
Broken, Abandoned, and
Forgotten Code, Part 2
Author: Zachary Cutlip
In the part 1, I showed how the Netgear R6200's upnpd binary contains
what appears to be a hidden SOAP action related to the string
"SetFirmware". I also showed how we can get into the
upnp_receive_firmware_packets() function if we play timing games
and send our request in multiple parts.

In this part I'll describe additional timing considerations needed to avoid
hanging the server. I'll also discuss sloppy parsing of the SOAP request,
and I'll make some guesses as to how that request should be formed.

If you're following along, the first proof-of-concept code is available.
Clone my git repo from:
https://github.com/zcutlip/broken_abandoned

Each installment in this series that has new or updated code will have a
separate directory in the repository. This week's code is under part_2.

Receiving Firmware Bytes
The conditions I described previously are:

• The request should be broken up into two or more parts, with the
first being no larger than 8,190 bytes.

• "Content-length:" should be somewhere in the data, presumably
in the HTTP headers (because this would make sense), but not
necessarily.

• The content length should be greater than 102,401 bytes.
• The string "SetFirmware" should be somewhere in the data.

http://shadow-file.blogspot.com/2015/04/abandoned-part-01.html
https://github.com/zcutlip/broken_abandoned

If those conditions are satisfied, then
upnp_receive_firmware_packets() gets called from upnp_main() at
0x4144E4. In this function, a select(), recv(), and memcpy() loop
receives the remainder of the request. This proceeds fairly sanely, with
one problem.

���
The select() and recv() loop doesn't check for closed connections

If the client closes the connection immediately after sending the request,
this function gets caught in an infinite loop. The cause for this is a little
tricky to explain.

From the select(2) Linux man page:
A file descriptor is considered ready if it is possible to perform the
corresponding I/O operation (e.g., read(2)) without blocking.

If the peer has closed its end of the connection, then select() indicates
the socket is ready because a recv() would not block. The way Unix
TCP sockets work, when the remote end of a connection closes,

a recv() on that socket returns zero. In the loop, the return value
from recv() is checked for errors (negative values), but if there are no
errors, it is assumed that data was received, and the loop returns
to select(). This results in the function looping indefinitely if the client
shuts down the connection too soon.

The only two ways this loop ever terminates are (a) if select() or
recv() return an error, or (b) if select() returns zero, indicating a
timeout with no file descriptors ready for I/O. This means the requesting
client must not close the connection immediately after it has sent the
request. It should send the request, and then pause before closing the
connection. Sleeping a few seconds should suffice.

However, there's an additional implication. Recall from before that we
had to sleep 1-2 seconds in upnp_main() in order to get into this
function. It turns out that if we slept longer, then the select() would
time out, returning zero, and the loop would end before we had sent the
rest of the request. So, while it's critical to sleep a second or two, it's
also critical to sleep no more than that.

In review, the steps should be:

• Send 8,190 bytes or fewer, but hold the connection open
• Sleep 1-2 seconds, but no more
• Send the rest of the request, but hold the connection open
• Sleep a few more seconds
• Close the connection

The following code fragment sends chunks with appropriate sizes and
sleep periods to get us into upnp_receive_firmware_packets() and to
avoid getting into an infinite loop with select():

def special_upnp_send(addr,port,data):

 sock=socket.socket(socket.AF_INET,socket.SOCK_STREAM)
 sock.connect((addr,port))
 #only send first 8190 bytes of request
 sock.send(data[:8190])
 #sleep to ensure first recv()
 #only gets this first chunk.
 time.sleep(2)
 #Hopefully in upnp_receiv_firmware_packets()
 #by now, so we can send the rest.
 sock.send(data[8190:])
 #Sleep a bit more so server doesn't end up
 #in an infinite select() loop.
 #Select's timeout is set to 1 sec,
 #so we need to give enough time
 #for the loop to go back to select,
 #and for the timeout to happen,
 #returning an error.
 time.sleep(10)
 sock.close()

More Broken and Lazy Parsing
Once the entire request has been received, it is parsed, or "parsed" as it
were, piecemeal, across several functions. The
upnp_receive_firmware_packets() function calls sub_4134A8(). This
function inspects the beginning of the received request (the first 1023
bytes, to be precise) for for the HTTP method. If the request is a POST,
the soap_method_check() function is called at 0x413774.

���
Checking for the POST HTTP method

���
Calling soap_method_check()

In soap_method_check() several naive stristr() calls search for a
series of strings across the entire request buffer. Based on several of the
more recognizable strings, such as "Public_UPNP_C1", these strings are
UPnP control URLs that might be requested by the POST. Although
these strings may be placed literally anywhere (starting to sound
familiar?) in the request and still trigger their respective code paths,
presumably a typical request would be structured like so:

POST /Public_UPNP_C1 HTTP/1.1

One of the control URLs that is checked is "soap/server_sa". If that
URL is found in the request, the function sa_method_check() is called.
Note that we still don't know for certain where the UPnP daemon
actually expects the "SetFirmware" string to be located. However, based
on other, similar string references, it seems likely that this string should
be part of the UPnP control URL: "soap/server_sa/SetFirmware".

���
A call to sa_method_check if "soap/server_sa" is found

The sa_method_check() function loops over a list of valid strings
corresponding to the "SOAPAction:" header, and for each string in the
list performs a naive stristr() across the entire request buffer. The
string "DeviceConfig", if found anywhere in the request, results in a call
to sub_43292C(). This enormous function repeatedly calls
sa_findKeyword(), passing it the request buffer as well as various keys
to be looked up in the "s_Event" dictionary.

���
The enormous graph of sub_43292c(). This function looks for keywords in the SOAP

request.

The sa_findKeyword() function searches the request buffer for the
corresponding string from the "s_Event" dictionary. The original

"SetFirmware" string is referenced by the key 49. If it is found, again,
anywhere in the request, the function sa_parseRcvCmd() is called.

���
Repeated calls of sa_findKeyword(). Index 49 corresponds to "SetFirmware."

The following HTTP request headers should, based on what we have
observed so far, get the request into the sa_parseRcvCmd() function.

request="".join["POST /soap/server_sa/SetFirmware HTTP/
1.1\r\n",
 "Accept-Encoding: identity\r\n",

 "Content-Length: 102401\r\n",
 "Soapaction: \"urn:DeviceConfig\"\r\n",
 "Host: 127.0.0.1\r\n",
 "Connection: close\r\n",
 "Content-Type: text/xml ;charset=
\"utf-8\"\r\n\r\n"]

Forming an HTTP request that would exercise the proper code path was
an exercise in guesswork due to the many naive string searches littered
along the way and an absence of anything resembling structured parsing.

It is in the sa_parseRcvCmd() function that an encoded firmware image
is extracted and decoded from the request body, and assuming the right
conditions are met, written to the router's flash storage, replacing the
existing firmware.

Up until now, it has remained at least possible, however improbable, that
the vendor may have designed a client to send the magic SOAP requests
and to play the timing games necessary to exercise the firmware
updating functionality. In the next part I'll start
discussing sa_parseRcvCmd(), a complicated function with lots of code
paths and lots of bugs. It is also this function where it becomes even
clearer that the firmware updating capability of this UPnP server is not
completely implemented and cannot actually work under normal
conditions.

http://shadow-file.blogspot.com/2015/05/abandoned-part-03.html

