server can dynamically build a
user interface for the application. This reduces porting and installing of clients to
porting and installing the X-Windows system at the client host once. Since all
application software is stored at the server versioning problems are avoided too.
However this solution also has disadvantages:
· the generic client is more complex than necessary for most applications
· scalability is limited as the server has to execute all code.

Both current fat and thin client approaches lack flexibility.
Java offers a new approach to Client/Server programming that combines the best
of both worlds:
At the client system a runtime environment is installed, in which upon use clients
are downloaded and executed. Since the client program is stored at the server
updating software is simple. Moreover, the user only needs to install one
program, the Java Runtime Evironment (JRE), just like with X-Windows, while
retaining flexibility.

Sun has marketed Java as the new way of programming for the Internet and the
WWW. Instead of building all kinds of plugins for webbrowsers programmers
should write Java programs to handle new types of WWW content. To
demonstrate this Sun published their HotJava WWW browser that was
completely build with Java technology. As Netscape and Microsoft recognized
the potential of Java they included it in their respective browsers. At this moment
Java environments are available for most platforms, either as part of a browser, or
standalone. The latest stable release of Java is Java Development Kit (JDK) 1.02,
published May 1996. Currently a much improved and enhanced version, JDK 1.1,
is in public beta testing.

1

Java Security

The use of Java in an heterogenous, insecure environment like the Internet places
certain demands on it:

1Portability
It should be portable: it should be able to run on different processors and under
different operating systems. Java solves this problem by compiling Java programs
to virtual machine code, called Java bytecode, that is interpreted by a part of the
Java runtime environment, the Java Virtual Machine (JVM). To speed up the
execution, bytecode may be translated to native code at the client by a Just In
Time (JIT) compiler. Sun MicroElectronics even has pursued hardware based
acceleration: CPUs are under development that directly execute bytecode. To
couple Java programs to the local operating system, the Java runtime
environment includes a set of core APIs. These provide an abstracted interface to
the underlying system.

2Security
Secondly, Java should be secure. Java redefines the relation between software
providers and users. Traditionally a user would buy an application from a
software publisher, install it and use it. The user trusts the software not to do
dangerous things that could compromise privacy, data integrity, etc., since the
software provider is know and could be held accountable. Essentially the good
reputation of the provider forms the protection of the user.
The situation is different in the case of Java programs: the user does not buy the
application nor install it. Particulary when using applications on the Internet, the
user does not have to know who the supplier is, or even that the application is
running in some cases. Obviously the trust relationship between the software
supplier and the user is entirely different or even nonexistent. A cautious user will
not use Java if no measures are taken. This problem can be tackled with two
methods:
1. The Java runtime environment denies all attempts by Java applications to

perform dangerous operations.
2. The Java runtime environment keeps track of the source (provider) of all Java

applications and of all their actions.

Java 1.0 follows the first method: downloaded Java software is prohibited from
accessing the local user environment. This solution may provide sufficient
security but at the same time it severely limits the usefulness of Java.
Therefore from Java 1.1 on, advances towards the second method are made: the
sofware provider can digitally sign its Java programs and the user can configure
the Java environment to grant applications from certain, trusted providers access
to (parts of) the local system. Now data can be collected from the users file
system, results stored to it, etc., etc.

2

Java Security

2 Java
This chapter describes two parts of the Java technology: the Java Runtime
Environment and the Java Language. Both are important in the discussion about
Java security. The first, because it helps to understand the requirements on Java’s
security, the second because Java’s security is based on its language.

2.1 The Java Runtime Environment
This paragraph will look into how the Java Runtime Environment works and
where.
Although currently Java is best known as a part of WWW browsers by most
people, it is not confined to them. Since it is small, modular and flexible it is well
suited to run in other environments. Major network device companies have
announced to incorporate Java in their devices. Network Computers will run Java
and even chipcards are designed to run (a subset) of Java [SUN96-3].

Figure 1: Environments for running Java

Java programs that run in a browser are called applets. Applets are small
applications (hence the name) that are downloaded from a network. They run
embedded in HTML pages just like browser plugins. A typical inclusion of an
applet on a page looks like this:

<applet codebase=”http://www.javasoft.com/applets”
code=”DukeApplet” with=100 height=120>
<param name=”someParameter” value=”itsValue”>
</applet>

Applets run within certain restrictions to prevent them to compromise the security
of the user. They may not access the local environment of the user. Furthermore
their networking capabilities are limited to connecting back to the server they are
downloaded from. The latter restriction should ensure that applets cannot attack a
third host, camouflaging the fact that the attack actually comes from the server. It
should be safe to run applets that originate from outside a firewall.

3

Java Security

Figure 2: execution of a Java applet or application

Figure 2 shows how a Java applet is executed:
1. Java sources (.java files) are compiled by a compiler to bytecode. Every

compiled class is put in a separate .class file. The ‘.class’ files still
contain all symbolic information needed for linking.

2. The bytecode is downloaded by the Java runtime (e.g. a browser) on a per
class basis.

3. The ClassLoader (the part of the runtime responsible for loading classes)
links the loaded class with system classes and other downloaded classes.

4. The ClassLoader invokes the bytecode verifier to check whether the class
violates Java language rules.

5. Now the class is added to the runtime. It either will be interpreted by the Java
interpreter or compiled to native code by a Just in Time Compiler.

It’s also possible to create standalone Java applications. The JDK provides a
runtime to use these. Java applications do not have the restrictions applets have.
Suns HotJava browser is an application that runs in the JDK runtime
environment.
JavaSoft has used Java for system development too. This has resulted in the
JavaOS operating system. JavaOS is a small, portable, lightweight operating
system [SUN96-5] written in Java. JavaOS is intended to run on the Network
Computer and other Java enabled devices.

2.2 The Java Language
The Java language is an object oriented, class based language. Java was modeled
closely after C++ to facilitate programmers. Java is much simpler and cleaner
however, a lot of difficult, rarely used features have been removed.

1Object Referencing
In Java the memory model is abstracted. Pointers have been abolished, as has
explicit memory handling. Instead opaque references to objects are used. The
only ways to obtain references is either by creating a new object with the new
operator or by assignment from another reference. Moreover it is impossible to
forge a reference or to do an illegal type cast. Programmers cannot explicitly

4

Java Security

deallocate an object, instead the runtime system has a garbage collector that
removes objects once they are no longer needed. This way, the common problem
of memory leakage is avoided. The forced type safe referencing of objects and
the garbage collector enhances the robustness of Java software a lot.
References are limited to refer to objects inside the same JVM. To allow
interaction between JVMs the Java 1.1 includes a Remote Method Invocation
(RMI) API. With this API remote objects can be accessed through local stub
objects.

2Inheritance
All complex types are classes derived from a single base class
java.lang.Object. For performance reasons simple types such as integers are
available both as Objects and as primitives.
Unlike C++, Java does not support multiple inheritance. It was felt that problems
raised by supporting it (particularly name resolution ambiguities) outweighed the
benefits. Instead in Java one can declare interfaces. An interface declaration is
similar to a class definition, but it lacks instance data members and bodies for the
methods it declares. A class can declare that it implements the interface, it should
define all methods declared in the interface in that case. Declaring multiple
interfaces for a class facilitates its use in different roles. The mechanism of
interfaces resolves the naming ambiguities, but does not eliminate method name
collisions between interfaces.

3Dynamic Linking
Whereas C++ programs are statically linked, Java uses dynamically linking. All
compiled Java classes are stored in separate “.class” files. These files still contain
all symbolic information needed for linking. When a Java program is executed
class-files are loaded into the runtime system when they are first needed. Only
then the symbolic names are resolved. Delaying the linking until execution has
several benefits:
· Only the parts actually needed at runtime have to be downloaded.
· Header files are not needed anymore, as all information about a class is still

available after compilation.
· The fragile superclass problem is avoided. In C++ if a class B derives from

class A and class A is modified after class B is compiled, class B has to be
recompiled too, else linking will fail. In Java linking and running will
succeed as long as the methods and fields in A that B uses are still present.

4Packages
Classes that logically belong together can be grouped into a package. Classes in
the same package are allowed access to each others member more freely. The
JDK 1.02 VM maps package names onto directories, so all classes belonging to
package java.awt.image can be found in subdirectory java/awt/image. Although
Java’s package names suggest a hierarchy, the current Java implementation does
not support the notion of subpackages, i.e. java.awt.image is not a part of the
java.awt package. The JDK 1.1 compiler supports inner classes, that facilitate a
finer grained control on the scope of classes. However this is language based
rather than runtime based: names of inner classes are simply mangled to avoid
use outside scope. Outside their scope they are invisible at Java language level
but appropriate bytecode can still reach them.

5

Java Security

5Access protection
A programmer can protect the functionality of classes by using appropriate access
modifiers on its members. Java provides the following access modifiers:
· private members may be accessed by methods of the same class only.
· protected members may be accessed by methods of derived classes as well

and by any class that is defined in the same package.
· public members are accessible by anybody that can see their name.(Visibility

will be explained when Java’s use of name spaces is discussed).
· package protected members are accessible by any class that is defined in the

same package. (Note: since package protected is the default access policy,
there is no keyword associated with it.)

Classes themselves can be declared public or package protected. Package
protected classes are inaccessible outside their package. In addition any method
can be declared final, which means it cannot be overridden by subclasses. Final
data members may not be changed after construction. Declaring a class to be final
prohibits deriving from it.
Security sensitive methods should always be either private, package protected or
final. Otherwise malicious programmers could override the method to circumvent
security measures.
Data members should hardly ever be declared public even if they are final. Java
handles objects by reference, so declaring an object as a final data member only
means that the reference cannot be changed. The object itself still is muteable!
Java does not have a ‘const’ specifier like C++, but this may change in the future:
‘const’ already is a reserved word in JDK 1.02.

6Multi-threading
Language based support for multi-treading is also included. Threads can be
created by constructing java.lang.Thread objects to which runnable methods
can be coupled. Threads can be assigned priorities ranging from 1 to 10. No
guarantees are made about thread scheduling policies, except that higher priority
threads get more CPU time. In particular one may not assume that threads are
scheduled preemptively. For this reason Thread includes a yield() method to
explicitly request that some other thread should be run.
The Java language supports safe concurrent object manipulation by providing
recursive locks on all objects. With the synchronized keyword programmers
may specify execution blocks only to be entered when the lock (called a monitor
in the Java documentation) of a specified object has been obtained.
Since the Java runtime has a single shared address space, multithreading is the
only method of concurrency: traditional UNIX processes are not needed
anymore.

7Native environment interface
Java provides a simple interface to the native environment. Methods can be
declared native, which means that the method body is implemented in native
code. This code is not part of the Java class, but provided by native object
libraries. Before a native method can be used the corresponding object library has
to be loaded with the java.lang.System.loadLibrary(String name)
method. As native code is not bound to Java’s security restrictions only
privileged code may directly use native methods. All applets and most
applications access the native environment through the Java core APIs, as these
provide a proper abstraction of the native system (thus ensuring portability).

6

Java Security

3 Java Security
This chapter describes Java’s security model with respect to applets. Also several
basic protection techniques Java uses are explained:
· Language enforced restrictions, instead of traditional hardware based ones.
· Separate name spaces to protect different security domains
· Object hiding
· Use of a security manager for implementing specific security policies

3.1 The Sandbox model
Java’s protection is based on the ‘sandbox’ model. This means that the applets are
allowed to ‘play’ (run) in a restricted environment, the sandbox, in which they
can do no harm to the local environment. Any attempt to access the local
environment (for example to write a file to the harddisk) is supervised by a
security manager. The attempt will fail if the applet does not have sufficient
privileges. To ensure that all sensitive access is made through the security
manager Java relies on type integrity: applets cannot forge pointers to objects and
cannot access them in any other way than defined by the objects themselves.
Since the Java runtime does not download Java source code but the compiled
bytecode instead, it has to verify that it does not violate security criteria. This is
done by the byte code verifier. It checks for example whether access modifiers
aren’t violated, all constructors are properly called, if no stack under or overflows
can occur and no illegal type casts are done. If a class has passed the verifier one
may safely assume that it is the bytecode equivalent of a legal Java source. Earlier
versions of the verifier contained bugs that allowed applets to violate type safety
[DEAN96] and the current version still may too, since no proof has been given
yet that it is secure. Since the Java language and bytecode specifications have not
been subject to change for a relatively long time (nor will be probably) the byte
code verifier is the Java part best suited for formal verification. A discussion
about bytecode verifier security lies outside the scope of this paper.

3.2 Restricting class visibility
When a class is downloaded all other classes it uses are still referenced by their
fully qualified name. The linker has to resolve these names to the actual classes
(possibly causing these classes to be downloaded as well). Since different
programs may use the same class names there have to be provisions to avoid
naming collisions. Moreover different programs should not be able to extend
eachothers packages by using identical package names, as this would void the
usefulness of the package protected and protected access specifiers. Therefore
(packages of) classes are grouped into name spaces inside which all classes have
an unique fully qualified name. Classes with the same name but in different name
spaces are considered to be different classes even if their definitions are
completely identical.
By default just one namespace is present: the system name space. This name
space contains all classes that reside on the local file system. The runtime looks
for these system classes in all directories that are listed in the CLASSPATH
environment variable. They are special the following respects:
1. They are trusted to do security sensitive things, such as calling native code
2. They are visible by all classes: the system name space is reachable from all

other name spaces.

7

Java Security

3. They cannot be shadowed by classes in other name spaces that have the same
name: the system name space is always searched first. This rule is not
enforced, Java system programmers should take care not to violate this.

All other name spaces are implicitly defined at runtime. These name spaces are
maintained by ClassLoader objects, that take care of downloading classes and
resolving class names. Every class has a getClassLoader()method that returns
the ClassLoader by which that class is downloaded. The runtime will use that
ClassLoader when a class name used in the class has to be resolved. The
ClassLoader will first look whether the class name can be found in the system
name space. If it can’t be found there, the ClassLoader will try to download it
from the remote ‘source’ of classes.
Each ‘source’ of classes is assigned a separate ClassLoader. Currently the
‘source’ means the location where the classes (or their packages) are stored on a
server. Often this is identical to the place of the HTML page containing the applet
but it may be entirely different if another CODEBASE is specified in the applet
tag. Now that code can be digitally signed, future versions may redefine source to
be the publisher of the classes. On the other hand, some documentation suggests
that maybe every downloaded applet will be assigned its own name space in the
future [JAVA97].
The vague rules concerning about name space separation proved to be a source
of frustration for Java developers: during the development of Netscape Navigator
3.0, the policy regarding name space separation changed almost every beta
release. In the last beta releases 3.0b6 and 3.0b7 every single applet was put in a
separate name space. This infuriated many Java developers, who relied on shared
name spaces to do Inter Applet Communication. A large stream of angry letters
made Netscape reconsider: the final 3.0 version separates name spaces based on
the CODEBASE again.

Class invisibility does not imply object invisibility! A class still can obtain
references to instances of classes that are in non shared name spaces. In that case
it will only see the part of the other object that is in a visible name space. Since
all classes are derived from a system class (at least class Object in any case) this
part is never empty.

Figure 3 shows an example of name space separation: two equally named classes
(maybe even equally defined classes) are put in separate name spaces since they
originate from different sources. Both derive from the system class
java.awt.Button. Now if an instance of a class in name space 1 has obtained a
reference to a user.MyButton in name space 2 it:
· may call getParent(), since this method is introduced in the (visible)

system name space and is public.
· may call action(Event e), since the method is introduced in the system

name space and is public. The method body defined in user.MyButton
in name space 2 will be executed since it overrides the one in
java.awt.Button.

· may not access label, since it is package protected. An access attempt will
cause an IllegalAccessException to be thrown.

· may not access key, since it is invisible from name space 1. An access
attempt will cause an ClassCastExeception since the code will try to cast
the name space 2 user.MyButton to a name space 1
user.MyButton.

· may not call decode() for the same reason it may not access key, but it may
be possible to have it invoked if for example action(Event e) invokes it.

8

Java Security

Figure 3: Two equally named classes in separate name spaces

The Princeton Java security team [DEAN96] has demonstrated that applets can
defeat type safety enforcement if they can instantiate their own ClassLoader. This
is accomplished by writing a ClassLoader that on different occasions resolves the
same class name to different classes. This way a system class can be treated as a
customized permissive class that allows full access to all members. Early versions
of Java (JDK 1.01 and Netscape 2.0) contained a bug in the bytecode verifier that
allowed applets to instantiate a customized ClassLoader, effectively
compromising all sandbox security restrictions.

3.3 Object visibility and access modifiers
Contrary to restricting name space visibility, hiding objects from possible
malicious code does effectively prevent them from being tampered with. Now the
problem remains how to keep ones object hidden from other applets. It turns out
that several system classes are too permissive in returning objects. In the
paragraph about Inter Applet Communication some examples will be given.
Another difficulty is once a reference is obtained access to the full functionality
of the corresponding object is granted too: a reference to some object that
implements interface X may be used as a reference to an instance class Y if Y
implements X. Even though a method only returns a reference to a class or
interface with limited functionality, all other members are accessible as well
(limited of course by name space visibility).
Even if a references cannot be kept secret, classes still can protect themselves by
using proper access modifiers: the private, package protected and protected
modifiers prevent classes in other packages to access the members they are

9

Java Security

applied to. But again system classes may make this impossible in some cases:
methods and fields that are declared public cannot be overridden to be (package)
protected or private. Therefore these methods cannot be shielded by using access
modifiers. The only option that remains for these methods is to include explicit
access checks.

3.4 Explicit authorization checks
Explicit checks for permissions are centralized in a separate class, the
SecurityManager. Applications (not applets) may instantiate one
SecurityManager, to be used in the entire runtime from then on. By building
different SecurityManager subclasses appropriate security policies for different
situations may be defined. The JDK includes the AppletSecurity
SecurityManager that restricts the capabilities of all downloaded applets.
The SecurityManager contains various checkAccess() methods that should be
called by all methods that perform sensitive operations. The checkAccess()
methods throw a SecurityException if access should be denied. Note that the
calls to the SecurityManager are spread throughout all APIs that should be
protected and that by default (if no call is made) access is granted. This violates
the principle of denying access unless it is explicitly granted and makes it
difficult to see whether all methods are sufficiently protected.

Contrary to UNIX Java uses two (logically) separate stacks for data and
execution information. The latter, the call stack, can be used for security
checking: every frame on this stack corresponds to a called method associated
with a certain class. Since permissions in Java are linked to a classes
ClassLoader, the list of ClassLoaders of classes on the stack provide enough
information to be able to decide whether permission should be granted or not.
In Java 1.02 there was only one policy for all applets, simplifying the decision:
use the applet policy if there is a ClassLoader on the stack, grant permission if
not. Sometimes permission should be given even if there is a ClassLoader, for
example a system class may want to invoke a protected method on behalf of an
applet. In that case the SecurityManager looks at the depth of the ClassLoader on
the stack to determine whether a system class made the call or the applet. This
method is error prone however (see Appendix A for an example). Moreover, it
makes independently developing SecurityManagers and the classes they should
protect impossible.
In JDK 1.1 the situation has become more difficult: every ClassLoader may carry
a different set of permissions. It has become unclear what policy a Security
Manager has to implement: if class A calls a method in class B that calls a
method that is protected by a security manager check, should the call fail or
succeed? One can argue that it should succeed since it should be the
responsibility of class B to protect itself from unprivileged class like A. However
applets are not allowed to look at the call stack, therefore it has to revert to
another mechanism than the SecurityManager uses. An option for B would be to
base its security policy on whether the calling thread is one of its own, but this is
not flexible. Besides that, having to include checks at every entry point
(essentially every public method) is not a burden that should be placed on an
application programmer.

The use of a SecurityManager allows JRE programmers to implement more
flexible security policies. Building a secure SecurityManager has proven to be
difficult however. Furthermore it violates the principle of denying access unless it
is explicitly granted. Since calls to the SecurityManager are scattered throughout
all APIs that have to be protected, security vulnerabilities easily are overseen. It

10

Java Security

would be better to have more implicit language based protection mechanisms,
that would reduce the size of the security manager.

3.5 Inter Applet Communication
Applets do not always run isolated on a Java Virtual Machine, but may want to
interact with each other. A good Inter Applet Communication interface should
ensure safe interaction between applets. The current IAC model is rather simple:
first obtain a reference to (a class of) another applet and then invoke methods on
it. This restricts IAC to applets running in the same JVM. The Java 1.1 RMI
package is of limited use for IAC: since applets may connect only to their server
they cannot use RMI for communication with other applets at the client.
The method java.applet.AppletContext.getApplets() was designed to
obtain references to other applets: it returns an enumeration of all applets running
on the same page1. Another method is to create a static variable containing
references to all applets. Since a static variable is shared only within the same
name space one can only reach applets with the same code base this way.
Other methods take advantage of (accidental) permissiveness of the system APIs
or the environment. Here are some examples:
· java.lang.Thread.getParent() and java.lang.ThreadGroup.enumerate() let an

applet obtain references to all running threads in the Java VM.
· java.awt.Component.getParent() and java.awt.Container.getComponents() let

an applet obtain references to all windows components that contain the applet
and all their subcomponents. In HotJava all pages in the browser frame are
reachable this way. All applets in the browser can be found, circumventing
the restrictions in getApplets().

Note that any two applets can be put on the same HTML page. The applets do not
have to be reachable by the author: they can be behind a fire wall or in a
restricted place as long as the viewer can access them. See appendix XXX for an
example of an HTML page that takes advantage of this to mislead a user. Once a
malicious applet has obtained a reference to another applet several attack schemes
are possible.

It is clear that the current IAC scheme is inadequate: an applet doesn’t have any
control over who can access it and cannot adequately implement a security policy
itself because it may not use the necessary methods of the SecurityManager.
Implementation of cooperative IAC is hindered by name space separation and the
limited visibility provided by getApplets(). Javasoft has indicated that it will
introduce better IAC provisions in a future release.

3.6 Auditing and Accounting
Currently no auditing or accounting features are available in Java. It’s possible to
write a SecurityManager that logs all (failed) access checks but no one has
implemented one yet.
Moreover Java has no notion of object ownership. A class is coupled to a security
policy by its ClassLoader, which corresponds to a ‘source’. System class
instances have no ClassLoader and therefore cannot be linked to any source. In
the case of AWT components, the object often even isn’t referenced by its
creator. Instead it is referenced by an AWT container class. Since this container
or one of its (grand)parents ultimately is an applet, the component indirectly is
1 In HotJava getApplets() is restricted to return only those applets that originate from the
same host. This is a rather arbitrary decision: multiple users, that may not trust eachother
may share the same host, a common practice on UNIX system. Netscape 3.0 does not
inhibit this behaviour and returns all applets in the same HTML frame.

11

Java Security

referenced by its ‘owner’. However one cannot determine this without knowledge
of the semantics of the involved classes.

3.7 Attack targets
Attacks can be put in the following categories:
· denial of service: slowing down or blocking the Java VM or other applets.
· covert channels: using applets to circumvent firewall restrictions
· compromise of other applets.
· compromise of the host system.

Javasoft has focused almost exclusively on protection against direct host system
compromise and covert channels. Denial of service attacks are considered low
priority problems [DEAN96]. Applet compromise wasn’t given high priority
either because up until JDK 1.1 applets were assumed not to do any sensitive
things. This assumption is not valid however, for example the HotJava browser
uses applets to perform security related tasks.
For the above reasons Java’s security and particularly the sandbox model has
been compared to the Maginot defense line that France had built at its border with
Germany before WO II [SUN96-6]: the line was a very strong defense against
direct attacks, but the French did not protect itself against an attack through
Belgium, since that was a trusted ally. The mistake they made was to confuse
trusted with secure: Belgium was trustworthy but could not protect itself against
an invasion by the Germans, which could then easily attack France. The same is
happening in Java: trusted applets cannot protect themselves against malicious
ones. In Java 1.1 or already in HotJava with JDK1.02 , where trusted applets may
get they same priviliges as system code, this could lead to full compromise of the
host environment.

3.8 Conclusions
Java uses several techniques to provide protection against malicious code. These
techniques may sufficiently protect the local environment of the client, but this is
not proven yet. Protection from applets against eachother currently is clearly
insufficient: some Java runtime environments may provide enough security to
safely run several applets simultaneously. However JavaSoft has not specified the
requirements to such environments, so applets can not assume to be run in such a
safe environment. Particularly the HotJava browser has been shown to provide an
insecure environment.

12

Java Security

4 Cryptography

4.1 Introduction
Secure communications over insecure channels would be impossible without the
use of cryptography. In particular cryptography can be used to ensure the
following properties:
· privacy: the message cannot be read by a third party.
· authentication: the source of the message is known.
· integrity: the message is not altered by a third party.
· non repudiation: the source cannot deny that it sent the message.

In this chapter introduces cryptographic methods to achieve the above properties
and describes the application of these methods in (secured) WWW browsers and
in Java.

4.2 Crypto building blocks
The basic building block in cryptography is a cipher: an algorithm that based on a
key maps a message onto another message. Traditional ciphers are symmetric:
both encryption and decryption are performed with same key. DES and RC4 are
common symmetric key ciphers. Secure communication is possible only when
the two parties share a secret that can be used as a key. In many situations this not
feasible. The parties may not even know eachother for example. In those cases
asymmetric ciphers provide a solution. Instead of one key, they use a pair of
keys: one for encryption, the other for decryption. Now one can give the
encryption key, the public key, to anyone as long as the corresponding decryption
key is kept private. It is computationally infeasable to deduce the private key
from knowledge of the public key. RSA, named after its inventors Rivest, Shamir
and Adleman is an example of a public key algorithm.
Both keys are each others inverse: if a message is encrypted with the private key
it can be decrypted with the public one and vice versa. This allows public key
systems to be used for something else too: digital signatures. You simply uses our
own private key to encrypt the message. Others can verify the message originates
from you by decrypting it with your public key. Digital signatures have been
standardized in the Digital Signature Standard (DSS).
One may ask why symmetric ciphers still are used, if asymmetric ciphers have so
many benefits. The answer simply is: speed. Public key crypto is very
computationally intensive. Therefore usually a session key is send via public key
crypto and all further communications use a conventional cipher with this session
key.

Ciphers alone do not protect against modification of the messages by a third
party. To ensure message integrity secure hashes, also called message digests are
used. These are functions that (variable length) blocks of data to a single, fixed
length number. They have the unique property that changing any single bit in the
data block completely changes the resulting hash code. It is computationally
infeasable, given a hash code to calculate a data block that generates it. Therefore
any alterations to a message can be detected easily if a message digest is attached
to it. Ensuring the integrity of the message hereby is reduced to ensuring the
integrity of the digest.
Messages digests also speed up digital signing: it suffices to sign the digest rather
than the whole message. Commonly used hash functions are Message Digest 5
(MD5) and the Secure Hash Algorithm (SHA).

13

Java Security

Figure 4a and 4b show how encryption, digital signatures and hashes are used to
send a private and authenticated message, in this case an EDI file.

Figure 4a: private and authenticated delivery of a message

Figure 4b: receipt of the message

The fourth property, non repudiation, builds on digital signing. If a message is
digitally signed one can be assured that the owner of the signing key has sent it.
Someone can confirm to have sent the message by creating a new message that
can be decrypted with the same public key. However, when someone denies to
have sent the message this does not work. The public key has to be tied to the

14

Java Security

identity of its owner. A method of doing this will be discussed in the following
paragraph about certificates.

In sum: symmetric ciphers provide privacy, asymmetric handle session key
exchange and allow digital signing and message digests guarantee message
integrity.

4.3 Certificate Based Authentication
Both The Secure Sockets Layer described in the next section and Java (as of
version 1.1) can perform authentication based on public key cryptography and
certificates. A certificate is a document attached to a public key that contains
information about it. Generally it states who the owner (a person, institute,
Internet site ,etc.) is, where the owner is located, from when to when the
certificate is valid, etc. The format of certificates is standardized in ITU’s X509
specification [X509 XXX]. A certificate is digitally signed by a so called
Certificate Authority (CA). A Certificate Authority is a principal that guarantees
the validity of the certificate. A CA introduces the identity described in the
certificate, so to speak. A Certificate Authority can be introduced itself this way
too, by having a certificate signed by another, higher level authority. This creates
a chain of trust, on top of which resides a ‘root’, or ‘top level’ certificate
authority. Now the problem still remains that the public key of this root certificate
authority has to be authenticated. Preferably one would visit the authority in
person and collect his or her key. Of course this is not feasible in all cases,
therefore often the key is distributed over several independent insecure channels:
if requesting someone’s key by email, telephone and snail mail, yield the same
key one may be convinced that key is genuine even though it is well known that
any of them can be manipulated. Ultimately one has to trust someone or
something. (Even in the case of personally visiting someone, you at least have to
trust yourself to properly identify that person, and not her twin sister for
example.)
In the future most likely governmental institutions will act as root certificate
authorities. They will certify digital extensions to current identification
documents such as pass ports and visa. At the moment a few commercial
companies offer certification services. Their number is expected to grow rapidly
as usage of digital identities becomes common practice.
In most countries digital certificates have no legal status yet. But some states in
the USA have passed legislation regulating certificates and certificate authorities
[UTAH95]. In anticipation of legislation most certificate authorities have written
their own legal agreements and statements. The most notable of these is the
Common Practice Statement of the Verisign company [VERI96]. This company,
founded by the RSA inventors, was the first to sell certificates.

In sum: certificates are digitally signed statements that tie a public key to the
identity of its owner. They do not prove the ownership, but are based on trust.

4.4 The Secure Sockets Layer
The Secure Sockets Layer protocol is currently the de facto standard for secure
communications on webbrowsers. It is an application independent, transparent
protocol that provides a secure connection between two applications. In
webbrowser it is available as the HTTPS protocol, which actually simply is
HTTP channeled through a SSL channel. HTTPS has been assigned well known
port number 443 in order not to confuse the normal HTTP protocol on port 80.

15

Java Security

SSL provides connections that are private and reliable [FREIER96]. Both ends of
the connection may remain anonymous but can be authenticated by the protocol
as well. SSL does not offer non repudiation as this requires application level
message logging and bookkeeping.
To provide these services SSL relies on several cryptographic protocols. SSL
itself does not prescribe any of these protocols, it is a framework in which they
operate. Commonly supported are DES, RC4, RSA, MD2 and MD5.
The SSL protocol consists of two layers. The lower one, the SSL Record Layer is
build upon a reliable communication protocol such as TCP. Its goal is to provide
a private and reliable data stream between the two parties. On top of this run
higher level protocols, that control the parameters in which the Record Layer has
to operate. On top of these applications transparently can run their own protocols.

4.5 The SSL Handshake Protocol
One of the protocols in the upper layer is the SSL Handshake protocol. It is used
to initialize a connection between two parties. Besides negotiating which ciphers
should be used for the connection it also allows the parties authenticate
eachother. A typical handshake performs the following steps:
The client sends a client hello to which the server has to reply with a server hello.
These hello messages establish the protocol version, the session ID, the ciphers to
use and the compression method. Additionally two random values are exchanged
that will be used to make replay attacks impossible.
Next the server will send its certificate, if authentication is requested. If the server
does not have a certificate or it is for signing only, a server key exchange
message may be sent. In that case the server generates a temporary key pair and
sends the public part of it. The connection will be anonymous then. An
authenticated server may optionally request a certificate from the client.
Subsequently the server will send a server hello done to indicate the completion
of the hello-message phase of the handshake. It will then wait for a response from
the client.
If the server has requested a certificate, the client now has to send either its
certificate or a no certificate alert. The client further has to send a client key
exchange message, analogous to the server key exchange message. The content of
that message depends on the public key algorithm selected during the hello phase.
Finally the client sends a change cipher spec and switches to the new cipher, keys
and secrets. With the new settings it sends a finished message. Now the server
changes to the new settings to and notifies the client by replying with another
finished message. This completes the handshake. Now the client and server may
start to exchange application layer data.
An abbreviated version of the handshake is available to resume a previous session
or to duplicate an existing one. The appropriate session is indicated using the
session ID established during the full handshake. All information exchanged
during that handshake is simply reused.

16

Java Security

* indicates optional or situation dependent messages that are not always sent.

Figure 5: An SSL handshake

4.6 Crypto in Java
Java version 1.0 does not provide support for cryptography. As a consequence
several packages have been developed by third parties. The modularity of Java
allows easy integration of these packages with existing applications. For example
all flows of data, whether to network connections, to files, etc., are handled via
subclasses of InputStream and OutputStream. To enable encryption one simply
has to connect these streams to the appropriate encryption classes.
As of version 1.1 the JDK includes APIs for cryptography. Available are
implementations of DSS, MD5 and SHA to allow authentication, integrity
verification and non repudiation. Encryption algorithms will be added in future
versions as part of an SSL implementation. (Actually JavaSoft already has written
Java based encryption classes. They are used in the domestic version of their SSL
enabled HTTP server, Jeeves. Since US export regulations do not permit the
international distribution of these classes yet, they are omitted from the JDK).
For increased flexibility, JavaSoft introduced the concept of ‘security package
providers’ (SPPs). It allows users to add or replace crypto algorithms by versions
written by other vendors, in a way that is completely transparent to the
applications using them. The default provider is the sun.security.provider
package which contains an implementation of the earlier mentioned algorithms

17

Client Server

Client Hello:
Protocol version
Random Value 1
Cipher Suites
Compression Methods

Server Hello:
Protocol Version
Session ID
Random Value 2
Cipher Suite
Compression Method

Application Data Application Data

Certificate *
Temporary Server Key*
Certificate Request *

Certificate *
Temporary Client
Key*
Certificate Verify *

Change Cipher Spec
Finished

Change Cipher Spec
Finished

Java Security

written completely in Java. Other implementations could take advantage of
optimized native code or special purpose hardware.
The 1.1 version JDK also has provisions for certificates. It is possible to create
standard X509 certificates with help of the ‘javakey’ tool. One not only can use
these to identify users or sites, but to sign applets as well. The HotJava browser
can be configured to give trusted signed applets more privileges.

4.7 Key Management
Proper management of encryption keys is at least as important as the strength of
the encryption algorithm. This paragraph looks at two aspects: key generation and
key storage.
When a secure session is started a session key has to be generated. For best
security this key should be a completely random number. There are several
methods to obtain secure random numbers, ranging from hardware based
solutions such as measuring radioactive decay to timing random key strokes. The
latter was popularized by the Pretty Good Privacy (PGP) mail program and is
considered one of the better options for PC software. Earlier versions of
Netscape’s SSL were hacked because of its weak key generation: it used a
random number generator seeded with the current time, a value that contains not
enough entropy.
Java 1.1 includes a random number generator that is claimed to be
cryptographically secure by JavaSoft. However the JDK 1.1 documentation does
not specify how it is implemented nor what algorithms or methods third party
Java implementations should use. Therefore it is not clear yet whether this claim
holds water.

We’ll now have a look at key (and certificate) storage. Netscape stores
certificates and keys encrypted on the local harddisk. When they are needed, the
user has to type a password to unlock them. The JDK and HotJava currently lack
this protection however. The identity database (containing both all present private
and public keys) is simply stored as a serialized version of its runtime
incarnation. Jean-Paul Billon has demonstrated that due to security bugs the
complete database (including all private keys) can be stolen by an untrusted
applet and send back to its server [BILL97]. It is not clear yet how the database
will be protected in the final release of JDK 1.1.
A disadvantage of storing the certificate database on a harddisk, be it a local one
or on the server of a diskless NetComputer is that a user is restricted to using a
computer where it can be accessed. Therefore at NTEX Harbinger another
storage medium is investigated: the smartcard. Smartcards are currently
introduced in Holland by all banks to implement electronic cash. Within the next
months devices to couple smartcards to PCs will become available for the price of
a cheap mouse. A lot of Network Computers too will be equipped with smartcard
sockets. The advantages of smartcards are clear: they provide a better mobility for
the user and are more secure than storing (encrypted) keys on insecure harddisks.
Moreover it helps to solve the problem of distributing top level CA certificates: a
smartcard issued by the bank can be trusted to contain a valid root CA certificate.
The user simply has to insert his or her smartcard in order to be able to use them.
In contrast Netscape currently doesn’t have any scheme for validation of these
certificates: some root level certificates are simply included in the browser, the
user has to hope it does not download a modified browser. There are no
provisions yet to add or renew CA certificates other than insecurely from the
Internet. Even if provisions are added to add certificates supplied by floppy disk
or another medium, the user friendliness wouldn’t be near that of smartcards.

18

Java Security

4.8 Combining SSL and Java
SSL can be a good solution for securing WWW interaction. Since it is
transparent, it can be used to secure any HTTP based communication, including
downloading of applets. However use of SSL in Java applets itself is hampered
by the lack support for SSL in the Java APIs: it cannot simply use the browsers
SSL implementation to do any other SSL based communication than sending
HTTP requests. At least one commercial SSL implementation written completely
in Java is available however [PHAOS96]. But there are other reasons as well why
SSL may not be the best solution:
· Since SSL is a network layer protocol and not an application level one, it

cannot base its encryption policy on the content of the messages: if some
parts of the communication need to be private but others only need to be
authenticated, everything still has to be encrypted.

· SSL’s export is restricted by the US government: only ‘crippled’ versions
that use short 40 bit encryption keys may be exported. It has been
demonstrated that keys of this length can be cracked with reasonable
effort: a 40 bit RC5 key that the RSA company challenged to crack was
found by brute force in 3.5 hours by a graduate student using 250
computers.

· SSL’s provisions for extensibility and interoparability add complexity to the
protocol. Also it is very conservative from a security standpoint for best
security. For example often two hash functions are used in tandem to
keep the overall protocol secure in case one of them may contain a flaw.
These provisions are necessary since the clients in which SSL is
incorporated should be able to run securely without having to update
them often. In a Java solution however both the SSL client and server are
stored on the server. Therefore no provisions for version control are
needed. Security fixes can be applied immediately without having to
update each client at the system of the end user.

· SSL is optimized for bulk transfer of relatively large message blocks. Normal
WWW communication normally consists of large data blocks (such as
HTML pages, pictures, etc.) that are returned as reply of a small request
message. High throughput of data is more important than low latency. For
Java applets the converse may be true: typical thin client style applets may
send lots of small user event messages to the server. A low response time is
more important than high throughput: waiting some seconds before a
requested web page is displayed may be acceptable to a user, but waiting 2
seconds every time a button is clicked on, is not acceptable. Unfortunately
SSL imposes a relatively high overhead on the transfer of a message block.
(It compresses, pads the block and calculates several hashes before
encrypting.) Depending on the application, it may be possible to cut down a
lot of this overhead by using a customized protocol. A point of concern with
such an ‘all Java’ approach is encryption speed. Tests done with a non
optimized Java implementation of the RC4 algorithm showed an encryption
rate of approximately 75 KB/s on a Pentium 133 under the standard JDK 1.02
Java runtime. Just In Time compilers can improve this number dramtically. In
the light of current transmission speeds on the Internet the achived rates can
be qualified as sufficient. Future Java environments probably will include
native encryption libraries, removing the speed concern completely.

This does not mean SSL isn’t useful for Java encryption: it can be used for
authentication and for transportation of session keys from the server to the client

19

Java Security

(or the other way around). This simplifies the Java part to an implementation of a
fast and simple symmetric cipher.

4.9 Conclusions

Strong cryptography is vital for the security of Client/Server systems such as
Java. Besides the obvious utility of encryption for privacy, the possibility to sign
code will enhance the security of Java based applications. The current Java
Development Kit still lacks a lot of functionality however, and the parts that are
implemented (such as applet signing) are either shown to be note secure yet or at
least not tested thorougly enough.
The Secure Sockets Layer is a good effort to increase the security of WWW
communications. Its integration in most webbrowser make it an attractive basis
for building cryptographically secured Java applications. Its immediate appliance
is hindered however by the lack of a proper interface between SSL and Java.
Furthermore several of its properties are be not desirable for many Java
applications. Therefore in many cases a hybrid solution is preffered, in which
SSL is combined with JDK supplied parts and cryptography packages provided
by third parties. Hardware based support for certificates in the form of smartcards
may be an interesting option, as it offers several advantages over current software
only schemes.

20

Java Security

5 Visual Web

This chapter looks at an example of a Java based system developed at NTEX
Harbinger and how it may be secured.

NTEX Harbinger focuses on research to leverage the use of the Internet for
commerce. This has resulted in the development of the WebHost Application
Manager (WHAM!) [ODEK96]. The WHAM introduces transaction oriented,
session based operation to the WWW. Users no longer just download HTML
pages from a HTTP server. Instead they log on to the server that keeps track of
the session. Applications at server can interact with the users, based on their
personal information. A good example of a WHAM improved website is that of
the ANWB, a Dutch automobile club with approximately three million members.
ANWB members can view information related to their situation, order insurances
customized to their needs, etc.

Figure 6: Overview of the WHAM and Visual Web

Although the WHAM enabled the availability of advanced applications to the
WWW, these applications still had to use the standard HTML controls to interact
with the user. It was felt that this was not sufficient for many applications. To
remove this restriction a new technology was incorporated in the WHAM, named
‘Visual Web’ [HUET96]. Visual Web provides the user a generic, dynamic
terminal that connects with the application on the server. This terminal, the Java
GUI Terminal (JGT) is implemented as a Java applet that is automatically
downloaded at first use. The user doesn’t have to install any software at all. The
application dynamically builds the user interface by putting all needed controls in
the terminal. With Visual Web it has become possible to reuse existing
applications in an internetworked environment. Instead of rewriting the
application in Java, only the user interface of the application has to be coupled to
the Visual Web server side system, a significantly simpler effort.
The Visual Web approach has a lot in common with X-Windows: at the user
system runs a generic thin client environment in which the application running on

21

Java Security

the server dynamically can build a user interface. However it is different in some
respects:
· The JGT can be kept much simpler, since it does not have to include every

possible control in advance: new controls can be added transparently to
the user when needed.

· The JGT is more flexible: if necessary, specialized controls may be added
that go beyond user interfacing alone.

· The JGT does not have to be installed by the user, since it is automatically
downloaded by the Java runtime environment that is part of the browser.

The fact that the user does not have to install any software and uniformly
can use applications from any computer, highly enhances the user
friendliness of Visual Web based programs. The aim is to enable
inexperienced computer users to utilize advanced network based
applications.
The first application to be developed for Visual Web is Harbinger Exchange: a
mail exchange that couples EDIFACT with the Internet. Its mail user agent is
based on the JGT.
Applications like the Harbinger Exchange have serious security concerns. It
should not be possible to read or modify the messages exchanged by it. Therefore
all communication between the JGT and its server should be encrypted. When
this investigation started, in July 1996, Java hadn’t any provisions for
cryptography at all. Though some browsers provided SSL, the proposed Network
Computer did not. (It has become clear now that the NC will incorporate SSL
[ORCL96]). The limitation that Java applets could not store information at the
client complicated the situation. The following scheme was proposed to initialize
a secure session:
1. The applet downloads the public key of the server.
2. The applet asks the user for user name and password for the usual logon.
3. As the name and password are typed by the user, the applet times the key

strokes to generate a random number to be used as a session key.
4. The session key is transferred to the server by encryption with its public key.
5. The logon information and all further communication is encrypted with the

session key.

This scheme has two possible weaknesses:
1. It is not resistant to ‘man in the middle’ attacks: a third party with access to

the communication link between the client and the server could substitute
the servers public key with its own, when it is downloaded by the applet.
This could be avoided if the servers public key could be validated with
help of a certificate authority. Network Computers have to be able to
verify their runtime code as part of their bootstrap procedure. Therefore it
was felt that validation of the server key would not impose significant
problems.

2. The keystroke timing may not provide enough randomness. The Java API
includes a method that returns the current time in milliseconds. Tests showed
that it actually may be less accurate. Further regularity may occur due to the
used time slicing algorithms for multi threading. These algorithms are not
specified by the JDK and therefore can differ from platform to platform. As
the real-time clock never was intended for secure random number generation
the amount of bits taken from each measurement should be rather
conservative. With an estimated number of 12 keystrokes for a login one may
not expect more than 40 random bits, the absolute minimum for casual
encryption.

22

Java Security

With the introduction of cryptographic key management in JDK 1.1 and SSL in
the NC reference the above scheme has become obsolete.
Now a hybrid solution has become possible: SSL can handle authentication of the
user and the server, the login phase does not have to be performed in Java
anymore. Since communication between the JGT client and the server are not
HTTP based, SSL cannot be used for it. Moreover, as discussed earlier, SSL is
not suited particularly well for encrypting communication of thin clients like the
JGT. Instead this connection will be encrypted using Java, which has been proven
to provide a sufficient encryption rate. When Java’s cryptography capabilities
have matured enough, SSL may be abandoned completely, since application level
cryptography can be customized better.

23

Java Security

6 Conclusions

Java is a promising technology for Client/Server applications. Its portability
already has made it a de facto standard for Internet oriented programming.
Contrary to many other contemporary systems, security has been an important
aspect of its design. The Java language helps developers to avoid common
programming mistakes that could have security repercussions. On the other hand,
several parts of Java could have been designed better with respect to security.
Java’s approach of executing remote code is still a relatively new concept and its
implementation has to undergo more maturation. The current beta release of the
upcoming Java version (JDK 1.1) still contains a lot of security bugs. It is
expected that these are fixed before JavaSoft releases the final version of JDK
1.1, since the success of Java depends on trust in its security. Current WWW
browsers cannot be trusted yet to provide an environment in which trusted and
untrusted applets safely can be run simultaneously.
Cryptography will play an important role in Java security. Encryption is a must
for any Client/Server system in an insecure environment such as the Internet, not
just for Java. Certificate based authentication and digital signatures improve
Java’s security perspective since it allows to selectively execute only code from
known and trusted suppliers. Current software based provisions for handling
certificates do not provide optimal security and are not user friendly. An
alternative that is both more secure and more user friendly is storage of keys and
certificates on smartcards. Since smartcards currently are introduced to the
general public on a massive scale by the Dutch banks, availability of smart cards
and support technology will increase dramtically. Since there is not much
experience yet with using smartcards for this purpose, further research, including
practical tests on an implementation is recommended.

24

Java Security

7 Acknowledgments
This paper is the result of a preliminary investigation performed at the NTEX
Harbinger Company in Rotterdam. It is part of the curriculum for my study in
computer science at the technical university of Delft.
I would like to thank Mr. Heijnsdijk and Arthur Nederlof for their support during
the investigation and writing of this paper. I also would like to thank Mr. Schoorl
and Cees van Huet for proof reading the paper and their comments and
suggestions. Im grateful to the people at JavaSoft that provided the full source to
the Java Development Kit and answered my questions about Java security.

25

Appendix A: Perils of the security manager
The JDK 1.02 relies heavily on the contents of the stack to implement its security
policies. Particularly it often counts how many calls deep a stack frame can be
found that is associated with a class loader. The resulting number is called the
ClassLoader depth.
An example of broken ClassLoader depth usage can be found in the protection of
the java.lang.Thread.stop() method. The security policy with respect to
this method is that applets only may invoke stop() on threads of (other) applets.
Threads of applets are identified by the fact that they all are contained in an
AppletThreadGroup.
Now let’s look at the implementation:

public final stop() {
 stop(new ThreadDeath());
}

Thread.stop() simply calls Thread.stop(Throwable o) which is
implemented as:

public final synchronized void stop(Throwable o) {
 checkAccess();
 resume(); // Wake up thread if it was suspended; no-op
otherwise
 stop0(o);
}

This seems secure, since checkAccess() is called before any attempt to stop
the thread is made. Thread.checkAccess() simply calls the security manager:

public void checkAccess() {
 SecurityManager security = System.getSecurityManager();
 if (security != null) {
 security.checkAccess(this);
 }
}

Finally the AppletSecurity security manager performs the actual check:
checkAccess(Thread t) {
 if ((classLoaderDepth() == 3) && !(t.getParent()
instanceof
 AppletThreadGroup))
 throw(new SecurityException());
}

For an exception to be thrown, the ClassLoader should be 3 stack frames deep.
This means that if an applet calls Thread.stop(Throwable o) on a system
thread the attempt is blocked correctly. But Thread.stop() still is permitted since
the ClassLoader lies 4 frames deep in that case.
The bug above demonstrates the weaknesses of the current security check
method:
· A method (stop()) cannot rely on the access checking of another method

(stop(Throwable)).
· The security manager cannot be implemented without detailed knowledge of

the class it has to protect. Conversely modifying that class without detailed
knowledge of the security manager may void its protection.

In effect independent development of SecurityManagers and system classes is not
possible anymore.

Appendix B: Report of a security bug in HotJava 1.0
preBeta 2
The following bug report was send to the JavaSoft HotJava team. It describes
some security holes that allow any applet to break the security sandbox. The
HotJava team has not responded to the report yet.

Description:
Any applet can alter the security policies set in Edit->Preferences->Applet
Security. Untrusted applet sources can be reconfigured to be trusted sources.

Impact:
Any applet can gain access to the local environment.

Affects:
HotJava 1.0 preBeta 2. Parts of the attack probably also can be used against
earlier (JDK1.0x based) HotJava versions.

Discussion:
The applet HackHotJava included below demonstrates the vulnerability. It will
set the security policy of the first identity in the list of software publishers to
either High (strict security) or Low (minimal security). More sophisticated
applets that go beyond proof of concept could add new identities to the lists as
well. The functionality of the applet is simple: First it establishes access to the
BasicSecurityPrefs applet. Then it simulates user interaction with this applet to
set the desired policy settings. The HackHotJava applet uses the following
weaknesses and bugs in the HotJava browser to accomplish this:
· Component.getParent() allows it to get access to the document panel

containing both applets.
· Container.getComponents() will let it find the BasicSecurityPrefs

applet that the AppletContext.getApplets() method kept hidden.
· Object.getClass() allows it to see the actual class the

BasicSecurityPrefs applet rather than the java.applet.Applet base class.
· Class.getMethod() allows it to see members that are not in its name

space.
· Method.invoke() allows it to access methods that are both outside its

name space and in a restricted package.
· The BasicSecurityPrefs applet contains public methods that clearly are not for

public use.
· The HotJava security manager has an empty checkCaller() method. This

method should throw a SecurityException when the current context is
not to be trusted. CheckCaller() is called by the SecurityGroups class to
disallow tampering with security groups.

The attack used by the HackHotJava applet is but one of many attacks that could
be used against the current HotJava implementation. A lot of HotJava objects
contain public members that could be security sensitive. The same applies to
several classes in the JDK 1.1 API.

Workarounds:
None.

Appendix C: An HTML based attack on HotJava
The current versions of the HotJava browser (1.0 preBeta 1 and 2) have been
shown to use an insecure mechanism to handle the configuration of the browser.
This can be used to build HTML pages that trick the user into configuring the
browser to an insecure setting.
In HotJava the interface to its preferences is implemented as a collection of
HTML pages containing several applets. Typically there are one or more
PreferencesApplets that will modify the actual configuration of the browser.
Other applets implement the actual controls, such as buttons or checkmark boxes.
If such a button (for example an “apply” button) is pressed the applet sends a
message (“apply”) to all the PreferencesApplets on the page. The weakness is that
these applets trust any message send to them. Furthermore all control applets can
be configured to display any text and send any text. Therefore a malicious HTML
author can design a page that looks harmless, but in fact will modify the
preferences when used.
The following demonstration applet will set the applet security setting of the first
entry in the ‘publishers’ list to minimal security if all buttons are pressed from in
left to right order. It essentially is a Trojan horse in HTML.

<html>
<head><meta name=type content="hotjava/utility"></head>
<center>
<applet code=sun.hotjava.applets.PrefsButtonApplet width=70
height=30>
<param name="label" value="First">
<param name="message" value="publishers">
</applet>
applet code=sun.hotjava.applets.PrefsButtonApplet width=70
height=30>
<param name="label" value="Next">
<param name="message" value="low">
</applet>
<applet code=sun.hotjava.applets.PrefsButtonApplet width=70
height=30>
<param name="label" value="Last">
<param name="message" value="apply">
</applet>
</center>
<applet code=sun.hotjava.security.BasicSecurityPrefs
width=350 height=0>
</applet>
<applet code=sun.hotjava.security.IdentityViewer width=200
height=0>
</applet>
<applet code=sun.hotjava.security.BasicPermissions width=540
height=0>
</applet>
</body>
</html>

References

[BILL97] Security Breaches in the JDK 1.1b2 Security API,
J.P. Billon 1997
http://www.dyade.fr/actions/VIP/SecHole.html

[CRYP97] The Cryptix Crypto API V2, Phaos 1996
http://www.systemics.com/software/cryptix-java/alpha.html

[DEAN96] Java Security: From HotJava to Netscape and Beyond,
Drew Dean, Ed Felten, Dan Wallach, Princeton University 1996
http://www.cs.princeton.edu/sip/pub/secure96.html

[DOD85] The Orange Book, US Department of Defense 1985
http://www.disa.mil/MLS/info/orange

[FREI96] The SSL Protocol Version 3.0 Internet Draft, Freier 1996
ftp://ietf.cnri.reston.va.us/internet-drafts/draft-freier-ssl-version3-

01.txt

[HUET96] Second Generation Internet, C. van Huët, NTEX Harbinger 1996

[JAVA97] JDK 1.1 beta 3 API documentation. JavaSoft 1997
http://www.javasoft.com/JDK1.1/docs

[ODEK96] Advanced applications for the WWW, R.G.J. Odekerken,
NTEX Harbinger 1996

[ORCL96] The Network Computer Reference Profile, Oracle 1996
http://192.86.154.91/nc_ref_profile.html

[PHAOS96] The SSLava SSL implementation, Phaos Technology 1996
http://www.phaos.com

[SUN95-1] The Java Language Specification, Sun 1995
http://www.javasoft.com/doc/language_specification

[SUN95-2] The Java Virtual Machine Specification, Sun 1996
http://java.sun.com/java.sun.com/doc/vmspec/html/vmspec.html

[SUN96-3] The Java Card API FAQ, Sun 1996

http://www.javasoft.com/products/commerce/doc.javacard_faq.html

[SUN96-4] The Java Language Environment,
J. Gosling & H. McGilton 1996
http://java.sun.com/doc/language_environment

 [SUN96-5] JavaOS: A standalone Java Environment, Sun 1996
http://www.javasoft.com/nav/read/JavaOS.cover.ps

[SUN96-6] The JavaSoft Forum 1.1, Sun 1996
http://www.javasoft.com/forum/securityForum.html

[UTAH95] The Utah Digital Signature Law,
Utah Department of Commerce 1995
http://www.gvnfo.state.ut.us/ccjj/digsig

Abbreviations

ANWB Algemene Nederlandse Wielrijders Bond
API Application Programming Interface
AWT Abstract Windows Toolkit
CA Certificate Authority
DES Data Encryption Standard
DSS Digital Signature Standard
EDI Electronic Data Interchange
EDIFACT Electronic Data Interchange For Administration, Commerce

and Transport
GEM GUI Event Manager
GUI Graphical User interface
HTML Hyper Text Markup Langue
HTTP Hyper Text Transfer Protocol
HTTPS Hyper Text Transfer Protocol Secure
IAC Inter Applet Communication
JDK Java Development Kit
JGT Java GUI Terminal
JVM Java Virtual Machine
JRE Java Runtime Environment
MD5 Message Digest number 5
NC Network Computer
RC4 Ron’s (or Rivest’s) Cipher (or Code) number 4
RFC Request for Comments
RMI Remote Method Invocation
RSA Rivest, Aldeman, Shamir
SHA Secure Hash Algorithm
SPP Security Package Provider
SSL Secure Sockets Layer
TCP Transmission Control Protocol
URL Uniform resource Locator
WHAM Web Host Application Manager
WWW World Wide Web

	1 Introduction
	1 Portability
	2 Security

	2 Java
	2.1 The Java Runtime Environment
	2.2 The Java Language
	1 Object Referencing
	2 Inheritance
	3 Dynamic Linking
	4 Packages
	5 Access protection
	6 Multi-threading
	7 Native environment interface

	3 Java Security
	3.1 The Sandbox model
	3.2 Restricting class visibility
	3.3 Object visibility and access modifiers
	3.4 Explicit authorization checks
	3.5 Inter Applet Communication
	3.6 Auditing and Accounting
	3.7 Attack targets
	3.8 Conclusions

	4 Cryptography
	4.1 Introduction
	4.2 Crypto building blocks
	4.3 Certificate Based Authentication
	4.4 The Secure Sockets Layer
	4.5 The SSL Handshake Protocol
	4.6 Crypto in Java
	4.7 Key Management
	4.8 Combining SSL and Java
	4.9 Conclusions

	5 Visual Web
	6 Conclusions
	7 Acknowledgments

