
Broken, Abandoned, and
Forgotten Code, Part 5
Author: Zachary Cutlip
In previous installments I shared proof-of-concept code that would
exercise the Netgear R6200's hidden (and badly broken) SetFirmware
SOAP action. It satisfied the various wonky conditions necessary to get
into the sa_parseRcvCmd() function. Then I showed where in that
function a firmware would be decoded from the SOAP request and
written to flash. I showed how to identify a code path that leads to
firmware writing. In part four, I showed how an undersized malloc()
means a stock firmware crashes upnpd. Although we'll work around that
bug later, for this and the next several installments we'll be working out
how the firmware image gets parsed so we can create our own.

Updated Exploit Code
I last updated the exploit code for part 3, in which I showed how to form
the complete SOAP request. In this part, I've added several Python
modules to aid in reverse engineering and reconstructing a firmware
image. If you've previously cloned the repository, now would be a good
time to do a pull. You can clone the git repo from:
https://github.com/zcutlip/broken_abandoned

Analyzing httpd
We know that the code path in upnpd that accepts a firmware and writes
it to flash memory is severely broken. When given a legitimate firmware
obtained from Netgear, it crashes. In order to reverse engineer the
firmware format, it may be easier to analyze a program that is known to
work properly when upgrading: the web interface.

http://shadow-file.blogspot.com/2015/04/abandoned-part-01.html
http://shadow-file.blogspot.com/2015/04/abandoned-part-02.html
http://shadow-file.blogspot.com/2015/05/abandoned-part-03.html
http://shadow-file.blogspot.com/2015/05/abandoned-part-04.html
https://github.com/zcutlip/broken_abandoned

In the next several posts I'll describe analysis of the embedded HTTP
daemon to understand how it processes a firmware image file. I'll also
describe how to use the Bowcaster exploit development framework to
aid in dynamic analysis and to develop an understanding of the firmware
header composition. The goal is to generate a firmware image out of an
existing filesystem and kernel. Bonus points if we can either create a
firmware image that is identical to the original or if we can explain what
the differences are and why those differences don't get in the way.

You can debug the web server by copying GDB to the physical R6200
router, or you can debug the embedded httpd in emulation. The first
option requires less up-front effort, but the second option is more
convenient once you have it working. Running upnpd and httpd in
emulation requires faking some hardware and some binary patching.
Before proceeding, you may want to read my previous posts on
debugging with QEMU and IDA Pro and on patching, emulating and
debugging using IDA Pro (which specifically addresses httpd). If you're
playing along at home, I strongly recommend getting the web server and
the UPnP daemon up and running in QEMU and debugging them with
IDA Pro. During the next several posts, there will be a few aspects I
don't explain in depth. These these things will be relatively
straightforward if you have your working environment set up like mine.

Firmware Composition
Before we actually upload a firmware to the web interface, let's first see
how a firmware image file is composed, and identify any sections that
are already understood and don't need reverse engineering.

A good starting point is Craig Heffner's binwalk.

data-blogger-escaped-comment- HTML generated using hilite.me
zach@devaron:~/code/wifi-reversing/netgear/r6200 (0) $
binwalk R6200-V1.0.0.28_1.0.24.chk

https://github.com/zcutlip/bowcaster
http://shadow-file.blogspot.com/2015/01/dynamically-analyzing-wifi-routers-upnp.html
http://shadow-file.blogspot.com/2015/01/patching-emulating-and-debugging.html

DECIMAL HEX DESCRIPTION

--
58 0x3A TRX firmware header, little endian,
header size: 28 bytes, image size: 8851456 bytes, CRC32:
0xEE839C0 flags: 0x0, version: 1
86 0x56 LZMA compressed data, properties:
0x5D, dictionary size: 65536 bytes, uncompressed size:
3920006 bytes
1328446 0x14453E Squashfs filesystem, little endian,
non-standard signature, version 3.0, size: 7517734 bytes,
853 inodes, blocksize: 65536 bytes, created: Wed Sep 19
19:27:19 2012

Binwalk identifies three sections: A TRX header at offset 58, an LZMA
section at offset 86, and a Squashfs filesystem at offset 1328446. The
TRX header is well understood. It's a firmware header format that dates
back to at least the venerable Linksys WRT54g.

Here's a diagram (courtesy of the OpenWRT wiki) of the TRX header's
format:

0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---+
 | magic number ('HDR0') |
 +---+
 | length (header size + data) |
 +---------------+---------------+-------------------------------+
 | 32-bit CRC value |
 +---------------+---------------+-------------------------------+
 | TRX flags | TRX version |
 +-------------------------------+-------------------------------+
 | Partition offset[0] |
 +---+
 | Partition offset[1] |
 +---+
 | Partition offset[2] |
 +---+

http://wiki.openwrt.org/doc/techref/header

There's no need for analysis here. In the part_5 directory in the git repo,
I've provided a module that generates a TRX header.

We also don't need to analyze the Squashfs filesystem. At least not yet.
Although there are many variations of Squashfs, there are also a lot of
tools that will generate Squashfs images. We'll investigate more closely
later, but for now, this is a known quantity.

When there is only one LZMA section, and it's near the beginning of an
image--after the TRX header and before the filesystem--that is often the
compressed Linux kernel. That's easy to verify. Extract out that section
and decompress it to see if it's a Linux kernel.

zach@devaron:~/code/wifi-reversing/netgear/r6200 (130) $ binwalk R6200-
V1.0.0.28_1.0.24.chk
DECIMAL HEX DESCRIPTION

58 0x3A TRX firmware header, little endian, header size: 28
bytes, image size: 8851456 bytes, CRC32: 0xEE839C0 flags: 0x0, version: 1
86 0x56 LZMA compressed data, properties: 0x5D, dictionary
size: 65536 bytes, uncompressed size: 3920006 bytes
1328446 0x14453E Squashfs filesystem, little endian, non-standard
signature, version 3.0, size: 7517734 bytes, 853 inodes, blocksize: 65536
bytes, created: Wed Sep 19 19:27:19 2012

zach@devaron:~/code/wifi-reversing/netgear/r6200 (0) $ dd if=R6200-
V1.0.0.28_1.0.24.chk skip=86 count=`expr 1328446 - 86` bs=1 of=kernel.7z
1328360+0 records in
1328360+0 records out
1328360 bytes (1.3 MB) copied, 0.953731 s, 1.4 MB/s
zach@devaron:~/code/wifi-reversing/netgear/r6200 (0) $ p7zip -d kernel.7z

7-Zip (A) [64] 9.20 Copyright (c) 1999-2010 Igor Pavlov 2010-11-18
p7zip Version 9.20 (locale=en_US.UTF-8,Utf16=on,HugeFiles=on,4 CPUs)

Processing archive: kernel.7z

Extracting kernel

Everything is Ok

Size: 3920006
Compressed: 1328360

zach@devaron:~/code/wifi-reversing/netgear/r6200 (0) $ strings kernel | grep
Linux
Linux version 2.6.22 (peter@localhost.localdomain) (gcc version 4.2.3) #213
PREEMPT Thu Sep 20 10:22:07 CST 2012

So we have the TRX header, compressed Linux kernel, and the squashfs
filesystem. The TRX header starts at offset 58, leaving only 58 bytes of
unidentified data. Not bad! What are the chances that this 58-byte header
is just a haiku about a man from Nantucket?

It's possible this header is documented somewhere, but if so, I'm not
aware of it. Even if it is, it's worth going to the trouble of reversing it.
Doing so is instructional. It also exposes interesting bugs in the HTTP
and UPnP daemons.

Part 5's example code takes advantage of a project I created, called
Bowcaster. Bowcaster has a class called OverflowBuffer that generates
a pattern string for debugging buffer overflows. It also gives you the
ability to replace sections of that string with things like ROP gadgets,
fixed strings, and other data types. The pattern string Bowcaster
generates for you looks like:
 
Aa0Aa1Aa2Aa3Aa4Aa5Aa6Aa7Aa8Aa9Ab0Ab1Ab2Ab3Ab4Ab5Ab6Ab7Ab8A

In the pattern string, no sequence of three or more characters is ever
repeated. OverflowBuffer provides a find_offset() method. This
makes it easy to identify at what offset a given value seen in a register or
in memory during a debugging session is found.

Even though we're not debugging a buffer overflow, the
OverflowBuffer class is still useful. As we identify each field and what
value it should contain, it's easy to plug in those values at the right
offsets as if they are ROP gadgets.

https://github.com/zcutlip/bowcaster

The following code fragment, taken from part 5's exploit code, uses
Bowcaster to generate a stand-in for the header:

from bowcaster.development import OverflowBuffer
from bowcaster.development import SectionCreator

class MysteryHeader(object):
 def __init__(self,endianness,size):
 SC=SectionCreator(endianness,logger=logger)
 self.header=OverflowBuffer(endianness,size,
 overflow_sections=SC.section_list,
 logger=logger)

The stand-in header is shown below:

���
Above we see Bowcaster's pattern string in memory just prior to the
TRX header.

The first parsing of this header takes place in the function
abCheckBoardID(), called by http_d(). In this function the first header

field that is inspected is a strcmp() between the string "*#$^" and the
firmware data starting at offset 0.

���

This appears to be a magic number or signature. Adding it to our Python
header class:

from bowcaster.development import OverflowBuffer
from bowcaster.development import SectionCreator

class MysteryHeader(object):
 MAGIC="*#$^\x00"
 MAGIC_OFF=0
 def __init__(self,endianness,size):
 SC=SectionCreator(endianness,logger=logger)
 #add the magic signature "*#$^"
 SC.string_section(self.MAGIC_OFF,self.MAGIC,
 description="Magic bytes for header.")

 self.header=OverflowBuffer(endianness,size,
 overflow_sections=SC.section_list,
 logger=logger)

If the firmware doesn't have this signature, no other parsing takes place.
Also, note that the signature string must be null terminated since the
comparison is performed using a strcmp().

The next few things worth pointing out involve what appears to be a size
field right after the signature string. Here's a look at a hex dump of our
generated firmware header:

���

Below we see a memcpy() at address 0x0041C550 that uses the size field
highlighted in the above hex dump:

���

There are a few things worth calling out here. First is the byte order.
This is a little endian system, so we would expect to see 0x61413100 in
register $s0. The byte order in the register matching the byte order on
disk means this data is interpreted as big endian. A couple of basic
blocks prior to the location of the memcpy() are where the byte-
swapping occurs to convert this big endian value to little endian. This is
the first sign that the 58-byte leading header should be big endian even
though the rest of the file, and indeed the target hardware itself, is little
endian.

Another thing; the null terminator of the "*#$^" string overlaps with the
high byte of the size field. It is serendipitous that the size field is big
endian encoded and its value is small enough to have a leading zero (the
stock firmware's size field contains 0x0000003a). This appears to be an
innocuous bug. Instead of a strcmp() to check the signature string, a
memcmp() or an integer comparison should have been used.

But wait, there's more! If you haven't guessed already, this is a buffer
overflow. It would be a really nice one, too, except that it requires
authentication. I won't discuss it in detail here, because we'll see an
identical one when we circle back to upnpd. But if you're playing along
at home, feel free check it out. Exploitation is straightforward.

The last thing worth noting is the OverflowBuffer class's
find_offset() method. The value found in register $s0 is a
combination of a null terminator plus three characters of the pattern
sequence: "\x001Aa". We can use find_offset() to figure out where in
the header this value came from:

zach@devaron:~/code/broken_abandoned/part_5 (0) $./buildfw.py
find=0x00314161 kernel.lzma squashfs.bin
 [@] Building firmware from input files: ['kernel.lzma', 'squashfs.bin']
 [@] TRX crc32: 0x0ee839c0

 [@] Creating ambit header.
 [@] Finding offset of 0x00314161
 [+] Offset: 4

It's easy to encode the size value into the header using Bowcaster:
#observed size in real-world examples.
#this may be variable
HEADER_SIZE=58
HEADER_SIZE_OFF=4

SC.gadget_section(self.HEADER_SIZE_OFF,self.size,"Size field representing
length of ambit header.")

In the next part, I'll continue discussing the abCheckBoardID() function.
I'll also discuss a checksum function whose algorithm is difficult to
identify and how we deal with that. Then I'll discuss what other
functions also are responsible for inspecting and parsing the firmware
header.

http://shadow-file.blogspot.com/2015/05/abandoned-part-06.html

