
4 The FaceWhisperer for USB Glitching; or,
Reading RFID with ROP and a Wacom Tablet

by Micah Elizabeth Scott

Greetings, neighbors!
Today, like most days, I would like to celebrate

the diversity of tiny machines around us. This time
I’ve prepared a USB magic trick of sorts, incorpo-
rating techniques from the analog and the digital
domains.

Regular readers will be well aware that computer
peripherals are typically general-purpose computers
themselves, and the operating system often trusts
them a little too much. Devices attached to Thun-
derbolt (PCI Express) are trusted as much as the
CPU. Devices attached to USB, at best, are as privi-
leged as the user, who can typically do anything they
want albeit slowly and using interfaces designed for
meat.11 If that USB device can exploit a bug in lit-
erally any available driver, the device could achieve
even more direct levels of control.

Not only are these peripherals small computers
with storage and vulnerabilities and secrets, they
typically have very direct access to their own hard-
ware. It’s often firmware’s responsibility to set up
clocks, program power converters, and process ana-
log signals. Projects like BadUSB have focused on
reprogramming a USB device to attack the com-
puter they’re attached to. What about using the
available low-level peripherals in ways they weren’t
intended?

I recently made a video, a “Graphics Tablet
Primer for Hackers,” going into some detail on how a
pen tablet input device actually works. I compared
the electromagnetic power and data transfer to the
low-frequency RFID cards still used by many door
access control systems. At the time this was just a
convenient didactic tool, but it did start me won-
dering just how hard it would be to use a graphics
tablet to read 125 kHz RFID cards.

I had somewhat arbitrarily chosen a Wacom
CTE-450 (Bamboo Fun) tablet for this experiment.
I had one handy, and I’d already done a little pre-
liminary reversing on its protocol and circuit design.
It’s old enough that it didn’t seem to use any cus-
tom Wacom silicon, recent enough to be both cheap
and plentiful on the second-hand market.

4.1 A Very Descriptive Descriptor

Typically you need firmware to analyze a device.
Documented interfaces are the tip of the iceberg. To
really see what a device is capable of, you need to
see everything the firmware knows how to do. Some-
times this is easy to get. Back in PoC‖GTFO 7:3
when I was reversing an optical drive, the firmware
was plainly available from the manufacturer’s web
site. Usually you won’t be so lucky. Manufactur-
ers often encrypt firmware to hide their crimes or
slow down clones, and some devices don’t appear to
support firmware updates at all.

This device seemed to be the latter kind. No
firmware updates online. No hints of a firmware up-
dating process hidden in their drivers. The CPU
was something I didn’t recognize at first. I posted

11unzip pocorgtfo13.pdf meat.txt
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the photo to Twitter, and Ladyada recognized it as
a Sanyo/ONsemi LC87, an 8-bit micro that seems
to be mostly used in Japanese consumer electron-
ics. It comes in both flash and ROM versions, both
of which I would later find in these tablets. Test
points were available for an on-chip debugger, but I
couldn’t find the debug adapter for sale anywhere
nor could I find any documentation for the pro-
tocol. I even found the firmware for this myste-
rious TCB87-TypeC debug adapter, and a way to
disassemble it, but the actual debug port was im-
plemented by a custom peripheral on the adapter’s
CPU. I tried various bit twiddling and pulse pushing
in hopes of getting a response from the debug port,
but my best guess is that it’s been disabled.

At this point, the remaining options are more di-
rect. A sufficiently funded and motivated researcher
could certainly break out the micropositioners and
acid, reading the data directly from on-chip busses.
But this is needlessly complex and expensive. This
is a USB device after all, and we have a perfectly
good off-chip bus that can already do many things.
In fact, when you attach a USB device to your PC,
it typically hands very small pieces of its firmware
back to the PC in order to identify itself. We think of
these USB Descriptors as data tables, not part of the
firmware at all, but where else would they be stored?
On an embedded device where RAM is so precious,
the descriptor chunks will be copied directly from
Flash or Mask ROM into the USB endpoint buffer.
It’s a tiny engine designed to read parts of firmware
out over USB, and nearly every USB device has code
like this.

If this code is functioning properly, it will read
back only the USB descriptor tables, and nothing
else. If there’s a bug in the size calculation, you
may be able to request more data. If there isn’t
already a bug, you can introduce one via clock or
power glitching.

Introducing a bug at just the right time can be
tricky, so this is where it helped to build a new tool.
Well, a tiny add-on for a masterful existing tool:
the ChipWhisperer-Lite by Colin O’Flynn. The
ChipWhisperer is an open source platform for side-
channel power analysis and glitching. The joy of
having both power analysis and glitching in the same
platform is that they can be on the same reference
clock. With one oscillator, you can deterministically
step your target device through its paces, measure
its activity via the power consumption waveform,
and deliver glitches to specific clock cycles. By re-

moving as many sources of jitter as possible, glitches
can be delivered more reliably to the intended oper-
ation within the target’s firmware.

My humble addon is the FaceWhisperer, a
USB host controller based on the MAX3421E
chip, inspired of course by Travis Goodspeed’s
Facedancer21 tool. Whereas the USB host controller
in your PC will be subject to many influences far
outside your control, the USB host in the FaceWhis-
perer can be precisely synchronized with both the
target device and the ChipWhisperer itself.

Putting everything on the same clock is neces-
sary but not sufficient for cycle-accurate timing re-
peatability. The LC87, like many microcontrollers,
will boot from a free-running RC oscillator before
switching to the external clock under software con-
trol. This means it’s necessary to synchronize with
the running firmware somehow before starting up
the USB host. In this case, I’m using a comparator
input on the FaceWhisperer to precisely wait on a
debug signal that indicates the beginning of a tablet
scanning cycle.

The GET_DESCRIPTOR request we’re interested in
comes in several parts: a SETUP token that describes
what descriptor we’d like to read, some IN tokens
that each ask the device to send back one more
packet, and finally an OUT for acknowledgment.
These phases each drive a forgetful state machine
that wakes up on each interrupt and leaves notes to
itself for what needs to be done to the next packet.
Unlike antique asynchronous serial ports, USB de-
vices can never speak to the host unless they’re of-
fered a timeslot with an IN token, so no matter how
badly we glitch the firmware we do need to follow
this flow in order to read back data from the device.

This firmware extraction glitch works by disrupt-
ing the calculation and/or storage of the descriptor
length, between that SETUP and the first IN. To ex-
tract as much data as possible, the SETUP can have
a length limit of 0xFFFF and the FaceWhisperer can
continue spamming IN tokens until something fails.
With this infrastructure in place, the ChipWhis-
perer’s Glitch Explorer can hone in on timing off-
sets and glitch parameters that give us longer than
usual descriptor responses. By briefly interrupting
power at slightly different timing offsets after the
SETUP packet, a variety of glitched behavior can be
observed.

The descriptor we’ll be reading is the USB Con-
figuration Descriptor, typically one of the longest
descriptors a device will provide. This device has a

32



33



34-byte descriptor that we’ll be trying to glitch into
something much longer. Usually the whole thing
comes back in one packet:

IN
2 09022200010100801 E0904000001030102000921

0001000122920007058103090004
4 rcode 5 t o t a l 34

Sometimes our glitches occur while copying the
IN data itself. These aren’t useful on their own, but
they can give some feedback on how well the glitch
is working:

IN
2 09022200010100801 E0904000001030102000921

21FFFFFFFF20D227FFFFFFFFFF20
4 rcode 5 t o t a l 34

When you’re getting close, you start to see non-
corrupted descriptors that have a longer than ex-
pected length:

IN
2 09022200010100801 E0904000001030102000921

0001000122920007058103090004090222000101
4 0080160904000001030102000921000100012292

000705810309000409023B000201008016090400
6 0001030102000921000100012292000705810309

0004090401000103000000092100010001220F00
8 07058203400004040309041E035700610063006F

006D00200043006F002E002C004C00740064002E
10 0010034300540045002D00340035003000100343

00540045002D0036003500300010034D00540045
12 002D0034003500300010034D00540045002D0036

00350030006802680168026801680268006803F0
14 00F001F003F00270017002700070037000700370

00B801B800B801B8
16 rcode 5 t o t a l 268

Only a little more of that, and we find a glitched
configuration descriptor that’s 65,534 bytes long,
more than enough to reconstruct the entire 32 kB
firmware ROM. You only get the memory prior to
the descriptor if the address space wraps, but fortu-
nately for us this was the case. All that’s left is to
determine the address offset by looking for clues like
an IVT at the beginning or unused memory near the
end of the image, and correctly align the resulting
32 kB image.

If you’d like to try this technique on your own
devices with the ChipWhisperer, you can grab the

PCB design and source for FaceWhisperer and play
along.12

This sort of side-channel analysis still requires a
bit of PCB surgery in order to set up the device’s
power rails and clock for glitching and monitoring.
It also helps to have a reset signal and some sort
of GPIO that can be used as a timing reference. It
would be interesting future work to see how far this
setup could be reduced. Could the glitching be per-
formed solely via the USB port, even through what-
ever power regulation and conditioning the device
includes?

4.2 Coding in Disappearing Ink

The documentation for the LC87 architecture is
sparse. I eventually found an instruction encoding
table buried in some product-line-specific appendix,
but for a while the only resource I could find was
a freeware toolchain, including a compiler and an
on-chip debugger. I had already taken a look at this
debugger in an attempt to awaken the debug port on
my tablet. It wouldn’t do much without this myste-
rious TCB87-TypeC dongle, but I tried simulating
the TCB87 with a GreatFET that mostly just pre-
tends things are okay and tells this RD87 debugger
whatever it wants to hear. When I get the debugger
to start up, it begins populating the hex views with
zeroes. After a quick look with the USB analyzer, I
easily find the requests that are the same size as the
device’s memory and begin answering those with my
firmware dump. Now I have a debugger that I can
use for static analysis!

I was looking for some kind of update mech-
anism. I would later discover that this tablet
(firmware 1.16) used mask ROM whereas many ear-
lier tablets (1.13) used flash memory. Those 1.13
tablets do seem to have a bootloader of some kind
available, but I haven’t looked into it yet. With the
1.16 tablet I had been analyzing, though, I became
fairly certain there was no intended way to modify
the device’s program memory. This gave me a new
constraint, which turns out to be interesting any-
way: Turn the tablet into an RFID reader without
modifying its firmware. We’ll do this entirely via
RAM and return-oriented programming.

The next step was much easier than expected.
There was plenty of hidden functionality in the
firmware. These are things that aren’t part of any

12git clone https://github.com/scanlime/facewhisperer
unzip pocorgtfo13.pdf facewhisperer.tar.bz2
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standard and aren’t used by the official drivers, but
presumably exist for factory test purposes. There’s
a mode you can put the tablet in which enables
an additional USB endpoint that returns loads of
timers and internal debug info. Oh, and there’s a
HID request that will just write exactly 16 bytes
into RAM anywhere you like!

I think this was used in conjunction with another
routine that isn’t called anywhere, which tests the
custom silicon Sanyo added for Wacom. Oh, custom
silicon. I was hoping not to find that here. Newer
tablets have chips that are obviously designed by
Wacom to be complete analog frontends. I wanted
to start with an older tablet that would have fewer
custom parts. But perhaps the “W” in LC871W32
stands for Wacom. The analog frontend is made
from discrete components in this tablet; multiplex-
ers to select from an array of coils, op-amps to inte-
grate the received signals, a buffer to excite the coils
with a carrier wave. When I first looked at the cir-
cuit, it seemed like the 750 kHz carrier wave itself as
well as the other timing signals would be generated
using general-purpose peripherals on the micro. But
when I look for the corresponding GPIO pins, noth-
ing. More reverse engineering, and it was clear that
I was facing custom hardware. I’ve been calling it
FEB0h, after its I/O address. At first I thought it
was a serial engine of some sort that was being mis-
used to run the tablet, but now it’s clear that this
hardware is purpose-built. More on that later. For
now, it’s enough to know that the hardware or the
mask ROM itself had enough engineering risk that
they thought it prudent to include such a powerful
test feature.

This is enough to start testing the waters and
building up more and more complex ROP code. The
ROM is only 32kB, and barely half full, but there are
some useful gadgets. We can make function calls, do
memcpy, RAM-to-RAM and ROM-to-RAM. Inter-
rupts are tricky. I tried coexisting with them for a
while, but had to give up on that due to USB packet
corruption issues I couldn’t track down. Write an
arbitrary byte? Look up where we’d find that in
ROM and do a memcpy. Loops are the slowest.
These ROP stack frames can only execute once be-
fore they’re corrupted, so we must copy the code
each time it’s run. It’s slow, but we’re doing arbi-
trary things to this peripheral that we haven’t even
written any code to. We can even return it to nor-
mal operation if we like, by jumping back to the
main loop and restoring a normal stack.

This is not typically the sort of operation your
OS requires elevated privileges for. The underly-
ing Send Feature Report operation is typically as-
sociated with harmless device-specific features like
toggling your keyboard LEDs, not with writing ar-
bitrary instructions to a Turing-complete processor
that is trusted by the OS just as much as you are.
Applications can typically reserve access to any HID
device that doesn’t already have a driver loaded.
It’s easy to imagine some desktop malware that un-
loads or subverts the default driver long enough to
load some malware into a peripheral’s RAM with-
out subsequent detection by either the user or the
driver.

4.3 Amplitude Modulation Alchemy

Wacom pens and passive RFID cards are broadly
similar, in that they both use a resonant LC circuit
to pick up some energy from the reader’s chang-
ing magnetic field, then they send back data bits
with backscatter modulation, selectively shorting
out the coil. The specific mechanism is a bit dif-
ferent though, and it will make our job harder. A
typical 125 kHz RFID reader is sending out either a
continuous carrier, or perhaps sending long bursts a
few times a second to save energy. During this burst,
the reader is continuously listening for a modulated
response, with hardware filters specifically tuned to
this job.
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Wacom tablets, by contrast, are all about se-
quentially scanning an array of coils. This CTE-450
tablet has 12 short and wide horizontal coils on the
front side (Y00 through Y11) and 17 tall and thin
vertical coils on the back side (X00 to X16). When it
has no idea where the pen might be, it has to scan
everywhere. After locating the pen, it can adjust
the scanning pattern to take differential measure-
ments from the tablet coils nearest the pen coil. In-
stead of transmitting and receiving simultaneously,
the filtering can be simplified by toggling between
two modes. When transmitting, a 74HC125 buffer
drives the coil with the tablet’s carrier wave. During
this time, the analog integrator is zeroed. Then the
tablet switches modes, and begins integrating the
received signal.

These resonant LC circuits are like electromag-
netic tuning forks. An RFID tag or a Wacom
pen have a tuning fork at a specific frequency, and
some circuitry that communicates each bit by either
damping the oscillations or letting them ring. The
Wacom tablet shouts at the tuning fork’s frequency,
quickly and abruptly, and immediately listens for
the reverberation. The whole protocol is designed
around this mode switch. Gaps in the carrier in-
dicate the bit boundaries, and longer bursts divide
packets.

The trick here is to use this mechanism to read
some common RFID access card. Between the slow
return-oriented programming and the limited ana-
log frontend, I picked an easy target for the PoC.
The EM4100 is a common 125 kHz tag with a fixed
40-bit ID. It’s no more secure than a pin tumbler
lock for sure, but it isn’t too far from the tags used
in many access control systems.

The EM4100 pads the 40-bit code out to a 64-bit
repeating pattern with the addition of a 9-bit header
and a matrix of parity bits. Each bit is Manchester
encoded; 0 becomes 10, 1 becomes 01. Each half-bit
lasts 32 clock cycles, giving us a conveniently slow
data rate.

The pulsed carrier is a problem. The RFID card
does have its little tuning fork, and it keeps ringing
a little bit, but not as much as you might think, es-
pecially when the EM4100 chip is trying to power
itself from this stored energy and the external car-
rier has disappeared. A clock cycle or two, but not
nearly as long as the tablet’s A/D conversion takes.
This little bit of unpredictability, though, has so far
foiled every plan of mine to stay in sync with the
signal in order to sample it at or below the bit rate.
My workaround has been to use a short enough car-
rier pulse in order to have multiple samples per bit,
allowing me to occasionally use a pile of filters and
heuristics to recover the correct bits with appropri-
ate deference to Nyquist. The problem with using
a shorter carrier pulse is that it lowers our carrier
duty cycle, delivering less power to the RFID card.
So, there’s a delicate balance: long enough to power
the card, short enough for the resulting data to be
intelligible through this intermittent sampling.

The returned signal is quite weak, since the
tablet’s filters are looking for resonance at a very
different frequency. This is an area where I’ve seen
much difference between individual RFID tags. Un-
der unrealistic conditions, with the RFID tag placed
directly on the tablet circuit board, many tags read
successfully without much trouble. With an unmod-
ified and fully assembled tablet, I’ve had very diffi-
cult to reproduce results, occasionally reading only
one of the several tags I tried the setup with.

If you want to try this experiment or others, you
can find my simple ROP toolkit and signal process-
ing for the CTE-450 and try your luck with the
return-oriented analog hacking.13

4.4 More to do

Although so far I’ve only managed to transform this
tablet into an extremely bad RFID reader, I think
this shows that the overall approach may lead some-
where. The main limitations here are in the reliance
on slow ROP, and the relatively low quality A/D
converter on the LC871. I’ve done my best to try

13git clone https://github.com/scanlime/cte450-homebrew/
unzip pocorgtfo13.pdf cte450-homebrew.tar.bz2
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and separate the signal from the noise, but I’m no
DSP guru. It’s possible that a signal processing ex-
pert could be snooping tags with a better success
rate than I’ve been seeing. As a proof of concept,
this shows that the transformation from tablet to
RFID reader is theoretically doable, though with-
out a significant improvement in range it’s hard to
imagine this approach succeeding at reading access
cards casually left against a victim’s graphics tablet.

It could be interesting to examine newer tablets.
The custom silicon in FEB0h turned out to be one of
the best things about the CTE-450 tablet, making it
relatively easy to change the timing and carrier fre-
quency. If newer tablets have a nicer A/D converter
and a programmable filter on the receive path, they
could make a decent RFID reader indeed. A brief
look at my newer Intuos Pro tablet shows a Renesas
processor that likely has reprogrammable flash.

There’s certainly more work to do in discov-
ering the scope of devices vulnerable to glitched

GET_DESCRIPTOR requests. What other devices that
we usually think of as black-box peripherals might
have firmware that can be read out, or RAM that
we can temporarily hide code in?

It may be possible to mitigate these glitched
GET_DESCRIPTOR firmware readouts by adding ad-
ditional verification steps in the device’s USB stack,
which would each also need to be glitched. Reducing
the number of invalid states that eventually result
in spilling data will make the glitching process much
more tedious.

In practice, though, I would argue that the best
security is not to rely on secret firmware at all. Al-
gorithms shouldn’t need secrecy to keep them se-
cure. Debug features that are too dangerous to
leave should be disabled, not hidden. If any sensitive
data must be reachable from the CPU, it should be
unmapped whenever possible, especially when some
USB controller asks for your life story.
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