Broken, Abandoned, and
Forgotten Code, Part 7

Zachary Cutlip

In the previous post, I finished discussing the abCheckBoardID()
function. I called attention to a checksum in the header generated by an
unknown algorithm. I provided a python implementation of that
algorithm ported from IDA disassembly. In total, I identified four fields
parsed by t his function, accounting for 30 bytes of the 58 byte header.

In this part I'll give an overview of the remaining functions that parse
and validate the firmware header. By the end we will be able to generate
a header that allows the firmware to be programmed to flash memory. I
won't discuss each header field in quite as much detail as I did
previously, but if you've made it this far, it shouldn't be too hard to
understand how each field is used.

Updated Exploit Code

The update to the exploit code for Part 6 added a module to regenerate a
checksum found in the header. This update populates a couple of
additional checksums as well as a few other fields. The code provided
for Part 7 is sufficient to generate a firmware header that will pass the
web server's validation. Given a valid kernel and filesystem image, you
should be able to generate a firmware image that the web interface will
happily upgrade to. If you've previously cloned the repository, now
would be a good time to do a pull. You can clone the git repo from:
https://github.com/zcutlip/broken abandoned

Of Checksums and Sizes
After the abCheckBoardID () function (discussed in part 6) there are a
few more functions that parse or validate portions of the header.

http://shadow-file.blogspot.com/2015/05/abandoned-part-06.html
https://github.com/zcutlip/broken_abandoned

Identifying these fields and their purpose is challenging due to the fact
that values may be parsed out in one function, but not used until some
other function or functions, if at all.

The two functions that parse out values from the header are
upgradeCgi_setImageInfo() at 0x004356B0 and upgradeCgiCheck()
at 0x004361F8. The "setlmagelnfo" function is a short one. It parses
several header fields, but it doesn't inspect or use any of them. The
values are stored in global variables for later use. You can identify
offsets of these fields using string patterns as described previously. As
you identify these locations where the parsed values are located, rename
the variables in IDA to something more meaningful, so you can identify
them later when they are used. I renamed them to correspond with the
offsets they were parsed from.

hlie =

00435680

00435680

00435680

00435680 .globl upgradeCgi_setImageInfo

004356B0 upgradeCgi_setImageInfo:

00435680

004356B0 var_ 18 = -0x18

004356B0 var 10 = ~0x10

004356B0 var C = ~0xC

004356B0 var B = -8

00435680

00435688 addu Sgp, $t9

004356BC addiu $sp, -0x28

004356C0 8w $ra, Ox28+var 8($sp)

004356C4 8w $s82, Ox28+var C($sp)

004356C8 sw $80, Ox28+var 10($sp)

004356CC swW $gp, Ox28+var 18($sp)

00435600 la $t9, dummyFun

004356D4 move $s0, $al

00435608 jalr $t9 ; dummyFun

004356DC move $82, $t9

004356E0 1w $gp, Ox28+var_18($sp)

004356E4 1w $a3, 0xC($s0)

004356E8 la $a0, unk_5C0000

004356EC 1w $t0, 0x10($s0)

004356F0 1w $vl, 0($s80)

004356F4 1w S$al, 4($s0)

004356F8 1w $az2, 9($s0)

004356FC addiu §$v0, $a0, (offset_24 - 0x5C0000)
00435700 la $t9, dummyFun

00435704 sw $a3, (offset_20 - 0x5BF61C)(Sv0)
00435708 swW $t0, (offset_32 - Ox5BF61C)(Sv0)
0043570C swW $al, (offset 28 - Ox5BF61C)(Sv0)
00435710 sw $a2, (offset_l16 - O0xSBF61C)($v0)
00435714 move $t9, $s2

00435718 jalr $t9

0043571C sw $vl, (offset_24 - 0x5C0000)($a0)
00435720 lw $gp, Ox28+var_18($sp)

Renaming global variables corresponding to header offsets.

The upgradeCgicheck () function validates a few fields parsed out
previously. At 0x004362BC we see the return of our friend,

calculate checksum(). This time the checksum is computed across
more than just the firmware header. At the "update" step, the data
argument points to the "HDRO" portion of the firmware. This suggests the
checksum is across the TRX image that follows the 58 byte header. The
size argument is the sum of the values found at offsets 24 and 28.

Inspecting the values at those positions in a stock firmware, we see
0x00871000 at offset 24, and 0x0 at offset 28. It's clear that bytes 24 - 27
are the size of the firmware image minus the 58 bytes at the start. Based
on its use here, the bytes 28 - 31 are also a size of some sort.

At any rate, the size passed to calculate checksum() at the update
stage at 0x004362DC is the size of the TRX image. At 0x0043630C, the
checksum is compared to the value taken from offset 32. We now know
three more fields in the firmware header: offsets 24, 28, and 32. That's 42
bytes down, 16 to go.

00436258 1la $v0, loc_430000

0043625¢C nop

00436260 addiu $s7, $v0, (sub_435690 - 0x430000)
00436264 nove $t9, $u7

00436268 jalr §t9 ; sud 435690

0043626C nop

00436270 iw $gp, OxAd+var 80($sp)

00436274 sove $20, $vO

00436278 la $v0, loc_430000

0043627C nop

00436280 addiu §s6, Sv0, (sub_435670 -~ 0x430000)
00436204 Bove $t9, Snb

00436288 jalr $t9 ; sub 435670

0043628C nop # v0o = tield 24

00436250 1w $gp, OxA+var_ B80($sp)

00436294 aop

00436298 la $vl, unk_5C0000

0043629¢C ia $t9, dusmyFun

0043620 addiu $35, Svl, (offset_24 - Ox500000)
00436204 nove $t9, $s2

004362A8 iw $s1, (offmet_32 - OxSBFEIC)($8S5) # siefield_ 232
004362AC jalr §t9

00436280 addu $80, Sv0 § fleld 28 + field 24
00436204 iw $gp, OxAd+var 80($sp)

00436208 sove $a0, Szero

0043628C la $t9, calculate checksum

004362C0 move $al, Szeoro

004362C4 zove $a2, Szero

004362Ce Jair $t9 ; csloviate _checksun
004362¢CC BOYo $33, $¢9

00436200 iw $gp, OxAS+var 80($sp)

00436204 1w $al, (file buf - Ox5B9980) ($sé) # file buf points to HDRO
00436208 la $t9, calculate_checksus

0043620C Bove $a2, 580 § a2«fleld 24+fiecld 28
0043620C § = trx image size + usused size
00436280 sOYe $t9, S8l

004362E4 jalr $t9

004362E8 ii $a0, |

0043628EC 1w Sap, OxAsZ+var B0(Ssp)

Checksum of the firmware's TRX image.

We're not done with checksums just yet. The basic block at 0x0043643C
is another checksum operation. Once again the data points to "HDR0", but
the size 1s only the value from offset 24. The size from offset 28 is not

used this time. The checksum result is the same as before, but this time
compared to the value at offset 16. We now know the checksum we
compute and store at offset 32 must also be stored at offset 16.

At this point we can speculate this firmware format supports multiple
partitions or sections. The value at offset 24 would be the size of
partition 1, and offset 28 would be the size of partition 2. The checksum
at offset 16 would be calculated over partition 1, and offset 32's
checksum would be calculated over partitions 1 and 2 combined.

We're now down to 12 unidentified bytes. Let's have a look at an updated
header diagram to see how things look.

Byte

0-3 Magic: ""#$"

4-7 Header Length

8-1
12-15
Partition 1
16-19 Checksum
20-23

24-27 | Partition 1 Size

28-31 Partition 2 Size

Partition 1+2

32-35 Checksum

36-39 | Header Checksum

40-variable
board _id

"U12H192T00_NE
TGEAR"

What we know so far about the firmware header.

The diagram is starting to fill in, and things are looking quite a bit better.

Version String

Moving on, at 0x00436580, more data is parsed out of the firmware
image. This time the values are pulled out one byte at a time. This
frustrates the technique of using the 3+ byte patterns to identify offsets.
Based on the format strings from subsequent sscanf () and sprintf ()
operations, we can speculate that these values are transformed in some
way into the version string displayed in the web interface.

Although the version string ends up being only cosmetic, and not an
essential part of the firmware validation, it's still interesting enough to
discuss here. Modifying the version string would be a nice way to
visually demonstrate that the target is, in fact, running your custom
firmware, and not the stock firmware.

[Update: Turns out this isn't quite right. There is a string table stored in
flash memory that also contains the version string, and that string is
displayed in the web interface. The version field in the firmware header
is only (as far as I can tell) rendered during the update process so the
user can see what version they're updating to.]

It took some debugging, but it turns out the single byte values that
compose the version string don't actually get used until a few functions
later, in upgradeCgi_GetParam() at 0x00436B4C.

Fn?
‘POCJCNC
0043684C loc 416D4C:
00436850 la $t9, sprintt
00436854 addiv Sv0, Svl, (ver_bytes 9 12 - 0x570000)
00436858 1bu $al, (ver_byte 13 - Ox570590)(5v0)
0043685C 1bdu $a2, (ver bytes 9 12 -« 0x570000)(Svl)
00436860 1bu $a0, (ver_bytes_ 9 1243 - 0x570590)($v0)
00436864 1bu $tl, (ver_byte_15 - Ox5705%90) (5v0)
00436868 1bu $al), (ver_bytes_ 9 12+1 - 0x570590)($v0)
’OOCJ‘ltc 1dbu $vi, (ver_bytes_9%9 1242 - 0x5703590)($v0)
IOOCJ‘.’O 1bu $t0, (vor_byte 14 - 0x570590) ($v0)
00436874 aw Sal, Ox4O+var 28(Ssp)
00436078 la $al, aAdConfiguratio | "ad coafiguration file.’
"1 |0043687C aw $a0, Ox40+var 2C(Ssp)
00436880 o $vl, Ox4Oévar 30(Sap)
00436884 sw §t0, OxdO+var 24(Ssp)
00436888 aw $tl, OxdO+var 20(Ssp)
0043688C addiu Sal, (avD_D_ D D D D D = Ox4P0000) 4 “Vid.id.1d.1d _1d.1d.0d’
= |00436890 jalr $t9 ; sprintf
lOOCJ‘lQC move $a0, $52 ¥ s
00436898 1w $gp, OxdO+var_ 18($sp)
0043689C b loc_di6moC
00436300 nop

a X

What is happening here is a version string is being generated to display
in the web browser so that the user can confirm what version of the
firmware they're about to upgrade to.

Firmware Yersion
V10028 1024

ADVANCED Auto =)

| Router Update

' Waming! You are trying 1o dewnload the fiemware which the region is different from the current frmrware you had.

Do you still want to continue?
Current Firmware Version V1.0028 1.024
Uploaded Version VES 97 .51.65_97 5265

The version string "V65.97.51.65_97.52.65" from the screenshot above
appears to be composed of the decimal representations of ASCII
characters from Bowcaster's pattern string. We can be sure by replacing
bytes 8 - 15 with a string of non-repeating characters: "stuvwxyz". When
we do this, the version string becomes
"V116.117.118.119_120.121.122". This confirms the hypothesis; these
are the decimal representations for t,u,v,w.x,y, and z. Note that "s" is not
included. Even though byte 8 was parsed out along with the rest, it
appears to go unused.

Firmvware Version
V1.00.28_1.024

ADVANCED Auto =)

| Router Update

' Waming! You are trying 1o download the Sermware which the region is different from the current frmware you had.
Do you still want to continue?

Curent Firmware Version V10028 1024
’ Uploaded Version V116117 118.119_120.121.122

We can now update the header diagram to reflect the version bytes.

Byte

0-3 Magic: "*#$""

4-7 Header Length

8-11 vl | v2 | v3

12-15 | v4 | v5 | vB | V7

Partition 1

16-19 Checksum

20-23

24-27 Partition 1 Size

28-31 Partition 2 Size

Partition 1+2

32-35 Checksum

36-39 | Header Checksum

40-variable
board id

"U12H192T00_NE
TGEAR"

(Mostly) Complete Firmware Header

The header diagram now has only 4 bytes (5 if you count the unused
version byte at offset 8) that haven't been identified. It's unclear what
these bytes are for, since they are never inspected. A likely explanation is
that a checksum for theoretical partition 2 belongs at offset 20. The stock

firmware has 0x0 at offset 20, which jives with a partition 2 size of 0. At
any rate, this header is sufficient for execution to reach the point where
the uploaded firmware gets written to /dev/mtd1.

WARNING: If you are debugging httpd on on actual hardware rather
than in emulation, there's a chance your router will end up bricked if you
attempt to upgrade to a customer firmware image. Eventually, we must
test on actual hardware, but before then, I'll describe how to access the
device's serial console using a UART to USB cable. Using the serial
console, you can recover from a bad firmware update, a feature I had to
use many times during my original research.

In the next part, with a better understanding of the firmware format, we'll
loop back to the UPnP daemon and pick up where we left off there.
Wouldn't it be nice if we could use the now documented header format
to generate a firmware that will work with the UPnP daemon using our
existing exploit code?

