
8 A Tourist’s Phrasebook for Reversing MSP430
by Ryan Speers and Travis Goodspeed

Howdy, y’all!
Welcome to another installment of our series of

quick-start guides for reverse engineering embedded
systems. Our goal here is to get you situated with
the MSP430 architecture as quickly as possible, with
a minimum of fuss and formality.

Those of you who have already used an MSP430
might find this to be a useful reference, while those
of you new to the architecture will find that it isn’t
really all that strange. If you’ve already reverse engi-
neered binaries for any platform, even x86, we hope
that you’ll soon feel right at home.

8.1 The Landscape

Architecture
Von Neumann
16-bit words

Registers
R0: Program Counter
R1: Stack Pointer
R2: Status Register
R3: Constant Generator
R4-R15: General Use

Address Space
16-bit (MSP430)
20-bit (MSP430X, X2)

8.2 Memory Map

Unlike other embedded platforms, which like to put
the interrupt vector table (IVT) at the beginning
of memory, the MSP430 places it at the very end
of the 16-bit address space, in Flash. (On smaller
chips, this is the very end of Flash.)

Early on, Low RAM at 0x0200 would be the
only RAM location, but as that region proved too
small, a High RAM area was created at 0x1100. For
firmware compatibility reasons, the Low RAM area
is mapped on top of the High RAM area.

Note that Flash grows down from the top of
memory, while the RAM grows up. On chips with
a 20-bit address space, an Extended Flash region
sometimes grows upward from 0x10000.

Additionally, there is an Info Flash area at
0x1000. While there is nothing to stop an engineer
from using this for code, the region is generally used
for configuration settings. In many devices, chips
arrive with this region pre-programmed to contain
calibration settings for the internal clock.

In most devices, the BSL ROM at 0x0C00 con-
tains a serial bootloader that allows the chip to be
reprogrammed even after the JTAG fuse has been
blown, and if you know the contents of the last 32
bytes of Flash—the Interrupt Vector Table—you can
also read out the contents of memory.

8.3 Loading into a Disassembler

Back in the old days, reverse engineering MSP430
code meant using GNU objdump and annotating on
pen and paper. Some folks would wrap these tools in
Perl, or fill paper notebooks with cross-referencing,
but thankfully that’s no longer necessary.

Nowadays, IDA Pro has excellent support for the
platform. If you have a legit license, just open the
Intel Hex image of your target and specify MSP430
as the architecture. Memory locations can be had
from the appropriate datasheets.

Radare2’s MSP430 support is a bit less mature,
and you should make sure to sanity check the dis-
assembly wherever it looks suspect. Luckily, the
Radare2 developers are frighteningly quick about
fixing bugs, so both bugs that bothered us in the
writing this article will likely be patched by the time
you read this. For best results, always run Radare2
built from the latest Git repository,10—and rebuild
it often.

One last tool, which is fast becoming obsolete
with Radare2’s support, is the MSPGCC project’s
single-line assembler.11 It is particularly handy,
though, when sanity-checking your own implemen-
tation of an assembler or disassembler.

There are no known decompilers for the MSP430,
but with small code sizes and rather legible assembly
we don’t expect one to be necessary.

10git clone https://github.com/radare/radare2
11http://mspgcc.sourceforge.net/assemble.html

28



Start End Size Use
0x0000 0x000F 16 Interrupt Control Registers
0x0010 0x00FF 240 8-bit Peripherals
0x0100 0x01FF 255 16-bit Peripherals
0x0200 0x09FF Low RAM (Mirrored at 0x1100)
0x0C00 0x0FFF 1024 BootStrap Loader (BSL ROM)
0x1000 0x10FF 256 Info Flash
0x1100 High RAM

0xFFFF Flash
0x10000 Extended Flash

Table 1 – MSP430 and MSP430X Address Space

8.4 Basics of the Instruction Set

The language is relatively simple, but there are a
few dialects that the locals speak. There are 27 ac-
tion words (instructions), and then some additional
emulated instructions which are assembled to one
of the 27. Most of these 27 instructions have two
forms—.B when they are working on an 8-bit byte,
or .W if they want to tackle a 16-bit word. If someone
tells you something and doesn’t specify it, you can
assume it’s a word. If you’re doing a byte operation
in a register, be warned that the most-significant
byte is cleared.

The three main types of core words are single-
operand arithmetic, two-operand arithmetic, and
jumps.

Our simple single-operands are RRC (1-bit ro-
tate right and carry), SWPB (swap the bytes of the
word), RRA (1-bit rotate right as arithmetic), SXT
(sign-extend a byte into a word), PUSH (onto the
stack), CALL (a subroutine, by pushing PC and
then moving the new address to PC), and RETI
(return from interrupt, restoring the Status Regis-
ter SR and PC from stack).

Although these are all simple folk, they can, of
course, be addressed in many different ways. If our
register is n, then we see a few major types of ad-
dressing, all based off of the ‘As’ (for source) and
‘Ad’ (limited options for destination) fields:

Rn Operate on the contents of register n.

@Rn Operate on what is in memory at the address
held in Rn.

@Rn+ Same as above, then increment the register
by 1 or 2.12

x(Rn) Operate on what is in memory at the ad-
dress Rn + x.

Wait, we just told you about an ‘x’. Where did
that come from?! In this case, it’s an extension word,
where the next 16-bit word after the extension de-
fines x. In other words, it’s an index off the base
address held in Rn.

If the register is r0 (PC, the program counter),
r2 (SR, the status register), or r3 (the constant gen-
erator), special cases apply. A common special case
is to give you a constant, either -1, 0, 1, 2, 4, or 8.

Now we tackle two-operand arithmetic opera-
tions, most of which you should recognize from any
other instruction set. The mov, add, addc (add with
carry), sub, and subc instructions are all as you’d
expect. cmp pretends to subtract the source from
the destination to set status flags. dadd does a dec-
imal addition with carry. xor and and are bitwise
operations as usual. We have three that are a little
unique: bis (logical OR), bic (dest = dest AND
src), and bit (test bits of src AND dest).

Even with these instructions, though, we’re still
missing many favorite mnemonics that you’ll see in
disassembly. These are emulated instructions, actu-
ally implemented using other instruction(s).

For example, br dst (branch) is an emulated
instruction. There is no branch opcode, but in-
stead the br instructions are assembled as mov dst,
pc. Similarly, pop dst is really mov @SP+, dst, and
ret is really mov @sp+, pc. If these mappings make
sense, you’re all set to continue your travels!

Thus, when we need to get around this land of
MSP430, we look not to the many jump types of
x86, but instead to simpler patterns, where the only
kind of jump operands are relative, and that’s that.

12Here are the rules: Increment by two if registers r0 or r1, or if r4-r15 are used with a .W (2-byte) operand. Increment by
1 if r4 to r15 are used with a .B operand.

29



So jmp, the instruction says, but where to? The
first three bits (001) mean jump, the next three
specify the conditional, and the remaining ten are
a signed offset. To get there, the ten bits are multi-
plied by two (left shifted) and then are added to the
program counter, r0. Why multiply by two? Well,
we have 16-bit word alignment, in the MSP430 land,
unlike with those pesky x86 instructions you might
be thinking of. Ordnung muß sein!

You might have noticed in your disassembly that
even though we told you this was a fixed-width in-
struction set, some instructions are longer than one
16-bit word! One way this can happen is when us-
ing immediate values, which—much like those of the
glorious PDP-11 of old—are implemented by derefer-
encing and incrementing the program counter. This
way, the CPU will skip over the immediate value in
its code fetch path just as it’s fetching that same
value as data.

And, finally, there are prefix instructions that
have been added in MSP430X, the 20-bit extension
of the MSP430. These prefix instructions go before
the normal instruction, and you’ll most commonly
see them setting the upper four bits of the pointer
in a 20-bit function call.

8.5 What’s a Function, Anyways?

In x86 assembly, we’re used to looking for function
preambles to pick out the functions—but what do
we look for in MSP430 code? We’ve already dis-
cussed finding the entry point of the program and
those of other ISRs by looking at the vectors in the
IVT. What about other functions?

In MSP430, all functions that are not ISRs will
end with a RET instruction—which, as you recall, is
actually a MOV @SP+, PC.

Compilers vary greatly in the calling
conventions—as there is actually no fixed ABI. Usu-
ally, arguments get passed in r12, r13, r14, and
r15. This, however, is by no means a requirement.
MSP430 GCC uses r15 for the first parameter and
for most return value types, and r14, r13, and
r12 for the other parameters. Texas Instruments’
Code Composer and the IAR compiler (after EW430
4.10A release) use r12, r13, r14, and r15 and return
in r12.

We recommend using an additional heuristic in-
stead of looking for a function preamble format. In

this heuristic, we assume that indirect calls are rare,
and look for br #addr and call #addr instructions.
Both of these consist of two 16-bit words, and what-
ever the #addr we extract from that second word,
there’s a good chance that it’s the start of a func-
tion.

Using this logic, you should be able to find func-
tions even in stripped images disassembled with
msp430-objdump. A short script, or a good disas-
sembler, should help automate the marking of these
functions.

8.6 Making Sense of Interrupts
As with your (other) favorite microcontroller, our
exploration of the code can be preempted by an in-
terrupt.

If you don’t like these getting in the way of
your travels, they can be globally or individually
disabled—well, except for the non-maskable inter-
rupts (NMI).13

The MSP430 handles any interrupts set in prior-
ity order, and goes through the interrupt vector ta-
ble to find the right interrupt service routine’s (ISR)
starting address. It hides away the current PC and
SR on the stack, and runs the ISR. The ISR then
returns, and normal execution continues.

If one thing is for certain, it’s that 0xFFFE is the
system’s reset ISR address (used on power-up, exter-
nal reset, etc.), and that it has the highest priority.

If you have an elf32-msp430 formatted dump,14
use msp430-objdump dump.msp430 -DS to get dis-
assembly. Then locate the interrupt table at the end
of memory:
0000 f f c 0 <. sec2 >:
f f c 0 : 26 32 jn $−946 ; abs 0 x f c0e
. . .
f f f c : 26 32 jn $−946 ; abs 0 xfc4a
f f f e : 00 31 jn $+514 ; abs 0x200

We look at 0xFFFE for the reset interrupt ad-
dress, which is 0x3100 in this image. That’s our
entry point into the program, and you can see how
it nicely lines up in the disassembly:
00003100 <. sec1 >:
3100 : 31 40 00 31 mov #12544 , r1
3104 : 15 42 20 01 mov &0x0120 , r5
3108 : 75 f3 and . b #−1, r5

13Global disable is done by clearing the ‘GIE’ bit of the status register, r2.
14If not, use a command like msp430-objcopy -I ihex -O elf32-msp430 dump.hex dump.msp430 to convert into one.

30



Maybe we want to look at some specific function-
ality that is triggered by an interrupt, for example
incoming serial data. Looking in the MSP430F1611
data sheet, we find that USART1 receive is a mask-
able interrupt at 0xFFE6. If we look at the notated
IVT in an example program (e.g., TinyOS’s Printf
program compiled for TelosB), we see addresses (in
little endian) as shown here:
0000 f f e 0 <__ivtbl_16>:

f f e 0 : 52 44 dac/dma
f f e 2 : 52 44 i /o p2
f f e 4 : 56 56 usar t 1 tx
f f e 6 : d0 55 usar t 1 rx
f f e 8 : 52 44 i /o p1
f f e a : 94 4 f t imer a3
f f e c : 76 4 f t imer a3
f f e e : 52 44 adc12
f f f 0 : 52 44 usar t 0 tx
f f f 2 : 52 44 usar t 0 rx
f f f 4 : 52 44 watchdog t imer
f f f 6 : 52 44 compartor a
f f f 8 : d8 4 f t imer b7
f f f a : ba 4 f t imer b7
f f f c : 52 44 nmi/ e t c
f f f e : 00 40 r e s e t

We note that 0x4452 is used often. A quick look
at this address shows that it is an empty IVT not-
ing unused interrupts. Since we’re interested in the
USART1 receive path, we follow 0x55d0 and see a
large function that in turn calls another function—
both nicely annotated, as we were working from an
image with debug symbols:

000055d0 <sig_UART1RX_VECTOR>:
. . .

563a : b0 12 98 46 c a l l #0x4698
. . .

00004698 <SerialP__rx_state_machine >:
. . .

This technique of looking up your IVT entries
and then working backwards to reverse engineer any
handlers that correspond to the functionality you
are interested in can help you avoid getting lost in
reversing unimportant pieces of the code.

8.7 Sorting out Peripherals
If we’re reversing some firmware, hopefully we have
a target—often this can be data lines going to a radio
or some peripheral that carry sensitive data.

Some peripherals are dealt with via interrupts,
as shown above, but some are also either partially
or totally handled via touching memory defined by
the peripheral file map.

In particular, as an alternative to using inter-
rupts, a program could simply poll for incoming data
or a change in a pin’s state. Likewise, setting up
configurations for items such as the USART discussed
above is done in the peripheral file map.

15Page 23 of http://www.ti.com/lit/ds/symlink/msp430f1611.pdf

31



Let us take the same file we used above, and
look in the MSP430F1611 guide for the USART1 in
the peripheral file map.15 Here we see the registers
in the range from 0x0078 to 0x007F. Let us search
for a few of these in the image to demonstrate the
applicability of this technique.

First, we look for 0x0078 (USART control),
0x0079 (transmit control), and 0x007A (receive con-
trol). We find them all together in a function that
is responsible for configuring the USART resource.
A reader referencing the documentation will see the
other control registers also updated:

4 e8e <Msp430Uart . . . Conf igure . . . > :
. . .
4eb4 : c2 4e 78 00 mov . b r14 , &0x0078
4eb8 : d2 42 04 11 mov . b &0x1104 ,&0x0079
4ebc : 79 00
4ebe : d2 42 05 11 mov . b &0x1105 ,&0x007a
4 ec2 : 7a 00
4 ec4 : 1e 42 00 11 mov &0x1100 , r14
4 ec8 : c2 4e 7c 00 mov . b r14 , &0x007c
4 ecc : 8e 10 swpb r14
4 ece : 4e 4e mov . b r14 , r14
4ed0 : c2 4e 7d 00 mov . b r14 , &0x007d
4ed4 : d2 42 02 11 mov . b &0x1102 ,&0x007b
. . .

Whereas this approach can help you understand
the settings to better sniff the serial bus physically,

often you’d rather want to understand the actual
data being written out. For this, we look for the
peripheral holding the transmit buffer pointer—in
our case at 0x007F, according to the chip documen-
tation. Searching for this in the disassembly leads
us to a few interesting functions. Firstly, there’s one
that disables the UART, which fills this address with
null bytes. This helps us confirm we’re looking at
the right address. We also see this address written
to in the interrupt handler that we located in the
previous section—and in a large function that ends
up being a form of printf for writing out to this
serial line.

As you can see, working backwards from the ad-
dresses located in the peripheral file map can help
you quickly find functions of interest.

– — — – — — — — – — –

This guide is neither complete nor perfectly ac-
curate. We told a few lies-to-children as all teach-
ers do, and we omitted a dozen nifty examples that
would’ve fit. Still, we hope that this will whet your
appetite for working with the MSP430 architecture,
and that, when you begin to work on the ’430s, you
can get your bearings quickly, jumping into the fun
part of the journey with less hassle.

Also, for more MSP430 exploitation tricks, check
out PoC‖GTFO 2:5!

32


