
Broken, Abandoned, and
Forgotten Code, Part 8
Zachary Cutlip
In the previous few posts, we spent time reversing how the Netgear
R6200's HTTP daemon parses a firmware header before writing the
firmware image to flash. The goal was to work out how the 58-byte
firmware header is constructed and how to generate a new one that can
replace the header in a stock firmware. In the end we identified the
purpose of all but 4 bytes. The regenerated header plus the original TRX
firmware image allowed the HTTP daemon, running in emulation, to
reach the stage where it would start writing data to the /dev/mtd1 flash
partition. Considering this a win, we'll now circle back to analyzing
upnpd.

In this and the next part, we'll compare the way upnpd parses and
validates the firmware header to that of httpd. Having developed a
baseline understanding of how the header is parsed by httpd, analyzing
upnpd is much easier.

Updated Exploit Code
As in previous installments, the exploit code has been updated. Since
we're switching back to upnpd in order to analyze how it validates the
firmware, the repository contains separate modules for that. Look for
janky_ambit_header.py and build_janky_fw.py. You can find the
updated code and README in the part_8 directory. Now is a good
time to do a pull or to clone the repository from:
https://github.com/zcutlip/broken_abandoned

http://shadow-file.blogspot.com/2015/05/abandoned-part-05.html
http://shadow-file.blogspot.com/2015/05/abandoned-part-06.html
http://shadow-file.blogspot.com/2015/06/abandoned-part-07.html
https://github.com/zcutlip/broken_abandoned

More Firmware Parsing, Pretty Much Like Before
As we discovered in part 4, a firmware larger than 4MB will crash upnpd
due to an undersized memory allocation. Obviously we won't be able to
strap a header to the front of a stock TRX image like we did with httpd;
it's way too big. Shrinking the firmware will be a challenge for later. If it
turns out that we can't even get so far as writing the firmware to flash
memory without crashing, it won't matter that you were able to shrink
and re-pack the firmware. Instead, just dd out a little less than 4MB of
random data from /dev/random and prepend a header to it. If you can
get upnpd to write that image to flash, you win this stage and may
advance to the next level.

Once we get past the undersized malloc() at 0x00423C24 in
sa_parseRcvCmd(), the firmware is successfully base64 decoded out of
the SOAP request. Then, at 0x00423C98, a function named
sa_CheckBoardID() is called.

���

This function should be familiar. It's nearly identical to the
abCheckBoardID() function I described in part 5. So identical, in fact,

http://shadow-file.blogspot.com/2015/05/abandoned-part-04.html
http://shadow-file.blogspot.com/2015/05/abandoned-part-05.html

that the buffer overflow via memcpy() I described previously is in this
function as well.

���
Buffer overflow due to memcpy() using header size field. Sad trombone.

Even the Buffer Overflow is the Same
To recap, the memcpy() is bounded only by the size value from the
header. Since we control that value, we get precise control over how
many bytes are copied into the destination buffer.

I didn't go into detail about the buffer overflow before, because I wanted
to wait until I could discuss it in the context of upnpd. In the HTTP
server, this isn't an interesting vulnerability. In that case, it is a post-
authentication vulnerability. You would need to bypass authentication or
trick a user into uploading your malicious firmware. If you've
accomplished either of those, there are much more useful things you can
be doing with your time than exploiting buffer overflows.

In the case of upnpd, this same vulnerability doesn't require
authentication, making it much more interesting. Here's what's neat
about it:

• No authentication required.
• The payload is base64 encoded and decoded for free, so there are

no bad bytes to avoid related to the transport protocol.
• The buffer overflow is via memcpy() rather than a string handling

function. There are no bad bytes to avoid related to string handling.
• The buffer being overflowed is on the stack, making it easy to

overwrite the function's return address.
This is a straightforward buffer overflow. If you're new to stack based
buffer overflows, or just new to exploiting memory corruption
vulnerabilities on MIPS, this is an easy one to practice with, especially if
you have the debugging environment I described here set up.

However, as I said in the first part of this series, one of my self-imposed
goals was to avoid exploiting bugs along the way. We're trying to flash a
firmware without crashing, and any bugs along the way are obstacles to
overcome.

Working through this function reveals the same header fields that we
discovered in its httpd counterpart: The magic number, the size and
checksum of the header, and the board ID string. These fields are found
at the same header offsets as before.

Mystery Header Gets a Name
There is one new piece of information, however.

���

http://shadow-file.blogspot.com/2015/01/dynamically-analyzing-wifi-routers-upnp.html
http://shadow-file.blogspot.com/2015/04/abandoned-part-01.html

At 0x00423088 there is an error message that we didn't see in httpd:
"Not Ambit image ... reject!!!". This is the first indication of any sort of
name for this file format. This explains why you may have noticed
references to "ambit" or "ambit header" in previous code fragments I've
posted.

In the next part, we get close to writing the firmware image to flash
memory. We'll have to do some binary patching to work around the fact
that QEMU doesn't actually have flash memory.

http://shadow-file.blogspot.com/2015/06/abandoned-part-09.html

