
15:11 X86 is Turing-Complete without Data Fetches
by Chris Domas

One might expect that to compute, we must first
somehow access data. Even the most primitive Tur-
ing tarpits generally provide some type of load and
store operation. It may come as a surprise, then,
that most modern architectures are Turing-complete
without reading data at all!

We begin with the (somewhat uninspiring) ob-
servation that the effect of any traditional data fetch
can be accomplished with a pure instruction fetch
instead.

data:
.dword 0xdeadc0de
mov eax, [data]

That fetch in pure code would be a move sourced
from an immediate value.

mov eax, 0xdeadc0de

With this, let us then model memory as an array
of “fetch cells,” which load data through instruction
fetches alone.

cell_0:
mov eax, 0xdeadc0de
jmp esi

cell_1:
mov eax, 0xfeedface
jmp esi

cell_2:
mov eax, 0xcafed00d
jmp esi

So to read a memory cell, without a data fetch,
we’ll jmp to these cells after saving a return address.
By using a jmp, rather than a traditional function
call, we can avoid the indirect data fetches from the
stack that occur during a ret.

mov esi, mret load return address
jmp cell_2 load cell 2

mret: return

A data write, then, could simply modify the im-
mediate used in the read instruction.

mov [cell_1+1], 0xc0ffee set cell 1

Of course, for a proof of concept, we should actu-
ally compute something, without reading data. As
is typical in this situation, the BrainFuck language is
an ideal candidate for implementation — our fetch
cells can be easily adapted to fit the BF memory
model.

Reads from the BF memory space are performed

through a jmp to the BF data cell, which loads
an immediate, and jumps back. Writes to the BF
memory space are executed as self modifying code,
overwriting the immediate value loaded by the data
cell. To satisfy our “no data fetch” requirement, we
should implement the BrainFuck interpreter without
a stack. The I/O BF instructions (. and ,), which
use an int 0x80, will, at some point, use data reads
of course, but this is merely a result of the Linux im-
plementation of I/O.

First, let us create some macros to help with the
simulated data fetches:

%macro simcall 1
mov esi, %%retsim
jmp %1

%%retsim:
%endmacro

%macro simfetch 2
mov edi, %2
shl edi, 3
add edi, %1
mov esi, %%retsim
jmp edi

%%retsim:
%endmacro

%macro simwrite 2
mov edi, %2
shl edi, 3
add edi, %1+1
mov [edi], eax

%%retsim:
%endmacro

Next, we’ll compose the skeleton of a basic BF
interpreter:

_start:
.execute:

simcall fetch_ip
simfetch program, eax

cmp al, 0
je .exit
cmp al, ’>’
je .increment_dp
cmp al, ’<’
je .decrement_dp
cmp al, ’+’
je .increment_data
cmp al, ’-’
je .decrement_data
cmp al, ’[’
je .forward
cmp al, ’]’
je .backward
jmp done

Then, we’ll implement each BF instruction with-
out data fetches.

87

.increment_dp:
simcall fetch_dp
inc eax
mov [dp], eax
jmp .done

.decrement_dp:
simcall fetch_dp
dec eax
mov [dp], eax
jmp .done

.increment_data:
simcall fetch_dp
mov edx, eax
simfetch data, edx
inc eax
simwrite data, edx
jmp .done

.decrement_data:
simcall fetch_dp
mov edx, eax
simfetch data, edx
dec eax
simwrite data, edx
jmp .done

.forward:
simcall fetch_dp
simfetch data, eax
cmp al, 0
jne .done
mov ecx, 1

.forward.seek:
simcall fetch_ip
inc eax
mov [ip], eax
simfetch program, eax
cmp al, ’]’
je .forward.seek.dec
cmp al, ’[’
je .forward.seek.inc
jmp .forward.seek

.forward.seek.inc:
inc ecx
jmp .forward.seek

.forward.seek.dec:
dec ecx
cmp ecx, 0
je .done
jmp .forward.seek

.backward:
simcall fetch_dp
simfetch data, eax
cmp al, 0
je .done
mov ecx, 1

.backward.seek:
simcall fetch_ip
dec eax
mov [ip], eax
simfetch program, eax
cmp al, ’[’
je .backward.seek.dec
cmp al, ’]’
je .backward.seek.inc
jmp backward.seek

.backward.seek.inc:
inc ecx
jmp .backward.seek

.backward.seek.dec:
dec ecx
cmp ecx, 0
je .done
jmp .backward.seek

.done:
simcall fetch_ip
inc eax
mov [ip], eax
jmp .execute

.exit:
mov eax, 1
mov ebx, 0
int 0x80

Finally, let us construct the unusual memory
tape and system state. In its data-fetchless form,
it looks like this.
fetch_ip:

db 0xb8
ip:

dd 0
jmp esi

fetch_dp:

mov eax, xxxxxxxx

db 0xb8
dp:

dd 0
jmp esi

data:
times 30000 \

mov eax, xxxxxxxx

db 0xb8, 0, 0, 0,
0, 0xff, 0xe6, 0x90

program:
times 30000 \

mov eax, xxxxxxxx, jmp
esi, nop

db 0xb8, 0, 0, 0,
0, 0xff, 0xe6, 0x90

mov eax, xxxxxxxx, jmp
esi, nop

For brevity, we’ve omitted the I/O functionality
from this description, but the complete interpreter
source code is available.43

And behold! a functioning Turing machine on
x86, capable of execution without ever touching the
data read pipeline. Practical applications are nonex-
istent.

43git clone https://github.com/xoreaxeaxeax/tiresias || unzip pocorgtfo15.pdf tiresias.zip

88

