
14:12 This PDF is an NES ROM that prints its own MD5 hash!
by Evan Sultanik and Evan Teran

This PDF—in addition to being a ZIP, which is
at this point de rigueur—is also a Nintendo Enter-
tainment System (NES) ROM that prints out the
PDF’s MD5 hash. In other words, it is a hash quine.
The following describes how we did it.

First, we’re going to give a quick primer on the
NES’s hardware architecture, which is necessary to
understand the iNES file format, which is ubiquitous
for storing ROMs. We then describe the PDF/iNES
polyglot, followed by how we achieved the MD5
quine.

NES Hardware and ROMs

NES cartridges have two primary ROM chips: the
PRG and CHR. That’s one of the reasons why a
special file format (e.g., iNES) is necessary to store
ROMS: Cartridges don’t have a single, contiguous
ROM.

The PRG ROM contains the actual executable
code of the game. It will typically be loaded into
the addresses from 0x8000–0xFFFF of the NES.

We have code, but do we have graphics? That’s
what the CHR ROM is for!43 The Picture Process-
ing Unit (PPU) is what renders the graphics of the
NES; it will have either CHR ROM or CHR RAM

attached to it. (Note that the PPU has its own ad-
dress space separate from the CPU.)

Nintendo was clever. Very clever. They knew
that the NES console had hardware limitations that
developers would inevitably run up against, e.g., the
maximum 32 KiB of address space dedicated to the
PRG ROM. They allowed cartridges to have cus-
tom chips that are able to intercept memory reads
(and writes!) and have logic which can effect change
based on them. These chips are called mappers.
That’s essentially how the Game Genie works: it
is a mapper that sits between the cartridge and the
console.

The most basic capability of a mapper is to af-
fect is paging. That’s right, around the same time
that Intel was releasing the i386, the NES supported
basic paging. One common way that this works is
that the ROM would detect a write to a ROM at
certain addresses, triggering the mapper to switch
which pages of ROM were visible where. For exam-
ple, a cartridge with a NES-UNROM mapper chip
would interpret a write of 0x04 to 0x8000 as a com-
mand to place the fourth 16 KiB page at address
0x8000–0xBFFF. PRG ROM remapping is just the
tip of the iceberg. Mapper hardware grew more and
more complex over the years as NES games contin-
ued to push the limits of the system.

Mappers are another reason why a ROM format
like iNES is required, since there were hundreds of
different mapper chips, some specific to individual
games. This also makes building an NES emulator
very challenging, because each individual mapper
chip must be emulated.

The iNES File Format

The de facto standard for storing NES ROMs is the
“iNES format,” named after the file format popular-
ized by an early NES emulator by Marat Fayzullin
named iNES. While there have been competing file
formats over the years such as the “Universal NES
Interchange Format” (UNIF), virtually all ROMs
you will encounter in the wild will be an iNES file.

It is worth noting that there is a successor to the
iNES file format called “NES 2.0.” It is backwards
compatible with iNES, and adds a few extra types

43Or sometimes CHR RAM, as some games procedurally generate their graphics data!

56

of information, but is not different enough to require
discussion for the purpose of creating polyglots. So
let’s take a look at this format and see where we can
place our PDF header safely.

Here is the file format of iNES:

Header
16 Bytes

Trainer (Optional)
0 or 512 Bytes

PRG ROM
x× 16 KiB

CHR ROM (Optional)
0 or y × 8 KiB

So, what is this strange beast that is a “Trainer”?
The trainer section is not something that most
ROMs need at all in modern emulators, but any
iNES ROM is allowed to have one. Essentially, the
trainer is a 512 byte block of code that the emu-
lator will load at memory address 0x7000–0x71FF.
Trainers were used by ROM dumpers to store patch
code to make it easier to translate commands from
an unsupported mapper to one that was supported.

Here is the format of the iNES header:

‘N’ ‘E’ ‘S’ 1A 02 01 04 00 00 00 00 . . .

iNES Magic x
(PRG)

y
(CHR)

Flags

RAM
Size

Zeros

The third least significant bit of the first flag byte
(offset 6) controls whether a trainer section exists.
That is why we have set it to 04.

PDF/iNES Polyglot
As you might have already guessed, the trainer is
the perfect place to put our PDF header, since it
starts at offset 16 of the iNES file and 512 bytes is
more than enough for our PDF header. Ange Alber-
tini first described this approach in PoC‖GTFO 7:6.
We can then create a PDF object to encapsulate the
remainder of the ROM. Since PDF readers ignore
everything that comes before the PDF header, the
first 16 bytes of the iNES header that come before
the Trainer are ignored.

Emulators don’t care about data after the ROM
data. In fact, you will often find iNES ROMs in
the wild that have a URL appended to the end of

the file. This causes no harm at all since an iNES
file loader only needs to consider the trainer and
ROM portions described by the header. Everything
afterward—in our case, the remainder of the PDF—
is ignored.

So, is it safe to put a PDF header into the
trainer? No game which doesn’t currently have a
trainer will do anything which interacts with code
loaded at address 0x7000–0x71FF, so they won’t
care at all what happens to be there. We had to
create our own custom NES ROM to generate the
MD5 quine anyway, so we had the control to ensure
that the trainer memory was not used.

We fill the trainer with our standard PDF
header, containing a PDF object stream to
encapsulate the remainder of the NES ROM:

%PDF-1.5
%<D0><D4><C5><D8>
9999 0 obj
<<
/Length number of bytes remaining in the ROM
>>
stream
zeros for the remainder of the 512 Trainer bytes
the remainder of the iNES ROM
endstream
endobj
the remainder of the PDF

NES MD5 Quine
The next issue is getting the ROM to display its own
MD5 hash. We used a technique similar to Greg
Kopf’s method for a PostScript MD5 quine from ar-
ticle 14:09 up on page 46, however, we were severely
restricted by the NES’s memory limitations.

In the PostScript MD5 quine PoC, each bit of
the MD5 hash was encoded as a two-block MD5
collision that was compared against a copy of it-
self. That meant that each of the 128 bits of the
MD5 hash required four 64 byte MD5 blocks, or
32,768 bytes. That’s the size of an entire ROM of
an NROM-256 cartridge!44 It’s twice the amount
of ROM that Donkey Kong, Duck Hunt, and Excite
Bike required.

We wanted to avoid relying on a mapper. So in
order to shrink the hash collision encoding to fit on
an NROM-256 cartridge, we only encode one colli-
sion (two 64 byte blocks) per MD5 bit. That re-
quires only 16,384 bytes. However, that doesn’t al-

44NROM-256 is a chip that provides the maximum amount of PRG ROM without using a mapper.

58

low for the comparison trick that Greg Kopf used in
the PostScript quine. One option would be to add a
lookup table after the collisions: For each hash col-
lision, encode a diff between the two collided blocks,
specifying which block represents “0” and which rep-
resents “1”. A lookup table would only require an
additional 256 bytes (two bytes per MD5 bit). An-
other option which uses even less space is to take
advantage of the fact that Marc Stevens’ Fastcoll45
MD5 collision algorithm produces certain bits that
always differ between the two collided blocks, as was
described by Kristoffer Janke in article 14:11. So,
we can check that bit and use it to determine par-
ity. Either way, after the final PDF is generated and
we know its final MD5 hash, we can then swap out
each of the collided blocks in the NES ROM to pro-
duce the desired bit sequence, all without altering
the overall MD5 hash.

This technique requires at most 16,640 bytes of
the ROM. However, the MD5 encoding needs to
start at the beginning of an MD5 block for the col-
lision to work well (i.e., it needs to start an address

that is a multiple of 64 bytes). That means we
can’t put it at the very end of the PRG ROM, be-
cause the last six bytes of that ROM are reserved for
the “VECTORS” segment. The NES’s CPU expects
those six bytes to contain pointers to NMI, reset,
and IRQ/BRK interrupt handlers. Therefore, we
need to shift the start of the encoding a bit earlier to
leave room. In fact, it is to our advantage to have the
MD5 encoding occur as early as possible—having as
much of our code occur after it as possible—because
any changes that occur after the 16,640 bytes of
MD5 encoding will not require recomputing the
hash collisions. Therefore, we chose to store it start-
ing at memory offset 0x9F70, which corresponds to
byte 0x9F70− 0x8000 = 0x1F70 in the PRG ROM,
which corresponds to byte 16 + 512 + 0x1F70 =
0x2180 within this PDF. Feel free to take a gander!

The code in the NES ROM to read the encoded
MD5 hash looks something like that in Figure 12.

The music in the ROM is Danger Streets, com-
posed and released to the public domain by Shiru,
also known as DJ Uranus.46

45unzip pocorgtfo14.pdf fastcoll-v1.0.0.5-1.zip
46https://shiru.untergrund.net/

1 /∗ memory address o f the s t a r t to the encoded MD5: ∗/
#define MD5_OFFSET 0x9F70

3 /∗ memory address o f the lookup t a b l e : ∗/
#define MD5_DIFFS_OFFSET (MD5_OFFSET+128∗128) /∗ 128∗128 = 16 ,384 by t e s ∗/

5 /∗∗
∗ Reads one o f the 16 by t e s from the encoded MD5 hash

7 ∗/
uint8_t read_md5_byte (uint8_t byte_index) {

9 uint8_t byte = 0 ;
for (uint8_t b i t =0; b i t <8; ++b i t) {

11 uintptr_t d i f f _ o f f s e t = MD5_DIFFS_OFFSET /∗ lookup t a b l e encodes the by te ∗/
+ 2 ∗ 8 ∗ byte_index /∗ index t ha t i s d i f f e r e n t ∗/

13 + 2 ∗ b i t) ; /∗ between the c o l l i d e d b l o c k s ∗/
uintptr_t o f f s e t = MD5_OFFSET

15 + 128 ∗ 8 ∗ (uintptr_t) byte_index /∗ 1024 B per encoded by te ∗/
+ 128 ∗ (uintptr_t) b i t

17 + PEEK(d i f f _ o f f s e t) ; /∗ index o f the by te to compare ∗/
byte <<= 1 ;

19 i f (PEEK(o f f s e t) == PEEK(d i f f _ o f f s e t + 1)) { /∗ second by te o f the lookup t a b l e ∗/
byte |= 1 ; /∗ encodes the va lue o f the by te ∗/

21 } /∗ in the c o l l i s i o n b l o c k t ha t ∗/
} /∗ r ep re s en t s "1" ∗/

23 return byte ;
}

Figure 12. Colliding Block Reader

59

