
Broken, Abandoned, and 
Forgotten Code, Part 7
Zachary Cutlip
In the previous post, I finished discussing the abCheckBoardID() 
function. I called attention to a checksum in the header generated by an 
unknown algorithm. I provided a python implementation of that 
algorithm ported from IDA disassembly. In total, I identified four fields 
parsed by t`his function, accounting for 30 bytes of the 58 byte header.

In this part I'll give an overview of the remaining functions that parse 
and validate the firmware header. By the end we will be able to generate 
a header that allows the firmware to be programmed to flash memory. I 
won't discuss each header field in quite as much detail as I did 
previously, but if you've made it this far, it shouldn't be too hard to 
understand how each field is used.

Updated Exploit Code
The update to the exploit code for Part 6 added a module to regenerate a 
checksum found in the header. This update populates a couple of 
additional checksums as well as a few other fields. The code provided 
for Part 7 is sufficient to generate a firmware header that will pass the 
web server's validation. Given a valid kernel and filesystem image, you 
should be able to generate a firmware image that the web interface will 
happily upgrade to. If you've previously cloned the repository, now 
would be a good time to do a pull. You can clone the git repo from:
https://github.com/zcutlip/broken_abandoned

Of Checksums and Sizes
After the abCheckBoardID() function (discussed in part 6) there are a 
few more functions that parse or validate portions of the header. 

http://shadow-file.blogspot.com/2015/05/abandoned-part-06.html
https://github.com/zcutlip/broken_abandoned


Identifying these fields and their purpose is challenging due to the fact 
that values may be parsed out in one function, but not used until some 
other function or functions, if at all.

The two functions that parse out values from the header are 
upgradeCgi_setImageInfo() at 0x004356B0 and upgradeCgiCheck() 
at 0x004361F8. The "setImageInfo" function is a short one. It parses 
several header fields, but it doesn't inspect or use any of them. The 
values are stored in global variables for later use. You can identify 
offsets of these fields using string patterns as described previously. As 
you identify these locations where the parsed values are located, rename 
the variables in IDA to something more meaningful, so you can identify 
them later when they are used. I renamed them to correspond with the 
offsets they were parsed from.



���
Renaming global variables corresponding to header offsets.

The upgradeCgiCheck() function validates a few fields parsed out 
previously. At 0x004362BC we see the return of our friend, 
calculate_checksum(). This time the checksum is computed across 
more than just the firmware header. At the "update" step, the data 
argument points to the "HDR0" portion of the firmware. This suggests the 
checksum is across the TRX image that follows the 58 byte header. The 
size argument is the sum of the values found at offsets 24 and 28. 



Inspecting the values at those positions in a stock firmware, we see 
0x00871000 at offset 24, and 0x0 at offset 28. It's clear that bytes 24 - 27 
are the size of the firmware image minus the 58 bytes at the start. Based 
on its use here, the bytes 28 - 31 are also a size of some sort.

At any rate, the size passed to calculate_checksum() at the update 
stage at 0x004362DC is the size of the TRX image. At 0x0043630C, the 
checksum is compared to the value taken from offset 32. We now know 
three more fields in the firmware header: offsets 24, 28, and 32. That's 42 
bytes down, 16 to go.

���
Checksum of the firmware's TRX image.

We're not done with checksums just yet. The basic block at 0x0043643C 
is another checksum operation. Once again the data points to "HDR0", but 
the size is only the value from offset 24. The size from offset 28 is not 



used this time. The checksum result is the same as before, but this time 
compared to the value at offset 16. We now know the checksum we 
compute and store at offset 32 must also be stored at offset 16.

At this point we can speculate this firmware format supports multiple 
partitions or sections. The value at offset 24 would be the size of 
partition 1, and offset 28 would be the size of partition 2. The checksum 
at offset 16 would be calculated over partition 1, and offset 32's 
checksum would be calculated over partitions 1 and 2 combined.

We're now down to 12 unidentified bytes. Let's have a look at an updated 
header diagram to see how things look.



���
What we know so far about the firmware header.

The diagram is starting to fill in, and things are looking quite a bit better.



Version String
Moving on, at 0x00436580, more data is parsed out of the firmware 
image. This time the values are pulled out one byte at a time. This 
frustrates the technique of using the 3+ byte patterns to identify offsets. 
Based on the format strings from subsequent sscanf() and sprintf() 
operations, we can speculate that these values are transformed in some 
way into the version string displayed in the web interface.

Although the version string ends up being only cosmetic, and not an 
essential part of the firmware validation, it's still interesting enough to 
discuss here. Modifying the version string would be a nice way to 
visually demonstrate that the target is, in fact, running your custom 
firmware, and not the stock firmware.
[Update: Turns out this isn't quite right. There is a string table stored in 
flash memory that also contains the version string, and that string is 
displayed in the web interface. The version field in the firmware header 
is only (as far as I can tell) rendered during the update process so the 
user can see what version they're updating to.]

It took some debugging, but it turns out the single byte values that 
compose the version string don't actually get used until a few functions 
later, in upgradeCgi_GetParam() at 0x00436B4C.



���

What is happening here is a version string is being generated to display 
in the web browser so that the user can confirm what version of the 
firmware they're about to upgrade to.

���



The version string "V65.97.51.65_97.52.65" from the screenshot above 
appears to be composed of the decimal representations of ASCII 
characters from Bowcaster's pattern string. We can be sure by replacing 
bytes 8 - 15 with a string of non-repeating characters: "stuvwxyz". When 
we do this, the version string becomes 
"V116.117.118.119_120.121.122". This confirms the hypothesis; these 
are the decimal representations for t,u,v,w,x,y, and z. Note that "s" is not 
included. Even though byte 8 was parsed out along with the rest, it 
appears to go unused.

���

We can now update the header diagram to reflect the version bytes.



���

(Mostly) Complete Firmware Header
The header diagram now has only 4 bytes (5 if you count the unused 
version byte at offset 8) that haven't been identified. It's unclear what 
these bytes are for, since they are never inspected. A likely explanation is 
that a checksum for theoretical partition 2 belongs at offset 20. The stock 



firmware has 0x0 at offset 20, which jives with a partition 2 size of 0. At 
any rate, this header is sufficient for execution to reach the point where 
the uploaded firmware gets written to /dev/mtd1.

WARNING: If you are debugging httpd on on actual hardware rather 
than in emulation, there's a chance your router will end up bricked if you 
attempt to upgrade to a customer firmware image. Eventually, we must 
test on actual hardware, but before then, I'll describe how to access the 
device's serial console using a UART to USB cable. Using the serial 
console, you can recover from a bad firmware update, a feature I had to 
use many times during my original research.

In the next part, with a better understanding of the firmware format, we'll 
loop back to the UPnP daemon and pick up where we left off there. 
Wouldn't it be nice if we could use the now documented header format 
to generate a firmware that will work with the UPnP daemon using our 
existing exploit code?


