Broken, Abandoned, and
Forgotten Code, Part 9

Zachary Cutlip

In the previous part, we switched gears back to the Netgear R6200
upnpd after spending some time analyzing httpd. The HTTP daemon
provided an understanding of how the firmware header is supposed to be
constructed. We found a header parsing function in upnpd that was
similar to its httpd counterpart. So similar that it has the same memcpy ()
buffer overflow. This overflow was more interesting this time around, as
it did not require authentication. Additionally, we discovered a reference
to the "Ambit image" via an error message string. Presumably an ambit
image is a firmware format analogous to TRX. In this case, however, the
ambit image encapsulates a TRX image.

In this part we will identify more fields of the Ambit header, as well as
run up against a limitation of QEMU: attempts to open and write to the
flash memory device will fail since, in emulation, there is no actual flash
memory. We'll need to patch the upnpd binary in order to work around
this. I previously covered binary patching for emulation here.

Updated Exploit Code

The janky ambit header.py module has been updated to reflect the
additional fields we add to the header in this part. You can find the
updated code and README in the part_9 directory. Now is a good time
to do a pull or to clone the repository from:
https://github.com/zcutlip/broken abandoned

http://shadow-file.blogspot.com/2015/06/abandoned-part-08.html
http://shadow-file.blogspot.com/2015/01/patching-emulating-and-debugging.html
https://github.com/zcutlip/broken_abandoned

We Should Have Checked the Firmware Size Before

Now
The sa_CheckBoardID() function, analogous {0 abCheckBoardID()
from httpd, returns success if the following is true:

e The ambit magic number is found at offset 0.

e The header size field doesn't overflow during the memcpy ()

operation

e The checksum in the ambit header matches the header's actual
checksum,

e The proper board ID string is found and the end of the ambit
header.

After sa_CheckBoardiD(), at 0x00423CAC, we see several 32-bit fields
parsed out. It remains to be seen how these values get used; presumably
they are the same fields and get used the same way as in the httpd
firmware validation. Then the size field from offset 24 is checked. It
must be less than 0x400001, or 41943035, or firmware validation fails.

|00423064 addw $ai, $s0

100423068 811 $81, 16
0042306 81l $t0, 16
100423070 sl $ti, 16
100423074 11 $t2, 16
100423078 15 $v0, 4194305 § =ax kornel size

100‘2307C addu §az2, §sl
00423080 adds $a3, $tO
00423084 adds Svl, Stl

100423088 addw $al, $t2

10042308¢ sltu $v0, $Sa0, Sv0 f fa i=age size < 41943057

423090 sw $vl, OxCigs+field 28($sp)
10042399‘ " $al, O0xClBefield 32(Ssp)
J00023098 5w $a2, OxClB8+field 16(Ssp)
10002399(: L] $a3, O0xCliefiold _20($sp)
Y00!230!0 addu $fp, §s7, $ab6 § fp points to first byte after decoded header.
‘0002JDA6 bmoz $v0, loc_424284
(00423DA8 aw $a0, OxClB+image size($sp)

[|

Somewhat ironically, this check can never fail, assuming the size field is
truthful. If the firmware image is larger than this size, then upnpd will
crash, having overflowed the 4MB buffer allocated for base64 decoding.
In our proof-of-concept code, the size field contains a bogus value, and
execution skips down to an error message.

$a0, 0x440000
$t9, unk_2AC7C140

$t9 ; puts

$a0, (aTheKernellImage - 0x440000) # “"The kernel image is over 512Kbytes!!”
$gp, 0xCl8+var COB($sp)

$fp, loc_423DE4

The error message belies someone's continued confusion over exactly
how this capability is supposed to work. If the size validation fails, the
error message is "The kernel image is over 512Kbytes!", although the
test was against a 4MB upper limit.

Inserting the proper TRX 1image size (or "kernel size" as the error
message indicates) at offset 24 gets past this step. After the check, a
function is called at 0x0042428C, sa_upgrade setImageInfo(), that
parses out several more values from the header. Again, no validation is
performed on these values at this point. It remains to be seen if they are
the same fields and will be used in the same way as in httpd.

falea =

00421734

00421F34

00421F34

00421F34 .globl sa_upgrade_setImagelnfo

00421734 sa_upgrade_sotimageinfo: § CODE XREF: sa_parsoRcvCad+Bl8 p
00421734 § DATA XREF: sa_parsoRcvCmdi:loc_424284 0 ...
00421F34 1i $gp, O0x3878C

00421F3C addu Sgp, $t9

00421740 15 8al, 0x450000

00421F44 iw $£0, O0xC($a0)

00421748 1w $tl, Ox10($a0)

00421F4C 1w $a2, 4(Sal)

00421F50 1w $a3, 3(Sa0)

00421¥54 addiv $v0, Sal, (dword 452E60 - 0x450000)
00421758 iw $vl, 0($a0)

00421F5C W $t0, (dword 452E6C - Ox452E60) ($v0)
00421F60 sw $tl, (dword 452E70 - O0x452E60) ($v0)
00421F64 s $a2, (dword 452E64 - Ox452E60)(Sv0)
00421768 L $a3, (dword 452868 - Ox452E60) (Sv0)
00421F6C move $v0, S$zero

00421F70 ir $ra

00421F74 sw $vl, (dword_452E60 -~ Ox450000)(Sal)
00421774) End of function sa_upgrade_setI=agelnfo

00421774

oookl

After this function is called, things begin to get interesting in a few
ways. After a temporary "upgrade" file is created (but never used; wtf), /
dev/mtdl device is opened. You'll need to work around the fact that
QEMU doesn't provide this device. The following following things will
fail if not addressed.

First, opening mtd1 will fail if it doesn't already exist. Create an empty
file to ensure the open () operation is successful.

v
00424408 F om0
004244cC8
004244C8 loc_4244C8: # CODE XREF: sa_parseRcvCmd+B74°'j
004244C8 1i $s2, 0x440000
004244CC 1w $v0, (dword 452E68 - Ox452E60)($vl)

open
00424404 sw $a0, OxCl8+var BFC(S$sp)
00424408 sw $v0, OxCl8+var BF8($sp)
004244DC addiu $a0, $s2, (aDevMtdl - 0x440000) # “/dev/mtdl"
004244E0 jalr $t9 ; open
004244E4 14 $al, 2
004244E8 1w $gp, OxCl8+var CO8($sp)
004244EC bltz $v0, loc_424518
004244F0 =move $84, $vO

§ oflag: O_RDWR

J 1

L]

Opening /dev/mtd1 with O_RDWR.

Next, a series of ioctl()s is performed on the open file descriptor. To
understand what these operations do, it's helpful to refer to mtd.c from
the OpenWRT source code as a guide.

$t9 ; ioctl
$a2, $sp, 0xCl8+var BB4
Sap, ' b« -

08 ($sp)

https://dev.openwrt.org/browser/trunk/package/mtd/src/mtd.c?rev=17659

The first ioct1() will fail in emulation since we're just providing a
regular file, not a device node. Patch out this operation with something
that puts 0 in $v0, such as xor $v0,$v0.

move $a0, $v0 tfa B
xor $v0, $vO
addiu sa, Ssp, Oxc1aa_

noo

ioctl is patched out.

This ioctl() we just patched out obtains, among other things, the erase
size (i.e., block size) for the mtd device. We can simulate that result by
patching at 0x0042453C where the the erase size is loaded into register
$s5.

load block size (

It doesn't matter a great deal what you use for the erase size in
emulation. The write loop will write the firmware in blocks of that size,
then it will write any remaining fractional block at the end. An actual
R6200 device reports a block size of 65536, or 0x10000, so that's a good
number to use. Patching this instruction with:

lui $s5, 1

loads 1 into the upper half of register $s5 and 0x0 into the lower half,
resulting in a value of 0x10000.

$s5, 0xCl8+var BD4($sp)

Patch in a constant 0x10000 for mtd1 block size.

Next, in the basic block starting at 0x004245D0, there are two more
ioctl()s. The first one most likely unlocks the current portion of flash
for writing. The return value from it isn't checked, end execution
immediately proceeds to the second. Based on the error message, the
second one erases the block of flash so it can be rewritten. With our
fake /dev/mtd1 there's no need to erase, so we can patch out this
operation as before.

Patch out the ioct1() to erase flash memory.

Now, having patched out the ioct1()s that fail in emulation, writing to a
regular file should work as normal. There is one more field that, while
not validated directly, does affect what data gets written. When

analyzing httpd, we discovered the field at offset 28 that contains the
size of a theoretical second partition. In stock firmware this field is
zeroed out. In upnpd, at 0x004245CO0, this value 1s added to the address
of the TRX image, and the result is the start of data that gets written to
flash.

004245C0 addu $s3, $fp, $s0 # fp points to decoded fw+header_size
004245C0 # s0 is header field_28

004245C4 move $s7, $zero

004245cC8 swW $v0, 0xCl8+var 40($sp)

|

The start of firmware data is calculated.

In other words, the pointer to data that gets written is calculated as:

<Address of firmware image> + <ambit header size> + <partition 2
size> = <start of data to write>

This doesn't make sense and further belies the programmer's confusion
over how this algorithm should work and how the firmware should be
formatted. At any rate, if we zero out the field at byte 28, everything
works fine. The address of the TRX image will be the start of data
written to flash.

At this stage upnpd is ready to write our firmware to /dev/mtdl. Let's
have a review of what portions of the ambit header had to be verified
before getting here.

Byte

0-3
4-7
8-11
12-15
16-19
20-23
24-27
28-31
32-35
36-39

40-variable

Magic: "*#§""

Header Length

Partition 1 Size

Partition 2 Size

Header Checksum

board id
"U12H192T00 NE
TGEAR"

There's our familiar ambit header. It looks similar to the header diagram
from our httpd analysis, except there's still lot of gray in there. Only six
fields have been validated by upnpd up to this point:

e Ambit magic number

e Header length

e Header checksum

 TRX image size (partition 1, aka "kernel")

e Partition 2 size (not validated, but affects what gets written to

flash)

e Board ID string
That was easier than expected. When I sent the "firmware image"
generated from random data to upnpd, my QEMU machine rebooted.
This is because after the write loop, upnpd triggers a reboot so the new
firmware will take effect. Our fake "/dev/mtd1" has even grown to
3.9MB as a result of the firmware writing.

At this point we've successfully exploited the setFirmware UPnP SOAP
action. We've gone as far as we can go with emulation. From here we'll
move to physical hardware to test and develop the deployment of our
firmware. In the next post, I'll describe connecting to the R6200 router's
debug interface over its UART connection, so get your soldering iron
ready.

Spoiler: I'll go ahead and say we're not quite home free yet. Don't
attempt to generate an image and flash it to your router yet. At best, the
write will still fail. At worst, you'll brick it. Besides not having generated
a valid squashfs filesystem and TRX image, there at least two more
header fields that will trip you up before you're done. Once we get

http://shadow-file.blogspot.com/2015/07/abandoned-part-10.html

access over UART figured out, it will be possible to recover a bricked
device.

