
15:08 Zero Overhead Networking
by Robert Graham

The kernel is a religion. We programmers are
taught to let the kernel do the heavy lifting for us.
We the lay folks are taught how to propitiate the
kernel spirits in order to make our code go faster.
The priesthood is taught to move their code into
the kernel, as that is where speed happens.

This is all a lie. The true path to writing high-
speed network applications, like firewalls, intrusion
detection, and port scanners, is to completely by-
pass the kernel. Disconnect the network card from
the kernel, memory map the I/O registers into user
space, and DMA packets directly to and from user-
mode memory. At this point, the overhead drops to
near zero, and the only thing that affects your speed
is you.

Masscan

Masscan is an Internet-scale port scanner, meaning
that it can scan the range /0. By default, with no
special options, it uses the standard API for raw
network access known as libpcap. Libpcap itself is
just a thin API on top of whatever underlying API
is needed to get raw packets from Linux, macOS,
BSD, Windows, or a wide range of other platforms.

But Masscan also supports another way of get-
ting raw packets known as PF_RING. This runs the
driver code in user-mode. This allows Masscan to
transmit packets by sending them directly to the
network hardware, bypassing the kernel completely
(no memory copies, no kernel calls). Just put "zc:"
(meaning PF_RING ZeroCopy) in front of an adapter
name, and Masscan will load PF_RING if it exists and
use that instead of libpcap.

In the section below, we are going to analyze the
difference in performance between these two meth-
ods. On the test platform, Masscan transmits at 1.5
million packets-per-second going through the kernel,
and trasnmits at 8 million packets-per-second when
going though PF_RING.

We are going to run the Linux profiling tool
called perf to find out where the CPU is spending
all its time in both scenarios.

Raw output from perf is difficult to read, so
the results have been processed through Brendan
Gregg’s FlameGraph tool. This shows the call stack
of every sample it takes, showing the total time in
the caller as well as the smaller times in each func-

tion called, in the next layer. This produces SVG
files, which allow you to drill down to see the full
function names, which get clipped in the images.

I first run Masscan using the standard libpcap
API, which sends packets via the kernel, the normal
way. Doing it this way gets a packet rate of about
1.5 million packets-per-second, as shown in Figure 5.

To the left, you can see how perf is confused by
the call stack, with [unknown] functions. Analyzing
this part of the data shows the same call stacks that
appear in the central section. Therefore, assume all
that time is simply added onto similar functions in
that area, on top of __libc_send().

The large stack of functions to the right is perf
profiling itself.

In the section to the right where Masscan is run-
ning, you’ll notice little towers on top of each func-
tion call. Those are the interrupt handlers in the
kernel. They technically aren’t part of Masscan,
but whenever an interrupt happens, registers are
pushed onto the stack of whichever thread is cur-
rently running. Thus, with high enough resolution
(faster samples, longer profile duration), perf will
count every function as having spent time in an in-
terrupt handler.

The next run of Masscan bypasses the kernel
completely, replacing the kernel’s Ethernet driver
with the user-mode driver PF_RING. It uses the same
options, but adds "zc:" in front of the adapter name.
It transmits at 8 million packets-per-second, using
an Ivy Bridge processor running at 3.2 GHz (tur-
boed up from 2.5 GHz). Shown in Figure 6, this
results in just 400 cycles per packet!

The first thing to notice here is that 3.2 GHz di-
vided by 8 mpps equals 400 clock cycles per packet.
If we looked at the raw data, we could tell how many
clock cycles each function is taking.

Masscan sits in a tight scanner loop called
transmit_thread(). This should really be below
all the rest of the functions in this flame graph,
but apparently perf has trouble seeing the full call
stack.

The scanner loop does the following calculations:

• It randomizes the address in blackrock_-
shuffle()

• It calculates a SYN cookie using the siphash-
24() hashing function

66

1 marks the start of entry_SYSCALL_64_fastpath(), where the machine transitions from user to kernel
mode. Everything above this is kernel space. That’s why we use perf rather than user-mode profilers like
gprof, so that we can see the time taken in the kernel.

2 marks the function packet_sendmsg(), which does all the work of sending the packet.

3 marks sock_alloc_send_pskb(), which allocates a buffer for holding the packet that’s being sent. (skb
refers to sk_buff, the socket buffer that Linux uses everywhere in the network stack.)

4 marks the matching function consume_skb(), which releases and frees the sk_buff. I point this out to
show how much of the time spent transmitting packets is actually spent just allocating and freeing buffers.
This will be important later on.

Figure 5. Performance profile of Masscan with libpcap.

Figure 6. Performance profile of Masscan with PF_RING.

67

• It builds the packet, filling in the destination
IP/port, and calculating the checksum

• It then transmits it via the PF_RING user-mode
driver

At the same time, the receive_thread() is re-
ceiving packets. While the transmit thread doesn’t
enter the kernel, the receive thread will, spending
most of its time waiting for incoming packets via
the poll() system call. Masscan transmits at high
rates, but receives responses at fairly low rates.

To the left, in two separate chunks, we see the
time spent in the PF_RING user-mode driver. Here
perf is confused: about 1/3 of this time is spent in
the receive thread, and the other 2/3 in the transmit
thread.

About ten to fifteen percent of the time is taken
up inside PF_RING user-mode driver or an overhead
40 clock cycles per packet.

Nearly half of the time is taken up by sip-
hash24(), for calculating the SYN cookie. Mass-
can doesn’t remember which packets it’s sent, but
instead uses the SYN cookie technique to verify
whether a response is valid. This is done by setting
the Initial Sequence Number of the SYN packet to
a hash of the IP addresses, port numbers, and a se-
cret. By using a cryptographically strong hash, like
siphash, it assures that somebody receiving pack-
ets cannot figure out that secret and spoof responses
back to Masscan. Siphash is normally considered a
fast hash, and the fact that it’s taking so much time
demonstrates how little the rest of the code is doing.

The build packet takes ten percent of the time.
Most of the this is spent needlessly calculating the
checksum. This can be offloaded onto the hardware,
saving a bit of time.

The most important point here is demonstrat-
ing that the transmit thread doesn’t hit the kernel.
The receive thread does, because it needs to stop
and wait, but the transmit thread doesn’t. PF_-
RING’s custom user-mode driver simply reads and
writes directly into the network hardware registers,
and manages the transmit and receive ring buffers,
all memory-mapped from kernel into user mode.

The benefits of this approach are that there is no
system call overhead, and there is no needless copy-
ing of packets. But the biggest performance gain
comes from not allocating and then freeing packets.
As we see from the previous profile, that’s where the
kernel spends much of its time.

The reason for this is that the network card is

normally a shared resource. While Masscan is trans-
mitting, the system may also be running a webserver
on that card, and supporting SSH login sessions.
Sharing these resources ultimately means allocating
and freeing sk_buffs whenever packets are sent or
received.

PF_RING, however, wrests control of the network
card away from the kernel, and gives it wholly to
Masscan. No other application can use the network
card while Masscan is running. If you want to SSH
into the box in order to run �masscan, you’ll need a
second network card.

If Masscan takes 400 clock cycles per packet, how
many CPU instructions is that? Perf can answer
that question, with a call like perf -a sleep 100.
It gives us an IPC (instructions per clock cycle) ra-
tion of 2.43, which means around 1000 instructions
per packet for Masscan.

To reiterate, the point of all this profiling is this:
when running with libpcap, most of the time is
spent in the kernel. With PF_RING, we can see from
the profile graphs that the kernel is completely by-
passed on the transmit thread. The overhead goes
from most of the CPU to very little of the CPU.
Any performance issues are in the Masscan, such
as choosing a slow cryptographic hash algorithm
instead of a faster, non-cryptographic algorithm,
rather than in the kernel!

How to Replicate This Profiling
Here is brief guide to reproducing this article’s pro-
file flamegraphs. This would be useful to compare
against other network projects, other drivers, or for
playing with Masscan to tune its speed. You may
skip to the next section on a first reading, but if,
like me, you never trusted a graph you could not
reproduce yourself, read on!

Get two computers. You want one to transmit,
and another to receive. Almost any Intel desktop
will do.

Buy two Intel 10gig Ethernet adapters: one to
transmit, and the other to receive and verify the
packets have been received. The adapters cost $200
to $300 each. They have to be the Intel chipset,
other chipsets won’t work.

Install Ubuntu 16.04, as it’s the easiest system
to get perf running on. I had trouble with other
systems.

The perf program gets confused by idle threads.
Therefore, for profiling, I rebooted the Linux
computer with maxcpus=1 on the boot command

68

line. I did this by editing /etc/default/grub,
adding maxcpus=1 to the line GRUB_CMDLINE_-
LINUX_DEFAULT, then running update-grub to save
the configuration.

To install perf, Masscan, and FlameGraph.

1 apt−get i n s t a l l l inux−t oo l s−common \
l inux−t oo l s −‘uname −r ‘ g i t \

3 bui ld−e s s e n t i a l l ibpcap−dev

5 g i t c l one https : // github . com/brendangregg /
FlameGraph

Get masscan from source and bu i l d i t :
7 g i t c l one https : // github . com/

robertdavidgraham/masscan
cd masscan

9 make
make t e s t

11 ln bin /masscan / usr / l o c a l / sb in /masscan
cd . .

13 # Get PF_RING from source and bu i l d i t :
g i t c l one https : // github . com/ntop/PF_RING

15 cd PF_RING
make

17 cd ke rne l
make i n s t a l l

19 insmod pf_ring . ko
cd . . / use r land / t o o l s

21 make i n s t a l l
cd . . / d r i v e r s / i n t e l / ixgbe / ixgbe −5.0/ s r c

23 make
sh load_dr iver s . sh

25 cd . . / . . / . . / . . / . . / . .

The pf_ring.ko module should load automat-
ically on reboot, but you’ll need to rerun load_-
drivers.sh every time. If I ran this in production,
rather than just for testing, I’d probably figure out
the best way to auto-load it.

You can set all the parameters for Masscan on
the command line, but it’s easier to create a default
configuration file in /etc/masscan/masscan.conf:

1 source−ip = 00 : 1 1 : 2 2 : 3 3 : 4 4 : 5 5
adapter−mac = 00 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2

3 router−mac = 00 : 1 1 : 2 2 : 3 3 : 4 4 : 5 5
inc lude = 0 .0 . 0 . 0 −255 . 255 . 255 . 255

5 exc lude = 255 . 255 . 255 . 255
port = 0−65535

Since there is no network stack attached to the
network adapter, we have to fake one of our own.
Therefore, we have to configure that source IP and
MAC address, as well as the destination router MAC
address. It’s really important that you have a fake
router MAC address, in case you accidentally cross-
connect your 10gig hub with your home network and

end up blasting your Internet connection. (This has
happened to me, and it’s no fun.)

Now we run Masscan. For the first run, we’ll
do the normal adapter without PF_RING. Pick the
correct network adapter for your machine (on my
machine, it’s enp2s03.)

masscan −e enp2s0f1 −r a t e 100000000

In another window, run the following. This will
grab 99 samples per second for 60 seconds while
Masscan is running.

1 cd FlameGraph
pe r f r ecord −F 99 −a −g −− s l e e p 60

3 pe r f s c r i p t | . / s t a ck co l l ap s e−pe r f . p l > out .
per f−f o l d ed

. / f lamegraph . p l out . per f−f o l d ed > masscan−
pcap . svg

You’ll have to wait 60 seconds, then it’ll produce
the file masscan-pcap.svg with the FlameGraph
pictures.

Now, repeat the process to produce
masscan-pfring.svg with the following command.
It’s the same as the original Masscan run, except
that we’ve prefixed the adapter name with zc:.
This disconnects any kernel network stack you might
have on the adapter and instead uses the user-mode
driver in the libpfring.so library that Masscan
will load:

masscan −e zc : enp2s0f1 −r a t e 100000000

At this point, you should have two FlameGraphs.
Load these in any web browser, and you can drill
down into the specific functions.

Playing with perf options, or using something
else like dtrace, might produce better results. The
results I get match my expectations, so I haven’t
played with them enough to test their accuracy. I
challenge you to do this, though—for reproducibil-
ity is the heart and soul of science. Trust no one;
reproduce everything you can.

Now back to our regular programming.

How Ethernet Drivers Work

If you run lspci -v for the Ethernet cards, you’ll
see something like the following.

69

1 02 : 00 . 1 Ethernet c o n t r o l l e r : I n t e l Corporation 82599 10
Gigabit TN Network Connection (rev 01)

Subsystem : I n t e l Corporation 82599 10 Gigabit
TN Network connect ion

3 Flags : bus master , f a s t devse l , l a t ency 0 , IRQ
17

Memory at df200000 (64−bit , non−pr e f e t chab l e) [
s i z e=2M]

5 I /O ports at e000 [s i z e =32]
Memory at df600000 (64−bit , non−pr e f e t chab l e) [

s i z e=16K]
7 Capab i l i t i e s : <acce s s denied>

Kernel d r i v e r in use : ixgbe
9 Kernel modules : ixgbe

There are five parts to notice.

• There is a small 16k memory region. This
is where the driver controls the card, using
memory-mapped I/O, by reading and writing
these memory addresses. There’s no actual
memory here—these are registers on the card.
Writes to these registers cause the card to do
something, reads from this memory check sta-
tus information.

• There is a small amount of I/O ports ad-
dress space reserved. It points to the same
registers mapped in memory. Only Intel x86
processors support a second I/O space along
with memory space, using the inb/outb in-
structions to read and write in this space.
Other CPUs (like ARM) don’t, so most de-
vices also support memory-mapped I/O to
these same registers. For user-mode drivers,
we use memory-mapped I/O instead of x86’s
“native” inb/outb I/O instructions.

• There is a large 2-megabyte memory region.
This memory is used to store descriptors
(pointers) to packet buffers in main memory.
The driver allocates memory, then writes (via
memory-mapped I/O) the descriptors to this
region.

• The network chip uses Bus Master DMA.
When packets arrive, the network chip chooses
the next free descriptor and DMAs the packet
across the PCIe bus into that memory, then
marks the status of the descriptor as used.

• The network chip can (optionally) use inter-
rupts (IRQs) to inform the driver that pack-
ets have arrived, or that transmits are com-
plete. Interrupt handlers must be in kernel
space, but the Linux user-mode I/O (UIO)
framework allows you to connect interrupts to
file handles, so that the user-mode code can

call the normal poll() or select() to wait on
them. In Masscan, the receive thread uses
this, but the interrupts aren’t used on the
transmit thread.

There is also some confusion about IOMMU. It
doesn’t control the memory mapped I/O—that goes
through the normal MMU, because it’s still the CPU
that’s reading and writing memory. Instead, the
IOMMU controls the DMA transfers, when a PCIe
device is reading or writing memory.

Packet buffers/descriptors are arranged in a ring
buffer. When a packet arrives, the hardware picks
the next free descriptor at the head of the ring, then
moves the head forward. If the head goes past the
end of the array of descriptors, it wraps around at
the beginning. The software processes packets at
the tail of the ring, likewise moving the tail forward
for each packet it frees. If the head catches up with
the tail, and there are no free descriptors left, then
the network card must drop the packet. If the tail
catches up with the head, then the software is done
processing all the packets, and must either wait for
the next interrupt, or if interrupts are disabled, must
keep polling to see if any new packets have arrived.

Transmits work the same way. The software
writes descriptors at the head, pointing to packets it
wants to send, moving the head forward. The hard-
ware grabs the packets at the tail, transmits them,
then moves the tail forward. It then generates an
interrupt to notify the software that it can free the
packet, or, if interrupts are disabled, the software
will have to poll for this information.

In Linux, when a packet arrives, it’s removed
from the ring buffer. Some drivers allocate an sk_-
buff, then copy the packet from the ring buffer into
the sk_buff. Other drivers allocate an sk_buff,
and swap it with the previous sk_buff that holds
the packet.

Either way, the sk_buff holding the packet is
now forwarded up through the network stack, un-
til the user-mode app does a recv()/read() of the
data from the socket. At this point, the sk_buff is
freed.

A user-mode driver, however, just leaves the
packet in place, and handles it right there. An
IDS, for example, will run all of its deep-packet-
inspection right on the packet in the ring buffer.

Logically, a user-mode driver consists of two
steps. The first is to grab the pointer to the next
available packet in the ring buffer. Then it processes
the packet, in place. The next step is to release the

70

packet. (Memory-mapped I/O to the network card
to move the tail pointer forward.)

In practice, when you look at APIs like PF_RING,
it’s done in a single step. The code grabs a pointer
to the next available packet while simultaneously re-
leasing the previous packet. Thus, the code sits in
a tight loop calling pfring_recv() without worry-
ing about the details. The pfring_recv() function
returns the pointer to the packet in the ring buffer,
the length, and the timestamp.

In theory, there’s not a lot of instructions in-
volved in pfring_recv(). Ring buffers are very ef-
ficient, not even requiring locks, which would be ex-
pensive across the PCIe bus. However, I/O has weak
memory consistency. This means that although the
code writes first A then B, sometimes the CPU may
reorder the writes across the PCI bus to write first
B then A. This can confuse the network hardware,
which expects first A then B. To fix this, the driver
needs memory fences to enforce the order. Such a
fence can cost 30 clock cycles.

Let’s talk sk_buffs for the moment. Histori-
cally, as a packet passed from layer to layer through
the TCP/IP stack, a copy would be made of the
packet. The newer designs have focused on “zero-
copy,” where instead a pointer to the sk_buff is
forwarded to each layer. For drivers that allocate an
sk_buff to begin with, the kernel will never make
a copy of the packet. It’ll allocate a new sk_buff
and swap pointers, rewriting the descriptor to point
to the newly allocated buffer. It’ll then pass the
received packet’s sk_buff pointer up through the
network stack.

As we saw in the FlameGraphs, allocating sk_-
buffs is expensive!

Allocating sk_buffs (or copying packets) is nec-
essary in the Linux stack because the network card
is a shared resource. If you left the packets in the
ring buffer, then one slow app that leaves the packet
there would eventually cause the ring buffer to fill
up and halt, affecting all the other applications on
the system. Thus, when the network card is shared,
packets need to be removed from the ring. When
the network card is a dedicated resource, packets
can just stay in the ring buffer, and be processed in
place.

Let’s talk zero-copy for a moment. The Linux
kernel went through a period where it obsessively
removed all copying of packets, but there’s still one
copy left: the point where the user-mode applica-

tion calls recv() or read() to read the packet’s
contents. At that point, a copy is made from kernel-
mode memory into user-mode memory. So the term
zero-copy is, in fact, a lie whenever the kernel is
involved!

With user-mode drivers, however, zero-copy is
the truth. The code processes the packet right in
the ring buffer. In an application like a firewall, the
adapter would DMA the packet in on receive, then
out on transmit. The CPU would read from mem-
ory the packet headers to analyze them, but never
read the payload. The payload will pass through the
system completely untouched by the CPU.

Let’s talk about interrupts for a moment. Back
in the day, an interrupt was generated per packet.
Indeed, at one time, two interrupts could be gener-
ated, one after the TCP/IP headers were received,
so processing could start immediately, and another
after the rest of the packet had been received.

The value of interrupts is that they provide low
latency, important for devices that forward pack-
ets (firewalls, IPS, routers), or for fast responses
to packets. The cost of interrupts, though, is that
they cause large CPU overhead. When an inter-
rupts happens, it forces execution of an interrupt
handler. Even medium rates of packets can over-
whelm the system with interrupts, so that as soon
as the system leaves an interrupt handler, it immedi-
ately enters another one. In such cases, the system
has essentially locked up. The mouse won’t even
move on the screen until the packet rate decreases,
after which point the system will behave normally.32

The obvious solution to this is to turn off inter-
rupts from the network card. Instead, the software
can sit in a tight loop and poll() to see if new pack-
ets arrive. Another strategy is to program the timer
chip for frequent interrupts. The card can bounce
back and forth among these strategies, depending on
the current network speed. Polling consumes a lot of
CPU time. Using delayed timer interrupts increases
latency.

Those writing custom drivers have used these
strategies since the 1980s. Around 2006, Linux
drivers started doing the same, using the NAPI API
to enable polling when packets arrived at high speed.
Around that time, network hardware also improved,
adding support for coalescing interrupts, so that it
generated fewer at high speed, generating only one
interrupt after many packets have arrived.

In the graphs, you saw that the libpcap had
32If caught during the late stages of booting, the system might not even boot up until the packet flow eases up.

71

some small overhead with interrupts, but it’s not
overwhelming, because NAPI interrupt moderation
kicks in. Using pfring gets rid of this overhead.

Let’s talk system call overhead. A recent paper
by Livio Soares and Michael Stumm does a good job
measuring it.33 The basic cost of entering or leav-
ing kernel space is around 150 clock cycles. This
alone takes more time than all the user-mode driver
processing done by PF_RING, according to our mea-
surements.

There are further expenses to the system call. It
has to walk through a bunch of kernel data struc-
tures. This then pollutes the caches on the chip.
According to the Soares paper, it evicts about half
the data in the L1 cache. This will cause data access
to go from 4 clock cycles (often masked by the out-
of-order processing of the CPU) to 12 clocks in L2
cache, or 30 clocks in L3 cache. The effective cost
can thus equal hundreds of extra clock cycles.

On the other hand, the cost can easily be amor-
tized by doing multiple packet reads or writes per
system call. Linux has a recvmsg() system call that
does this, to good effect.

Combining all this together, we see why a user-
mode driver has such big gains (or conversely, why
the kernel has such big losses): (a) it avoids the al-
location/deallocation of memory; (b) it avoids any
memory copies; (c) it avoids system call overhead,
and (d) it avoids interrupts.

Some History of Ethernet Drivers

Since the dawn of networking there have been peo-
ple dissatisfied with the standard Ethernet drivers
who have written their own.

An example were packet sniffers, like the Net-
work General “Sniffer” product. Back in the day,
they wrote custom drivers so they could capture at
“wire speed” on an 80286 microprocessor. The ma-
jor feature was simply disabling interrupts. Portable
MS-DOS computers were used as packet sniffers be-
cause “real” computers like SPARCstations running
Solaris couldn’t handle high traffic rates.

Early drivers were hard, because hardware
sucked. There was no bus master DMA in the early
ISA bus days, so for DMA, you had to use the moth-
erboard’s DMA controller. Only, it wasn’t really
that fast. So instead, drivers used the Programmed
I/O (PIO) mode to read packets from the adapter.

There was also the problem of bus bandwidth.

Early PCI supported 1 Gbps in theory (32 bits times
33 MHz), but various overheads made that impracti-
cal. It wasn’t until wider PCI (64-bit) or/and faster
PCI (66 MHz) that true wirespeed gigabit Ethernet
was possible.

Also, with PCI, all the slots were shared on the
same bus, so other devices impacted yours. This was
especially difficult when building firewalls, routers,
or IPS applications that needed to both transmit
and receive. Luckily, motherboards started support-
ing multiple independent PCI buses. Still, PCI was
still single-plexed, meaning it couldn’t transfer in
both directions at the same time.

Virtually all these concerns have gone away now.
Even a single lane of PCIe 1.0 is 2 Gbps, bidirec-
tional, with more than enough bandwidth to handle
sending and receiving at full 1 Gbps.

The early Intel 1 Gbps card had only 256 descrip-
tors. Timing was tight enough that at full band-
width; there wasn’t enough time to process packets
before the ring buffer would fill up. With BlackICE,
we solved this by allocating an effective ring buffer
of several thousand descriptors. Then, when pack-
ets arrived, we replaced the existing descriptors with
new descriptors from the preallocated set. We used
two CPUs, one dedicated to running the user-mode
driver doing this, and another reading and process-
ing packets from the large virtual ring buffer. I men-
tion this trick because, at the time, Intel engineers
told us it wasn’t possible to capture packets at wire-
speed, and we were able to prove them wrong.

Historically, and often today, the reality is that
few hardware vendors test their hardware at max-
imum speed. Since operating systems can’t handle
it, they don’t test for it. That makes writing drivers
for practical hardware much harder than it would
seem in theory, as driver writers have to overcome
bugs in the hardware.

Today, custom drivers are common. Back in the
day, they were black magic.

Core Concept

In 1998, I created BlackICE, an IDS/IPS using a
custom driver. A frequent question at the time was
why we didn’t write it on Linux, or even BSD, which
everyone knew was faster. In particular, some pa-
pers at the time “proved” that the BSD networking
was the fastest.

33unzip pocorgtfo15.pdf flexsc-osdi10.pdf

72

ICEBlack
defender

This bothered me because I was unable to ex-
plain the core concept. If we are completely bypass-
ing the operating system, then the operating sys-
tem doesn’t matter. As the graphs show, Masscan
spends no time in the operating system. Given the
same version of GCC, and the same hardware, it’ll
run at nearly identical speed, regardless if the op-
erating system is Windows, Linux, or BSD. It’s like
any other CPU-bound (rather than OS-bound) task.

Yet, people couldn’t appreciate this. They knew
in their hearts that some operating system was bet-
ter, and couldn’t see the concept of bypassing it.

BlackICE used poll mode, instead of interrupts,
so it didn’t lock up under high packet rates. Now,
with NAPI, and poll-mode drivers like PF_RING,
it’s something everyone can play with and under-
stand. Back then, it was some weird black magic
that people refused to believe actually worked. My
11-inch laptop computer happened to use 3Com’s
3c905 chip, the only 100 Mbps card we wrote a driver
for. Even after demonstrating it handling the maxi-
mum rate of 148,800 packets-per-second, people re-
fused to believe it worked. There’s a Defcon video
where the presenter claims that this is impossible,
that the notebook would literally melt under such
a load. Nowadays, cheap notebooks easily handle
max 1 Gbps speeds (1,488,000 packets-per-second)
using things like PF_RING.

In 2003, Gartner came out with a report that
software IDS was dead, because it couldn’t han-
dle line-rate gigabit Ethernet, and that “hardware”
was needed. That was based on experience with
Snort, which had no custom drivers available at the
time. Even when customers explained to Gartner
they were successfully using our product at line rate,
they refused to believe.

More interesting was the customers who tested
our software product side-by-side with “hardware”
competitors in the lab, and found our product faster.
They still bought the competitors’, because of FUD.
Nobody got fired for buying a hardware product
that turned out to be slow.

Even today, discussions of these drivers still get
questions like “What about Endace?” Endace builds
custom cards with FPGAs to accelerate processing.
This doesn’t apply. The overhead for Masscan using

PF_RING is nearly zero, and would have the identi-
cal overhead working with an Endace card, also near
zero. The FPGA doesn’t reach outside the card and
somehow make Masscan’s code faster.

Yes, Endace does have some advantages. You
can push filters to card, so that fewer packets ar-
rive in a system. This is needed in some networks.
However, most people use Endace for things that
PF_RING would solve just fine, because they believe
in the power of hardware.

Finally, the same sorts of prejudices exist with
kernel code. Programmers are indoctrinated to be-
lieve code runs faster in the kernel, which is not true.
The reason you push stuff into the kernel is to avoid
the kernel/user transition. There’s otherwise no in-
herent advantage. Pushing things like the driver to
user mode is just doing the same thing, avoiding the
kernel/user transition. Indeed, that’s all micoroker-
nels are, operating systems that aggressively push
subsystems outside the kernel.

Several Drivers to Choose From

Masscan uses PF_RING because of compile
dependencies—there is no actual dependency. You
compile Masscan without any dependency on PF_-
RING, yet that compiled code will go hunt for the
pfring.so library and dynamically load it. Thus,
in the replication instructions, I have you compile
Masscan first, and PF_RING second.

But there are two other options of note.
Intel has a system called DPDK, the Data-Plane

Development kit. It contains not only a user-mode
driver similar to PF_RING, but a whole toolkit to
solve other problems, like multi-CPU synchroniza-
tion and multi-socket NUMA memory handling. It’s
a real awesome toolkit. However, it’s also an enor-
mous dependency for code. That’s why Masscan
uses PF_RING—it’s an optional feature that most
users will never see. Had I used DPDK, I would’ve
forced users into dependency hell trying to build a
massive toolkit for my little application.

Another option is netmap. This is a kernel-mode
driver that is otherwise identical to the user-mode
stuff. It memory maps the packet buffers in user
space, so it’s truly zero copy. It also disconnects the
driver from the network stack, and gives exclusive
access to the application, so there’s no allocation
and freeing of sk_buffs. It batches multiple reads
and writes with a single system call, amortizing the
cost of system calls across many packets.

73

The great thing about netmap is that it’s built
into the latest Linux kernels. Assuming you have
Intel Ethernet, or even a Realtek Gigabit card, it
should work immediately with no special software.
I haven’t gotten around to adding this to Masscan,
but the overhead should be comparable to PF_-
RING—despite being tainted with evil kernel-mode
code.

Some notes on IDS design

One place to use these “user-mode no-interrupt zero-
copy ring-buffer” drivers is with a network intrusion
detection system, or even an inline version called
and intrusion prevention system.

None of the existing open-source IDS projects
(Snort, Bro, Suricata) are really designed for speed.
They were written using libpcap where, at high
speed, the kernel consumed most of the CPU power.
As a consequence, there were only so much perfor-
mance improvements that could be made before it
wasn’t worth it. Optimizations that made the soft-
ware infinitely fast would still not even double the
practical performance of the IDS, because the kernel
would be eating up all the time.

But, with near zero overhead in the drivers, some
interesting optimizations become worthwhile.

One problem with the Snort IDS is how it does
TCP reassembly. It must copy packets into the same
buffer in order to perform regex searches. This adds
two things which we know to be bad: memory allo-
cations and memory copies.

An alternative is to not do this, to neither do
regex as the basis of signatures, nor do reassembly.

This approach is demonstrated in Masscan in
several places. Masscan can establish a TCP connec-
tion and interact with the service. When it needs to
search for patterns, instead of a regex it uses an Aho-
Corasick (AC) pattern matcher. Whereas a normal
regex needs to have a complete buffer, so that it can
do back tracking, an AC pattern matcher does not.
It accepts input a sequence of fragments, saving the
state of the search at the end of one fragment and
continuing at the start of the next fragment.

This has the same practical ability to search a
TCP stream, but without the need to “reassemble”
fragments, allocate memory, or do memory copies.

In abstract computer science terms, this is the
tradeoff between NFAs (non-deterministic finite au-
tomata) which can consume a lot of CPU power, and

DFAs (deterministic finite automata), which con-
sume a fixed amount of CPU power, but at the
expense of using a lot of memory for the tables it
builds.

Another thing you’ll see in Masscan is protocol
decoders based on state machines. Again, instead
of reassembling packets, the protocol decoder saves
state at the end of one fragment and continues with
that state at the start of the next. An example of
this is the X.509 parser, proto-x509.c. The unit
test calls this two ways, one with an entire certificate
to be parsed, and one where the bytes are processed
one at a time, as if they had arrived in fragments
over TCP.

Such state-machine parsers are really weird, but
by avoiding memory allocations and copies, they be-
come really fast at high network speeds. It’s a diffi-
cult optimization to make the code that would add
little value when using kernel mode drivers, but be-
comes an important way of building an IDS if using
these zero-overhead drivers.

– — — – — — — — – — –
The kernel is a lie.

74

