
9 A Vulnerability in Reduced Dakarand from PoC‖GTFO 01:02
by joernchen of Phenoelit

I’m not a math guy, so this is a poor man’s RNG analysis. Try it yourself at home!

9.1 Introduction
In PoC‖GTFO 01:02, Dan Kaminsky proposed the following code for use as a Random Number Gen-
erator, arguing that the phase difference between a fast clock and a slow clock is sufficient to produce
random bits in a high level language. This is a reduced version of his Dakarand program, with the intent
of the reduction being that if there is any vulnerability within the code, that vuln ought to be exploitable.

// These f unc t i on s form an RNG.
f unc t i on m i l l i s () {return Date . now () ; }
func t i on f l i p_co in ()

{n=0; then = m i l l i s ()+1; while (m i l l i s ()<=then) {n=!n ; } return n ; }
func t i on get_fa i r_bi t ()

{while (1) {a=f l i p_co i n () ; i f (a!= f l i p_co i n ()) {return (a) ; } }}
func t i on get_random_byte ()

{n=0; b i t s =8; while (b i t s −−){n<<=1; n|= get_fa i r_bi t () ; } return n ; }

// Use i t l i k e t h i s .
report_conso le = func t i on () {while (1){ conso l e . l og (get_random_byte ()) ; } }
report_conso le () ;

Actually the above code boils down to the function flip_coin, which takes a boolean value n=0 and
continuously flips it until the next millisecond. The outcome of this repeated flipping shall be a random
bit. We neglect the get_fair_bit function mostly in this analysis, as it just slows down the process and
adds almost no additional entropy. For gathering random bits we are just left with the clock ticking for
us.

9.2 A Naive Analysis
In order to analyze the output of the RNG we need some of its output,
so I simply put up a small HTML piece which would pull out 100.000
random bytes out of the above RNG and log it to the HTML document.
Then a severe 90-minute DoS on my Firefox 24 happened, after which I
managed to copy and paste one hundred thousand uint8_t results into
a text file.

After messing with several tools like ministat, sort and uniq I could
show with the following ruby script that this RNG (on my machine)
has a strong bias towards bytes with low hamming weights:

#!/ usr / b in /env ruby

f=F i l e . open (ARGV[0])

h = Hash . new
f . each_l ine do |m|

n = m. to_i
i f h [n] . ni l ?

h [n]=1
else

h [n] = h [n]+1
end

end

t = h . sort_by do | k , v | v end

25

t . each do | a |
puts "Num:\ t#{a [0] } "+

"\tCount : \ t#{a [1] } "+
"\tWeight : \ t#{a [0] . to_s (2) . s p l i t ("") . r e j e c t { | j | j=="0" } . count}"

end

The shortened output of this script on the 100k 8bit numbers is as follows. Note that the heavy
hamming weights, like 11111111 are least common and the light hamming weights, like 00000000 are
most common.

Value Count Weight
255 22 8
254 23 7
251 28 7
253 29 7
127 32 7
239 34 7
191 34 7
223 36 7
247 37 7
.
132 1173 2
64 1821 1
32 1881 1
16 1922 1
1 1934 1
8 2000 1
4 2042 1
2 2133 1

128 2145 1
0 3918 0

The table lists the Number which is the output of the RNG along with this number’s hamming weight
as well as the count of this number in total within the 100.000 random bytes. For a random distribution
of all possible bytes we could expect roughly a count of 390 for each byte. But as we see, the number 0
with the hamming weight 0 peaks out with a count of 3918, whereas 255 with the hamming weight of 8
is generated 22 times by the RNG. That’s not fair!

9.3 My fair bit is not fair!
Real statistical analysis of an RNG is hard, and I will not attempt it here.
Still, looking at a few simple distributions might give us a hint (alas, only a
hint) of what might behind the unfairness.

First, a short recap on how this RNG works:
We’ve got a 1 millisecond timeslot from t0 to t1, where at t1 the flip_coin

method will stop. The first call to get_random_byte can happen anywhere
between t0 and t1:

Let’s say it is here:

Now the algorithm happily flips the bit until t1 and hands over the result
of this flipping as a random bit (note that we’re omitting get_fair_bit here).

26

Although we cannot predict the output of a single run of flip_coin, things get a bit more predictable
when we make a lot of consecutive calls to flip_coin. Let’s say we need the time d to process and store
the result of flip_coin. So the next time we flip_coin we are at t1 + d1:

Now the RNG flips the coin until t2 in order to give us a random bit. As we are calling the RNG
more than twice in a row, the next flip_coin is at t2+d2, and so on.

The randomness and fairness of the RNG’s random bit depends on how fairly and randomly we get
odd and even values of d, since that the same amount of flips yields the same bit as we have a static start
value of 0/false.11 So it makes sense to look at the distribution of d. To visualize this and to compare
it with another browser I came up with this slight modification of the RNG that counts the flips and
records them right inside the HTML page:

f unc t i on f l i p_co i n ()
{ i =0;n=0; then=m i l l i s ()+1; while (m i l l i s ()<=then) {n=!n ; i++} return [n , i] ; }

func t i on get_fa i r_bi t ()
{while (1) {a=f l i p_co i n () ; i f (a [0] != f l i p_co i n () [0]) {return (a) ; } }}

func t i on do i t (){
var i = 10000 ;
while (i −−){

var d = document . getElementById (‘ ‘ t a r g e t ’ ’) ;
var content = document . createTextNode (get_fa i r_bi t () . t oS t r i ng () + ‘ ‘\n ’ ’) ;
d . appendChild (content) ;

}
}

Loading the page in Chromium and Firefox and throwing them into gnuplot, we get:

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 10000 20000 30000 40000 50000 60000 70000

O
cc

u
rr

e
n
ce

s

Cycle Count

Firefox

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

O
cc

u
rr

e
n
ce

s

Cycle Count

Chromium

We can see that the graph for Chromium has a lot more variance in the number of coin flip within
a millisecond than that for Firefox. Although, strictly speaking, it might still be possible to get good
randomness with poor variance if the few frequent values were to alternate just so due to some underlying
scheduling magic, it seems reasonable to expect that the same magic would also increase the variance in
the flip numbers.

We can also see, with the help of simple UNIX tools, that Chromium counts do not peak out to a
certain value, unlike those of Firefox:

11The second coin flip in get_fair_bit complicates it a bit, but it cannot substantially improve the RNG’s entropy if it
lacks in the first place.

27

$ s o r t i t e r_F i r e f ox | uniq −c | s o r t −n
. . .
176 64683
181 64671
195 64673
195 64684
207 64717
217 64672
286 64718
318 64721
393 64719
405 64720

vs.

$ s o r t iter_Chromium | uniq −c | s o r t −n
. . .
15 45147
15 45282
16 44947
16 45004
16 45010
16 45076
16 45086
17 45059
17 45107
19 45092

9.4 Closing words
In conclusion we see that in Firefox under stress Dan’s RNG appears to fail at exactly the point he wanted
to use as the main source of randomness. The tiny clock differentials used to gather the entropy are
not given often enough in Firefox. There is still much room to stress this RNG implementation. Bonus
rounds would include figuring exactly what the significant difference between the Firefox and Chromium
JavaScript runtime is that causes this malfunction on Firefox. Also attacks on other JavaScript runtimes
would be interesting to see. It might even be the case that this implementation has different results
under different conditions with respect to CPU load.

A broader question occurs: The Dakarand RNG relies on what could be called a “code clock.” It may be
that in many kinds of environments stressed code clocks tend to go into phase with one another. Driven
by stress to seek comfort in each other’s rhythms, their chance encounters may grow into something more
close and intimate, grinding into periodic patterns. Which, of course, is bad for randomness. Can we
learn to tell such environments from others, where periodization with stress doesn’t happen? –PML

28

This page intentionally left blank.
Draw your own damned picture.

29

