
10 Post Scriptum: A Schizophrenic Ghost
by Evan Sultanik and Philippe Teuwen

A while back, we asked ourselves,

What if PoC‖GTFO had completely dif-
ferent content depending on whether the
file was rendered by a PDF viewer versus
being sent to a printer?

A PostScript/PDF polyglot seemed inevitable. We
had already done MBR, ISO, TrueCrypt, HTML,
Ruby, . . . Surely PostScript would be simple, right?
As it turns out, it’s actually quite tricky.

$ gv pocorgtfo13.pdf

There were two new challenges in getting this
polyglot to work:

1. The PDF format is a subset of the PostScript
language, meaning that we needed to devise
a way to get a PDF interpreter to ignore the
PostScript code, and vice versa; and

2. It’s almost impossible to find a PostScript
interpreter that doesn’t also support PDF.
Ghostscript is nearly ubiquitous in its use as a
backend library for desktop PostScript view-
ers (e.g., Ghostview), and it has PDF sup-
port, too. Furthermore, it doesn’t have any
configuration parameters to force it to use a
specific format, so we needed a way to force
Ghostscript to always interpret the polyglot
as if it were PostScript.

To overcome the first challenge, we used a sim-
ilar technique to the Ruby polyglot from pocor-
gtfo11.pdf, in which the PDF header is embed-
ded into a multi-line string (delimited by parenthesis
in PostScript), so that it doesn’t get interpreted as
PostScript commands. We halt the PostScript inter-
preter at the end of the PostScript content by using
the handy stop command following the standard
%%EOF “Document Structuring Conventions” (DSC)
directive.

This works, in that it produces a file that is
both a completely valid PDF as well as a completely
valid PostScript program. The trouble is that Adobe
seems to have blacklisted any PDF that starts with
an opening parenthesis. We resolved this by wrap-
ping the multi-line string containing the PDF header
into a PostScript function we called /pdfheader:

/pdfheader
{
(
%!PS-Adobe
%PDF-1.5
%<D0><D4><C5><D8>

9999 0 obj
<<
/Length # bytes between “stream”

and “endstream”
>>
stream
)
}
PostScript Content
stop
endstream
endobj

Remainder of PDF Content

Multi-Line PostScript String

PostScript Function

PDF Object

Terminates

PostScript

Interpretation

The trick of starting the file with a PostScript
function worked, and the PDF could be viewed
in Adobe. That still leaves the second challenge,
though: We needed a way to trick Ghostscript into
being “schizophrenic” (cf. PoC‖GTFO 7:6), vi&., to
insert a parser-specific inconsistency into the poly-
glot that would force Ghostscript into thinking it is
PostScript.

Ghostscript’s logic for auto-detecting file types
seems to be in the dsc_scan_type function in-
side /psi/dscparse.c. It is quite complex, since
this single function must differentiate between seven
different filetypes, including DSC/PostScript and
PDF. It classifies a file as a PDF if it contains a
line starting with “%PDF-”, and PostScript if it con-
tains a line starting with “%!PS-Adobe”. Therefore,
if we put %!PS-Adobe anywhere before %PDF-1.5,
then Ghostscript should be tricked into thinking it is
PostScript! The only caveat is that Adobe blacklists
any PDF that starts with “%!PS-Adobe”, so it can’t
be at the beginning of the file (which is typically
where it occurs in DSC files). But that’s okay, be-
cause Ghostscript only needs it to occur before the
%PDF-1.5, regardless of where.

This article continues in the PostScript!

71


