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Abstract

Embedded computers are unavoidable in our daily life, and our interaction with them

only looks to increase as more products include the words ‘Internet of Thing’ in their

selling features. Embedded computers can be found in our credit cards, in our cars,

and in our thermostats. With such a wide distribution of embedded computers one

might expect the companies designing and building them to look towards the large

body of research present in academia about attacking and securing these devices.

But a gap exists between these two worlds, and the result can be seen in the many

attacks against embedded devices presented every year at conferences such as Black

Hat and DEFCON. This thesis introduces low-cost and open-source hardware and

software that allows industry to more easily apply recent research publications, so

this gap can be closed.

The fields of side-channel power analysis and fault injection allows us to success-

fully attack even strong cryptographic protocols, as these protocols can be broken

when implemented on embedded devices. Understanding these attacks is critical to

build strong devices that have to resist attacks for the next five to twenty years,

especially where the devices may have limited ability to be updated. In addition

to introducing a novel architecture for the analysis tool, this thesis includes several

examples of attacks against various devices including small microcontrollers, field

programmable gate arrays, embedded Linux computers, and IEEE 802.15.4 wireless

nodes.
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Chapter 1

Introduction

1.1 Background

The Internet of Things (IoT) is one of the most popular markets of electronic devices,

with forcasts expecting over $10 trillion a year of economic value by 2025 [63]. While

some would question if an internet connected pet feeder is truly needed (and the

resulting problems that happens when it breaks down due to a server failure[83]), the

IoT market is a demonstration of what is possible with continuing advancements in

embedded computer systems.

Embedded computers are typically a small task-specific computer contained within

a larger system. Embedded computers are found in almost every market: within

consumer goods you would find one within a smart thermostat (such as a Nest),

digital camera, or an alarm system; within the automotive environment of typical car

you could find 30 or more small computers, controlling everything from the engine to

raising and lowering windows[131]; and within aerospace these embedded computers

could be found running the autopilot on passenger aircraft, within the entertainment

system, and logging critical flight parameters to the black box.

These embedded computers have continuously gained more processing capability,

while at the same time requiring less electrical power to operate, and with a lower cost.

As an example in 1996 a typical embedded processor for a low-cost application might

be the Microchip PIC16C711, which had 1000-unit pricing of $3.53 (approximately

equivalent to $5.36 in 2016 dollars)[86]. The PIC16C711 had 1KByte of EPROM

program memory and 68 bytes of RAM, 4 channel ADC, and operates at up to a

20 MHz clock.

In 2016, for $0.621 at 1000-unit pricing one can get a STM32F030F4P6 device

which has 16Kbyte of FLASH memory, 4KByte of RAM, an 11 channel ADC, and

operates at up to a 48 MHz clock. For $4.93 a ATSAM4S16CA-AU device has 1MByte

1Pricing based on Digi-Key prices in October 2016

1
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of FLASH memory, 128KByte of RAM, operates at up to 120 MHz, and includes many

peripherals such as ADCs and USB. Even more advanced devices integrate WiFi and

other wireless communication interfaces, and are available at very low cost in higher

quantity.

The growth of more advanced processors being available at lower cost is of great

interest from a security perspective. Many consumer electronics now run small op-

erating systems, even if the task being performed is fairly simple. The Philips Hue

is a smart lighting system, yet its main bridge runs Linux and contains two micro-

controllers [102]. Often this is done to simplify development – writing very small

embedded code from scratch is time-intensive, and may be difficult to modify or up-

date in the future. But if the product is developed on-top of an OS (such as Linux),

the developers can take advantage of the underlying OS for features such as network-

ing, routing, file systems, and web communication.

These more complex systems often have more attack vectors someone could po-

tentially exploit. And if they are able to get access to a system, they may be able to

perform more damaging attacks. For example a Nest wireless thermometer may have

a wireless interface connected to smart lights, and a wireless interface connected to the

home network. Could someone attacking the smart lights use the Nest thermometer

as a bridge to attack the home network?

Such bridging has already been demonstrated. In 2015 researchers showed how

they could hack a Jeep Cherokee remotely, sending messages on the local network

of the car over a cellular connection [55, 87]. These local messages allowed almost

complete control of car systems - they could perform everything from turning on

windshield wipers to turning off the engine. It was possible to perform these attacks

only after significant reverse engineering of the embedded computers, and finding ways

to remotely reprogram several embedded computers, before it was finally possible to

bridge messages from the external cellular modem onto the local automotive CAN

network.

Security considerations are a required part of embedded design in this environ-

ment. This becomes especially important as more devices are equipped with net-

working and communication capabilities, giving them the ability to be used as part

of a larger attack, even if the specific device in question does not perform important
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duties.

Typical solutions that are applicable on PCs, such as using strong encryption,

may be either more difficult or considerably less effective on embedded systems. For

example differential power analysis (DPA) [72] can break a perfect implementation of

AES, making it trivial to attack a device even though it uses encryption to protect

the firmware.

While many of the lessons learned protecting PCs from virus and security threats

are relevant, there is a rather large additional body of knowledge on security threats

that are specific to the embedded environment. Designers of embedded systems must

be aware of these threats in order to design secure embedded systems.

1.2 Motivation

Despite the importance of security on embedded systems, many products are released

with insufficient protection against attackers. These security threats should be well-

known by now – DPA as a method of breaking encryption has been publically disclosed

for 18 years. Yet the continual use of unprotected encryption routines shows that

engineers are either unaware of the threat or do not take it seriously [107].

Before starting this PhD, I had worked at Atmel on various projects related to

IEEE 802.15.4 wireless protocols, including the ZigBee-IP Standard [4]. During this

time I worked on both embedded system design and protocol specifications, and part

of this work included discussions around security considerations. In these discussions

the types of attacks discussed in my thesis were relatively unknown by most engineers

(myself included at the time), and generally it was assumed they were not a practical

threat. This was almost entirely due to my unfamiliarity with performing them myself

– it’s difficult to gauge the relevance of these attacks without practical experience.

While engineers may be familiar with the existence of these attacks, it is very

rare to find a general embedded engineer who has actually performed them. Univer-

sities doing this research might expose their undergraduate engineers to the problem,

but the majority of engineering students would have seen these attacks only in a

theoretical lecture, if they were mentioned at all.

It was clear to me that not only is more research needed in pushing these attacks

forward, but it’s needed to make this research available for use by both academics
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and engineers in industry. Bridging this gap is critical for ensuring products being

developed in industry remain secure for their expected lifetime. What is needed is that

any embedded designer is not only aware of the attacks, but has actually performed

them and is able to understand how they apply to systems they are designing.

1.3 Contributions of the Thesis

My motivation of both performing fundamental new research, along with helping to

make this work available for a wider audience has shaped the direction of this thesis.

The main contributions are related to three areas: design of a large open-source

platform for performing the attacks, new methods of performing fault attacks, and

further examples of attacking devices used in the development of products.

1.3.1 Capture Tools

The most major contribution made in this thesis for embedded side-channel power

analysis is the ChipWhisperer open-source platform, discussed in Chapter 4. This

platform was released as an open-source project, and has already been used in nu-

merous academic papers by other researchers [19, 23, 40, 42, 43, 49, 61, 76, 79, 96, 97,

113, 148]. This platform contains both the hardware designs for building a measure-

ment platform, along with the software required to drive this hardware and perform

many types of attacks on embedded systems.

I had many talks at conferences related to this platform, including talks at industry-

focused conferences such as Black Hat, DEFCON, SEC-T, and RECON. In addition

I ran a tutorial at CHES on the use of this ChipWhisperer platform for building

a very low-cost lab setup, and later used the ChipWhisperer platform as part of a

capture-the-flag (CTF) event at CHES 2016.

The capture tool work also built into development of novel techniques for prepro-

cessing data, discussed in Chapter 5. This work demonstrates methods of performing

‘clock recovery’ both using a regular oscilloscope, and using my special ChipWhis-

perer platform. This clock recovery hardware opens up the ability to synchronize

certain fault injection attacks to a device with an internal clock.
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1.3.2 Fault Attacks

Fault attacks may be one of the most powerful methods of breaking embedded sys-

tems. My work concentrated on the development of a simple ‘crowbar’ method of

inserting faults, and demonstrating its advantages over previous systems. In particu-

lar, this method is able to achieve extremely high temporal accuracy (i.e., targeting

a specific instruction). This method can also be readily applied to real devices, for

example I target two different off-the-shelf embedded Linux computers in addition to

an 8-bit microcontroller and a custom FPGA board. This is discussed in Chapter 8.

1.3.3 Attack Examples

Finally, several examples of side-channel power analysis attacks are presented. The

Atmel ATMega128RFA1 device was analyzed in Chapter 7. This chapter also demon-

strates how to attack the device when it’s running a standard IEEE 802.15.4 wireless

stack. This requires development of several new techniques to work with the AES-

CCM* mode encryption used in this standard. It also required development of specific

measurement techniques for use with this device, which are widely applicable to other

IEEE 802.15.4 SoC devices from other manufactures.

I’ve also brought an example attack against an AES-256 bootloader, specifically

one that was part of an app-note published by a microcontroller manufacture. This

demonstrates how side-channel power analysis can be used to trivially break software

implementations where engineers may blindly follow the suggested best practices from

such app-notes.

1.4 Outline of Thesis

The rest of this thesis is organized as follows – background on aspects of embedded

hardware security covered in this thesis is presented in Chapter 2. This includes side-

channel power analysis and glitching attacks. The power measurement considerations

are presented in Chapter 3, which are then built upon to develop the open-source

ChipWhisperer platform in Chapter 4. Using this platform on practical devices may

require the clock recovery techniques discussed in Chapter 5, as they allow these tech-

niques to be applied in situations where no external clock is available. The next two
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chapters are practical attacks: first Chapter 6 breaks an AES-256 bootloader, and

then Chapter 7 breaks an AES hardware accelerator along with providing consider-

ations for breaking it during use with IEEE 802.15.4 wireless protocols. Chapter 8

details the novel power glitching method developed, and demonstrates this against

several devices including a Raspberry Pi and a FPGA device. Finally Chapter 9 has

some final remarks on this thesis, and what extensions can be made. Appendix A

explicitly details my contributions made to the field during this thesis.



Chapter 2

Background and Related Work

The literature review that follows outlines the history of side-channel power analysis

and other embedded hardware attacks. This has been split into two general sections –

side-channel power analysis, and fault injection. Certain topics which are outside the

scope of this thesis are not discussed, such as attacks involving the decapsulation of

chips and directly probing the surface or attacking the decapsulated surface [5, 124].

2.1 Side-Channel Power Analysis

It had been known that the power consumed by a digital device varies depending on

the operations performed since at least 1998, when Kocher, Jaffe, and Jun showed

the use of the power analysis for breaking cryptography[72]. The first example given

was that of Simple Power Analysis (SPA), where knowing the sequence of operations

would directly allow read-out of the secret key. Differences in power consumption for

different operations allows breaking of cryptographic algorithms using SPA.

As an example, consider the source code from Listing 2.1. This code is taken from

the file bigint.c of avr-crypto-lib, an open-source library for the AVR microcon-

troller. This particular function is used as part of the RSA crypto system.

When a bit of the exp variable is 1 a square and multiply is performed, and

when a bit of the variable is 0 only a square is performed. Looking at the power

consumption, we can see some difference between a square and multiply operations.

This is shown in Figure 2.1, where the code has been compiled onto an Atmel XMEGA

microcontroller. The leakage in Figure 2.1 can be seen in the timing when a ‘1’ is

processed compared to a ‘0’. While both the square and multiply have similar power

signatures on this platform, the delay on entering the square routine is slightly longer.

The delay marked at “A” in this figure is about 80 mS, and the delay at “B” is about

60 mS. The slightly longer delay can very reliably be detected to determine if two

function calls have occurred (square + multiply, indicating a ‘1’) or only one function

7
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Listing 2.1: The following lines are from bigint.c in avr-crypto-lib, showing an

example implementation of the vulnerable RSA code.

uint8_t flag = 0;

t=exp ->wordv[exp ->length_W - 1];

for(i = exp ->length_W; i > 0; --i){

t = exp ->wordv[i - 1];

for(j = BIGINT_WORD_SIZE; j > 0; --j){

if(!flag){

if(t & (1 << (BIGINT_WORD_SIZE - 1))){

flag = 1;

}

}

if(flag){

bigint_square (&res , &res);

bigint_reduce (&res , r);

if(t & (1 << (BIGINT_WORD_SIZE - 1))){

bigint_mul_u (&res , &res , &base);

bigint_reduce (&res , r);

}

}

t <<= 1;

}

}

call (square, indicating a ‘0’).

This particular variable that is leaked in this manner is not an arbitrary one,

but instead knowledge of this variable leaks the value of the secret key used in this

operation. Thus SPA allows us to directly break the secret key used during the

operation.

While SPA is capable of breaking cryptography by deciphering operations, the

same paper also presented a more powerful attack called differential power analy-

sis (DPA) [72]. This seminal work demonstrated that there may be considerable

problems with implementations of otherwise secure protocols on embedded hardware

devices. In particular, this introduced the idea that measurements of the power could

actually reveal something about the data on an internal bus, and not simply the



9

1 1 0 0 0

A B

Sample Number

P
o

w
e

r 
M

e
a

su
re

m
e

n
t

RSA on Atmel XMEGA

Figure 2.1: This exploits the data-path dependent code from Listing 2.1, which allows
us to read the secret data off bit-by-bit.

overall operation.

Fundamentally, this is due to physical effects of how digital devices are built. A

data bus on a digital device is driven high or low to transmit signals between nodes.

The bus line can be modeled as a capacitor, and we can see that changing the voltage

(state) of a digital bus line takes some physical amount of energy, as it effectively

involves changing the charge on a capacitor.

There are several ways to use this knowledge. I’ll discuss the main types of attacks

used within this thesis, as well as summarizing some of the more recent work in the

following sections.

2.1.1 Attack Types

The initial attack presented in [72] caused a digital device to execute an operation

with both known and secret data. If we consider the case where that known and

secret data is mixed together, we could define the known data as P , the secret data

as K, and the operation as C = f(P,K).

The DPA attack measures power consumption of the device during this operation.
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We can measure i = 0, · · · , N such operations with random known input data Pi,

and constant unknown secret data K. We could set K to some assumed value K ′.

Assuming that K is a single byte, this presents 256 possibilities for the value of K ′.

For each possibility of K ′, we could have a group of hypothetical outputs of the

operation C ′
i = f(Pi, K

′) for each known input Pi, again where i = 0, · · · , N . At this

point we wish to determine which value of K ′ matches the true value of K on the

hardware device running the algorithm.

One method presented in [72] is to target a single bit of the value of C ′ (and hence

K ′). For each hypothetical value of K ′ we can separate the power traces into two

groups: one where a bit of C ′
i is ‘1’, one where the bit is ‘0’. If our hypothetical value

of K ′ matched the true value K, we would expect a difference at some point in the

mean power consumption between the two groups.

If our value was incorrect, we would expect no such difference, as the grouping

could simply be considered as a random grouping of the traces into the two sets. In

practice, such difference does exist when correctly grouped. Fig. 2.2 shows an example

of the difference between the mean of two such groups, which have been correctly

grouped into a set where the internal bit is ‘1’ and the set where the internal bit is

‘0’. Note the trace shows us the location in time where the data is manipulated, as

all other samples where the processor is not handling the data we targeted have the

same mean.

This demonstrates that on a fundamental level devices do leak information re-

garding the state of the internal data bus. One additional consideration is how this

can specifically be used to break cryptographic implementations, as it would appear

this method still requires some level of “guess and check”. This “guess and check”

however is not performed over the entire key-space.

The implementation of cryptographic algorithms involves operations on individual

bytes or words of data. For example although AES-256 involves a key of 256 bits (32

bytes), the “guess and check” for performing DPA only involves guessing a single

bit at a time. This means a very tractable problem of performing 21 × 256 guesses,

something even a typical personal computer can accomplish in a few seconds.

The hypothetical output of some function we are targetting is typically referred

to as the “intermediate value”, as we are targetting some value within the entire
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Figure 2.2: This demonstrates a DPA attack on a single bit, the large spike occurs at
the instance in time where the processor is manipulating the data of interest.

operation of the algorithm. When attacking AES this is often after the first round

of the SubBytes operation, as the non-linear property of the SubBytes improves our

attack by eliminating the linear relationship between the input and intermediate

values. In addition one byte of the plaintext will directly mix with one byte of the

secret key, reducing the complexity of performing the guess and check operation.

While the DPA attack was the first proposed methods, more efficient methods

of discovering the secret key information using the power traces exist. We’ll discuss

two major methods next: the Correlation Power Analysis (CPA) attack and template

attacks.

Correlation Power Analysis (CPA)

Whereas DPA looked at simple differences between two groups of data, the CPA

attack develops more precise assumptions on the power consumption and relation on

an internal data bus. The CPA attack was first present in 2004 by Brier et al. in

[22], and will be summarised here.

For a simple 8-bit microcontroller, we can use a “leakage model” that suggests

the instantaneous power consumption is related to the number of bits set to ‘1’ on
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the internal databus. This assumption is based on two factors: (1) our previous

knowledge that moving the state of a line takes a certain amount of power, and (2)

knowledge that microcontrollers set their internal buses to a constant state before the

final value is loaded.

This constant state is known as the ‘precharge’ state. This precharge has been

used since the early design of microcontrollers, where it was easier and faster to

design a bus with precharge logic to pull the bus to the ‘1’ state, requiring each

module driving the bus to only have the pull-down logic (rather than requiring full

push-pull and enable transistors on each bus connection)[84].

More recent devices may pre-charge to other levels, such as precharging to a level

between ‘1’ and ‘0’, with the objective being to reduce the power and time required

to transition to the final level [53]. This pre-charge would require push-pull drivers at

each bus connection, so is targeting improved performance rather than a simplified

design.

From an attack perspective, specifics of the pre-charge are irrelevant. Instead the

attacker cares there is a constant starting level, meaning a linear relationship between

the number of bits set to ‘1’ on the databus and the power consumption. Depending

on the precharge level and measurement style this relationship may have a positive or

negative slope. Without this pre-charge we instead have a relationship between the

change in bits between two bus states, and thus would also need to know (or guess)

the previous state.

The case of the pre-charge will be referred to as the Hamming Weight (HW)

model, where leakage is assumed to be related to the number of bits set to ‘1’ on

the bus. Without the precharge we would have the Hamming Distance (HD) model,

where the leakage is related to the number of bits changing states on the bus.

As a validation of this previous work, I have measured the power consumption

of an 8-bit microcontroller (Atmel ATMega328P) at the moment it is manipulating

data with various number of bits set to ‘1’. The results in Fig. 2.3 show an excellent

relationship between the HW of the data and the power measurement.

The basic equation for a CPA attack, where ri,j is the correlation coefficient at

point j for hypothesis i, the actual power measurement is td,j of trace number d

at point j, and pd,i is the hypothetical power consumption of hypothesis i for trace
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Figure 2.3: Power consumption of device under attack performing an operation on
data with different Hamming Weights (HW), showing the average current consump-
tion of the AtMega328P microcontroller for each possible hamming weight of an 8-bit
number. Error bars show 95% confidence on average (based on the sample standard
deviation).

number d, with a total of D traces is given in equation (2.1). This equation is simply

an application of the Pearson’s correlation coefficient given in equation (2.2), where

X = p, and Y = t.

ri,j =

∑D
d=1

[(
pd,i − Pj

) (
td,j − tj

)]√∑D
d=1

(
pd,i − Pj

)2∑D
d=1

(
td,j − tj

)2 (2.1)

ρX,Y =
cov (X, Y )

σXσY

=
E [(X − µX) (Y − µY )]√

E
[
(X − µX)

2]√E
[
(Y − µY )

2] (2.2)

The form given in these equations is referred to as the normalized cross-correlation,

and frequently used in image processing applications for matching known templates

to an image.

CPA as Matched Filter

While the CPA attack has been developed independently of similar work in commu-

nications theory, it is useful to recognize the parallel between the CPA attack and

basic methods of recovering a signal in communications theory.
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In communications theory, the most basic problem statement is how to receive

a signal that has been corrupted by Additive White Gaussian Noise (AWGN). The

continuous-time and discrete-time interpretations of this problem are given as follows:

r(t) = s(t) + n(t) (2.3)

r[n] = s[n] + w[n] (2.4)

The transmitted signal or sequence s(t) or s[n] is one of several valid signals, the

specific signal depending on the system. The objective of the communication systems

is for the receiver to determine which of the possible symbols s1(t), s2(t) · · · , sN(t)
was sent based on the received signal r(t).

The objective of receiving a known signal in Additive White Gaussian Noise

(AWGN) has a well known solution, the matched filter (or ‘North filter’), first de-

scribed in 1943[99]. For a known signal s(t) transmitted over a channel with AWGN

n(t), at the receiver we would have the received signal r(t):

r(t) = s(t) + n(t)

Which is then passed through the matched filter with impulse response h(t):

y(t) = r(t) ∗ h(t) =
∫

r(τ)h(t− τ)dτ

If we sample the output y(t) at t = T to make our decision, we will use the

matched filter with the following impulse response:

h(t) = s(T − t), 0 ≤ t ≤ T

Thus leading us to find that:

y(t) =

t∫
0

r(τ)s(T − t+ τ)dτ

Finally the value when we sample at T will become:

y(T ) =

T∫
0

r(τ)s(τ)dτ
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It can be noted this is equivalent (for t = T ) to the cross-correlation of r(t) and

s(t) at time t = 0:

y(t) = r(t) ⋆ s(t) =

∫
r(τ)s(t+ τ)dτ

y(0) =

T∫
0

r(τ)s(τ)dτ (2.5)

The use of cross correlation for matching a known template is well known in

computer vision as well, for example the use of cross correlation is presented in [77]

with approximately the same form as equations (2.1).

The forms given in equations (2.1) and (2.2) force both r(t) and s(t) to be zero-

mean and normalized by standard deviation. This is necessary as we do not have

proper scaling of the template s(t) used at the receiver.

Note again r[t] is the received signal, and s[t] is the transmitted signal. One

critical difference between communications systems and side-channel power analy-

sis is the definition of the argument of s(t). In communications we are sending a

known signal sn(t), which may be drawn from a set of ‘allowed’ signals in the set

s1(t), s2(t), · · · , sN(t). Each of these signals is typically a finite-length signal as a

function of time (or samples in the discrete case). At the receiver we can use the

matched filter to determine which of the N possible signals was transmitted.

For side-channel analysis, our function s(t) is actually defined over the num-

ber of cryptographic operations we observed. In equation (2.1) this was d, the

‘trace index’, and thus will be referred to as s(d). Each of the possible functions

s1(d), s2(d), · · · , sN(d) reflects the hypothetical value for the byte of the secret key

we are attacking. Thus the matched filter comparison is always done at the same

sample (i.e. time point) in each power measurement trace td.

Template Analysis

The previous descriptions used an intuitive description of the physical hardware to

produce a leakage model. For example we assumed a correlation between the number

of ones on a databus and the power measurement at a single point in time. We can

perform much more advanced analysis if we assume we have a copy of the device
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under our control; for example when attacking a specific IC with a secret key, we may

have another IC from the same batch which we can program with a known secret key.

In this manner we will not make assumptions about the leakage. Instead we will

build ‘templates’ of known leakages for specific values or attributes of the secret key

using our copy of the device. We can then compare leakage from the actual device

with our templates to determine the most likely value of the secret.

This template attack makes it possible to recover a secret key using only a single

measurement, as we can build templates for each value of each byte of the secret key.

Template attacks were published before the CPA attack, being described in 2002 by

Chari et. al. [30].

To describe the template attack, I’ll first take the case of the CPA attack where

we consider only a single point of interest at a time. To generate a template set we

could keep the input plaintext Pd fixed for each power measurement td. We’ll instead

vary the known encryption key K, such that each trace has a known and random key

Kd, again where d is the trace index. Assuming the key Kd is made of a number of

bytes (such as AES-128 having 16 bytes for each key), we can further look at each

byte j of the key used for trace d, called Kd,j.

With a set of power traces td there is thus an associated value for the secret key

Kd used on each trace d. Looking at the entire set of power traces, the power traces

could be then grouped into different groups tKj=g, where g is the value of secret key

byte Kj in the range of {0, 1, · · · , G}. For example if we were attacking AES-128, we

would first look at byte j = 0. Because this is a single byte, we would make 256 sets

of power traces, one for each possible value of K0 = {0, 1, 2, · · · 255}. If D = 100000,

there would be about 390 power traces in each set.

Assuming we have a single point of interest l = l′ within each trace td,l, we

could determine the sample mean µg and variance σ2
g of each population. Being

given a trace where the secret key is unknown, the problem becomes one of simply

determining the most likely population the associated power trace for the unknown

secret key belongs too. This gives us the value for g, which can then be mapped to

the value of a secret key byte.

In practice, the template attack is extended to represent multi-variate random

variables. That is rather than taking a single point in the template, we consider
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multiple points within the power trace td,l. This improves the templates ability to

distinguish between the various populations in selecting the most likely value of the

unknown byte.

Note templates do not necessarily need to directly provide the exact value of the

unknown secret key. Instead a template could be built for possible Hamming weights

of some known intermediate value, and the result of the template is used in a similar

manner to the CPA attack to determine the most likely secret key value.

One of the difficulties of applying a template in real-life applications is finding a

closely matched “copy” of the device under test. In an ideal situation, the attacker

would be able to reprogram the actual device being attacked. Practical work has

demonstrated that template attacks can still be applied even when this is not possible,

although additional work may be required for a successful attack [109, 31].

While template attacks are not used in my thesis results, I have built several ex-

amples of their use and application available on the ChipWhisperer wiki at http:

//www.chipwhisperer.com. More details of the ChipWhisperer project will be pre-

sented in later chapters.

2.1.2 Implementation Leakage and Success Rate

Measuring the effectiveness of an attack toolchain is critical to understand and com-

pare attack methods, capture hardware, and countermeasure potency.

There are two general methods of performing this assessment. The first method is

to perform an empirical measurement of how successful a given attack was against a

specific measurement setup. This success-based measurement demonstrates how well

an entire attack works, and the specific amount of work required to break a given

implementation. This measurement can be affected by a change anywhere in the

attack toolchain – from physical setup differences to attack algorithm. A number of

such measurement techniques are detailed in [128], and for example used in the DPA

Contest v2 results summary [34].

The second general method is to measure an indicator of the “leakage” coming

from a given system. This simplifies analysis of systems where the most effective

exploitation technique of a specific system is unknown. It is possible for example a

system is highly secure against one specific attack, but even a slight change in attack

http://www.chipwhisperer.com
http://www.chipwhisperer.com
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setup will cause the system to be highly vulnerable.

The leakage-based measurement does not demonstrate how to break a system,

and often provides only a lower bound on the work required to break the system. It

is possible a system may be considered highly leaky based on these metrics, but a

practical method of attacking the system is unknown.

Global Success Rate (GSR)

The Global Success Rate (GSR) is an empirical performance measurement that di-

rectly measures if an attack was successful. This measurement can directly demon-

strate how difficult it is to completely break an implementation using side-channel

power analysis.

If the attack algorithm has access toN traces, we can consider the attack successful

if the algorithm successfully determines the correct encryption key with N traces. We

can present a number of different sets of N traces, and average the number of times

the entire encryption key was successfully recovered with a set of size N .

This gives us the ‘global success rate’, where a rate of 1.0 means the attack always

succeeds. Typically we will consider an attack successful for a GSR about 0.8, i.e.

given a specific number of traces, the attack succeeds 80% of the time.

The GSR only indicates when the attack is completely successful – in reality it

is sufficient to reduce the guessing entropy to a tractable level, instead of requiring

the attack to directly give us the complete encryption key. Another metric which

provides a measure of the reduction of guessing space is discussed next.

Partial Guessing Entropy (PGE)

The ‘guessing entropy’ is defined as the “average number of successive guesses required

with an optimum strategy to determine the true value of a random variable X”[81].

The ‘optimum strategy’ here is to rank the possible values of the subkey from most

to least likely based on the value of the correlation attack (higher correlation output

is more likely).

The ‘partial’ refers to the fact that we are finding the guessing entropy on each

subkey. This gives us a PGE for each of the 16 subkeys. A PGE of 0 indicates the

subkey is perfectly known, a PGE of 10 indicates that 10 guesses were incorrectly
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ranked higher than the correct guess.

The attack algorithm is given access to 1, 2, · · · , N traces, and the PGE for each

subkey is calculated. To improve consistency the PGE for each subkey is averaged

over several attacks (trials). Finally, we can average the PGE over all 16 subkeys to

generate a single ‘average PGE’ for the attack.

Leakage Measurement

The PGE and GSR require an attacker to know how to break a device. That is

knowledge of the algorithm under test, leakage type, and particulars unique to the

hardware or software cryptographic functions. Often designers of secure hardware

only care about the existence of leakage. This means not necessarily determining

how to break a device, just if a device appears to have some leakage that might be

exploitable.

One of the most popular techniques uses a test-vector leakage assessment (TVLA),

detailed in [54, 35]. This applies a set of preselected test vectors (test vectors being

the input and secret key), and performs a statistical test on the power measurement

during the test vector application. Briefly, these tests are typically applying a test

vector from one of two ‘groups’ (such as a random or fixed group). If it is possible

to determine a difference between the groups using side-channel measurements, this

suggests there must be some information leakage.

The TVLA is typically performed by applying Welch’s t-test to the two popula-

tions, where the two populations being tested are the power measurements recorded

during each of the two different test vector groups. The t-test allows us to determine

if the two measurement groups are distinguishable or not – we can simply specify

some desired confidence, and the t-test provides a simple numerical output which is

either above or below this threshold.

Assume the two groups were formed by grouping the complete set of traces t into

t ∈ g1 and t ∈ g2. The set mean, variance, and cardinality is denoted by µ(t ∈ gn),

σ2(t ∈ gn), and |t ∈ gn| respectively.

Performing Welch’s t-test requires the application of 2.6 to the two data sets.

This test is used to determine the validity of the null hypothesis that the two sets

of samples come from the same population. If the test suggests we cannot reject the
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null hypothesis, this means we cannot determine which population g1 or g2 a given

sample came from using the power measurement.

t =
µ (t ∈ g1)− µ (t ∈ g2)√
σ2 (t ∈ g1)

|t ∈ g1|
+

σ2 (t ∈ g2)

|t ∈ g2|

(2.6)

Typically, the t-test is used with a fixed threshold where if |t| > 4.5, it indicates

an ability to determine which population g1 or g2 a given power trace measurement

came from. This means the device has some data-dependent leakage we may be able

to exploit. See [54] for details of this threshold, including determining specific values

for desired confidence intervals and with certain set sizes.

Care must be taken in applying the t-test, as it simply indicates a difference in

the mean of the sample groups, and not specific cryptographic leakage. All other

(non-cryptographic) leakage must be carefully controlled – for example one cannot

apply all of the test vectors from group 1, and then all of the test vectors from group

2. There will likely be a difference in the means between these two groups due to

variation in environmental conditions (such as voltage and temperature), which the

t-test metric will detect. Full consideration of this is discussed in [54, 35].

An improvement to the basic t-test is presented in [41], which also includes a

reference to a number of academic publications showing the use of t-test results in

analyzing hardware devices. In particular [91] shows an example of the use of a t-test

to determine an appropriate leakage model, and then applying this leakage model

with CPA to break a hardware AES implementation.

2.2 Fault Injection

Faults cause a computer program to behave in an unintended manner. For many

systems this could have dire consequences, and protecting systems from such faults is

an important area of research. Fault injection encompasses the techniques which are

used to purposely cause faults to occur, for example as part of validating or testing a

fault-tolerant or fault-detecting scheme[116]. Fault injection is also useful as a testing

tool when designing for environments likely to cause single-bit failures, such as space

applications or high-radiation environments [25].
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Fault injection is also a powerful tool to break cryptographic algorithms. The

previous example assumed the ‘dire consequences’ of a fault occurring were a result of

the system performing an unexpected action. But a fault could be purposely injected

to cause a system to behave abnormally, to an attackers advantage. It has been well

known that a variety of fault injection methods can be used for this purpose[6, 14].

Previous work on fault injection has demonstrated methods of breaking crypto-

graphic algorithms such as DES[20], AES[45, 32, 16], and RSA[21, 120, 15] by intro-

duction of faults at specific parts of the algorithm. Of these, a practical demonstration

of the proposed method is also given in [32, 120, 16, 15]. All of these demonstrations

are performed on a custom board, specifically designed to inject faults into the em-

bedded computer running the cryptographic algorithm. The reader is referred to [17]

for a more detailed survey of attacks on AES and RSA.

2.2.1 Non-Cryptographic Attacks

Fault injection is powerful as it can be used to attack almost any aspect of an em-

bedded system (not just cryptographic functions), but still achieve very damaging

results. For example consider the C code of Listing 2.2, which is a hypothetical im-

plementation of a response buffer in an embedded system. A fault attack could cause

the value of i (or strlen) to become corrupt. This is made worse as compilers may

replace the ‘less than’ comparison with a simple ‘branch if not equal’, which is only

looking for the exit value. A fault which causes the i value to become larger than

strlen will print the entire memory after the str buffer until the counter rolls over.

If this was a 32-bit system, the default integer size (of 32-bits) would mean it

could dump the entire memory address space. If both RAM and code memory exist

on the same address space (common on processors such as ARM), this would allow an

attacker to receive both the code and data memory contents. This can be applied on

more complex systems, such as M. Scott demonstrated by glitching a device with USB

to dump an entire firmware image [121]. The work in [121] used the ChipWhisperer

platform to inject a voltage glitch for this attack.
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Listing 2.2: A simple puts() style routine with an added length field to avoid issues

with unterminated strings.

void puts(char * str , int strlen){

for(int i = 0; i < strlen; i++)

putch (*(str + i));

}

}

2.2.2 Methods of injecting faults

A detailed survey of fault injection methods will be presented in Chapter 8, so only

a brief summary will be replicated here.

The two earliest methods discussed are tampering with the clock and voltage of

the target device, which were first published extensively about in 1996 [5]. Clock

glitching was seen as a reliable method of introducing faults at specific clock cycles,

as it introduces some perturbation to the clock that causes setup and/or hold times of

internal registers to be violated. This causes incorrect data to be loaded into internal

blocks, which can cause effects such as the wrong instruction to be executed, incorrect

data used in a calculation, or incorrect program counter changes.

More advanced methods include targeting specific areas of the chip surface. This

can be done with various forms of electromagnetic radiation from EM pulses at the

lower frequency range to optical pulses at the higher frequency range [60, 95, 124].

This thesis focuses on voltage and clock glitching only, as discussed in Chapter 8

(with some additional details in Chapter 4 and Chapter 5).



Chapter 3

Power Measurements

This chapter is based on previously published material from my paper at [101].

In order to perform side-channel power analysis, we must have a method of mea-

suring the power consumption of a device under test. There are two general classes

of probes used for measuring power consumption: a resistive shunt as used in the

seminal DPA work [72], or an electromagnetic (EM) probe [50]. EM probes have

been shown to result in more successful attacks [129], with the advantage that EM

probes do not require any modification to the device under attack, and can even be

performed at a moderate range [65]. The specifics of attacking a given device (and the

possibility to perform this at a range) will vary greatly with specifics of the leakage,

the device being attacked, and the equipment available to the attacker.

Many types of EM probes have been used in published work, including commer-

cially manufactured probes. Comparison of different probe constructions is found in

[39, 82]. Smaller probes can be scanned over the chip surface to pick out specific

features, such as bus/data lines [132].

By examining the underlying physical characteristics of the embedded platform,

we can simplify the measurement requirements by both identifying ideal locations for

placement of the probe, and improving the digitizer that generates digital samples of

the measurements. This work will be used to develop the side-channel power analysis

platform in Chapter 4, which is used in the rest of this thesis.

3.1 Emissions from Decoupling Capacitors

A decoupling capacitor is designed to provide a low-impedance path for high frequency

current, as typically drawn at the clock edge[126]. For side-channel analysis with a

resistive shunt, the decoupling capacitor significantly worsens the measured signal

[69]. The higher-frequency components, which are of interest for SCA, are flowing

through the decoupling capacitor and not the shunt.

23
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Measuring the current through a decoupling capacitor for side-channel analysis

was first explored in [37], which used a current transformer to measure the current

flowing through individual decoupling capacitors. Current transformers use the prin-

ciple of induction, which dates back to Faraday’s discovery in 1831 [47], to measure

current flowing in a conductor without the necessity of breaking the conductor. Using

induction to measure current through a decoupling capacitor in-place has also been

demonstrated, but such papers employed the measurements for the design of power

distribution systems, and not for side-channel analysis [143, 144, 78]. This chapter

builds on such previous work by looking at the performance of the inductive pickup

for side-channel attacks, and the physical considerations for its use.

The method thus proposed is to wrap the target decoupling capacitor in a thin

magnet wire, and connect this to the acquisition oscilloscope. Physically, this pro-

posed method requires no modifications to the device under test. The localized nature

of the measurement provides excellent rejection of interference, and the performance

when used in side-channel attacks will be demonstrated to be slightly superior to

other common methods.

3.1.1 SASEBO-GII CPA Measurement Setup

The Side-channel Attack Standard Evaluation Board (SASEBO) version GII from

the National Institute of Advanced Industrial Science and Technology (AIST) in

Japan provides a useful reference platform for performing side-channel analysis at-

tacks. Characterizations are available in literature of the performance of this board

under various attacks [69, 89]. The attack used here is a simple Correlation Power

Attack, for which the reference code is available from AIST [119], with the crypto-

graphic core under attack being the AES core provided for the DPA Contest Version

3 [119].

The performance analysis here consists of the number of traces required for the

global success rate (GSR) to stay above 80%. This performance analysis was chosen

to match recent publications of a similar nature [44, 128].

The measurement equipment consists of an Agilent 54831B Infiniium DSO as a

reference, and the OpenADC platform (to be presented in 3.3) as a demonstration

of low-cost capture hardware. The acquisition from the Agilent 54831B is done with



25

code from AIS T[119] which has been modified to support the scope being used, with

a sampling rate at 2 GS/s. This scope does not support an external clock input.

Vertical voltage scale differs depending on the measurement setup being used. For

the OpenADC the sampling clock (96 MHz) is 4x the AES Core Clock (24 MHz),

which is derived from the actual AES Core Clock. The OpenADC capture software

is written in Python, and I have released the source code at http://www.assembla.

com/spaces/openadc.

In all cases the internal voltage (VINT) of the FPGA is adjusted to 1.000 volts; this

avoids any unintentional results occurring because the insertion of the current shunt

will naturally reduce the voltage seen by the FPGA. The SASEBO-GII is equipped

with a small adjustment range on the VINT voltage to null out the current shunt

loss.

The board as shipped did not have decoupling capacitors mounted on VINT,

which correspond to C46 - C52. Where a decoupling capacitor is mounted in these

tests, only a single 100 nF capacitor is mounted on C46, for which a Murata part

number GRM155R61A104KA01D size 0402 capacitor is used.

Current Shunt

The SASEBO-GII board provides connections for measuring current used by the

cryptographic FPGA via a 1-ohm current shunt. This measurement uses the ‘VINT’

supply for the FPGA, which is measured at J2. This measurement is performed both

with C46 mounted and unmounted.

H-Field Probe

An H-Field probe was constructed from a loop of semi-rigid coax. When using the

54831B oscilloscope, a MiniCircuits ZFL-1000LN Low Noise Amplifier (LNA) boosts

the signal to achieve a better response. The OpenADC is directly connected to the H-

Field probe, as the OpenADC contains an integrated LNA. A photo of the magnetic

field probe is shown in Fig. 3.1. Detailed information about the construction process

is found in [126], with some additional examples for side-channel analysis in [39].

http://www.assembla.com/spaces/openadc
http://www.assembla.com/spaces/openadc
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Figure 3.1: Shielded magnetic field probe, before wrapping in an insulator to allow
safe probing of any area of the device under test.

Shunt Measurement on Individual Capacitors

The current through an individual capacitor was measured with a 0.22 ohm current

shunt placed in series with the capacitor. The voltage was read directly from the

current shunt and fed into the oscilloscope.

Power Pin Measurements

If the decoupling capacitors are not mounted, the device will naturally see drops

in its voltage supply as measured at the power pin, since the power distribution

system is unable to provide a low-impedance source close to the power pin. For the

SASEBO-GII board, the measurement is taken on the underside of the board, on the

positive pad of the decoupling capacitor specified. Each decoupling capacitor pad

aligns directly with the power pin of the cryptographic FPGA, see Fig. 3.2

Figure 3.2: The decoupling capacitors line up directly with the power pins; if the
capacitors are not mounted this provides a good source to measure the ripple on the
voltage rail due to high-frequency power demands. The pink square is the location of
the chip under attack on the top side of the board.
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Inductive Wrapping

The proposed inductive wrap method uses 7 wraps of AWG34 magnet wire around

the decoupling capacitor C46. One end of the magnet wire is soldered to the negative

pad of the capacitor. The other side of the wire connects through a low-noise amplifier

(ZFL-1000LN) for the DSO, or directly to the OpenADC. Fig. 3.3 shows a detailed

photo of this setup.

Figure 3.3: 7 wraps of AWG34 magnet wire around a 0402 capacitor. The yellow
visible around the capacitor is Kapton tape used to isolate the rest of the PCB.

3.1.2 Measurement Results

Results for the Global Success Rate (GSR) of the CPA attack are shown in Fig. 3.4;

Table 2 provides the number of traces require for the GSR to exceed 0.8. All of these

measurements are taken with the Agilent DSO, a comparison between the DSO and

OpenADC platform is given in Fig. 3.9.

Table 3.1: Traces required to achieve 1st order Global Success Rate (GSR) higher
than 80% with a Correlation Power Analaysis (CPA) attack for several measurement
techniques.

Measurement Method Traces for GSR > 0.8

VCC-INT Shunt Measurement 4800

VCC-INT Shunt Measurement w/ decoupling >5000

Inductive Pickup w/ decoupling w/ amplifier 3450

H-Field Probe w/ decoupling w/ amplifier 3850

Decoupling capacitor shunt w/ decoupling 4350

Voltage Probe 4550
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(A) VCC−INT Shunt Measurement, C46 Unmounted
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(B) VCC−INT Shunt Measurement, C46 Mounted
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(C) Inductive Pickup Wrapped around C46
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(D) H−Field Probe near C46
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(E) Decoupling Capacitor C46 Shunt Measurement
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(F) Voltage Probe, C46 Unmounted
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Figure 3.4: The first order global success rate (GSR) vs. the number of traces pro-
cessed for a simple CPA attack. A through F show different measurement techniques;
the final figure shows a comparison of the first-order GSR for each of the measurement
techniques. The vertical lines show the intercept of the 1st order GSR exceeding 0.8,
where the numeric value of these intercepts is given in Table 3.1.

Current Shunt, H-Field Probe

In order to confirm the test setup, several of the results duplicated work done else-

where. For example, the shunt measurement on the entire VCC-INT power system
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was expected to perform poorly when the single decoupling capacitor was mounted.

This can be seen by comparing Fig. 3.1-A to Fig. 3.1-B. In addition, the H-Field

probe should provide better results than the shunt measurement in order to agree

with [129]. This is confirmed by looking at Fig. 3.1-D.

Inductive Wrapping

It can be see that the proposed measurement technique requires the smallest number

of traces to achieve a GSR higher than 80% (>0.8). The signal from this technique

is considerably stronger than with the H-field probe. The measured signal from the

inductive wrap technique is about 10x larger in amplitude (Vp-p) than that from the

H-field probe.

The stronger signal slightly relaxes the requirements of the amplifier, and means

that the resulting SNR will be better compared to the H-field probe. The results here

show slightly better performance for the inductive wrapping technique compared to

the H-Field probe due to this improved SNR. The number of wraps used does appear

to impact the GSR, as shown in Fig. 3.5. Here 7 wraps results in a better GSR

than 2 wraps - the 7 wraps again resulted in a stronger signal, reducing noise in the

measurement front-end.

Shunt on Decoupling Capacitor

The results here confirm the decoupling capacitor measurement does provide an im-

provement over attempting to measure the current drawn through the entire system.

The performance is still lower than electromagnetic techniques; it is assumed that

adding the shunt reduces the impedance of the capacitor, thus reducing the current

which flows through it. In [37] a Current Transformer (CT) is used instead of a re-

sistive shunt. Inserting the CT would also slightly increase the impedance, since the

CT must be clamped around a wire in series with the decoupling capacitor.

Voltage Probe

The voltage probe is an extremely simple method of measuring local variations in

the current demand. It does require the decoupling capacitor to be removed: for the

best signal it would likely demand all nearby capacitors to be removed, as the nearby
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capacitors provide some additional decoupling that dampens the signal. For devices

under attack which require the decoupling capacitors to run, this method may not be

possible.
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Inductive Wrapping Technique Comparisons

 

 

7 Wraps 1−Sided
2 wraps 1−Sided
2 Wraps 2−Sided

Figure 3.5: Comparison of different variations of the inductive wrapping technique.
The maximum number of wraps was set based on the physical ability to keep the
wraps around the decoupling capacitor. An ‘1-sided’ wrap has one end soldered to
the ground pad of the capacitor as in Fig. 3.3, where a ‘2-sided’ wrap has both ends
of the wrapping wire connected to the oscilloscope.

3.2 Acquisition Requirements

The required acquisition characteristics depend on both the target under attack,

and the type of attack being carried out. Considerations with regards to the target

under attack include the clock frequency, whether the cryptographic algorithm is in

hardware (HW) or software (SW), technology used for the chip, and whether or not

countermeasures have been implemented. Typically the capture oscilloscope achieves

around 1 GS/s, as shown in Table 3.2.

By measuring the power consumed by a digital device on each clock cycle, it

is possible to infer something about the data being processed by this device. This

was demonstrated as a method of breaking cryptographic cores using Differential

Power Analysis (DPA)[72]. Such measurements are typically done with standard

oscilloscopes, which depending on the attack algorithm and device under attack may

range from simple low-cost oscilloscopes to high-end specialist oscilloscopes. But if
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Table 3.2: A few examples of capture rates in recently published papers. Sample
rates only appear if the tested attack was successful at that sample rate.

Reference Sample Rate(s) - MS/s Target Type Probe Type

[44] 5000 HW - 24 MHz Shunt

[39] 500, 2000 HW EM

[26] 200 SW EM

[82] 125, 250, 500 SW - 24 MHz EM

[127] 500, 1000 HW EM

the underlying objective is to measure data on the clock edges of the system clock,

sampling at the clock rate of the system is sufficient, provided such samples occur

at the correct moment (i.e. on the clock edge). This sampling technique is called

synchronous sampling, where the sample clock is synchronized to the device clock.

A demonstration of this technique to attack the SASEBO-GII board will be given in

this chapter (previously published by myself in [101]), where sampling at 96 MS/s

synchronously achieves similar results to 2 GS/s asynchronously.

3.2.1 External Clock Inputs

Commercial oscilloscopes typically provide their own sampling clock which is not

synchronized to the device clock. In many devices, however, the device clock is

readily available either as a digital signal or by adding a buffer circuit to the crystal

oscillator. The sample clock can be derived from the device clock to measure a

consistent point; for example it can be used to measure the power consumption on

the clock edge. A comparison of measurements taken with an unsynchronized and

synchronized sample clock is shown in Fig. 3.6. In section 3.1.1 it will be demonstrated

that this synchronized sample clock significantly relaxes the requirement of using a

high sample rate for certain attacks.

Note that sample clock synchronization is different from the trigger input that all

oscilloscopes provide. With a real-time oscilloscope, the internal sample clock of the

oscilloscope will be running at all times, and the sample occurs at the next clock edge

after the trigger. Thus even though the oscilloscope is triggered at a repeatable time,

there will be some random jitter between when the first sample occurs relative to this

trigger for unsynchronized (free-running) sample clocks[1].



32

Figure 3.6: Eight power samples with the same input are taken and overlaid to show
consistency of measurements. In A the sample clock is 100 MHz but not synchronized
to the device clock, whereas in B the sample clock is 96 MHz, but synchronized with
the device clock.

If the clock frequency varies due to either countermeasures or a low-cost oscillator,

this would not affect the acquisition quality, since samples are always based on the

device clock.

3.2.2 External Clock Phase Adjust

The processing of the external clock input, the ADC, and the analog front-end will

add some delay between when the rising clock occurs on the target device, and when

the actual sample is recorded. In addition the point of interest for the power analysis

may not lie directly on the rising edge, but sometime after this clock edge. For

this reason the capture board must be able to add an adjustable delay (phase shift)

between the input clock and the actual sample point.

3.2.3 Adjustable Gain

The output of a probe will vary with both the probe type and the circuit under

analysis. For this reason, an adjustable gain amplifier is useful to amplify the signal

up to the range of the input of the digitizer. Oscilloscopes for example provide a

selectable input range - this is still insufficient for H-Field probes, which require an
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Figure 3.7: Architecture of analog acquisition unit which is implemented in a combi-
nation open-source ADC board and COTS FPGA board.

external Low Noise Amplifier (LNA).

3.3 Low-Cost Acquisition Architecture

The architecture of the analog front-end which is used here is shown in Fig. 3.7. The

features previously identified as important for side-channel analysis are included: an

external clock input with adjustable phase, an internal clock, adjustable gain, and a

computer interface.

The analog front-end and ADC board has been released in an open-source design

called the OpenADC. The OpenADC hardware consists only of the variable gain low

noise amplifier (LNA), ADC, input connectors, and associated support circuitry such

as power supplies. This board can be connected to most FPGA development boards

with sufficient IO available – it is shown mounted on a low-cost Xilinx Spartan 6

development board from Avnet in Fig. 3.8. The open-source solution includes not

only the PCB designs, but example FPGA source code and capture applications on

the PC at http://www.assembla.com/spaces/openadc. This will form the basis of

the ChipWhisperer hardware discussed in Chapter 4.

While the sample rate is limited by the 10-bit ADC selected to 105 MS/s, the ana-

log bandwidth is higher to maintain information on the clock edges. When the LNA

input is selected the analog bandwidth is around 110 MHz, and when the transformer-

coupled input is selected the analog bandwidth is around 500 MHz. The LNA has an

adjustable gain in 100 steps up to 55 dB, allowing for the direct connection of a wide

http://www.assembla.com/spaces/openadc
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range of measurement probes, including both current shunt and EM.
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Figure 3.8: The OpenADC mounted on a commercial FPGA development board.
The FPGA board provides control, USB interface, and a 48M sample memory.

3.3.1 OpenADC Measurement Results

The results in Fig. 3.9 show that the OpenADC performs well using the inductive

wrapping technique. The OpenADC is only sampling at 96 MSPS – but the sampling

clock is synchronized to the device clock. When the sampling clock is not synchro-

nized, it fails to recover the encryption key (GSR = 0). This agrees with previously

published results on a similar board, which showed a failure of the attack at 100

MS/s [127]. The reference measurement at 2 GS/s is using the oscilloscope’s internal

timebase; that is to say a timebase that is unsynchronized to the device clock.

The OpenADC has fine granularity on the gain of the input signal, along with the

full-scale reference voltage for the ADC. The DSO by comparison does not provide

such fine granularity on the input scaling. For the inductive wrap technique it is

expected that this partially contributes to the slightly better performance of the

OpenADC: the number of bits used to represent the full-scale signal is higher with

the OpenADC compared to the DSO, since the OpenADC allows adjustment of the

signal to reach closer to the full-scale range of the ADC input.
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Figure 3.9: Comparison of GSR for traces gathered with the OpenADC and a normal
Digital Storage Oscilloscope (DSO), for both H-Field probe and inductive wrapping.

3.4 Summary

This chapter has discussed some of the characteristics of probes and acquisition hard-

ware required for side-channel power analysis measurements.

Rather than using a probe which must be carefully positioned, a probe is built

around the decoupling capacitors, which will naturally have most of the high-frequency

(e.g.: clock edge) currents flowing through them. It is also trivial to report the mea-

surement setup in a repeatable manner, requiring the following three characteristics:

the part number of the decoupling capacitor, type of wire used, and number of wraps

around the capacitor.

To acquire the data, it is necessary to use an ADC which is perfectly synchronized

to the clock of the device under test. This relaxes the requirement of a high sample

rate, allowing low-cost ADCs to be used for side-channel analysis. In addition, the

complete design is released as an open-source project, making it available for use by

researchers.

There are several main areas of future work to which this capture board can be

applied. First, the capture hardware can be extended to support more features. If the

device under attack does not provide an accessible clock, a form of ‘clock recovery’

would be needed, where an adjustable local oscillator is locked to the remote clock

(discussed in chapter 5). Secondly, the OpenADC can be used as part of a hardware
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implementation of attacks. Attacks could be implemented on the FPGA itself: rather

than sending the traces to the computer, they would simply be processed in real-time.

This real-time processing would simplify attacks which require a considerable amount

of traces, since there is no requirement to store them as an intermediate step.



Chapter 4

ChipWhisperer Attack Platform

This chapter is based on my paper previously published in [105].

The introduction of Differential Power Analysis (DPA)[72] spurned interest in the

vulnerabilities of embedded systems previously thought to be secure. The difficulty

in comparing results of attacks on different platforms was realized early on, and the

SASEBO board aimed to provide a standard platform for attacking [119]. Likewise

it was realized that for new entrants into the world of side-channel attacks, having

available code and algorithms was a useful starting point such as the OpenSCA tool-

box [112], and the DPA Book [80]. Despite this, there is still considerable progress

to be made. A researcher looking to replicate existing work, even if that work uses

a board such as the SASEBO/SAKURA board, needs to purchase an oscilloscope,

interface the oscilloscope to the computer, and (re)implement the attack.

Work into making a complete platform has already been presented, for example

the GIAnT system, which uses the same FPGA as this work [108][107] (and with ad-

ditional details in [67]). Other examples include the FOBOS system [138, 139] which

is built with modular FPGA development boards (and can also include the Spar-

tan 6 FPGAs as used in the ChipWhisperer). My ChipWhisperer work was done in

parallel to these systems, and the two systems use different architectures and design

languages. The ChipWhisperer system presented in this work has more extensive pub-

licly available code for the computer control. Certain features do differ between them:

the GIAnT system has a high-speed Digital-to-Analog Converter (DAC) for fault in-

jections of adjustable magnitude, something missing on the current ChipWhisperer

hardware. The FOBOS is designed to be used with off-the-shelf FPGA development

boards, which avoids requiring custom boards such as the ChipWhisperer depends

on.

This work presents a side-channel attack platform which integrates all required

38
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elements: target device, measurement equipment, capture software, and attack soft-

ware. This work has benefits for almost any user: students have a low-cost laboratory,

researchers have an environment which can be duplicated around the world, and em-

bedded engineers have a method of easily testing published research on their own

systems. The entire design (both hardware and software) is open-source, encour-

aging future development from users. Versions of the project are designed to work

with existing hardware, such as the SAKURA-G and SASEBO-W board which re-

searchers may already have access to. Modules to control standard oscilloscopes such

as PicScopes and VISA-connected devices are also present, encouraging the use of

the ChipWhisperer software with existing measurement labs.

Beyond side-channel attacks, the hardware lends itself to glitch and fault attacks.

The device runs synchronous to the device under test (DUT), greatly simplifying the

introduction of faults on certain clock cycles. A simple glitch generation module is

included for inserting glitches at specific offsets from the clock edge.

4.1 Hardware

The hardware consists of both the hardware design and the FPGA code. The system

is designed to work with several different FPGA boards, all based on the Spartan 6

FPGA. A ‘reference’ FPGA board is also provided based on a commercially-available

FPGA module, shown in Fig. 4.1. This has a ZTEX FPGA Module with a Spartan

6 LX25 FPGA, however these modules are available in sizes from the LX9 – LX150.

Researchers interested in implementing more logic inside the control FPGA may

simply switch the ZTEX module for a larger one.

This board provides several features specific to side-channel analysis: two headers

for mounting ADC or DAC boards, an AVR programmer, voltage-level translators

for the target device, clock inputs, power for a differential probe and Low Noise

Amplifier (LNA), external Phase Locked Loop (PLL) for clock recovery, and extension

connectors for future improvements such as fault injection hardware. This board will

be referred to as the ChipWhisperer Capture Rev2.
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Figure 4.1: The reference implementation runs on a ZTEX Spartan 6 LX25 FPGA
Module, with an OpenADC as the analog front-end. The completed board is referred
to as the ChipWhisperer Capture Rev2.

Figure 4.2: The complete system, including the FPGA board from Fig. 4.1 which is
mounted in an enclosure, a laptop computer, and the example capture board from
Fig. 4.8. The system can also use a breakout board to connect other embedded
hardware targets.
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Figure 4.3: The base design consists of several blocks connected via a internal bus in
the FPGA, shown in the blue box.

4.1.1 Modular FPGA Design

The blocks within the FPGA are designed around a central ‘register control’ module,

as shown in Fig. 4.3. The design greatly simplifies the addition of new modules: only

one small section of the design needs to be modified to insert the bus connections,

otherwise the new module can live independently of the rest of the system.

The modular design allows customizing of which modules to include of interest to

the researcher; including for example only the clock glitching module if it is desired

to work with fault attacks and use a smaller FPGA.

4.1.2 Capture and Clock Control

If the underlying objective is to measure data on the clock edges of the system clock,

sampling at the clock rate of the system is sufficient, provided such samples occur at

the correct moment (i.e. on the clock edge). This sampling technique is called syn-

chronous sampling, where the sample clock is synchronized to the device clock. Hard-

ware to perform synchronous sampling called the OpenADC was described in [101],

where the SASEBO-GII board was attacked, and this demonstrated how sampling at

96 MS/s synchronously achieved similar results to sampling at 2 GS/s asynchronously.

The OpenADC is used as the basis for this work.

The analog front-end used here is the OpenADC [101] (also discussed in the pre-

vious chapter), which provides a -5 dB to 55 dB gain, simplifying measurement of

low-level signals. Additionally designs for a differential probe and Low Noise Ampli-

fier (LNA) are provided, an example shown in Fig. 4.4.
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Figure 4.4: Beyond capture hardware, design for a differential probe and H–Field
probe with LNA are available.

Figure 4.5: Clock Routing in ChipWhisperer capture hardware.

For the synchronous sampling to work, the device must be able to lock onto the

system clock. If the clock is readily available as a digital signal (e.g. from the crystal

oscillator on the DUT), it can be fed into the FPGA directly, where internally it can

be multiplied if desired. If the clock is not available, such as in the case of internal RC

oscillators, an external PLL can be used with clock recovery logic to recover the clock

(discussed in Chapter 5). Finally an asynchronous clock is available, although due to

the limited sample-rate in this platform will have very poor performance compared

to synchronous capture [101].

4.1.3 Target Control and Triggering

The FPGA provides some basic IO blocks for driving standard devices. This in-

cludes a UART, a Smart Card interface, and Universal Serial IO device, which can

be controlled from the computer. Note the target device can be driven by an existing

connection instead; the FPGA-based IO blocks are provided simply as a convenience

to allow a single USB connection to provide both communications and target control.
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Several triggering options are provided. The most basic allows standard trigger-

ing: triggering on the rising edge of a digital line for example. This is suitable when

analyzing devices which the researcher has programmed, and is able to insert a suit-

able trigger event into. For more realistic examples, two additional triggering blocks

are provided. The first is a digital pattern match, which looks for a specific sequence

of transitions on an IO line. This is implemented as a state machine, where it moves

through to the next state only if the IO line remains in the expected state for the ‘al-

lowed’ amount of time. If the IO line fails to match the expected state transition, the

state machine resets. This system is specifically designed for triggering on commu-

nications protocols, for example by waiting on a response byte. The final triggering

system looks for an analog pattern in the waveform, using a Sum of Absolute Differ-

ence (SAD) criteria, which is frequently used in video compression, and fast FPGA

implementions exist for [106]. Here the system continuously compares the incoming

waveform to a known pattern: when the SAD criteria falls below some threshold, the

system triggers the capture.

All of these triggering options feature a pretrigger ability. The capture buffer is

continuously filled, meaning that the trigger can occur after the actual cryptographic

operation has occurred. The limit is simply the size of the capture buffer, which is

primarily dependent on the size of the chosen FPGA.

The trigger out signal can be dynamically routed to an external pin. This allows

triggering of external equipment with this advanced trigger source.

4.1.4 Glitch Generation

A clock glitch module is also present in the system. Using two adjustable delay lines

built into the FPGA, it can insert glitches into a ‘target clock’: the ‘target clock’

either coming from the device under test or generated by the FPGA itself.

The glitch width can be adjusted from about 3 nS to 100 nS (maximum width

limited to 50% of clock period or 100 nS, whichever is smaller) and the offset from

the clock edge is adjustable from -50% to +50% of the clock period. The specific

resolution of the glitch and offset varies for the target clock frequency, but is always

smaller than 100 pS. Fig. 4.6 shows an example of a glitch inserted into the output

clock, although the glitch itself can be output separately from the clock for driving



44

Figure 4.6: Inserting a glitch into a 7.37 MHz clock coming from a target device.

modules such as optical or electromagnetic fault injection. This method is the same as

described in [10], although with improved resolution on the glitch width and location.

The minimum glitch width is limited by the FPGA IO-pin speed: using a faster IO-

standard (e.g. LVDS) allows a smaller minimum glitch width if required.

The use of the special Digital Clock Manager (DCM) blocks along with partial

reconfiguration (discussed next) allow this extremely fine-grained control over glitch

width. This is an improvement on previously proposed glitch generation methods

where the ‘coarse’ width control comes from a higher-speed clock, which generally

limits glitch ‘coarse’ control to a multiple of this clock speed (often 4–10 nS)[67].

4.1.5 Partial Reconfiguration

The clock generation and glitch generation modules both use the Digital Clock Man-

ager (DCM) blocks within the FPGA. These blocks have limited support for run-time

configuration of parameters such as phase delay and frequency generation, and for

maximum performance the configuration must be fixed at design time. The Xilinx-

provided run-time adjustment can shift the phase only by about ±5 nS in 30 pS

increments (exact values vary with operating conditions).

To allow adjustments over a wider phase range, a partial reconfiguration interface

is provided. This interface allows changes to the FPGA configuration while the sys-

tem is operating. This is specifically used to reconfigure the DCM blocks for a variety
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of parameters which are fixed at the implementation stage. This partial reconfigura-

tion requires that appropriate ‘bitstream difference’ files are generated by the FPGA

tools for every possible setting of the desired parameter, e.g. the DCM phase delay

attribute. Due to the opaque nature of the FPGA tools there is no simple mapping

between parameter changes and a specific portion of the bitstream.

To generate these bitstream difference files, Xilinx’s FPGA Editor tool is used to

modify the Native Circuit Description (NCD) file for the design. A script generates

versions of the NCD file with every possible setting of the desired attribute, e.g. for

the DCM block with a fixed phase value of −255 to +255. These NCD files are

converted into bitstream difference files with the Xilinx bitgen utility. Setting the

desired DCM fixed phase offset means loading the appropriate bitstream difference

file1.

4.1.6 Implementation on Other Boards

This entire system is implemented as generic FPGA blocks. Whilst a reference plat-

form is provided, it can be used on any FPGA platform. For example this system

can be programmed into the control FPGA provided in the SAKURA-G or SASEBO-

W platform. Fig. 4.7 shows a photo of the SAKURA-G board with an OpenADC

mounted. This system allows implementation of a cryptographic algorithm in the

main FPGA on the SAKURA-G, while the control FPGA serves to actually perform

the measurements. Any of the available blocks can be inserted into this system, for

example adding clock glitch generation into the control FPGA for the SASEBO-W.

4.1.7 Generic Device Under Test Board

For demonstration of basic attacks, a generic target board is provided. This board

provides several target options: a 28-pin AVR socket, an XMEGA device, and a

Smart Card socket. The board also has two LNAs built onto it, along with several

clock options. Jumpers can select which target is connected, measurement mode

(high-side or low-side shunt), connect the AVR programmer from the ChipWhisperer

Capture Rev2, and allows an external Smart Card reader to be connected to the

1See the ChipWhisperer sources for details, with additional information in my article in the June
2014 issue of Circuit Cellar.
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Figure 4.7: The modular design allows easy implementation on other hardware, such
as the SAKURA-G board. A Spartan 6 LX75 FPGA is used for a cryptographic
algorithm, and the LX9 FPGA is used for control of the FPGA along with capturing
of power traces. This replaces both the ‘ChipWhisperer Capture Rev2’ hardware box
and the ‘Target Device’, meaning the entire side-channel analysis system is present
on the SAKURA-G board.

smart card socket by way of a feed-through smart card PCB. The target board is

shown in Fig. 4.8.

The choice of a 28-pin AVR socket allows the board to accept many similar AVR

devices. Attacks targeting recent processes can use the AtMega328P or AtMega48A.

Attacks looking to test older devices may use an older Mega8 device2. Note that many

‘Smart Card’ attacks are tested on a AtMega163 card, which contains an AtMega163

die from Atmel. Existing code targeting the AtMega163 can be ported to work on

a 28-pin AVR, avoiding the need to find outdated Mega163 cards, and also using a

more recent semiconductor process

4.2 Software Architecture

The software is implemented in entirely in Python. Python was chosen for a variety

of reasons: it is natively cross-platform, provides a simple GUI through PySide,

can easily interface to other languages including C/C++ and MATLAB, provides

high performance using Cython, and has a large collection of modules which provide

2While the Mega8 is an older device, recently bought ones may be produced on newer processes.
If looking for a device produced on older IC process, one will need to confirm the production date
via the date code
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Figure 4.8: The Multi-Target board provides a simple platform for testing various
attacks and cryptographic implementations.

functionality such as cryptographic functions, plotting, numeric computations, low-

level IO, and smart card interfaces. In addition the choice of an interpreted language

such as Python enables considerably more advanced scripting options. This section

will only briefly outline the software architecture, full documentation is kept on a

wiki at www.ChipWhisperer.com.

The project is split into two programs. One program captures the power traces

and saves them, the other perform side-channel analysis algorithms (e.g. CPA). The

decision to split the project into two programs was done to allow use of only part of this

project by other researchers. For example researchers with existing attack code can

still use the capture program, for example saving the data to a MATLAB workspace.

Or researchers with existing traces can load them into the analysis program without

using the capture portion.

Both capture and analysis software share a common base class; this class defines

methods of modifying parameters, saving and restoring projects, using trace files,

and plotting data. In addition support for a special ‘scripting’ system is provided.

This ‘scripting’ language allows execution of either the capture or analysis software

from another Python application, which forms the ‘script’. This design is especially

powerful since it allows the script to call any function within the entire program, and

www.ChipWhisperer.com
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does not require the definition of specific scripting commands. As an example, when

adding a new FPGA module, it requires the addition of the appropriate driver module

to the capture software. However by using the scripting interface, it is possible to

simply send raw commands to this module, which allow testing and debugging it

before the complete driver has been written. When options are changed using the

GUI, the GUI also shows how to accomplish the same operation with a script. Thus

a user can simply setup appropriate options from the GUI, and then save these script

commands to recreate the configuration.

The graph windows allow transformations to be performed on the data, such

as switching from time-domain to frequency-domain through an FFT, filtering and

smoothing, and exporting data in the graph.

4.2.1 Trace Management

The trace management module is common to both the capture and analysis software,

which provides a method of mapping traces from different formats into a continu-

ous block of trace data. The default storage method used by the software uses the

Python NumPY library’s native save and load commands. Alternatives which store

the traces to a MySQL server, and saving the traces to the same format used by the

DPAContestv3 tools are also provided.

4.3 Capture Software

The capture GUI is ideal for initial experimentations with a new system, such as

trying different ADC settings or different trigger settings. For repeatable captures

it is desirable to instead script the setup, which sets appropriate values to various

parameters. In addition this script can perform actions such as saving the target

data to a different format (e.g. a MATLAB workspace), or used for automatically

performing captures under different target conditions (e.g. selecting an algorithm

with and without countermeasures).

The script can either run the entire capture program, or simply configure part

of the window. Several example scripts are provided, which can be loaded in an

already-running ChipWhisperer-Capture application.
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Figure 4.9: The Capture GUI provides an interface to the capture hardware, target
device, and storage media.

For debug purposes, a monitor window shows the input and output results of the

cryptographic operation being performed on the target. This window also displays

what the expected result would be for a known key. This can be quickly used to

confirm a device under test is operating as expected, and the encryption key was

correctly loaded into the device.

4.3.1 Capture Performance

The capture performance demonstrates how quickly traces can be captured with the

default system. The measurements are taken on two different computers: a Windows

7 based Intel i5-2540M laptop, and a Linux based AMDA10-5800K desktop. Captures

are averaged over 10,000 traces. The ‘Target Connection’ indicates how the device

under test (e.g. the cryptographic target, not the ChipWhisperer capture) connects

to the computer. The ‘FPGA-x’ mode means one of the ChipWhisperer IO blocks

are being used.

For high-speed USB targets (ChipWhisperer Rev2, SAKURA-G, SASEBO-W)

the capture speed is primarily limited by USB latency in the host computer stack.

Note the AVR target shows both 3000 and 20000 points per trace; the resulting speed

change is much less than the 6x increase in data size would suggest. Targets connected

to the computer directly run much faster, as the IO blocks in the ChipWhisperer tend
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to required several USB transactions, each transaction adding latency from the USB

stack. This suggests that there is considerable room for speed improvements by

streamlining transactions to reduce this latency.

In addition to the OpenADC capture hardware, three standard oscilloscopes are

shown for comparison. The capture software can be programmed to support other

oscilloscopes with minimal changes.

Table 4.1: Traces/Second for various targets and capture hardware. Points/Trace
varies by target, and indicates number of points stored in each trace to attack the
target. The ‘—’ indicates lack of supported driver for the host OS.

Capture Hardware Attack Target Target Points Traces/Second
Connection /Trace Win7 Linux

ChipWhisperer Rev2 SASEBO-GII USB 100 14.8 28.3
ChipWhisperer Rev2 AVR, 38400 Baud FPGA-Serial 3000 11.3 3.91
ChipWhisperer Rev2 AVR, 38400 Baud FPGA-Serial 20000 7.04 3.78
ChipWhisperer Rev2 AVR, 38400 Baud USB-Serial 3000 18.2 18.9
ChipWhisperer Rev2 SmartCard PS/SC Reader 3000 7.40 6.62

SAKURA-G SAKURA-G Integrated 400 6.67 7.18
SASEBO-W SmartCard FPGA-USI 3000 0.271 0.279
SASEBO-W SmartCard FPGA-SmartCard 3000 1.49 1.52

Agilent MSO54831D SASEBO-GII USB 1500 8.01 —
PicoScope 6403D SASEBO-GII USB 1500 12.1 43.6
PicoScope 6403D SAKURA-G USB 1500 15.4 29.6
PicoScope 5444B AVR, 38400 Baud USB-Serial 12000 16.4 5.63

4.4 Analysis Software

The analysis software uses the same project and trace management system used by

the capture software. Moving a project over simply means saving the project in the

capture software, and opening it in the analysis software. Alternatively, traces can

be manually imported, either if they come from an external source or if you wish to

combine traces from several different captures into a single analysis run. In addition

this manual mode is used for configuring database operation; in this mode the analysis

software can read traces from a MySQL database, which allows analysis to occur while

the capture is still ongoing.
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Figure 4.10: The Analyzer GUI runs a given attack on the stored traces.

When traces are loaded, a single trace is plotted in time. A number of traces can

be overlaid on each other, which is useful to confirm the synchronization of traces.

If traces are incorrectly synchronized, one of the preprocessing modules (described

next) can be used to resynchronize the traces.

4.4.1 Preprocessing

Several basic preprocessing modules are provided, which operate on the data before

passing through to the attack. Three types of resynchronization are implemented: a

sum-of-errors minimizer, peak detect, and cross-correlation. These methods provide

very simple sliding resynchronization, which works well with the synchronous capture

methodology of the ChipWhisperer Capture hardware. In addition a simple low-pass

filter is also provided. Any of the preprocessing modules can be chained together in

an arbitrary order, and additional modules can trivially be added to the system.

The waveform display window shows the results after the preprocessing chain.

This could be used to confirm that traces are properly resynchronized in the time

domain before continuing on to the attack.
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4.4.2 Attack Implementation

The attack module is designed to simplify how new attacks are added to the system.

The cryptographic model, leakage model, and attack algorithm are all separate mod-

ules. This greatly simplifies changes and increases reuse: if a new attack is added,

it can pull in the existing cryptographic model and leakage model modules to au-

tomatically work with both software and hardware AES implementations. If a new

cryptographic model is added such as DES for example, it should work with the

existing CPA attack.

The main attack implemented currently is a CPA attack. Fig. 4.11 shows the

data flow within the attack system. Data coming from the ‘Trace Container’ may

also have had preprocessing applied, or a certain window of data may be selected

instead of the entire trace range. The correlation calculation has several modules

that can be loaded, for example selecting between a version that takes advantage of

the fast NumPy library, and a version compiled in C using Cython. The ‘correlation

calculation’ may actually implement more advanced algorithms, an example is the

Bayesian calculation given in [140] is also implemented. The results are stored in

the ‘Attack Statistics’, which stores results after a given number of traces, and also

calculates metrics such as Partial Guessing Entropy (PGE) at the current state [128].

The number of traces to use in the attack is also configurable, and allows for

looping the attack several times over different sections of the traces. If 100,000 traces

are present in the project for example, one could perform the attack with 1000 traces,

and repeat it 100 times. When final metrics are calculated, the system can average

the results of all 100 attacks.

Correlation Power Analysis

The basic equation for a Correlation Power Analysis (CPA) attack, where ri,j is the

correlation coefficient at point j for hypothesis i, td,j is power measurement of trace

number d at point j, and hd,i is the hypothetical power consumption of hypothesis

i for trace number d, with a total of D traces is given in equation 4.1. This basic

formula does not allow online calculation, where new traces are easily added without

recalculation of the entire sum. Instead the form shown in equation 4.2 is used [22].

This form lends itself to online calculation, where when a new trace is added the sums
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Figure 4.11: In the CPA attack module, the cryptographic model, hardware model,
and statistics update are all separate. This allows simple selecting of Hamming-
Weight (HW) or Hamming-Distance (HD) models for example, or selecting the AES
round to attack.

are updated and the new correlation coefficient calculated.

The online update is used during calculation of attack statistics, where it is desired

to track the attack results as new traces are added. As a practical matter, note the

denominator of either equation 4.1 or equation 4.2 may have numeric stability prob-

lems due to cancellation in either of the two terms. Forms given in [29] may result in

more stable calculations, however experimental results shown that for measurements

of real systems the numerical stability is not an issue.

ri,j =

∑D
d=1

[(
hd,i − hi

) (
td,j − tj

)]√∑D
d=1

(
hd,i − hi

)2∑D
d=1

(
td,j − tj

)2 (4.1)

ri,j =
D

∑D
d=1 hd,itd,j −

∑D
d=1 hd,i

∑D
d=1 td,j√((∑D

d=1 hd,i

)2

−D
∑D

d=1 h
2
d,i

)((∑D
d=1 td,j

)2

−D
∑D

d=1 t
2
d,j

) (4.2)

4.4.3 Results Display

The output of the attack is stored in a ‘Results Container’ type. Generally the

assumption is that the output of the attack container will contain a metric for each

hypothesis of the subkey, at each point in time. The metric can be sorted to give the

most likely subkey hypothesis.

The results display module can plot the value of the attack output for each point
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in time, for each of the hypothetical keys. If the correct key is known, this is plotted

in a separate color as in Fig. 4.10. In addition if the correct key is known additional

metrics can be calculated, such as the Partial Guessing Entropy (PGE). As previous

mentioned this PGE will be averaged over many trials when available.

4.5 Example Results

This section demonstrates some example results of the platform. Two example de-

vices will be tested: the first is the AtMega328P microcontroller, which is a reasonably

recent AVR microcontroller from Atmel. The system is loaded with basic code which

performs encryptions when requested over a serial protocol, and returns the encryp-

tion result. The Partial Guessing Entropy (PGE) of the CPA attack is shown in

Fig. 4.13 using the ChipWhisperer Capture Rev2 hardware (i.e. as in Fig. 4.2). As

a comparison Fig. 4.14 shows the PGE of the same attack where traces have been

recorded with a normal oscilloscope.

This device can also be targeted for glitch attacks. When the AVR was running

at 7.3728 MHz, glitches were inserted into the clock with the following specifications:

glitch width of 15.2% (20.6 nS), glitch offset of -17.0% (-23.1 nS). The glitch was

XOR’d with the clock, and repeated on 200 consecutive clock edges. The objective

was simply to cause the embedded system to skip authentication code, which was

successfully accomplished.

A second example uses the SASEBO-GII board running at 24 MHz, with the

AES core loaded from the ‘DPA Contest V3’, and the results plotted in Fig. 4.12.

Comparison to previously published results from the SASEBO-GII board indicate the

ChipWhisperer system is performing as expected[101].

4.6 Summary

This chapter has demonstrated a embedded security analysis platform, which is com-

pletely self-contained and requires no additional hardware or software besides a stan-

dard computer. The design is extremely modular and allows users to use only a

portion of the design; for example using a normal oscilloscope with this system, tak-

ing advantage of the advanced triggering mechanisms or the clock glitching capability
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Figure 4.12: Partial Guessing Entropy (PGE) of SASEBO-GII running at 24 MHz.
No smoothing has been applied.
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Figure 4.13: Partial Guessing Entropy (PGE) of CPA attack against AES-128 run-
ning on AVR Microcontroller. Traces recorded with ChipWhisperer Capture Rev2
hardware at 29.5 MS/s synchronous to device clock. No smoothing has been applied,
graph comes from ChipWhisperer Analyzer software.
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Figure 4.14: Partial Guessing Entropy (PGE) of CPA attack against AES-128 running
on AVRMicrocontroller. Traces recorded with PicoScope 6403D at 312 MS/s (as with
any oscilloscope, this sampling is done asynchronous to device clock). No smoothing
has been applied, graph comes from ChipWhisperer Analyzer software.

without using the analog capture hardware.

All design material including source code and hardware design files are maintained

in a GIT repository at www.ChipWhisperer.com. A wiki is used to maintain docu-

mentation, and contributions to either documentation or design are welcome. For

users interested in the analysis algorithms, large example captures are available as

well: a set of 500,000 traces of AES-128 executed on an AtMega328P microcontroller

along with 500,000 traces from the SASEBO-GII.

Since the introduction of this work, a number of researchers have made use of the

ChipWhisperer system, demonstrating the usefulness of this open-source platform.

Papers using the ChipWhisperer platform include [19, 23, 40, 42, 43, 49, 61, 76, 79,

96, 97, 113, 148].

www.ChipWhisperer.com


Chapter 5

Clock Recovery

This chapter is based on my paper previously published in [103].

In Chapter 3, it was demonstrated that a synchronous capture architecture is

capable of reducing data requirements by reducing required sample rates to achieve

the same success rate. For this to be possible, access to the system clock was assumed

to be readily available. For many systems this will be the case—an external oscillator

or clock drives the digital logic, and it is trivial to tap into this clock. But some

devices rely instead on an internal oscillator; there is no clock signal available for

synchronous sampling.

In addition devices may purposely vary the frequency of the internal oscillator in

an attempt to stop power traces from synchronizing in the time domain, requiring the

attacker to resynchronize the traces after capture. The varying clock countermeasure

is assumed to be difficult to reverse in most instances. For example it is claimed in

[147] that varying the clock frequency “makes time correlation, a very important step

in power analysis attacks, impossible.”

If the data was captured asynchronously (i.e. with a normal oscilloscope) with

sufficient sample rate, it’s possible to compensate for the varying clock frequency via

post-processing. This is of little use for attacks requiring real-time information: a

trigger matching an analog pattern in the power data, or the injection of glitches

timed to specific events requires real-time knowledge of the device clock.

This chapter addresses the problem of recovering the clock from a device under

test for both side-channel analysis and fault injection. First, an introduction to the

reference platform being used is given, along with a comparison of the synchronous

sampling technique to standard asynchronous sampling on this platform.

The platform is then changed to use an internal oscillator which actively varies

the frequency during cryptographic operations. Attacks using standard asynchronous

57
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oscilloscopes without preprocessing, with preprocessing, and synchronous sampling

are all compared.

Finally a method of performing clock recovery, and using that clock for syn-

chronous sampling is demonstrated. The clock recovery method can be seen as a

hardware implementation of the software preprocessing technique. The use of Sum-of-

Absolute Difference (SAD) triggers to detect specific events in the system is demon-

strated, and finally the injection of glitches is performed on the target while the

operating frequency varies.

5.1 Experimental Platform

The device under test (DUT) is an Atmel AtMega48A microcontroller in 28-pin DIP.

This device was selected due to several clocking features: it can use an internal or

external clock source, the internal oscillator can be adjusted by firmware running on

the microcontroller during operation, and the internal clock can be output onto an

I/O pin. The differential voltage is measured across a shunt inserted into the VCC pin

of the microcontroller. For asynchronous sampling a PicoScope 6403D oscilloscope is

used, and for synchronous sampling the ChipWhisperer is used. Full details of the

capture hardware and software are available in [105] and at the ChipWhisperer wiki1.

See Fig. 5.18 for a photo of the test setup.

The ‘A’ suffix for the AtMega48A indicates it is using a recent fabrication process;

the older AtMega48P by comparison is made with a larger (0.35µm) process. The

AtMega48P draws more power, and thus would be expected to give a stronger signal

across the resistive shunt used to measure current. The AtMega48A thus reflects a

reasonable platform which can be compared against any recent digital IC2.

The crypto module under attack is a C implementation of the AES-128 algorithm.

The specific C implementation chosen was ‘AES in C’ available from avrcryptolib3.

The attack algorithm is a standard Correlation Power Analysis (CPA) attack[22].

1www.chipwhisperer.com
2The feature size of this specific device is unknown, but based on similar devices is assumed to

be within the 0.12 µm – 0.18 µm range
3http://avrcryptolib.das-labor.org
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Figure 5.1: PS–A means the PicoScope 6403D sampling at the given sample rate,
asynchronous to the device clock. CW–A means the ChipWhisperer in asynchronous
mode at the given sample rate, and CW–S means the ChipWhisperer in synchronous
mode.

5.1.1 Comparison of Sampling Platforms

While the ChipWhisperer is capable of using both asynchronous and synchronous

sampling, it is limited to a maximum sample rate of 100 MS/s. For comparison of

higher speed asynchronous captures, a PicoScope 6403D is used for asynchronous

sampling, which can achieve up to 5 GS/s.

Fig. 5.1 shows a comparison between the different oscilloscopes and sampling

types. For this figure an external 7.37 MHz crystal oscillator was used as a clock

source. Results in this chapter will be an average of the partial guessing entropy

(PGE) of all subkeys, and where space permits the PGE of each individual subkey is

graphed. The reader is referred to Section 2.2 if they are unfamiliar with the PGE

metric.

With the PicoScope 6403D (the PS–A data from Fig. 5.1), it is noted that increas-

ing sample rates have improved attack performance initially, but beyond a certain

point almost no improvement occurs. For this attack setup there is minimal change

from 156 MS/s to 625 MS/s, and in particular the results of 312 MS/s and 625 MS/s

are almost indistinguishable.
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In the introduction of synchronous sampling, it has been previously claimed the

main issue is the random jitter between the trigger event and the first sample occurring

that causes the poor performance at lower sample rates in asynchronous systems [85].

We would thus expect a system using a fast sample rate for capture (i.e. so the jitter

between the trigger and first sample is minimized), but decimated to a lower sample

rate, to have better performance than simply selecting a lower sample rate.

In Fig. 5.1 the line labelled PS–A 31.2 MS/s (decimated from 312 MS/s) is cap-

tured in such a fashion. The 312 MS/s data is decimated to 31.2 MS/s by selecting

every 10th data point and writing them to a new trace file, which the attack is run

against. Note that the performance is considerably better than the capture which

originally occurred at 31.2 MS/s. No anti-aliasing or other filter has been used in

the decimation process. Certain oscilloscopes contain a feature to capture at a high

sample rate, and perform such downsampling — the PicoScope 6403D for example

provides this option, although this feature is not used in this work.

The performance of the ChipWhisperer hardware at 78.1 MS/s in asynchronous

mode shows considerably better performance than the PicoScope 6403D at 78.1 MS/s.

It is assumed the built-in Low Noise Amplifier (LNA) in the front-end is resulting

in less noise, compared to the PicoScope 6403D which has a more general-purpose

front-end.

Finally, note the ChipWhisperer hardware in synchronous mode results in fur-

ther improvement in performance, despite the considerably reduced sample rates. In

synchronous mode the device must sample at a multiple of the 7.37 MHz clock, so

sampling is done at 7.37 MS/s and 29.4 MS/s. Both of these results are almost indis-

tinguishable on the graph, indicating that on this particular hardware using a single

sample per clock is sufficient.

5.2 Varying Clock Frequency

When an attacker is recording the power traces, ideally each trace would be perfectly

synchronized with each other. That is to say that each time instance across all traces

corresponds to the same instruction occurring on the DUT. In real systems, traces

may not be perfectly synchronized. This could come from jitter in the trigger signal,

unintended non-linear code flow such as interrupts on the DUT, or countermeasures
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Figure 5.2: Atmel AtMega48A internal clock drift during a side-channel attack.

such as instruction shuffling or random delay insertion. A discussion of algorithms

and their performance for resynchronizing is compared in [57]. For all these events

the clock is operating at a constant frequency.

Another class of synchronization aims to compensate for the clock frequency of

the device varying (called varying clock or VC), either due to countermeasures or

simply due to the oscillator drift. For an example of the natural variation see Fig. 5.2,

which was measured the short-term drift of the internal oscillator on the experimental

platform used here. This small amount of variance was enough to prevent the same

CPA attack from being successful with over 2500 traces4, when with a stable crystal

oscillator it was successful in only 30 traces. Algorithms which aim to reverse the VC

are given in [136, 66, 115, 135].

When a large number of points are required per trace or a large offset from the

trigger to the points of interest exist, even the short-term drift differences between

the oscillator in the DUT and the oscillator in the oscilloscope may result in desyn-

chronized traces.

With synchronous sampling, variations in clock frequency will naturally be elimi-

nated from the data source. Each sample no longer corresponds to a time instant, but

instead to a clock transition. Synchronization may be required for reasons previously

discussed such as trigger jitter or countermeasures, but is not needed to compensate

for the clock frequency changing.

4After 2500 traces the average PGE was 40, and only 4 of the 16 bytes had a stable PGE < 5
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Figure 5.3: Atmel AtMega48A internal clock frequency change as OSCCAL changes
from 0 to 255.

5.2.1 Synchronous Sampling of Varying Clock

As a demonstration of synchronous sampling under VC conditions, the AtMega48A

target was designed to randomly vary the internal clock frequency before calling the

AES encryption routines, and a side-channel attack was mounted. For this initial test

the CLKOUT fuse was programmed to output the internal clock onto an IO pin, and

the sampling is done synchronous to this clock.

Internal Oscillator Adjustment Range

The AtMega48A datasheet guarantees the oscillator can be calibrated between 7.3 MHz–

8.1 MHz, but the actual range is much larger—the specific part used here had a range

of 3.95 MHz–13.0 MHz. This test is operating the device outside of guaranteed op-

erating range; commercial products would be advised to only use the adjustment

over a smaller range. The time required to switch from the two possible extremes of

the randomly selected frequencies, 3.9 MHz to 13 MHz, is shown in Fig. 5.3. The

datasheet specifies a maximum change of 2% clock cycle period between cycles for

an external clock; it is not clear if this rapidly changing internal oscillator would also

be subject to these considerations[8]. For this reason a number of NOP instructs are

inserted before beginning further processing after changing the OSCCAL register.
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Internal Oscillator Ranges Used

In this course of this chapter, three ‘ranges’ are used for adjustment of the internal

oscillator. The first is the extended range, as mentioned spans from 3.9 MHz – 13 MHz.

A smaller narrow range is also used, which limits the adjustment to a level consistent

with the datasheet. Finally the drift range is also explored, which reflects the natural

random variations due to the nature of the internal oscillator in this device. Detailed

information about each of those ranges is presented in Table 5.1. To validate the

frequency measurement system, the crystal range is also included, where a crystal

oscillator is used to maintain a perfect clock reference.

In Fig. 5.4, the histogram of operating frequency during the requested encryptions

is shown for the ‘drift’ range. This appears to follow the normal distribution, as would

be expected by a process resulting from random noise. In Fig. 5.5 the histogram

is shown for the ‘extended’ operating range. The value written to the adjustment

register (OSCCAL) is uniformly random in the range [0, 255]. The AtMega48A splits

the OSCCAL register into two over-lapping frequency ranges. Furthermore it does

not have linear mapping from the OSCCAL register to operating frequency, resulting

in a non-standard distribution[8].

5.2.2 Preprocessing of Traces

The power consumption of a digital device is dependent on the frequency of opera-

tion, and this follows a linear relationship. For the ATMega48A at 3.3V, the power

consumption when moving from 3.9 MHz to 12 MHz goes from 1.7 mA to 3.1 mA[8].

While the power traces will line up in the time domain with synchronous sampling,

Table 5.1: For the ATMega48A, several different clocking options are used. Two of
them purposely vary the frequency of the internal oscillator, one uses the internal
oscillator without adjustment, and one uses the standard crystal oscillator.

Name Range(MHz) Mean(MHz) Std-Dev

Extended 3.945 – 12.96 7.210 2.190 MHz
Narrow 7.247 – 8.110 7.663 287.5 kHz
Drift 7.315 – 7.413 7.358 11.78 kHz
Crystal 7.373 – 7.373 7.373 5.469 Hz
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Figure 5.4: The histogram of the operating frequency for the ‘drift’ range. The
distribution appears to approximately follow the Normal distribution.
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Figure 5.5: The histogram of the operating frequency for the ‘extended’ range. The
non-linear mapping of the control register to operating frequency, which is also split
into two overlapping ranges, results in a non-standard distribution.
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they will require scaling in order to allow comparison of the same point across multi-

ple traces. In [115] it is suggested to add an adjustment factor based on the measured

frequency of operation, as in (5.1). Here Tp,n is a single point at index p in trace n,

C is a scaling constant, and fp,n is the frequency of the clock at point Tp,n.

T ′
p,n = Tp,n + Cfp,n (5.1)

This assumes that the change in power measurement due to varying clock fre-

quency simply results in an ‘offset’ of the measured power. This assumption is also

validated in [135], where a ‘sliding match’ method is used to compensate for the effect

of the varying clock on power consumption traces.

To further test this assumption, the mean and standard deviation of each power

trace was plotted for the operating frequency fn, where fn varies by the ‘extended’

range given in Table 5.1. The results are shown in Fig. 5.6.

Over a somewhat limited range the assumption appears to hold: for example

over the range of approximately 7.2 MHz – 8.1 MHz the mean varies linearly with

frequency, and the standard deviation is constant. Thus in this range there is no

scaling of values, just a bias which must be corrected for. Over the extended frequency

range it would appear some scaling of points is required, as the standard deviation is

also varying with frequency.

Four additional preprocessing methods are proposed here; all five methods will be

tested by comparing the results of the Correlation Power Analysis (CPA) attack over

several frequency ranges.

First, two methods which do not require knowledge of the frequency of operation

are proposed. The most basic simply scales all traces to be zero-mean, which again

would be expected to only work over a limited frequency range:

T ′
p,n = Tp,n − µ̂Tn (5.2)

This can be improved by also scaling by standard-deviation, which should improve

performance over a wider range. This will convert the distribution of each trace

to be the ‘standard normal’ distribution. Applying this zero-mean, unit variance

normalization (MVN) to side-channel attacks has already been used to improve the
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Figure 5.6: Plot of the trace mean and standard deviation compared to operating
frequency of the microcontroller, from 3.9 – 13 MHz. Inset details 7.2 – 8.1 MHz
range. Dashed line shows the µ̂(f) and σ̂(f) functions used in (5.4) and (5.5).
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applicability of template-based attacks beyond the specific hardware which generated

the template[88]. This preprocessing is given by:

T ′
p,n =

Tp,n − µ̂Tn

σ̂Tn

(5.3)

The main downsides of these methods is they require the frequency be constant

over the entire length of the trace. Method (5.1) was proposed in [115] as it could

function where the frequency varies per clock cycle. To accomplish this same goal,

we will define an estimate function µ̂(f) which provides an estimate of the mean

of the power trace for a known frequency f, and similarly σ̂(f) which provides an

estimate of standard deviation of the power trace. These functions are simply 15th

order polynomial curves fitted to the data in Fig. 5.6. The plots of both functions

are shown in Fig. 5.6 as well.

Repeating (5.2) but with µ̂ being a function of f , and not simply calculated over

the entire trace:

T ′
p,n = Tp,n − µ̂(fp,n) (5.4)

And similarly for (5.3):

T ′
p,n =

Tp,n − µ̂(fp,n)

σ̂(fp,n)
(5.5)

Fig. 5.7 shows traces before and after preprocessing, using (5.5)—note the align-

ment in the time domain of all the traces due to synchronous sampling, despite the

varying clock of the DUT.

Even with synchronous sampling, some trace resynchronization may be required.

In this case if the sampling was started and then the clock speed changed, the traces

had slight misalignment. It is assumed this comes from either the microcontroller

delaying execution during the frequency change, or errors in the sampling ADC as the

clock frequency changes. The synchronous sampling still greatly simplified the further

resynchronization required, as all traces that required resynchronization required only

a shift of 3 or less samples (clock cycles) relative to other traces. If the sampling was

started after the clock frequency speed changed, no resynchronization was required,

despite the DUT running at different frequencies.
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Table 5.2: The number of traces for the Partial Guessing Entropy (PGE) of the CPA
attack to be < 10 is given in this table, where the traces have been preprocessed by
different methods. Tn is the unprocessed trace.

Clock Tn Tn + Cfn Tn − µTn

Tn−µTn

σTn
Tn − µ̂(fn)

Tn−µ̂(fn)
σ̂(fn)

Extended 93 32 28 30 28 30
Narrow 23 19 16 15 15 15
Drift 12 12 12 13 12 12
Crystal 29 29 29 30 30 29

5.2.3 Results

The PGE of the CPA attack on an ‘extended’ frequency variation is shown in Fig. 5.8.

Note from Table 5.2 the more widely varying ‘extended’ range of frequency variation

has slightly worse performance than the ‘drift’ range, thus the varying clock does

diminish performance. With the crystal oscillator, performance is similar to the

‘extended’ range. One would expect it to be similar to the ‘drift’ range instead,

since the frequency is not varying. Thus is assumed to be caused by the external

oscillator circuitry in the AVR microcontroller resulting in more noise on the trace

measurement. Thus using an internal RC oscillator can actually result in lower-noise

measurements compared to an external oscillator.

Attempting to attack anything besides the ‘crystal’ range with measurements

taken by a standard asynchronous oscilloscope fails. The PGE does not significantly

improve over the range of trace measurements, even for the ‘drift’ range. The results

of Fig. 5.21 demonstrate this in practice.

As previously mentioned a number of preprocessing methods are also tested, with

Figure 5.7: Traces can be normalized by (5.5) before passing to a standard CPA
attack to remove the effect of varying operating frequency.
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Figure 5.8: Results of a CPA attack on a device with oscillator frequency randomly
varying between 3.9 MHz–13 MHz on each encryption, with trace normalization by
mean/std-dev, but no trace synchronization being performed. The Subkey N refer to
the subkey Partial Guessing Entropy(PGE), Average refers to the average of all 16
subkeys. max(PGE) < 10 shows the metric used in Table 5.2.

final results shown in Table 5.2. The details of the PGE metric are provided in

Section 2.1.2. The max(PGE) < 10 point is shown in figures as the horizontal line

at PGE = 10. It can be noted that over a narrow frequency range no preprocessing

is required: the ‘drift’ range has no improvement using any preprocessing method.

Only the ‘extended’ range shows significant improvement in attack performance by

using preprocessing, and even then the type of method makes little difference.

These results suggest that details of the preprocessing are not too critical, and

would also validate previous work such as [115] which indicate a simple frequency-

dependant bias is sufficient. In cases where the frequency is constant over the entire

trace, it is sufficient to simply subtract the mean of each trace from itself, forcing the

trace to be zero-mean.
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Figure 5.9: Previous work on trace compression can be considered a simple example
of clock recovery. Here the trace compression is performed by simply detecting zero-
crossing events which correspond to clock edges, and only storing those points.

Considering the extremely large range the oscillator was varied over (3.9 MHz–

13 MHz), these results show that synchronous sampling is a simple method of attack-

ing the varying clock (VC) countermeasure.

5.3 Clock Recovery as Preprocessing

If we consider the case of asynchronous sampling, where the sample rate is infinitely

fast, the synchronous sampling method would be equivalent to performing trace com-

pression which is keeping a single point per clock sample [80]. Practically of course

this means simply sampling ‘fast enough’ for a specific target; looking at Fig. 5.1, we

can see for the AtMega48A sampling at 312 MS/s should be sufficient.

In this work, recovering the clock is done by filtering the recovered signal around

the fundamental frequency component. This method is used since it is possible to

implement in both software and hardware. In particular the hardware implementation

will be used for real-time recovery of a device clock for synchronous sampling and

glitch generation.

Fig. 5.9 shows a block diagram of the clock recovery and decimation logic. A FFT

is used on the input trace to determine the operating frequency of the device, where

it is assumed the operating frequency results in the largest harmonic component.

Systems with multiple oscillators may require a more complex selection logic.

A 5th order IIR Butterworth bandpass filter with a center frequency fC processes
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Figure 5.10: All results come from same traces, captured on PicoScope 6403D at
312 MS/s. Each trace in the raw file has 31888 points, the clock recovery version has
1500 points, and the decimated trace file has 3188 points.

the received data, where fC is selected as the device operating frequency. The pass-

band of the filter is configured to have a bandwidth of 20%, where the bandwidth for

a filter with a passband from fL to fH is given by (5.6).

BW = 2
fH − fL
fH + fL

(5.6)

The sample corresponding to a clock edge is selected based on a zero-crossing

detection of the filtered output. This means the effective sample rate becomes 2×
the device clock frequency, since two zero-crossings are produced for every cycle.

The results of a CPA attack against a system where the clock is constant, i.e. the

crystal range, is shown in Fig. 5.10. This comparison shows that the clock recovery

logic can reduced the trace size with minimal impact on attack performance. Using

integer decimation by comparison results in a performance penalty on the attack

results.
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5.3.1 Clock Recovery with Varying Clock

Initially, the internal RC oscillator is used without any explicit random frequency

generation. The RC oscillator does randomly drift about ±0.5% during operation

as measured in Table 5.1. Measurements taken with a standard oscilloscope fail to

recover the key as shown in Fig. 5.21, even after 1000 trace measurements. When

the clock is stable the standard oscilloscope recovers the key in < 20 traces, as in

Fig. 5.1. Thus the small amount of clock variation causes the CPA attack to fail,

despite the starting point having perfect synchronization. If instead we use clock

recovery algorithm from Fig. 5.9, the results are as in Fig. 5.11. The CPA attack is

successful and with similar success to the original setup.

Next, the ‘narrow’ frequency range in Table 5.1 is used for clock recovery, which

has a center frequency of 7.66 MHz. The frequency was varied approximately ±5.5%.

Fig. 5.12 gives the results of the CPA attack on this system.

Finally, the ‘extended’ clock frequency range which varies from 3.9 MHz – 13 MHz

is used, which has a center frequency of 7.21 MHz. Fig. 5.13 gives the results of the

CPA on this setup.

These results show that the CPA attack remains successful on all targets, despite

the highest operating frequency being over 3× the lowest operating frequency.

5.4 Clock Recovery Hardware

In many devices the clock is not available externally, meaning additional work is

required to perform synchronous sampling. In side-channel analysis, it was previ-

ously demonstrated how to force an internal oscillator to lock to an external signal

[123]. This was used to stabilize the internal RC oscillator and improve trace syn-

chronization, but the same method could be used to generate the reference clock for

synchronous sampling. This will fail if the device itself is varying the clock frequency,

so instead clock recovery must be used to generate a copy of the clock. The idea of

clock recovery is not new—in communications electronics this has been used for many

years to synchronize a receiver clock to a transmitter clock over long distances [36].

The basic method used here for clock recovery is to filter the power signal so that

only the fundamental frequency from the internal oscillator is left. This can then be
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Figure 5.11: Results of a CPA attack on a device with an internal RC oscillator, where
the oscillator frequency changes ±0.5% during operation due to drift, and the clock is
not externally available, but clock recovery as a preprocessing is used. Average refers
to the average of all 16 subkeys. Subkey plot legend same as in Fig. 5.8.
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Figure 5.12: Results of a CPA attack on a device with an internal RC oscillator,
where the oscillator frequency changes ±5.5% during operation, and the clock is not
externally available, but clock recovery as a preprocessing is used. Average refers to
the average of all 16 subkeys. Subkey plot legend same as in Fig. 5.8.
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Figure 5.13: Results of a CPA attack on a device with an internal RC oscillator, where
the oscillator frequency changes −45% to +80% during operation, and the clock is
not externally available, but clock recovery as a preprocessing is used. Average refers
to the average of all 16 subkeys. Subkey plot legend same as in Fig. 5.8.
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Figure 5.14: Clock recovery block diagram.

amplified and turned into a digital signal. To prevent glitches from resulting at the

output a PLL is used to provide a clean digital signal. Details of this hardware design

and results of side-channel analysis tests will be presented next.

5.4.1 Hardware Design

A block diagram of the system is given in Fig. 5.14. A Low Noise Amplifier (LNA) is

placed on each side of the band-pass filter (BPF), the BPF selecting the fundamental

frequency from the power signal. The output of the final LNA is limited to logic

levels and fed into the Phase Lock Loop (PLL) block. The PLL used is a single-

chip solution, the Texas Instruments CDCE906 device which integrates the Voltage

Controller Oscillator (VCO), Phase Detect (PD), loop filters, and frequency dividers

into a single package. For an introduction to PLLs the reader is referred to [13].

Fig. 5.15 shows an example of recovering an internal oscillator on an Atmel AVR

ATMega48A device. With this device it is possible to switch on a ‘clock out’ pin,

which allows measurement of the internal RC oscillator signal. The clock recovery

logic works equally well with this pin enabled or not, but enabling the pin allows

comparison of the recovered clock to the internal oscillator.

5.4.2 Filter Design

The design of the band-pass filter (BPF) is critical for the success of the clock recovery.

Selection of the pass-band is based on the frequency of the internal oscillator for the

device under attack. If this frequency is not known it can typically be found by

viewing the frequency spectrum of the device during operation.

Careful consideration must be given for the group delay of the filter, which changes
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Figure 5.15: Recovery of 7.7 MHz Internal RC Oscillator on ATMega48A. (A) is the
amplified power trace after the LNA. (B) is the output of the band-pass filter, and
(C) is the output of the limiter, which generates a logic-level signal. The output of
(C) can be passed through a PLL to further stabilize the signal. In (D) the actual
RC oscillator output is shown, note the perfect alignment of the recovered signal (C)
and internal RC oscillator (D).

over frequency. As an example the 6.5 MHz–8.5 MHz BPF used for the ATMega48A

device is shown in Fig. 5.16. The group delay, which is usually measured in time

units or phase degree, has been scaled by the frequency to give us a group delay in

‘clock cycles’. The group delay will cause synchronization errors between traces if

the frequency of the DUT oscillator changes, since the delay through the filter varies

with frequency.

For more detail, the delay between the actual internal RC oscillator and the re-

covered clock is plotted in Fig. 5.17 over a more limited range. Here the delay is

measured in degrees, where 360 ◦ equals one clock cycle. This figure comes from mea-

surements of the final implemented system, whereas Fig. 5.16 is based on simulations

of just the BPF.

Three methods to reduce this error can be used. First, the type of analog BPF

should be matched with the DUT. If the frequency of the oscillator varies only a tiny

amount, it would be possible to use a Chebyshev filter with the better attenuation

performance. If the DUT oscillator frequency will vary a filter with better group

delay performance could be used such as the Bessel. The second way to reduce this
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Figure 5.16: Choice of filter type means a choice between better group delay per-
formance and better attenuation outside the pass-band. Two examples are given
here: a Chebyshev filter and a Bessel filter, both 5th order made from discrete LC
components. Results are from simulation.

error is to measure the frequency during each trace acquisition, and shift the recorded

waveform by the known group delay of the filter at this frequency. Finally a standard

trace synchronization algorithm can be used to synchronize all such traces.

5.4.3 Results of CPA Attack

The AtMega48A platform is used again for this evaluation. The ‘external clock’ out-

put is disabled during these tests—the AVR driving the IO pin at the clock frequency

results in a very strong fundamental harmonic on the power trace, which results in a

better signal for the PLL to lock onto. Such a system would be unrealistic since real

systems would not be driving an arbitrary IO pin causing this strong fundamental.

The complete setup with clock recovery module, OpenADC capture hardware,

and target is shown in Fig. 5.18.

The test setup is almost identical to that of Section 5.3.1, where clock recovery

is done via processing of traces capture asynchronously. Again initially only a small

frequency variation due to drift of about ±0.5% during operation is used, as measured

in Table 5.1. With synchronous sampling with clock recovery as proposed in this

chapter, the results are as in Fig. 5.19. The CPA attack is successful without any

special processing of the traces.

Next, the ‘narrow’ frequency range in Table 5.1 is used for clock recovery, which

has a center frequency of 7.66 MHz. Fig. 5.20 gives the results of the CPA attack on
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Figure 5.17: As the phase difference changes, the alignment of measurements is com-
promised, requiring more traces. This figure shows the measured phase difference
for the overall system, i.e. phase difference between the RC oscillator on the AVR
and the final recovered clock. A Bessel analog filter is used here, results are from
measurement.

Figure 5.18: Test Setup for side-channel analysis with clock recovery of internal oscil-
lator on ATMega48A. The oscilloscope is used to measure recovered clock frequency.
The long board center-front performs amplification, filtering, and limiting. The PLL
is located inside the capture hardware on the left-hand side. The back right board is
the AtMega48A target.
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this system. The reduced performance is mainly due to the phase delay of the clock

varying with frequency, as in Fig. 5.17. When the clock is directly available and not

obtained through clock recovery, as in the results of Table 5.2, the ‘narrow’ frequency

range has similar performance to the ‘drift’ range.

The ‘extended’ clock frequency range of 3.9 MHz – 13 MHz could not be recovered

using the simple filtering method. This is due to the fact that the 3rd harmonic of

3.9 MHz will be at 11.7 MHz, which would fall within the bandpass filter bandwidth.

Using clock recovery on a very widely varying clock would require a tunable filter

which follows the fundamental frequency.

Note that comparing the results to the software-based clock recovery from Sec-

tion 5.3.1 shows that asynchronous sampling has better performance, it is assumed

due to the ability to generate an ideal filter, instead of being limited by physical

component selection. The clock recovery method is still useful when it is desired to

use synchronous sampling due to the reduced sample rate requirement compared to

capturing asynchronously and later processing the data. For fault injection process-

ing the data after capture is not useful, since real-time information is required. The

next section will concentrate on the use of clock recovery for these cases.

5.5 Fault Injection

For injecting faults into an embedded system, having a clock which is phase-locked

to the device clock allows more precise temporal location selection. If triggering must

count a certain number of clock cycles for example, this is difficult to do over long

periods due to drift in either the device clock or the instrument clock. If the device

clock itself is used, it is trivial to count over a large number of cycles with great

accuracy.

Previous work has looked at either disabling the switch to an unstable clock [137],

or forcing the internal clock to lock to an external clock[123]. These methods are

highly dependant on a specific system design; a device may instead always come up

on an internal oscillator, making it impossible to keep it running on the external

clock.
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Figure 5.19: Results of a CPA attack on a device with an internal RC oscillator, where
the oscillator frequency changes ±0.5% during operation due to drift, and the clock is
not externally available, but clock recovery with synchronous sampling used. Average
refers to the average of all 16 subkeys. Subkey plot legend same as in Fig. 5.8.
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Figure 5.20: Results of a CPA attack on a device with an internal RC oscillator,
where the oscillator frequency changes ±5.5% during operation, and the clock is not
externally available, but clock recovery with synchronous sampling used. Plot legend
same as in Fig. 5.8.
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Figure 5.21: Results of a CPA attack on a device with an internal RC oscillator,
where the oscillator frequency changes ±0.5% during operation due to drift, and a
standard asyncronous oscilloscope samples the device at 312 MS/s. Average refers to
the average of all 16 subkeys.

Having a phase-locked clock means glitches can even be inserted at specific por-

tions of the device clock cycle. These glitches could be power, EM[114], or laser/op-

tical [124]. We are assuming there is no external clock in this work, thus are ignoring

clock perturbations as a valid glitch. This work will use power glitches as a demon-

stration of the usefulness of maintaining a phase-locked reference, such as is derived

by the clock recovery scheme.

In addition a triggering mechanism that depends on waveforms in the analog data

is demonstrated. How changes in operating frequency affect the triggering reliability

is also explored, and it will be demonstrated that synchronous sampling provides a

highly reliable data source for this trigger.

5.5.1 Sum of Absolute Difference Trigger

To inject a fault at a specific location, a pattern detection trigger called the Sum

of Absolute Difference (SAD) is used. The implementation of the SAD comes from

the ChipWhisperer system [105]. In this implementation 128 input samples, T, are

continuously compared to a 128 point reference waveform, R, using (6.9). If the

input was exactly the same as the reference waveform, the output of (6.9) would be

0. Normally the trigger condition is simply when the output of (6.9) falls below some
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numerical value.

SAD =
127∑
p=0

|Tp −Rp| (5.7)

If the data T has already been recorded (e.g. for resynchronizing recorded data),

the form of (5.8) can be used. In this form an ‘offset’ parameter m is added, which

slides the comparison window across all points in the recorded trace.

SAD(m) =
127∑
p=0

|Tp+m −Rp| (5.8)

To determine the effect of varying clock frequency, a SAD reference waveform R

will be compared to a recorded power trace T, where the same operation is occurring

in both T and R. The frequency that the target is operating at when T is recorded

varies, and the output of the SAD equation (5.8) is calculated. It is known a priori

that when m = 0 the operations in both waveforms should be synchronized. Thus we

would expect the following:

argmin
m

(SAD(m)) = 0 (5.9)

To determine the margin for the SAD trigger level, the minimum value of (5.8)

is found when the offset is not zero, i.e. for all the wrong alignments of R. This

is plotted against frequency in Fig. 5.22 — the distance between the two groups

indicates the margin available. This uses a normal asynchronous capture, and note

the SAD trigger would only function at a very narrow window around the reference

trace waveform, which was captured when running at about 7.4 MHz.

By comparison, if we use synchronous sampling the SAD triggering is able to reli-

ably detect the triggering point for T being recorded with a device frequency between

4.2 MHz – 13 MHz, even though the reference R was recorded at a different device

operating frequency (about 7.6 MHz). At the extreme lower end of the operating

frequency range the SAD triggering is not reliable, as around 3.9 MHz it would select

the wrong triggering point.

For using the SAD triggering, hardware clock recovery is required if the device

frequency is not constant. We will next consider not only the triggering of glitches,

but the actual parameters defining the glitches as the device frequency varies.
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Figure 5.22: Output of (5.8) for the offset m being zero or non-zero. When the offset
m = 0, this means the SAD output for the correct alignment of traces. When m ̸= 0,
this means the best possible SAD output for incorrect alignment of traces. Data
sampled asynchronously at 312.5 MS/s.

5.5.2 Fault Injection and Target Code

For generation of faults, power glitching is used. A MOSFET is used across the power

pins of the chip; the MOSFET forms a voltage divider with the shunt resistor being

used for side channel power analysis measurement, and allows quickly dropping the

voltage on the VCC pin. An example of the glitch waveform is shown in Fig. 5.24.

This setup allows power consumption to be monitored (required for the SAD

trigger) along with monitoring the glitch status. The width and offset of the glitch

is controlled via the ChipWhisperer system. The glitch width and offset is based on

a percentage difference from the ‘source clock’. If the device clock is known, this

allows the width and offset to scale with changes in frequency, and ensures perfect

synchronization of glitch location relative to clock edges. The ChipWhisperer system

has high resolution on the glitch width and offset, having approximately 100 pS

resolution on these options.

Where the source clock isn’t known, i.e. without using clock recovery, an asyn-

chronous clock is instead used to generate the glitch width and offset. In this case



86

4 5 6 7 8 9 10 11 12 13
Operating Frequency (MHz)

0

2000

4000

6000

8000

10000

S
A
D
 R
e
su
lt

Sum of Absolute Difference (SAD) vs. Operating Frequencies

min(SAD(offset≠0))
SAD(offset=0)

Figure 5.23: Output of (5.8) for the offset m being zero or non-zero. When the offset
m = 0, this means the SAD output for the correct alignment of traces. When m ̸= 0,
this means the best possible SAD output for incorrect alignment of traces. Data
sampled synchronously at 4× device clock.

the glitch offset will occur relative to the trigger event, however the glitch parameters

do not scale with device frequency, since the device frequency is not known.
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derived from a source clock. The glitch width and offset are a function of that source
clock, see [105] for details.
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Listing 5.1: The source C code for the AtMega48A on which the glitch is tested.

#define OSCUART 94

#define OSCGLITCH 105

void glitch ()

{

volatile uint8_t a = 0;

//Set frequency then TX

OSCCAL = OSCUART;

_delay_ms (10);

output_ch_0(’A’);

//Wait for character to TX

//then change frequency

_delay_ms (10);

OSCCAL = OSCGLITCH;

_delay_ms (10);

// Trigger Line

PORTC = 0x01;

PORTC = 0x00;

// Sensitive Loop

while(a != 2){

;

}

// Padding after loop

nop(); nop(); nop();

nop(); nop(); nop();

//Set frequency back

OSCCAL = OSCUART;

_delay_ms (10);

ch0_puts("1234");

}



89

5.5.3 Dependency on Target Frequency

As previously mentioned, the use of clock recovery is required for the SAD triggering

to function. To allow comparison of glitch insertion with and without clock recovery,

the AtMega48A is also programmed to set an IO line high at the moment where a

glitch should be inserted. The glitch can thus be triggered even if the SAD trigger

cannot be used, although in real systems it’s unlikely such a trigger would exist. This

trigger occurring at the moment of glitch insertion also means there is no error due

to a differing number of device cycles between the trigger event and actual glitch, as

would be the case if glitch insertion had a time-based offset from the trigger.

The code being glitched is shown in Listing 5.1, where a successful glitch is one

which breaks out of the loop, without skipping past the padding. This allows a

simple test to check if the glitch is causing the desired effect. A metric of the percent

of glitches causing the desired effect that ‘1234’ is printed is used to compare efficiency,

which is averaged over 100 glitches.

The glitch offset and width is varied until what appears to be the maximum success

rate is found. In one case the glitch width and offset scales with frequency (i.e. the

device clock is fed into glitch generation), in the other the glitch width and offset is

constant. The hardware is the same on both cases, again the AtMega48A device with

an internal RC oscillator being used as the device clock.

It can be seen from the results of Fig. 5.25 that using the clock-synchronous glitch

not only provides a more reliable glitch, but requires less tuning of parameters for

operation over different frequencies in this example.

Considering that the synchronous capture provides the additional advantage of a

useful SAD triggering system and the ability to easily count clock cycles from a trigger

event, the clock recovery and synchronous capture method proposed here should have

significant performance gains for fault injection.

5.6 Summary

It is know that compression of the power traces can be performed post-capture to re-

duce them to points of interest. Using synchronous sampling, however, eliminates the

processing requirement, and makes triggering such as the Sum of Absolute Difference
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(SAD) mechanism reliable across operating frequency.

Synchronous sampling depends on the availability of the device clock, where many

real devices contain an internal oscillator with no external signal. This chapter has

demonstrated how a ‘clock recovery’ technique can generate an external reference

clock which is phase-locked to the internal oscillator of the device.

If the device under attack is varying the internal oscillator, this external clock will

remain phase-locked to the true frequency. As synchronous sampling is measuring

clock edges and not absolute time, this varying clock has very little effect of the success

rate of an attack performed on these traces. The traces remain well synchronized

despite the changing clock frequency, with the exception of a phase offset due to

delay in the filter.

This recovered clock is also useful for fault injection, where it is desired to insert

a fault at some specific clock cycle or portion of a clock cycle.

In addition to hardware-based solutions, this chapter has also demonstrated the

use of clock recovery with a standard asynchronous oscilloscope. This algorithm is of

low complexity, and an implementation is available in the open-source ChipWhisperer

project.



Chapter 6

AES-256 Bootloader Attack

This chapter is based on my paper previously published in [100].

6.1 Introduction

Details of side-channel power analysis have previously been presented in Chapter 2.

This chapter will use the Correlation Power Analysis (CPA) attack by Brier et al.

[22] against a bootloader with AES-256.

The chapter will first describe the bootloader in Section 6.2. A review of AES-256

will be given in Section 6.3, along with a discussion of side channel power attacks.

There I will review the modifications required for attacking the full 32-bytes of the

AES-256 key. Next in Section 6.4 I will briefly outline the hardware used in this

chapter, and then describe the format of my results. Finally the results of a side-

channel attack on the encryption key and initialization vector are described in Section

6.5 and 6.6.

Interested readers are referred to the open-source ChipWhisperer Project1, where

additional details including a step-by-step tutorial2 of the attack are available.

6.2 Description of Bootloader

Rather than use a specific bootloader, a generic bootloader that can run on small

microcontrollers will be presented. This bootloader in particular has been designed to

closely follow the design from Atmel app-note AVR231 [7]. It can be appreciated that

this bootloader is similar to other secure bootloaders available as application notes

from vendors for other embedded microcontrollers, and this attack is not limited to

Atmel’s design.

1http://www.chipwhisperer.com
2See ChipWhisperer Documentation, available at http://wiki.newae.com/Tutorial_A5_

Breaking_AES-256_Bootloader
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A very simple encryption and communication protocol is used. The input data

for the entire memory is split into 12-byte chunks, where the final block is padded

with random characters. Each chunk has a 4-byte fixed signature sequence prepended

which results in a 16-byte block.

The simple 4-byte signature is used to verify that any given 16-byte block was en-

crypted with the expected encryption key. As the bootloader is highly size-constrained,

this simple signature verification is used over something such as a hash of the data.

Fig. 6.1 shows the generation of an encrypted block, along with the communica-

tions protocol. The communications protocol runs over a serial port, and contains a

CRC-16 to verify that no communications errors occurred. The signature would also

detect communications errors; but a signature failure is not communicated back to

the sender to reduce the attack surface. Instead the CRC-16 is used so the sender

can verify the correct data was sent, but the sender is supposed to be unaware if the

bootloader is accepting the data (i.e. if the correct key was used).

Figure 6.1: Data format for AES-256 bootloader showing both encryption format and
communications protocol.

The implementation here does not actually write data to FLASH memory (i.e.

it doesn’t fully work as a bootloader), as this functionality is not required for this

chapter. Details of the AES-256 decryption will be discussed next.
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6.3 AES-256 Decryption

6.3.1 Background

The input cipher-text to the AES-256 decryption algorithm is C. The input key is

256 bits (32 bytes), which is expanded to 240 bytes, used 16 bytes at a time (each

of the round keys). Each of the round keys is denoted as Kr, where the round

r = {0, 1, 2, · · · , 14}.
As AES decryption is performed with the same structure as AES encryption but

‘in reverse’, the first round of AES decryption in this work will be denoted as r = 14,

the next round of AES decryption as r = 13, etc.

The input ciphertext C consists of 16 bytes:

C = [c0, c1, · · · , c15]

The AES algorithm stores an intermediate state X, which is updated after each

round of the algorithm. The intermediate state for round r is denoted by a 16-byte

array:

Xr = [xr
0, x

r
1, · · · , xr

15]

The complete AES algorithm will use three special functions:

• Sub(): Performs bytewise substitution operation on Xr.

• Shift(): Shift Rows, reorders bytes in Xr.

• Mix(): Mix Columns, mixes bytes in Xr together.

All three functions have inverses, for example in the case of SBytes() such that

Sub−1(Sub(x)) = Sub(Sub−1(x)) = x.

With the Sub() and Shift() functions a single byte change in the input affects only

a single byte of the output. With the Mix() function a single byte change in the input

affects four of the output bytes.

The complete AES decryption algorithm can be described as in equations (6.1) to

(6.5), where (6.3) is performed multiple times.
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X14 = Sub−1
(
Shift−1(C ⊕K14)

)
(6.1)

X13 = Sub−1
(
Mix−1

(
Shift−1(X14 ⊕K13)

))
(6.2)

· · ·

X i = Sub−1
(
Mix−1

(
Shift−1(X i+1 ⊕Ki)

))
(6.3)

· · ·

X1 = Sub−1
(
Mix−1

(
Shift−1(X2 ⊕K1)

))
(6.4)

X0 = X1 ⊕K0 (6.5)

6.3.2 Side Channel Power Analysis

When performing a side-channel power analysis attack, we will be attacking the value

of X14. We know the value of C (the input we sent the decryption algorithm), and

perform a guess and check on each byte of K14, where we use a Correlation Power

Analysis (CPA)[22] attack with the Hamming Weight (HW) assumption on the leaked

value of X14.

The CPA attack requires us to attack each encryption subkey j (i.e. byte) of

K14 independently. Using (6.1), we can calculate a hypothetical value of X ′14
j based

on the known ciphertext Cj, and some guess of the subkey value K ′14
j . If we see a

large correlation between the hamming weight of our hypothetical value X ′14
j and the

power measurement trace related to the decryption of C, this suggests the guess of

the subkey may be the correct value.

To determine the complete 32-byte encryption key, we will require both K14 and

K13. The classic CPA attack would only recover K14 as above, and a small change

to the attack is required to find K13.

Once K14 is known, the attack is re-run with the leakage function targeting X13,

where we wish to guess each byte of K13. Due to the presence of Mix−1(), it would

appear that four bytes of the key must be guessed to achieve a single byte ofX13. This

would entail guessing 232 possibilities instead of 28, a considerably more challenging

task.

We can however take advantage of the linearity of the Mix−1(a) operation to

rearrange (6.2), as described in [98], and also demonstrated [93]. Using the property
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that Mix−1(a⊕b) = Mix−1(a)⊕Mix−1(b), (6.2) becomes (6.6), where we are no longer

guessing the key K13, but a version of the key processed by Mix−1(Shift−1(x)):

X13 = Sub−1
(
Mix−1

(
Shift−1(X14 ⊕K13)

))
(6.2)

X13 = Sub−1
(
Mix−1

(
Shift−1(X14)

)
⊕ Y 13

)
(6.6)

Y 13 = Mix−1
(
Shift−1(K13)

)
(6.7)

Once we fully determine Y 13, we can use (6.8) to determine the desired encryption

key for round 13, K13:

K13 = Mix(Shift(Y 13)) (6.8)

6.3.3 Cipher Block Chaining Mode

The bootloader uses AES-256 in Cipher Block Chaining (CBC) mode, where before

being encrypted each block was XOR’d with the previous ciphertext. Since for the

first block there is no previous ciphertext, a random Initialization Vector (IV) is used.

The decryption flow is shown in Fig. 6.2, where the IV used for encryption must also

be given to the bootloader. In this case the IV is programmed (along with encryption

key) into the devices memory before deployment.

Note that if the decryption key is known, but the IV is not, this allows us to

decrypt everything except the first block. If an attacker is simply looking to decrypt

a file for reverse engineering purposes, they can probably derive enough useful detail

without the first 16 bytes to accomplish this task.

6.4 Hardware

A bootloader as described in Section 6.2 is implemented in an Atmel AtMega328P-PU

8-bit microcontroller running at 7.37 MHz. Power measurements are taken using a re-

sistive shunt inserted into the VCC line, where measurements are taken synchronously

at 29.5 MS/s using a ChipWhisperer Capture Rev2 platform [105].

In Fig. 4.2 a photograph of the capture setup is shown. Details of the practicality

of the attack will be discussed next.
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AES-256 Decryption AES-256 Decryption

I.V.

Ciphertext – Block 0 Ciphertext – Block 1

Plaintext – Block 1Plaintext – Block 0

CT Block 0 CT Block 1

Figure 6.2: AES-256 Cipher Block Chaining (CBC) Mode Decryption

6.4.1 Triggering

Typical work demonstrating side-channel attacks uses an IO line of the microcontroller

that indicates when the encryption (or decryption) routine is running. This provides

an attacker with a perfectly synchronized trigger event, but in real implementations

this will not be available.

For this work the Sum of Absolute Differences (SAD) trigger built into the Chip-

Whisperer is used. This allows triggering on a pattern in the analog waveform. The

correct pattern can be determined through trial-and-error: it is known for example

when the encrypted block was sent to the microcontroller, and we can infer that

sometime after this event the decryption occurs. The SAD trigger can be used to

‘walk through’ the possible trigger events, until the analysis attack succeeds.

In this implementation of the SAD trigger 128 input samples, T, are continuously

compared to a 128 point reference waveform, R, using (6.9). If the input was exactly

the same as the reference waveform, the output of (6.9) would be 0. Normally the

trigger condition is simply when the output of (6.9) falls below some numerical value.

SAD =
127∑
p=0

|Tp −Rp| (6.9)
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Figure 6.3: Power traces may not remain synchronized during the execution of the
entire algorithm. The execution of the first round becomes unsynchronized around
sample number 7300 in the top traces. They have been resynchronized in the lower
example, allowing the attack to continue for the next round.

6.4.2 Synchronizing Traces

Traces may also need to be synchronized in time. In particular the AES-256 imple-

mentation used here has non-constant execution time, which does introduce another

attack vector[73][74], but also means that the later rounds will not be perfectly syn-

chronized even if the initial round is. This can be seen in the upper part of Fig. 6.3,

where traces appear to become unsynchronized after a point in time.

To compensate for this a SAD resynchronization element is used during analysis

for the 13th round. In the lower part of Fig. 6.3 we can see traces appear synchronized

toward the last half, but are now unsynchronized for the first half.

6.5 Determining Key

Details of the side channel analysis attack used are discussed in Section 6.3.2. The

resulting GSR for the CPA attack on the 14th and 13th round encryption key is shown

in Fig. 6.4.

The 14th round key indicates the first 16 bytes recovered by the CPA attack. The

13th round key is the next 16 bytes recovered, where we assume the first 16 bytes had
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Figure 6.4: Two CPA attacks are performed to determine both the 14th and 13th
round keys. Note the CPA attack on the 13th round key requires the 14th round key.
The Global Success Rate(GSR) is displayed for the attack, where the attack has a
very good chance of succeeding with 100 traces.

already been recovered. The ‘total’ success is given by the recovery of both the 14th

and 13th round keys. With very good probability the entire encryption key can be

recovered after 100 power trace measurements.

The PGE of the attack is given in Fig. 6.5. Again around 100 traces the PGE

falls to zero indicating the key is perfectly known. Even with a smaller number of

traces the guessing entropy is significantly reduced. The original PGE would be 128

for all subkeys, since each subkey is 8 bits, and we expect the correct key to be found

half-way through, but with 60 traces this is reduced to an average PGE of only 2.

This greatly reduced entropy could be attacked by brute-force guessing the most likely

ranked keys.

6.6 Determining IV

If the plaintext was known, the Initialization Vector (IV) can be trivially determined

once the encryption key is known. With the encryption key, the attacker can decrypt

everything except the first 16 bytes; at this point they might be able to determine that

the first 16 bytes of the plaintext were part of a fixed file header or similar material.

In this case an attacker can determine the IV by XORing the expected plaintext with

the output of the AES-256-ECB decryption function.
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Figure 6.5: The Partial Guessing Entropy (PGE) data for the same attack in Fig. 6.4.
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is the average of all subkeys for a given number of traces.

Without such knowledge, we could use a side-channel attack on the IV itself.

We perform a CPA attack on the output of the decryption result XOR’d with the

unknown IV, where we will guess each byte of the IV.

Fig. 6.6 shows the PGE for the IV. The CPA attack never fully recovers the IV

even with 5000 traces, thus a GSR is not shown. We can consider the reason for this

difficulty in obtaining a completely successful attack by reviewing again our leakage

model and attack point. The application of the IV is as follows in (6.10).

P = X0 ⊕ IV (6.10)

A single bit change in the IV will always result in a single bit change in the

output. Thus it would be expected that guesses with small bit differences will be

ranked similarly. When attacking the S-Box output in (6.1), a single-bit change in the

input guess will result in multiple bits changing in the hypothetical output. Attacking

the S-Box output means that wrong guesses have a considerably different hamming

weight from incorrect guesses, and attack performance is considerably improved.

An example of the top-ranked guesses for byte seven of the IV is shown in Table

I. In this case the PGE is two, as there are two wrong guesses for the IV byte ranked

higher than the correct guess. Note the wrong guesses have a very close bit pattern

to the correct value.
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Figure 6.6: A CPA attack on the Initialization Vector (IV) being XORd with the
plaintext shows that some guessing is still required, as the PGE never reaches 0 for
all bytes. Instead an asymptotic behaviour is noted, which occurs due to several key
hypothesis having the same correlation, as described in the text.

Table 6.1: Top three positive and negative correlation outputs for byte 7 of the I.V.
Correct value of guess is DA.

Guess(Hex) Guess(Bin) Correlation
4A 01001010 0.8250
5A 01011010 0.8150
DA 11011010 0.7912
25 00100101 -0.7912
A5 10100101 -0.8150
B5 10110101 -0.8250

In addition, the absolute value of the correlation cannot be used. Due to the linear

nature of (6.10), the correlation of the bitwise inverse of the correct guess would have

the same absolute value as the correlation as the correct guess, but with the opposite

sign. This is demonstrated in the lower three rows of Table 6.6. When attacking

the S-Box we can use the absolute value of the correlation, since the S-Box is non-

linear, and thus properties such as the bitwise inverse do not carry through the S-Box

operation.
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6.7 Determining Signature

It was also described in Section 6.2 that a secret 4-byte signature is added before each

encrypted block. If the attacker wishes to have the bootloader accept a new data file,

this signature must also be determined.

Provided the attacker has access to an encrypted firmware file, they can simply

decrypt this file using the key determined with a CPA attack. The signature will be

readily apparent due to the presence of a repeated fixed four-byte sequence in the

decrypted file.

If attacking an 8-bit microcontroller, timing attacks are also possible on the signa-

ture check. If each byte of the signature is checked in sequence, it should be possible

to determine from the power trace which byte failed on the signature check. This

would require a partial brute-force attack, and is only relevant when the signature is

checked byte-by-byte.

6.8 Summary

This chapter has explored a complete attack on a software implementation of AES-

256-CBC used in a bootloader. This demonstrates the relevance of side-channel power

analysis attacks to real systems, and not just academic implementations of the cryp-

tographic algorithms.

Extending a standard CPA attack to work on AES-256 requires some modifica-

tions to the attack for the second decryption round, as detailed previously in [98] and

[93]. In addition this chapter has demonstrated the use of a standard CPA attack to

determine the Initialization Vector (IV), which in general demonstrates the effective-

ness of a CPA attack on a single XOR operation. As many cryptographic algorithms

use XOR, the results of the CPA attack on an XOR are of particular interest beyond

just the attack on AES. The CPA attack on the XOR operation was part of the orig-

inal CPA paper experiments[22], and this chapter provides some updated data for a

recent 8-bit microcontroller.

Simply using a strong encryption such as AES-256 is insufficient to guarantee an

embedded device will remain secure. A side-channel power analysis attack can be

performed with a reasonable number of traces on a standard AES implementation,
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revealing the encryption key. If protection against these attacks is required, counter-

measures will need to be inserted into the AES implementation. The system designer

must trade off the desired resistance to attacks against implementation complexity,

and not simply assume that using a large key alone is sufficient to guarantee security.



Chapter 7

IEEE 802.15.4 Wireless Node Attacks

This chapter is based on my paper previously published in [104].

IEEE 802.15.4 is a low-power wireless standard which targets Internet of Things

(IoT) or wireless sensor network (WSN) applications. Many protocols use IEEE

802.15.4 as a lower layer, including ZigBee (which encompasses many different proto-

cols such as ZigBee IP and ZigBee Pro), WirelessHART, MiWi, ISA100.11a, 6LoW-

PAN, Nest Weave, JenNet, Thread, Atmel Lightweight Mesh, IEEE 802.15.5, and

DigiMesh (this list only includes networking stacks that target commercial or indus-

trial applications). As part of the IEEE 802.15.4 standard a security suite based on

AES is included.

This chapter presents an attack against a wireless node that uses the IEEE

802.15.4 protocol. The following important results from developing this attack will

be presented: (1) a shunt-based measurement method for devices with internal volt-

age regulators, (2) an attack against the hardware AES engine in the Atmel AT-

Mega128RFA1, (3) an attack on AES-128 in CCM* mode as used in IEEE 802.15.4 [62],

and (4) a method of causing the AES engine in the target device to perform the de-

sired encryption. This attack is validated with a hardware environment (shown in

Fig. 7.1).

The attack demonstrated here uses side-channel power analysis [72], specifically a

correlation-based attack [22]. We obtained the power measurements in this work by

physically capturing a node and inserting a shunt resistor. In general, side-channel

attacks can be performed with a noncontact electromagnetic (EM) probe instead,

which does not require modification to the device [50]. The EMmeasurement typically

achieves similar results to the resistive shunt [2, 101].

This attack does not destroy the node under attack, and the node will continue to

function during the attack. This makes detection more difficult: although a node is

captured, it still appears on the network. The feasibility of capturing wireless nodes

104
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and performing side-channel power analysis has previously been demonstrated against

AES and ECC [38].

This previous demonstration was limited to software implementations of AES

(i.e., not the actual hardware AES used by most nodes), and did not attack the AES-

CCM* operating mode used by IEEE 802.15.4. Instead the attack in [38] assumed

the encrypted data packet transmitted by the node allowed recovery of the last-

round state of the AES algorithm. This is not the case in AES-CCM* used by

IEEE 802.15.4 and most higher-layer protocols: recovering the last-round state would

require a plaintext and ciphertext pair.

In practical scenarios the ability to capture a node, perform the attack, and return

the node all within a short window reduces the risk of detection. The approach

of [38] requires an attacker to passively wait for a transmissions to record power

traces. While passively waiting is a reasonable approach for the 20–60 traces required

by [38] to break a software AES implementation, this could entail an unreasonably

long wait period for the thousands of traces typically required to break a hardware

AES peripherals [71]. Our work allows an attacker to rapidly force the operation to

occur, and collecting 20 000 traces can be accomplished in 15–60 minutes (depends

on network stack and how much other traffic node must process).

This chapter results in a practical attack against IEEE 802.15.4 wireless nodes,

the attack recovering the encryption key in use by the IEEE 802.15.4 layer. In ad-

dition the attack is demonstrated against a hardware AES peripheral as used by a

standards-complaint IEEE 802.15.4 stack. This work is applicable to protocols that

use IEEE 802.15.4 as a lower layer, even if these higher-layer protocols include ad-

ditional security. The higher layer often uses the same vulnerable AES primitive as

the IEEE 802.15.4 layer. Users of these protocols must carefully evaluate how the

vulnerabilities detailed in this chapter might apply to the higher-layer protocols.

We begin by describing the attack on the ATMega128RFA1 AES hardware pe-

ripheral in Section 7.1. Next, we look at specifics of the use of AES encryption on

the IEEE 802.15.4 wireless protocol in Section 7.2. This outlines the challenges of ap-

plying the side-channel attack to the AES-CCM* mode of operation, which is solved

for the case of IEEE 802.15.4 in Section 7.3. Finally an application of this to a real

IEEE 802.15.4 node is discussed in Section 7.4.
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Figure 7.1: The ChipWhisperer capture hardware is used in this attack, although a
regular oscilloscope will also work.

7.1 ATMega128RFA1 Attack

The Atmel ATMega128RFA1 is a low-power 8-bit microcontroller with an integrated

IEEE 802.15.4 radio, designed as a single-chip solution for Internet of Things (IoT)

or wireless sensor network (WSN) applications [9]. As part of the IEEE 802.15.4

radio module, a hardware AES-128 block is present, designed to work with the AES

security specification of IEEE 802.15.4. Other examples of such chips (chips that

include an IEEE 802.15.4 radio, microcontroller, and AES block) include devices

from Freescale [48], Silicon Laboratories [122], STMicroelectronics [130], and Texas

Instruments [134].

7.1.1 Side-Channel Power Analysis

Side channel power analysis was first reported in 1998 by Kocher et al [72], and was

summarized in Chapter 2 of this thesis. Side-channel power analysis has previously

been used to break a variety of hardware devices. Table 7.1 summarizes published

power analysis attacks against commercially available hardware cryptographic de-

vices. This table does not include software implementations running on commercially

available hardware or hardware implementations that are not commercial products

(i.e., research projects).

From Table 7.1, it can be seen that the CPA attack is an extremely popular attack
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Table 7.1: Power analysis attacks against commercially available hardware crypto-
graphic implementations. Entries marked with † indicate firmware-based implemen-
tations, but still being commercially available.

Target Cipher Attack Ref.
CryptoMemory proprietary CPA [11]

DESFire MF3ICD40 3DES CPA [109]
DS2432, DS28E01 SHA-1 CPA [107]

Microchip HCSXXX KeeLoq CPA [46]
ProASIC3 AES PEA [125]

SimonsVoss† proprietary CPA [111]
Spartan-6 AES CPA [92]
Stratix II AES CPA [94]
Stratix III AES CPA [133]
Virtex-II 3DES CPA [90]

Virtex-4, Virtex-5 AES CPA [93]
XMEGA AES CPA [71]
Yubikey 2† AES CPA [110]

TI MSP430FR5 AES CPA [91]

for targeting real systems. The only non-CPA attack in [125] was a new technique

called pipeline emission analysis (PEA), used to break the ProASIC3 device. While

each of the remaining attacks used CPA, additional work may be needed before apply-

ing the CPA attack. For example in the attack on the DESFire [109], a preprocessing

technique realigned the traces before applying CPA.

There are more advanced attacks that use a template of the device leakage [30].

Such a template does not use a leakage model based on assumptions, but instead the

leakage model is based on measurements of the target device as it performs known

encryptions. This requires that the attacker has access to a device that closely matches

the target device that they can manipulate or program.

While such template attacks are considerably more powerful – being able to re-

cover the encryption key with less measurements – the CPA attack using a simple

assumption is more versatile, since it only requires access to the single target device of

interest. A device vulnerable to a CPA attack will always be vulnerable to a template

attack, and it is almost certain that the template attack will improve the success rate

further. For this reason, this work deals solely with the CPA attack, which also aligns

this work with previous publications of successful CPA attacks against commercially
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ATMega128RFA1

Voltage

Regulator

VCC (3.3V)

VDi!
+ −

47Ω

Digital Core

I/O Drivers

Figure 7.2: Because of the internal connection of the voltage regulator for the core
voltage, the measurement shunt resistor must be mounted in the decoupling capacitor
path.

available encryption hardware [46, 71, 90, 92, 93, 94, 109, 110, 107, 111, 133, 91].

This chapter uses the partial guessing entropy (PGE) to measure the attack suc-

cess. PGE provides an indicator of the reduction in search space for each of the 16

key bytes. A PGE of zero for every key byte indicates that a full encryption key was

recovered.

To perform this side-channel attack, I evaluate a method of physically measuring

power on the ATMega128RFA1 in Section 7.1.2. I then determine an appropriate

power model in Section 7.1.3, and I present the results of the CPA attack in Sec-

tion 7.1.4. Additional considerations for attacking later rounds of the AES algorithm

are presented in Section 7.1.5; these later-round attacks are required for the AES-

CCM* attack.

7.1.2 Power Measurement

Power measurement is typically performed by inserting a resistive shunt into the power

supply of the target device, and measuring the voltage drop across the shunt. Because

devices often have multiple power supplies (such as V CCcore, V CCIO, V CCRF ), the

shunt must be inserted into the power supply powering the cryptographic core. As

with many similar IEEE 802.15.4 chips [48, 122, 130, 134], the core voltage of the

ATMega128RFA1 is lower (1.8 V) than the io voltage (typically 2.8–3.3 V) [9]. Since

these chips are designed to operate from a single 3 V coin cell battery, the lower core

voltage reduces power consumption, whereas the higher io voltage allows the device

to operate directly from the coin cell.
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Figure 7.3: A 0603-sized 47-ohm resistor was inserted into the V CCcore decoupling
capacitor, and a differential probe is used to measure across this resistor.

To avoid requiring an external voltage regulator for the lower core voltage, most of

these devices also contain an integrated 1.8 V voltage regulator. Some devices require

an external connection from the regulator output pin to the V CCcore pin. With this

type of device we could perform the power measurements by either (a) inserting a

shunt resistor between the output and input, or (b) using an external low-noise power

supply with a shunt resistor (as in [38]). The ATMega128RFA1 is not such a device –

it internally connects the regulator to the V CCcore pin, but does require a decoupling

capacitor placed on the V CCcore pin (which also serves as the output capacitor for

the voltage regulator). By inserting a shunt resistor into the path of the decoupling

capacitor, we can measure high-frequency current flowing into the V CCcore pin. Note

that this measurement will be fairly noisy, as we will also have noise from current

flowing out of the voltage regulator. This is shown schematically in Fig. 7.2.

Fig. 7.3 shows the implementation of this arrangement, where a differential probe

is placed across the resistor. An example of the power measurement resulting from

this probe is shown in Fig. 7.4. A number of measurements with a regular oscilloscope

are overlaid to provide an indication of the repeatability of the measurement.

7.1.3 Related Hardware Attack

The only previous published attack of an Atmel product with hardware AES accel-

eration was the XMEGA attack by Kizhvatov [71]. I used the XMEGA attack as a
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Figure 7.4: This figure shows the power trace for the first 1.2 µS of the AES-128
encryption. A total of ten such traces have been overlaid to demonstrate the consistent
nature of the signal.

starting point, with the assumption that different Atmel products may use the same

internal AES design.

Kizhvatov determined that for a CPA attack on the XMEGA device, a vulnerable

sensitive value was the Hamming distance between successive S-box input values.

These input values are the XOR of the plaintext with the secret key that occurs during

the first AddRoundKey. This suggests a single S-box is implemented in hardware, with

successive applications of the input values to the S-box.

The following notation considers Pj and Kj to be a byte of the plaintext and

encryption key respectively, where 0 ≤ j ≤ 15. To determine an unknown byte Kj,

we first assume we know a priori the value of Pj, Pj−1, and Kj−1. The determination

of Kj−1 is presented later, but we can assume for now that byte Kj−1 is known.

This allows us to perform a standard CPA attack, where the sensitive value is given

by the Hamming weight of (7.1). That is to say the leakage for unknown encryption

key byte j is: lj = HW (bj). Provided K0 is known, this attack can proceed as a

standard CPA attack, with only 28 guesses required to determine each byte.

bj = (Pj−1 ⊕Kj−1)⊕ (Pj ⊕Kj) , 1 ≤ j ≤ 15 (7.1)

As suggested in [71], if K0 is unknown in practice, an attacker can simply proceed



111

with an attack for all 28 possibilities of K0. The attacker may then test each of the

resulting 256 candidate keys to determine the correct value of K0. This would entail

a total of 28 × (28 × 15) guesses.

For the specific case of K0, a more straightforward approach exists. The author

of [71] later determined that K0 can be determined directly by using a leakage as-

sumption based on the Hamming distance from the fixed value 0x00. This leakage

function is shown in (7.2).

l0 = HW (b0) = HW (P0 ⊕K0) (7.2)

This allows the entire encryption key to be attacked with a total of 16×28 guesses.1

We now attempt to apply this attack to a different device, the ATMega128RFA1.

7.1.4 Application to ATMega128RFA1

The experimental platform was a Dresden Elektronik radio board, model number

RCB128RFA1 V6.3.1. As mentioned previously, power measurements were taken by

inserting a resistor between the V CCcore power pin and decoupling capacitor. A

differential probe was used to measure the voltage across this resistor. Fig. 7.1 shows

the complete capture setup.

To sample the power measurements, I used the open-source platform presented in

Chapter 4. This capture hardware synchronizes its sampling clock to the device clock,

and I configured it to sample at 64 MS/s (which is 4 times the ATMega128RFA1 clock

frequency of 16 MHz).

To reduce noise in the power traces used for side-channel analysis, a band-pass

filter with a passband of 3–14 MHz was inserted between the output of the differential

probe and the low-noise amplifier input of the ChipWhisperer.

I implemented a simple test program in the ATMega128RFA1 that encrypts data

received over the serial port on the experimental platform. This encryption is done

via either a software AES-128 implementation or the hardware AES-128 peripheral

in the ATMega128RFA1. When using the hardware peripheral, the encryption takes

25 µs to complete, or about 400 clock cycles.

1This is not published in their paper, but was described in private communication from the
author.
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Figure 7.5: Attacking a software AES algorithm on the ATMega128RFA1 is used to
confirm that the measurement setup is a viable method of measuring the leakage.
Here the PGE across all bytes falls to zero in under 60 traces, completely recovering
the key.

I used a standard correlation power analysis (CPA) attack [22], ranking the most

likely byte as the one with the highest correlation values. To evaluate the measure-

ment toolchain, I first performed an attack against a software AES implementation

on the ATMega128RFA1.

Fig. 7.5 shows the results of the CPA attack against the software AES-128 im-

plementation: I recovered the complete key in under 60 traces. These results can

be compared to similar attacks using the ChipWhisperer hardware, where a software

AES implementation on an AVR microcontroller is broken in around 30 traces [105].

I then recorded a total of 50 000 power traces, where the ATMega128RFA1 was

performing AES-128 ECB encryptions using random input data during the time each

power trace was recorded. For each trace, 600 data points were recorded at a sampling

rate2 of 64 MS/s. Each trace therefore covered about the first third of the AES

encryption.

The initial CPA attack was repeated five times over groups of 10 000 traces. The

resulting average partial guessing entropy for each byte is shown in Fig. 7.6. The first

2Note that this 64 MS/s sample rate is successful because the capture hardware samples syn-
chronously with the device clock. If using a regular oscilloscope with an asynchronous timebase we
expect a much higher sample rate to be required, similar to that reported in the XMEGA attack.
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byte (which uses the leakage assumption of (7.2)) has the worst performance, as the

guessing entropy does not reach zero with 10 000 traces.

Examples of the correlation output vs. sample point are shown in Fig. 7.7, which

shows the peaks at the output of the correlation function on the CPA attack for

the “correct” key guess. The sign of the peak is not important – the sign will flip

depending on probe polarity – but note that the correct key guess results in a larger

magnitude correlation than the incorrect guess at certain points. These points are

when the physical hardware is performing the operation in (7.1).

Guessing of Kj−1

This attack used the leakage (7.2) of the first byte j = 0 to bootstrap the key recovery.

Once we know this byte, we can use (7.1) to recover successive bytes.

Practically, we may have a situation where j−1 is not recoverable. Previous work

assumed either some additional correlation peak allowing us to determine j − 1, or

the use of a brute-force search across all possibilities of the byte j − 1 [71]. We can

improve on this with a more efficient search algorithm, described next.

The leakage function (7.1) could be rewritten to show more clearly that the leaked

value depends not on the byte values, but on the XOR between the two successive

bytes, as in (7.3).

bj = (Kj−1 ⊕Kj)⊕ (Pj−1 ⊕ Pj) , 1 ≤ j ≤ 15 (7.3)

The side-channel attack can be performed with the unknown byte Kj−1 set to

0x00, and the remaining bytes are recovered by the CPA attack described previously.

These recovered bytes are not the correct value, but instead provide the value that

has to be XOR’d with the previous byte to generate the correct byte.

The 256 candidate keys can then be generated with almost no computational

work, by iterating through each possibility for the unknown byte Kj−1, and using the

XOR values recovered from the CPA attack to generate the remaining byte values

Kj, kj+1, · · · , kJ .
This assumes we are able to directly test those candidate keys to determine which

is the correct value. As is described in the next section, we can instead use a CPA

attack on the next-round key to determine the correct value of Kj−1.
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Figure 7.6: The CPA attack on the hardware AES peripheral reduces the guessing
entropy to reasonable levels in under 5000 traces, and is able to recover the key in
around 10 000 traces.
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Figure 7.7: Correlation peaks for byte j = 1 and j = 2. The “incorrect guess” means
the 28 − 1 guesses which are not the value of Kj. The sample number refers to the
sample points since start of the encryption operation, again sampling at 64 MS/s.
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7.1.5 Later-Round Attacks

Whereas previous work has been concerned with determining the first-round encryp-

tion key, we will see in Section 7.3 that information on later-round keys is also re-

quired.

I determined that for later rounds the leakage assumption of (7.1) and (7.2) still

holds, where the unknown byte Kj is a byte of the round key, and the known plain-

text byte Pj is the output of the previous round. We can extend our notation such

that the leakage from round r becomes lrj = HW (brj), where each byte of the round

key is kr
j , and the input data to that round is prj .

Examples of the PGE when attacking the start of the third round (r = 3) are

given in Fig. 7.8. The entropy change for all rounds tested (r = 1, 2, 3, 4) was similar.

For details of the execution time of the hardware AES implementation, refer to

Table 7.2. This table shows the samples used for each byte in determining the most

likely encryption key for the first four rounds. For byte 0 (the first byte), (7.2) is the

sensitive operation. For later bytes (7.1) is the sensitive operation.

Note the sample rate is four times the device clock, and in Table 7.2 the sample

delta from start to end of the sensitive operations within each round is about 64

samples, or 16 device clock cycles. This suggests that a sensitive operation is occurring

on each clock cycle. Each round takes approximately 32–34 cycles based on the

repeating nature of the leakages in later rounds.

Determining Kj−1 Using Later Rounds

As described in Section 7.1.4, we can perform the CPA attack on byte Kj where Kj−1

is unknown by determining not the value of the byte, but the XOR of each successive

byte with the previous key. This means performing the attack first where Kj−1 is

assumed to be 0x00.

By then enumerating all 28 possibilities for Kj−1, we can quickly generate 28

candidate keys to test. But if we are unable to test those keys, we need another way

of validating the most likely value of Kj−1.

If we know the initial (first-round) key, we can determine the input to the second

round, and thus perform a CPA attack on the second-round key. Instead we have 256

candidates for the first round (r = 1), and want to determine which of those keys is
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Figure 7.8: Attacking later rounds in the AES peripheral is also successful using the
same leakage assumptions as the first-round attack.

Table 7.2: A small range of points is selected from each trace, corresponding to the
location of the device performing (7.2) for j = 0, or (7.1) for j ≥ 1. The variable r
corresponds to the AES round being attacked, and j is the byte number.

j r = 1 r = 2 r = 3 r = 4
0 66–70 198–204 336–342 474–478
1 70–75 205–210 340–345 478–481
2 73–78 208–215 345–348 482–489
3 79–83 213–216 350–355 486–490
4 81–88 218–221 355–368 490–494
5 85–90 220–225 358–361 494–498
6 89–95 225–233 362–365 498–501
7 93–98 230–235 366–370 502–505
8 98–102 233–237 370–374 506–508
9 101–106 237–241 373–377 510–513
10 106–111 240–247 378–383 514–519
11 110–114 245–250 382–385 518–521
12 114–119 248–254 385–390 522–524
13 118–123 253–258 390–394 525–529
14 121–126 258–265 394–398 530–534
15 126–129 262–268 398–402 534–538
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correct.

To determine which of the keys is correct, we can perform a CPA attack on the

first byte of the second round, K2
0 , repeating the CPA attack 256 times, once for each

candidate first-round key.

The correlation output of the CPA attack will be low for all guesses of K2
0 where

K1 is wrong, and only for the correct guess of K2
0 and K1 will there be a peak.

This technique will be used in Section 7.3.1, where we cannot test candidate keys

as we are not recovering the complete key.

7.2 IEEE 802.15.4 Security

IEEE 802.15.4 is a low-power wireless standard, sending short data packets of up

to 127 bytes at bit-rate of 250 kbit/s. Devices running IEEE 802.15.4 can achieve

extremely low power consumption, running for years on a small battery [59]. When

we refer to “IEEE 802.15.4,” we are specifically targeting the IEEE 802.15.4-2006

standard.

The IEEE 802.15.4 standard is generally used as a lower layer with another net-

work on top, as IEEE 802.15.4 does not specify details such as routing or distribution

of keying material. Examples of popular higher-layer protocols include ZigBee and

ISA100.11a. These higher-layer protocols often use IEEE 802.15.4 level security in

combination with higher-level security – but this higher-layer security frequently uses

the cryptographic primitives provided by IEEE 802.15.4. This chapter demonstrates

the vulnerabilities of these primitives, and those vulnerabilities may also exist in

higher-layer protocols.

The IEEE 802.15.4 standard uses AES-128 as the basic building block for both

encryption and authentication of messages. The standard defines a mode of operation

called CCM*, which extends the regular CCM mode by allowing the use of encryption

without authentication [62].

CCM itself is a combination of counter mode of AES with cipher block chaining

message authentication code (CBC-MAC) [145]. For the side-channel attack, we are

only concerned with the details of data passed to the AES-128 block, and not the

further processing that occurs after this block.

The AES-128 block itself is used in AES-CTR mode, with an input format as
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Flags

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Source Long Addr

Addr (cont’d)

Addr FrameCounter

F.C. AES CounterSecLevel

(cont’d)

(cont’d)

Figure 7.9: The following data is used as the input to AES-128 when a frame is
decrypted by an IEEE 802.15.4 stack. The FrameCounter can be controlled by the
attacker.

shown in Fig. 7.9. The first 14 bytes are the nonce, and the last two bytes are the

AES-CTR mode counter. Each received frame must use a new nonce, as the counter

itself only counts the number of 16-byte blocks in the frame.

To ensure that the nonce is fresh, a field called FrameCounter is included with

each transmitted message and used as part of the nonce. The receiver verifies that the

value of FrameCounter is larger than any previously used value, avoiding the reuse

of a nonce.

A typical secure IEEE 802.15.4 wireless packet adds a message authentication code

(MAC),3 which ensures both the integrity and authenticity of this message. The MAC

and payload can optionally be encrypted. Although the MAC is optional, configuring

nodes to require a MAC is generally recommended, since accepting encrypted but

unauthenticated packets presents a serious security risk [118].

The address and header information are never encrypted. This is mostly because

it significantly simplifies message filtering: otherwise nodes would need to decrypt

every message to determine the address information.

On receiving a packet, the IEEE 802.15.4 layer first returns an acknowledgment

to the sender. If the packet has security enabled (it is encrypted or simply has

3The name message integrity code (MIC) is used in place of message authentication code (MAC)
within the IEEE 802.15.4 standard, as the acronym MAC already refers to the medium access control
layer. This chapter uses MAC to mean message authentication code, and medium access control is
spelled out when required.
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a MAC appended) the following operations are performed on the received packet,

where processing stops if a step fails:

1. Validate headers and security options.

2. Check that the received frame counter is numerically greater than the last stored

frame count.

3. Look up the secret key based on message address and/or key index.

4. Decrypt the payload (and MAC if present).

5. Validate the MAC (if present).

6. Store the frame counter.

For our side-channel attack we only care that step 4 is performed; this means

our packet must successfully pass through steps 1–3. This requires that the packet

is properly addressed and has an acceptable security configuration, such as using a

valid key identifier and address. Generating such a message is discussed next.

7.2.1 Detailed Message Format

As mentioned, we need to ensure our 802.15.4 message is decrypted by the target

device. Specific requirements vary depending on the network configuration, but as an

example the frame used in our experiments was:

09 d8 01 ff ff ff ff ba ad 01 02 03 04 05 06 07 08 0d FC FC FC FC 01 AA

AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA 00 00

Where details of each portion of the frame are described as follows:
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09 d8 Frame header

01 Sequence number

ff ff ff ff Broadcast frame

ba ad Source network ID

01 02 · · ·
08

Source address

0d Security level

FC FC FC FC FrameCounter used as

part of the AES nonce

01 Key ID

AA AA · · ·
AA

16 bytes of encrypted

data and 4 bytes of

MAC

00 00 Replace with CRC-16

The encrypted data and MAC are not used in the attack; only the value of the

FrameCounter is used. The attacker can send a frame with random values inserted

into the FrameCounter; they only need to ensure the random values are larger than

the last valid received value.

Since the attacker’s packets will be rejected as invalid once decrypted, the attacker

will not update the internal frame counter field. An attacker could discover the

approximate current FrameCounter value through sniffing valid packets sent to the

device, since the frame counter is sent unencrypted.

Alternatively, an attacker can simply send very high values – the attacker could

ensure the highest two bits are always 10, 01, or 11. Provided the node has received

fewer than a billion messages using the same key, this frame counter will be accepted.

The example message used here is sent as a broadcast frame, which ensures it will

be received and processed by the target node. Using a broadcast message also hides

the target of the attack, and someone sniffing the airwaves might simply assume that

a device on a separate network is sending encrypted messages. They might assume

either this node is malfunctioning, or the node is using some proprietary protocol

that sends encrypted broadcast messages.4

4Sending a data message that is broadcast across both the network ID and device address is
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7.2.2 Brute-Force Search

In Section 7.1.1, the side-channel attack is described as not always fully recovering the

encryption key. This necessitates a key search, which requires a comparison function

such as having a plaintext/ciphertext pair.

For IEEE 802.15.4, any message with a MAC present can be used as this plain-

text/ciphertext pair. It is sufficient for the attacker to sniff a single wireless message

secured with a MAC using the target key; the attacker can then use a given hypo-

thetical key to calculate the hypothetical MAC, and compare the resulting MACs to

determine if the hypothetical key matches the true key.

This attack is trivial in practice: most networks using 802.15.4 security have

message authentication enabled (i.e., messages have MACs) [118], so the attacker can

simply capture a packet directed at or sent from the target. As the MAC may be

shorter than the key, they may wish to capture several packets to confirm the true

key was found, and not a collision for this particular message.

7.3 Application to AES-CCM* Mode

For a standard CPA attack, we require the ability to cause a number of encryption

operations to occur with known plaintext or ciphertext material. In addition, the data

being encrypted must vary between operations, as otherwise each trace will generate

the same hypothetical intermediate values during the search operation of the CPA

attack.

From Section 7.2 and Fig. 7.9, we know that a number of the bytes are fixed during

the AES encryption operation. Practically all the bytes except for the FrameCounter

are considered fixed in this attack. The Flags and SecLevel bytes will have constant

(and known) values. Initially it would appear that the Source Long Address and

AES Counter fields may vary, but as we discuss next, this is not the case.

The Source Long Address field comes from internal tables in the 802.15.4 stack

containing keying material, and is not simply copied blindly from the incoming packet

address. This field can be considered effectively fixed. The AES Counter field changes

unusual. However, it would work, and it is not unusual for devices to be deployed in the field
after only basic testing, leaving in place bad practices such as flooding the network with encrypted
messages.
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during operation, as it increases for each 16-byte block encrypted in AES-CCM*

mode. But as the IEEE 802.15.4 packet is limited to a total of 128 bytes, the AES

Counter field could never exceed 0x0007. Thus, between these 10 bytes, at most 3

bits vary during operation.

We instead rely on the ability of the attacker to control the FrameCounter field

to mount a successful attack on an IEEE 802.15.4 wireless node.

We will assume an attack on the first encryption operation when a packet is

received, i.e. we do not take advantage of the fact that each received packet causes

more than one encryption operation. Practically this means that when our work

refers to requiring N encryption traces, we only need to send a smaller number (in

the range N/4) packets to the wireless node.

7.3.1 Previous AES-CTR Attacks

The AES-CCM* mode used by IEEE 802.15.4 is a combination of CBC-MAC and

CTR modes of operation. The attack is on the AES-CTR portion of the algorithm,

with some modifications to reflect the use of a frame counter for the nonce material.

Previous work on AES-CTR mode has focused on the assumption that we can

cause a number of encryptions to occur in sequence (i.e., with increasing counter

number), but with unknown but constant nonce material [64]. This work uses many

of the constructs developed by Jaffe in [64], but with different assumptions of inputs

on the AES block and a different leakage model. These differences necessitate the

development of new techniques to recover partial keying information, and we cannot

simply apply the previous attack directly.

In this case, we have the ability to change 4 bytes of the input plaintext (bytes 9,

10, 11, and 12). The CPA attack only allows us to recover these four bytes of the key,

so we push the attack into later AES rounds to recover the entire encryption key.

Initially, we can assume that the keying material associated with bytes 9–12 can

be recovered by a standard CPA attack, as was shown in Section 7.1. The remaining

bytes cannot be recovered, as the input data is constant.

Consider the steps in the AES-ECB encryption algorithm: AddRoundKey(),

SubBytes(), ShiftRows(), and MixColumns(). All four functions can be assumed

to operate on a 16-byte AES state matrix. The first three operate in a byte-wise
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manner – that is, a single-byte change of the state matrix before the operation results

in a single-byte change after the operation. The MixColumns() operation introduces

diffusion, which operates on a column of the AES state – a single-byte change in the

AES state results in 4 bytes changing after the MixColumns() operation.

For the MixColumns() operation, we can represent the four input bytes – one

column of the state matrix – with S0, · · · , S3, and the resulting output bytes with

S ′
0, · · · , S ′

3. The MixColumns() operation uses multiplication over the Galois field

GF(28), where we represent this multiplication operation with the symbol “◦”. The

MixColumns() operation then becomes:

S ′
0 = (2 ◦ S0)⊕ (3 ◦ S1)⊕ S2 ⊕ S3 (7.4)

S ′
1 = S0 ⊕ (2 ◦ S1)⊕ (3 ◦ S2)⊕ S3 (7.5)

S ′
2 = S0 ⊕ S1 ⊕ (2 ◦ S2)⊕ (3 ◦ S3) (7.6)

S ′
3 = (3 ◦ S0)⊕ S1 ⊕ S2 ⊕ (2 ◦ S3) (7.7)

Where the input state to the MixColumns() operation was the AES state after

the ShiftRows() operation. The output of the MixColumns() operation is used as

the input state for the next round.

Constant Inputs

For the MixColumns() operation, we can lump all fixed input bytes into a single

constant. As described in [64], if bytes S1, S2, S3 of the input were fixed, we could

rewrite (7.4)–(7.7) as:

S ′
0 = (2 ◦ S0)⊕ E0 (7.8)

S ′
1 = S0 ⊕ E1 (7.9)

S ′
2 = S0 ⊕ E2 (7.10)

S ′
3 = (3 ◦ S0)⊕ E3 (7.11)

Note that these bytes are constant but unknown. This occurs because although

we do know the fixed plaintext input bytes (i.e., the nonce), we do not know the
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keying material used for those bytes. These outputs will become the inputs to the

next round of the AES algorithm.

Again using the method from [64], our objective is now to recover the next-round

key. Consider that we have gone through one round of AES, and our objective is

to recover the second-round key. We do not know the actual input data for this

round, which is the output of the MixColumns() step from the previous round. For

example, to recover the first key byte K0, we would need to know the output S0 from

MixColumns(). If some of the input bytes toMixColumns() are fixed but unknown,

we would instead recover the modified output S ′
0.

Performing the CPA attack, we could recover instead a version of this key (we

will refer to it as K ′
0) XOR’d with the unknown constant E0, that is K

′
0 = K0 ⊕ E0.

We can use this modified key as one input to the AddRoundKey() function, where

the other input is our modified input to this round S ′
0. Note that the output of

AddRoundKey() will be equivalent to the case where we had both the true key and

true input:

AddRoundKey(K ′
0, S

′
0) = K ′

0 ⊕ S ′
0

= (K0 ⊕ E0)⊕ (S0 ⊕ E0)

= K0 ⊕ S0

This is sufficient information to perform the attack on the next round of the

AES algorithm. If the entire modified version of a key can be recovered for a given

encryption round, we can recover the entire unmodified key by attacking the next

encryption round. This unmodified key can then be rolled backwards using the AES

key schedule.

This fundamental idea is used to attack AES-CCM* as used in IEEE 802.15.4,

where many of the input bytes are fixed. By pushing the attack into later rounds, we

can recover fixed bytes with a regular CPA attack.

Description of Attack

We describe the attack by working through a symbolic example, using the following

variables:
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P r
i : “text” input to the AddRoundKey()

Kr
i : “round key” input to the AddRoundKey()

Er
i : a constant, see Section 7.3.1

nr
i : the modified round key, Kr

i ⊕ Er
i

sri : the output of the SubBytes() function

vri : the output of the ShiftRows() function

mr
i : the output of the MixColumns() function

X : variable and known input plaintext values

Y : variable and known intermediate values

Z : variable and known intermediate values

N : known modified round-key values (nr
i )

K : known key or round-key values (kr
i )

c : constant values (may be known or unknown)

? : variable and unknown values

X* : group of variables which has a small set of possible candidates for

the correct value

Initially, we have the known input plaintext, where 12 of the bytes are constant,

and the 4 variable bytes are under attacker control (FrameCounter):

p1 = [c c c c c c c c c X X X X c c c]

From this, we can perform a CPA attack to recover 4 bytes of the key. Note that in

practice the byte K1
9 cannot be recovered because K1

8 is unknown. Instead we use the

technique detailed in Section 7.1.5 to generate 256 candidate keys for K1
9 , · · · , K1

12,

and test them at a later step. This means we can assume the following is the state

of our initial-round key:

r1 = [c c c c c c c c c K*K*K*K* c c c]

This can be used to calculate the output of the SubBytes() and ShiftRows()

functions, where the majority of bytes are constant (but unknown):
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s1 = [c c c c c c c c c Y*Y*Y*Y* c c c ]

v1 = [c c Y* c c Y* c c c c c c Y* c c Y*]

At this point we need to symbolically deal with the MixColumns(v1) output, as

we will be working with the modified output that has been XOR’d with the constant

E described in Section 7.3.1. As in [64], this is accomplished in practice by setting

unknown constants c to zero, and calculating the output of the MixColumns(v1)

function. The unknown constants are all pushed into the variable E, which we never

need to determine the true value of. This means our output of round r = 1 becomes:

m1 = [Z*Z*Z*Z*Z*Z*Z*Z* c c c c Z*Z*Z*Z*]

Note that 4 bytes of this output are constant. We again set these constant bytes

to zero to simplify our further manipulation of them. This means our input to the

next round becomes:

p2 = [Z*Z*Z*Z*Z*Z*Z*Z* 0 0 0 0 Z*Z*Z*Z*]

We are not able to recover n2
8, · · · , n2

11 yet, as the inputs associated with those key

bytes are constant.

We first attempt to recover n2
0, which is performed for all 256 candidates for

K1
9 , · · · , K1

12. As mentioned in Section 7.1.5, the highest correlation peak determines

both K1
9 , · · · , K1

12 and n2
0. This means we no longer have a group of candidates for

the input, but a single value:

p2 = [Z Z Z Z Z Z Z Z 0 0 0 0 Z Z Z Z]

We can then proceed with the CPA attack on the remaining bytes of n2. Bytes

n2
1, · · · , n2

6 can be recovered by application of the CPA attack from Section 7.1.4.

Recovery of n2
7 using the same process is not possible, as MixColumns(v1) inter-

acts with the leakage model. The inputs to this round P 2
6 and P 2

7 , which are generated

by (7.6) and (7.7) respectively as the previous-round MixColumns(v1) outputs m1
6
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and m1
7. When attacking n2

7, we apply (7.1) to (7.6) and (7.7). This means our

leakage is:

HW
(
(n2

6 ⊕ (7.6))⊕ (n2
7 ⊕ (7.7))

)
(7.12)

The XOR cancels common terms in (7.6) and (7.7), and in this case that term

is S1. Here S1 is the variable and known input to the MixColumns(v1), the result

being that the leakage appears constant and the attack fails.

Instead, we can recover this value using a CPA attack on the next round, which

is described later.

Returning to our CPA attack on the modified round key, we are unable to recover

n2
8, · · · , n2

11 as the associated inputs are constant.

As n2
11 is unknown, we cannot directly recover n2

12, · · · , n2
15. Instead we again use

the method of Section 7.1.5 to generate 256 candidates for n2
12, · · · , n2

15.

At this point we assume the CPA attack has succeeded, meaning we have recov-

ered the following bytes of the modified round key, where the final 4 bytes are partially

known – we have 256 candidates for this group, as we know the relationship between

each byte, but simply don’t know the starting byte to define the group:

n2 = [N N N N N N N c c c c c N*N*N*N*]

Remember, once we apply AddRoundKey(n2,p2), the constant E will be removed

– E is included in both the output of MixColumns(v1) and the modified key –

meaning we can determine the true value of the input to this round.

The outputs 8, · · · , 11 of MixColumns(v1) from the first round are constant,

so we also know these inputs are constant, and the four unknown modified bytes

n2
8, · · · , n2

11 can be ignored at this point. The result of AddRoundKey(n2,p2) for

these bytes will be another constant.

The unknown byte n2
7 is associated with variable input data, meaning this output

will be unknown and variable. At this point we can represent the known outputs of

SubBytes() and ShiftRows():

s2 = [Y Y Y Y Y Y Y ? c c c c Y* Y*Y*Y*]
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v2 = [Y Y c Y* Y c Y* Y c Y* Y ? Y* Y Y c]

As before, we can set unknown constant values to zero to determine the modified

output m2 = MixColumns(v2). The unknown variable byte means 4 bytes of the

MixColumns(v2) output are currently unknown. In addition, we have 256 candi-

dates for the remaining known values, since the four modified bytes n2
12, · · · , n2

15 have

been mixed into all output bytes by ShiftRows(p2) and MixColumns(v2):

m2 = [Z*Z*Z*Z*Z*Z*Z*Z* ? ? ? ? Z*Z*Z*Z]

This becomes the input to the next round:

p3 = [Z*Z*Z*Z*Z*Z*Z*Z* ? ? ? ? Z*Z*Z*Z]

We again apply the CPA attack on n3
0 across all values for n3

0 and the 256 candi-

dates for the previous modified round key (a total of 216 guesses), the peak telling us

the value of n3
0 and n2

12, · · · , n2
15. We now know which of the candidates to select for

further processing:

p3 = [Z Z Z Z Z Z Z Z ? ? ? ? Z Z Z Z]

We can apply a CPA attack to discover the modified key values n3
1, · · · , n3

7. The

unknown plaintext byte ? represents a changing value. We cannot ignore it as we

can constant values in the MixColumns(v2), and thus cannot apply the CPA attack

on the remaining bytes.

Instead we enumerate all possibilities for n2
7, and apply a CPA attack against n3

8,

similarly to previously described attacks from Section 7.1.5. We verified experimen-

tally that the correlation value with the highest peak for n3
8 resulted only when n2

7 was

the correct value, as in Fig. 7.10. This means we now have the entire modified output

of MixColumns(v2), and thus the complete modified input plaintext to round 3:

p3 = [Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z]
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Figure 7.10: Determining n2
7 means generating 256 candidate keys, which are tested

by attacking a byte in the next round. This figure shows the correlation output of
the CPA attack when attacking n3

8 for the correct value of n2
7 and n3

8 in red. The
incorrect values are displayed in green.

With n2
7 and n3

8 now known, we can continue with the CPA attack against n3
9, · · · , n3

15.

At this point we have an entire modified key:

n3 = [N N N N N N N N N N N N N N N N]

We can again apply the modified key n3 to the modified output of the previous

round m2 to recover the complete output of round r = 3, which will be the actual

input to round r = 4. This allows us to perform a CPA attack and recover the true

round key K4. This round key can then be rolled backwards using the AES key

schedule to determine the original encryption key.

We have now attacked an AES-CCM* implementation as specified in the IEEE

802.15.4 standard. This attack requires only the control of the four FrameCounter

bytes, which are sent as plaintext over the air, as detailed in Section 7.2.1.

The computational load of the attack is minimal: performing these steps on an

Intel i5-2540M laptop using a single thread program written in C++ takes under ten

minutes with the 20 000 traces, using only the subset of points in each trace from

Table 7.2. Note when performing the hypothetical value calculation for later rounds,
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the calculation was accelerated using the Intel AES-NI instruction set for performing

the SubBytes(), ShiftRows(), and MixColumns() operations, which form part of a

single AES round executed by this instruction [56].

7.4 Attacking Wireless Nodes

In the previous sections, I demonstrated the vulnerability of an IEEE 802.15.4 SoC

device to power analysis, and how the AES-CCM* mode used during reception of an

encrypted IEEE 802.15.4 packet can be attacked when the underlying hardware is

vulnerable to power analysis. The last two aspects of this attack are to (1) demon-

strate how we can trigger that encryption operation, and (2) determine where in the

power signature the encryption occurred. This section demonstrates the ability of

an attacker to perform these operations, and thus gives a complete attack against an

IEEE 802.15.4 wireless node.

In Section 7.2.1 I detailed the message format that would cause an IEEE 802.15.4

wireless node to automatically decrypt the message on receipt. To validate this I

used the same Dresden Elektronik RCB128RFA1 V6.3.1 board as in Section 7.1,

programmed with Atmel’s IEEE 802.15.4 stack version 2.8.0. I used the “Secure Star

Network” example application for this, which initializes a standard IEEE 802.15.4

networking using security.

In order for the side-channel attack to be successful, the attacker needs to deter-

mine when the AES encryption is occurring. As a starting point, the attacker can

use information on when the frame should have been received by the target node.

Practically, this would be either the attacker’s transmitter node toggling an io line

when the packet goes over the air, or the attacker could use another node that also

receives the transmitted messages to toggle an io line.

To determine the reliability of such a trigger, we measured the time between the

frame being received and the actual start of AES encryption on the target node. Over

100 transmitted frames the delay varied between 311 and 338 µs. The mean value of

the delay was 325 µs, with a standard deviation of 7 µs.

The jitter in the delay is assumed to be due to the software architecture, which

uses an event queue to process the frames. Practically, the issue of aligning or resyn-

chronizing power traces before applying power analysis is well known, and a number
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of solutions have been proposed, such as comb filtering or windowing [33], differen-

tial frequency analysis [52], dynamic time warping [136], and principal component

analysis [18].

To test the ability of an attacker to realign captured power traces, I used a sim-

ple normalized cross-correlation algorithm [77] to match a feature across multiple

power traces for realignment, using the scikit-image implementation of this feature

matching. This is an example of a static alignment method [80].

The selected feature was a window at 9.2–29.2 µs after the start of the AES en-

cryption in one reference trace, meaning the matched feature extended slightly beyond

the actual AES encryption. A plot of the output of the cross-correlation for different

offsets of the template against another trace is shown in Fig. 7.11. I confirmed that

a high correlation peak was generated only for a single sample around the AES algo-

rithm with many sample power traces. A threshold of 0.965 on the correlation output

(determined empirically) was used; if a power trace had no correlation peak higher

than this level, the trace was dropped. This eliminates problems with a particularly

noisy trace being matched incorrectly.

The successful realignment of traces is an important step when attacking real

systems. As an example of trace realignment on another platform, see the attack on

DESFire [109] which demonstrated how differential frequency analysis was used as a

preprocessing step for CPA attack.

In a similar manner, it was demonstrated in [38] that it was possible to detect the

location of software AES encryption based on the transmitter output of a wireless

node coupled with further signal processing.

Future work on this IEEE 802.15.4 attack can include applying more advanced

preprocessing techniques (such as differential frequency analysis or principal compo-

nent analysis). But such preprocessing techniques are not required to fundamentally

prove that (a) the AES core is leaking, and (b) the AES operation has some unique

signature allowing realignment to succeed.

7.5 Summary

The IEEE 802.15.4 wireless standard is a popular lower layer for many protocols being

used in or marketed for the coming “Internet of Things”. Such protocols often use
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Figure 7.11: Correlation can be used to match a template from the power signature
to align traces in the time domain, here the correct match should be at 9.2 µs, the
location of the largest correlation peak.

the same underlying AES primitive as the IEEE 802.15.4 layer for security purposes.

This chapter has demonstrated significant vulnerabilities in a real IEEE 802.15.4

wireless node. A successful attack against the AES peripheral in the ATMega128RFA1

device was demonstrated. This attack was demonstrated against AES-ECB; as elec-

tronic code book (ECB) is not the operating mode of AES used in the network, we

extended a previous attack on AES-CTR mode [64] to work against the AES-CCM*

mode used in IEEE 802.15.4. This demonstrated that it is possible to recover the

encryption key of a wireless node using side-channel power attacks and valid IEEE

802.15.4 messages sent to the node.

While this attack targeted a specific IEEE 802.15.4 SoC from Atmel, I believe

similar attacks would be successful against AES peripherals on other devices. Users

of IEEE 802.15.4 wireless networks, including users of protocols running on top of

IEEE 802.15.4, need to seriously consider their security requirements in light of these

attacks.

An additional type of attack against AES-CCM has been presented in [117], which

builds on the work presented in this chapter. This demonstrates an attack against a

commercially available ZigBee product (Philips Hue smart lights).



Chapter 8

Crowbar Glitch Generation

As mentioned in Chapter 1, fault or glitch attacks are a powerful tool for attacking

embedded systems. This has been known since at least 1996, when A. Ross and M.

Kuhn extensively demonstrated both clock and voltage glitches [5].

This chapter focuses on the practical aspect of injecting faults into a commercial

off-the-shelf (COTS) embedded computer. Previous work has demonstrated the use

of clock glitching or EM glitching on COTS embedded computers, such as attacking

the Beaglebone Black using EM glitching as demonstrated in [60]. This work instead

uses power supply glitching to insert faults in COTS embedded computers. Clock

glitching will not work on more complex devices (discussed in section 8.1), and EM

glitching is very sensitive to setup and equipment (discussed in section 8.1). A novel

method of reliably introducing faults using power-supply glitching will be presented,

a method that is applicable to a wide range of platforms and devices.

The novel method of generating power supply glitches uses a crowbar circuit, which

aggressively shorts the power supply of the device to generate faults. This introduces

ringing in the power distribution network on the circuit board, which propagates into

the on-chip power distribution network. Ringing in this on-chip network is known to

cause faults in digital devices, as shown in [149].

It will be demonstrated that a power supply glitch can be used to glitch a specific

instruction. Previously it was considered that clock glitching could achieve much

better temporal accuracy than power supply glitching[17], but it will be demonstrated

that it is possible to achieve high temporal accuracy with power supply glitching on

embedded systems.

This fault insertion is first characterized on a custom board using an AVR 8-bit

microcontroller, then demonstrated on several COTS embedded computer boards: a

Raspberry Pi running Linux, a Beaglebone Black running Linux, and an Android

smart phone. It will also be demonstrated that it is possible to glitch an application

133



134

running on Linux or Android without causing a crash of the operating system or

other negative effects. The applicability of this method to fault injection against

Field Programmable Gate Array (FPGA) targets will also be demonstrated.

8.1 Related Work

The related work on cryptographic attacks may broadly be broken into two categories:

methods of attacking algorithms using injected faults, and methods of injecting the

faults on physical devices. Papers may often cover both categories: a new attack

using fault injection is proposed, and this method is tested on a physical device. An

excellent summary of papers in both these categories is given in [17] and in [107].

Three main methods of injecting faults are compared here: clock glitching, power

glitching, and electromagnetic (EM) glitching. The reader is referred to [6, 14, 17]

for other available methods. A summary of work relevant to this chapter for each of

those three injection techniques will be presented next.

Clock Glitching

Clock glitching involves inserting additional rising edges into the input clock of the

device, with the objective of violating timing constraints in the target device. For

this to function, the clock must be used directly by the internal core. This means

clock glitching will not be effective against two large classes of devices: those using

internal oscillators, and those that use a Phase Lock Loop (PLL) to derive a new

clock from the external clock. The majority of high-performance devices fall into the

latter category, as they will run the internal core at a much higher frequency than

the external clock.

Clock glitching on an Atmel AVR microcontroller is throughly presented in [10],

which uses the same microcontroller family as being used in this chapter. In addi-

tion an extensive case study of clock glitching has been presented in [75] that used

perturbations in the device power supply to improve the effect of the clock glitches,

but did not consider the effect of power supply glitching alone. In [75] two devices

are targeted: an ARM Cortex-M0 implemented in a NXP LPC1114 device, and an

Atmel ATxmega 256 device.
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These two papers demonstrate that with fine-grained control of the glitch timing,

various instruction and data movements can be faulted with fine-grained control over

the fault result.

EM Glitching

A typical EM glitch injection setup involves a precision X-Y table that can position

the probe over the surface of the target chip. It has been demonstrated that for a

successful glitch injection a very high precision is required when placing the probe

over the chip surface [60, 95]. In addition if Package-on-Package technology is used

in the target chip, this can make glitching more difficult, as a memory die has been

stacked over the processor die [60].

EM glitching can achieve very fine-grained control over the fault effect, for example

attempting to fault operations of specific registers [60]. EM glitching is a very powerful

attack, but has the downside of requiring a more complex physical environment.

Power Glitching

Power glitching involves manipulation of the power supply of the target devices to

generate faults; a simple example is how lowering the supply voltage will again in-

troduce timing errors due to increased propagation delay. This underpowering has

proven to introduce faults in ARM-9 devices during cryptographic operations [15].

This does not however provide good temporal accuracy, making it difficult for the

glitch to target specific instruction.

The ability to target specific instructions can be achieved by instead inserting a

‘spike’ in the power rail at a specific instance in time. Both positive and negative

voltage spikes can be inserted into the external power rails, where the spikes have

a narrow width and attempt to cause faults in specific instructions. Both positive

and negative spikes on the external rails result in similar waveforms internally in the

target device, as demonstrated in [149].

A comparison of voltage glitching on three targets is given in [27], including at-

tacking a ‘secure’ device. The authors of [27] provide a search methodology for

determining ideal parameters of a glitch, i.e. finding the glitch amplitude and width.

The results presented in [27] are extremely useful in visualizing the sensitivity of a
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system to a voltage glitch.

A comprehensive discussion of voltage glitching against FPGA target has been

presented in [24], where the authors compared voltage glitching to laser (optical)

glitching. In that work voltage glitching is shown to be effective against FPGAs for

fault injection, and voltages in the range of 45V – 80V were found to be most effective

for their experimental setup.

8.2 Glitching Mechanism

The glitch mechanism explored in this chapter is a simple ‘crowbar’ circuit. This

circuit applies a short across the power rails of the target device, the specific waveform

generated depending on the target device power supplies.

The glitch is generated with an N-Channel MOSFET (IRF IRF7807), driven using

the glitch generation circuitry from the ChipWhisperer hardware described in Chapter

4. The selected MOSFET is a higher-power logic-level MOSFET with 88A of peak

pulse current capability and 0.014Ω RDS(ON). As is typical for such a MOSFET, the

gate charge is sufficient that generating very narrow glitches requires more care in

the design of the driver circuit [12].

If very narrow glitches are required, a lower-power MOSFET (such as IRF IRLML2502)

can be used, as this device has lower gate charge requirements, and can be switched

faster than the higher-power MOSFET. This particular MOSFET has a RDS(ON) of

0.035Ω, meaning it would be less effective against low-impedance power rails likely

to be found on high-speed processor boards.

8.3 Target Devices

The glitching attack is demonstrated against five targets: four microcontroller/mi-

croprocessor devices, and one FPGA device. The first target is a simple 8-bit micro-

controller, the next three are various types of ARM-based System-on-a-Chip (SoC)

devices, and the final target is a Xilinx Spartan 6 FPGA. The SoC devices are selected

to represent those found in a wide variety of embedded systems, from single-board

Linux computers to standard smartphones.
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Figure 8.1: The crowbar circuit using an N-Channel MOSFET is connected across
the AVR power pins, and also allows power measurement across a shunt resistor.

8.3.1 AVR Microcontroller.

As the AVR microcontroller has been studied for clock glitching ([10]), and power

glitching ([120, 27]), it serves as a useful benchmark for this work. I specifically use

the ATMega328P AVR microcontroller in DIP package running from a 7.3728 MHz

crystal oscillator.

The glitching attack against the AVR uses the lower-power MOSFET (part num-

ber IRLML2502), connected as shown in Fig. 8.1. The series resistor serves two

purposes: first, it allows the lower-power MOSFET to clamp the supply voltage to-

wards zero, and second it allows simultaneous power-analysis, including triggering

the fault based on patterns in the power consumption waveform.

8.3.2 Raspberry Pi (ARM11)

The Raspberry Pi is a low-cost single-board computer with an ARM11 based single-

core processor, the BCM2835 from Broadcom, and runs at 700 MHz core frequency.

This platform was loaded with Linux Debian with kernel 3.12.28.

For the power-glitching attack, I used the higher-power MOSFET IRF7807 con-

nected across 220 nF decoupling capacitor C65, that capacitor being part of the

V DDCORE power distribution network. Additional details of the hardware setup are

available as part of a tutorial1.

1Details are posted as part of the ChipWhisperer Documentation, available at http://www.

chipwhisperer.com

http://www.chipwhisperer.com
http://www.chipwhisperer.com


138

8.3.3 Beaglebone Black (ARM Cortex-A8)

The Beaglebone Black is a low-cost development board with an ARM Cortex-A8

based single-core processor, the AM3358 from Texas Instruments (TI), and runs at

1 GHz core frequency. This is the most powerful platform tested in this chapter, and

runs Linux Debian with kernel 3.8.13-bone47.

This platform was selected in particular as it is also used as an EM glitching target

by Hummel in [60]. Hummel extensively characterized the results of EM glitching over

the surface of the main processor, and noted that careful positioning of the glitching

coil was required to avoid simply rebooting the target.

The power-glitching attack again used the higher-power MOSFET connected

across 100 nF decoupling capacitor C63, part of the V DDMPU rail. Note that attacks

when the crowbar was connected across the V DDCORE network were unsuccessful,

only attacks against the V DDMPU succeeded.

8.3.4 Android Smart Phone (ARM11)

A HTC Wildfire S smart phone was used with the stock image for this phone (Android

2.3.3). The main System-on-a-Chip (SoC) in this phone is a Qualcomm MSM7227.

This is a highly integrated device with an ARM11 applications processor, applications

DSP, ARM9 baseband processor, and baseband DSP. The user code will run in the

ARM11 applications processor, which has a clock speed of 400 MHz.

The crowbar is attached across the capacitor shown in Fig. 8.2. This capacitor

appears to be part of the power distribution network for the application processor

core, based on comparison of the voltage at this point to the known core voltage of

the device.

8.3.5 FPGA Board (SAKURA-G)

For this chapter the SAKURA-G board[58] is used as a platform for fault injection.

This board contains a Spartan 6 LX75 FPGA (part number XC6SLX75-CSG484 in

2C speed grade) along with supporting circuitry. This board is designed for side-

channel analysis so does not have capacitors mounted on the V CCINT power rail,

and contains a shunt resistor across this power rail. The lack of decoupling capacitors
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Figure 8.2: A small length of magnet wire is used to connect a capacitor around the
MSM7227 device to the crowbar MOSFET for glitch insertion. The ground connection
comes from another point closer to where the MOSFET is mounted.

on this rail suggests the fault waveform should have little ringing when the crowbar

is released.

The higher-power MOSFET (IRF7807) is used to short the V CCINT power rail

for the FPGA. As the SAKURA-G board contains a SMA connector on the V CCINT

rail, the MOSFET can be connected across this connector (J2).

8.4 Fault Insertion Results

Two types of faults were tested: in the first a simple code sample that should be

highly sensitive to faults was tested, and in the second we explored faulting specific

operations or data within algorithms. We refer to the first as a ‘low-precision fault’,

as timing of the fault does not have a precise temporal trigger – the fault is being

inserted at a random point during the clock cycle of the device. Low-precision fault

insertion uses a fixed pulse width to activate the crowbar circuit.

For faulting specific operations or data, we use a ‘high-precision fault’, where spe-

cific temporal relationships between activity on the target device and fault injection

time are maintained.
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Listing 8.1: This code should result in 25000000-5000-5000 being printed for every

successful loop.

int i,j,cnt;

while (1){

for(i=0; i <5000; i++){

for(j=0; j <5000; j++){

cnt ++;

}

}

printf("%d-%d-%d\n", cnt , i, j);

}

8.4.1 Low-Precision Faults on Microprocessors

For this low-precision work, the code being glitched is given in Listing 8.1. This was

based on previously published glitching examples in [27]. The objective of the glitch

is causing an incorrect count for the variable cnt. I do not explore the specific cause

of the glitch (i.e. what instruction or data is being affected), only the resulting output

was incorrectly calculated (i.e. a fault was inserted at some point).

This code is used on the four microcontroller / microprocessor targets. Discussion

of low-precision faults on FPGA targets will be given in Section 8.4.2.

On the AVR target, Listing 8.1 is compiled directly onto ‘bare metal’ – there is

no OS, only Listing 8.1 is running, with the printf() statements sending data over

the serial port.

Listing 8.1 was compiled as a regular user program on both the two Linux-based

system and the Android system. The underlying OS will still be running background

processes, and our objective is only to fault the user program. For the two Linux

systems we interact with the user program via a remote ssh terminal over the Ethernet

connection, and with the Android system we interact using the touch-screen interface.

The Android system uses a Java version of Listing 8.1.

This fault has been successfully applied against all four of the processor target de-

vices described in Section 8.3. A successful fault is one where a single outer loop of the

program from Listing 8.1 produces an incorrect result. The program must continue
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Table 8.1: Low-precision fault injection is used against all of these devices to cause
the code from Listing 1 to calculate an incorrect result.

Target Crowbar Activation Time

ATMega328P 135 nS
Raspberry Pi 635 nS
Beaglebone Black 485 nS
Android Smartphone 615 nS

to run after the incorrect calculation without crashing. Details of the parameters for

a successful fault are given in Table 8.1 for each target device.

As the fault is inserted at a random point in time, the only parameter to vary is

the pulse width. The test program on the AVR has exclusive use of the core, as there

is no OS, so a randomly inserted fault is almost certain to occur around a sensitive

operation. On the Linux and Android system the underlying OS and other processes

are also running, but due to the use of a infinite loop the test program will monopolize

a single core, making it very likely a randomly selected point in time will result in

a fault inserted into our sensitive code rather than crashing the OS or a background

process.

An example of the fault waveform for the Raspberry Pi device is given in Fig. 8.3.

It can be seen the fault waveform involves both the power drooping while the crowbar

is activated, along with substantial ringing once the crowbar is released. On this spe-

cific target it seems likely the fault method may be the voltage regulator responding

to the sudden current change as the crowbar is released.

The output of the software from Listing 8.1 running on the Raspberry Pi during

a fault injection is shown in Fig. 8.4, and the Android Smartphone shown in Fig. 8.5.

This work does not characterize which aspects of this waveform are critical to

fault generation, but instead simply parameterizes the fault based on length of time

the crowbar is activated. The level and frequency of the ringing generated when the

crowbar is released depends greatly on the power distribution network (PDN) design

(including for example circuit board layout and number of decoupling capacitors),

along with the location where the crowbar is connected across.
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Figure 8.3: The signal on the V CCCORE rail for the Raspberry Pi during fault injec-
tion.

Figure 8.4: An implementation of Listing 8.1 in C was used in a Linux application for
testing purposes on the Raspberry Pi and Beaglebone Black. The output is monitored
via a ssh connection, which is done to ensure the OS and network connection does
not crash during the fault injection.
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Figure 8.5: An implementation of Listing 8.1 in Java was used in a simple Android
application for testing purposes. The injected fault causes an incorrect count for a
single loop iteration (49363180 instead of expected 25000000).

8.4.2 Low-Precision Faults on FPGAs

Fault injection on FPGAs has many uses, from simulating errors such as are ex-

pected from high-radiation environment[68] to attacking cryptographic implementa-

tions built on FPGA systems[70]. Work on the former has shown for example how to

determine what specific type of errors occurred as a result of radiation-induced faults

in an FPGA [141], and methods of simulating[28] or emulating[3] single-event upsets.

As mentioned, this work uses the SAKURA-G board [58] with a crowbar against

the V CCINT rail. As expected due to the lack of decoupling capacitors, the crowbar

insertion has a very ‘clean’ waveform, as can be seen in Fig. 8.6. There is almost no

ringing as a result of releasing the crowbar.

FPGA Design

A basic design consisting of sixteen separate 32-bit registers is instantiated in the

FPGA. Eight of these registers are loaded with all 1’s based on an external reset

signal, and the other eight of these registers are loaded with all 0’s when that external

signal is asserted.

The status of the registers are monitored by two external pins – this is able to

detect one or more bits flipping from 0 to 1 (bit-set fault), or from 1 to 0 (bit-reset

fault). An additional input signal temporarily overwrites the register value, used as

a self-test to confirm the fault detection logic is still functioning.

As the configuration data of the FPGA itself is stored in SRAM and subject
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Figure 8.6: The lack of decoupling capacitors on the SAKURA-G board along with
inclusion of resistive shunt



145

to corruption, the configuration data itself may become corrupted when inserting a

fault[142]. A fault that is able to be cleared by asserting the external reset signal is

considered a temporary fault (labeled a ‘Design Register Fault’ in the results from

Table 8.2). If the design fails to function after the fault insertion even with an external

reset, this is considered a ‘Functional Failure’.

Determining that a ‘functional failure’ has occurred only means the configuration

data specific to this design has been corrupted in such a way to prevent the design

from working. It is also necessary to determine if other bits of the configuration data

has been corrupted to properly characterize the fault injection results. These other

configuration bits are portions of the FPGA that are not being used in the current

design.

To accomplish this, the continuous CRC-check feature of the Spartan 6 FPGA can

be used. This feature causes the FPGA to set the INIT B pin to a logic low when the

configuration memory of the FPGA changes. Monitoring this pin determines when a

‘CRC Failure’ has occurred, indicating the configuration data of the FPGA has been

changed by the fault [146].

Once a ‘CRC Failure’ is detected, the readback feature of the FPGA is used to

determine how many bits have flipped. A reference bitstream is first created based on

a correctly loaded FPGA, and this reference is then compared to the new read-back

file from the FPGA with a CRC failure. Based on the difference between these files

the specific number of bits corrupted in the FPGA bitstream can be determined.

Fault Results

The results of various crowbar activation times on faults in the FPGA is given in

Table 8.2. If the crowbar is activated longer than 900 nS, the FPGA enters a reset

state and attempts to reload the configuration data.

For small fault injection widths (≤550 nS), the configuration data of the FPGA is

only occasionally corrupted (1 of 10 fault attempts causes at least one bit of config-

uration data corruption at 550 nS). Crowbar activation widths of 600 nS or greater

always result in at least one bit of corruption of the configuration data stored in the

FPGA. The number of bits corrupted tends to increase non-linearly with relation to

crowbar activation time. The total FPGA readback bitstream has 2 452 898 bits, so



146

Table 8.2: Results of fault injection against Spartan 6 LX75 FPGA, repeated 10× for
each width.

Width SRAM Configuration Data Faults Design Register Faults
CRC Failures Functional Avg Bit Diff. Set Reset Set & Reset

Failures of Failure

550 nS 1 0 1028 0 0 0
600 nS 10 0 1037 0 0 0
650 nS 10 1 1050 0 0 0
700 nS 10 0 1052 0 0 0
750 nS 10 0 1695 0 2 3
800 nS 10 0 7269 0 1 2
850 nS 10 0 20201 0 1 2
900 nS 10 8 40026 0 2 0

for example if 1028 bits are corrupted this represents 0.042% of bits corrupted. A

graph showing the relationship between glitch length and number of bits corrupted

is provided in Fig. 8.7.

Assuming the objective is to insert a fault into the registers inside the FPGA

design, it can be seen there is an optimal glitch width that minimizes the amount of

corruption within the configuration data, while still causing the values of registers to

change inside the FPGA design. In this specific design a glitch width of about 750 nS

would frequently (50 % of the time) result in one or more bit flip(s) in the register(s)

without noticeably damaging the FPGA design. Note there is some corruption of the

FPGA design, but the ‘damage’ is sparse enough to make a functional failure in the

design unlikely.

These results demonstrate it is possible to use a crowbar fault mechanism on a

FPGA to introduce random faults into both the configuration information and the

registers used in the working FPGA design. Previous work on voltage fault attacks

against FPGAs reported the ability to cause bit-flips in registers used within the

FPGA design, but not modify the configuration information[24].

8.4.3 High-Precision Faults

The high-precision fault insertion uses a more complex fault waveform, shown in

Fig. 8.8. This fault waveform is capable of activating the crowbar circuit for fractions

of the clock cycle, and with precise timings from edges of the device clock. This
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activation.
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Figure 8.8: The signal on the V CC pin when performing high-precision fault injec-
tions on the AVR is given in red. The black waveform is the ‘glitch clock’, which is
four times the device clock.

requires access to the device clock to maintain synchronization, but it does not require

the ability to manipulate the clock.

While this work did not explore high-precision fault attacks on a device with an

internal oscillator or PLL, previous work has demonstrated the ability of a simple cir-

cuit to perform the clock recovery when no external oscillator is available [103]. Thus

the work in this section should also be applicable to devices with internal oscillators

or PLLs, where clock-glitching attacks are not possible.

The high-precision fault injection uses a trigger signal from the target device. The

trigger signal indicates when the target device is performing the sensitive operating

we wish to fault. For timing the crowbar activation, a ‘fault clock’ is generated that

is phase-locked to the device clock, but operating at four times the frequency of the

device clock.

This means the following parameters can be adjusted for each fault operation:
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Starting Offset: After the trigger occurs, the number of cycles of the glitch clock

before the crowbar is activated. This can be seen as starting the glitch during one of

four phases of the device clock (as the glitch clock is four times the device clock).

Cycles Glitched: Number of cycles of the glitch clock during which the crowbar

is activated. Note from Fig. 8.8 the crowbar is only activated for a portion of each

cycle.

Phase Offset: The delay from the rising edge of the glitch clock to the crowbar

being activated for that cycle. A positive offset indicates it is activated after the

rising edge, a negative offset indicates before the rising edge.

Glitch Length: The length of time the crowbar is activated for within each cycle.

Three different code samples are used for fault injection. These samples are de-

signed to test bit-set and bit-reset faults, along with exploring modifying single or

multiple bytes within an operation (such as when targeting a specific byte of the AES

state).

The code used for detecting bit-set faults is given in Listing 8.2, and bit-reset

faults is given in Listing 8.3. Both of these samples are designed to use both SRAM

and registers, along with repeating the operation over multiple clock cycles.

The results of varying the starting offset, cycles glitched, and phase offset is given

in Fig. 8.9 and Fig. 8.10 for bit-set and bit-reset faults respectively (these figures

appear at the end of this chapter). The glitch length was fixed at 16.9 nS (50% of

the glitch clock period). For each combination of parameters the output of the code

sample given in either Listing 8.2 or Listing 8.3 is compared to the expected output.

In addition to detecting either single-bit or multi-bit faults, reset of the device (via

printing of a start-up sequence) is detected.

The phase offset is varied from −108◦ to 108◦ in 1.8◦ steps. The cycles glitched

is varied from 4 to 40 cycles in 2-cycle steps. For all test cases the device is powered

off and on after each fault attempt. This is to avoid errors caused by the device

entering a lockup or failed state, or if some unknown faults have been introduced

that would affect future tests. Powering the device completely off and on achieves a

reliable known-state for each test to be performed on.

These figures demonstrate that selecting the phase offset is a critical parameter
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Listing 8.2: Passing 0x00 and 0x00 for both a and b allows this code to detect bit-set

faults. As a is declared volatile the value is loaded from and saved to SRAM after

each OR operation as shown in the resulting assembly code.

uint8_t glitch_bitset(volatile uint8_t a, uint8_t b) {

trigger_high ();

a = a | b;

//Each OR operation compiles to the following ASM:

//ldd r24 , Y+1

//or r24 , r22

//std Y+1, r24

a = a | b;

...

a = a | b;

a = a | b;

return a;

}

result = glitch_bitset (0x00 , 0x00);

Listing 8.3: Passing 0xFF and 0xFF for both a and b allows this code to detect bit-reset

faults.

uint8_t glitch_bitreset(volatile uint8_t a, uint8_t b){

trigger_high ();

a = a & b;

a = a & b;

...

a = a & b;

a = a & b;

return a;

}

result = glitch_bitreset (0xFF , 0xFF);
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for a successful fault insertion. Tuning of this parameter allows insertion of either

single-bit or multi-bit faults in both the bit-set and bit-reset fault case.

To extend this to multi-byte operations, the code from Listing 8.4 is used. This

code applies similar functions to those used in many cryptographic operations, but

does not differentiate from bit-set and bit-reset faults.

This attack fixes the phase offset and cycles glitched parameters based on those

discovered from the single-bit fault operations, in this case around 72 degrees phase

offset and 5 cycles glitched.

The starting offset is then varied to attempt targeting of specific bits and bytes

within an 8-byte array. The fault attempt is repeated for each starting offset 20 times,

in order to determine the reliability of the fault operation.

As can be see in Fig. 8.11, faults can be targeted against specific bytes within

the array operation. Specific starting offsets have close to 100% reliability on fault

insertion (this figure appears at the end of this chapter).

8.5 Discussion

This section discusses the applicability of crowbar fault injection to real-world plat-

forms.

8.5.1 Generating Fault Signals

The crowbar attack method requires a very simple fault signal. To replicate the

results from Section 8.4.1, one only requires a pulse generator to drive the MOSFET.

This signal can even be generated by a simple microcontroller if a laboratory pulse

generator is not available. This makes it possible to add a fault generator to a system

(such as connecting to a trusted computing module inside a laptop), while the user

of the system is unaware of the fault generators presence. The attacker may choose

to activate the fault module at a later point in time, or only have the module active

during specific sensitive operations.

Replicating the results in Section 8.4.3 is easiest when using a FPGA-based system.

This work uses the ChipWhisperer platform from Chapter 4, but almost any FPGA

board is capable of performing the require clock multiplication and shifting used to

generate the fault signal. As was mentioned in the results section, the fault waveform
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Listing 8.4: By comparing the value of array a after the call to glitch mb() we can

detect the location of faults across several bytes. Note certain bits are only sensitive

to bit-set and certain bits are only sensitive to bit-reset faults.

void glitch_mb(uint8_t * a, uint8_t * b){

trigger_high ();

for (uint8_t i = 0; i < 8; i++){

a[i] ^= b[i];

}

}

void run_test(void){

uint8_t a[8],b[8];

for(uint8_t i = 0; i < 8; i++){

a[i] = 0xAA;

b[i] = 0xFF;

}

glitch_mb(a,b);

// Value of ‘a’ is now checked

}
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was extremely sensitive to the location of the first faulted cycle, along with phase of

the fault relative to the device clock edge.

8.5.2 Finding Vulnerable Supplies

When attacking a device, it is required to determine the vulnerable supply rail. Even

very simple devices will typically have at least two power rails (analog and digital),

but more complex devices such as SoC could have many more (such as processor,

memory, USB, clock domain, and analog).

This work attacked three such SoC devices, with varying levels of public docu-

mentation. The Beaglebone Black had full schematics and documentation published,

including details of the SoC device. The Raspberry Pi has schematics but no details

of the SoC, and the Android phone had no schematics and no details of the SoC.

Determining the sensitive rail for each device will be discussed in sequence.

On the Beaglebone Black, the schematic shows there are two power rails of interest:

V DDCORE and V DDMPU . Attempting to use a crowbar on the V DDCORE was

not successful, where the crowbar was inserted on a number of different locations

underneath the BGA package. By comparison using a crowbar against the V DDMPU

rail was successful on the first attempt. As V DDMPU is the MicroProcessor Unit

rail, we would expect this rail to be the sensitive rail.

The Raspberry Pi also had schematics available, but in this case the SoC only had

a V DDCORE rail. Glitching against a randomly selected decoupling capacitor from

this rail was successful.

The Android phone presented the most difficulty in determining the sensitive

supply. There is no public documentation for the main SoC (Qualcomm MSM7227)

device, and of course no schematics for the phone. Probing the decoupling capacitors

mounted around the device showed 2.6V, 1.8V, 1.25V, and 1.33V being present. Based

on the layout the 1.8V capacitors were likely part of the memory interface, leaving

the 1.25V and 1.33V rails. Ultimately I found the 1.33V rail, using the point from

Fig. 8.2, was a vulnerable location for fault insertion.
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8.5.3 Triggering Faults

It has been shown in Section 8.4.3 that a careful timing allowed crowbar fault in-

jection to achieve extremely high reliability. For simplicity these tests repeated the

instruction multiple times, but it can be noted that changing the timing by only a

small percentage of the clock cycle resulted in different fault effects. In practice, this

careful timing can be achieved by using either a trigger signal from the target device

(in the case of instrumentation purposely added), or with a trigger based on a power

consumption or I/O activity trigger of the target device[105].

8.6 Summary

We have introduced a novel method of injecting voltage faults into hardware devices

using a MOSFET to short the power supply of the device with very precise control over

timing of the faults. This is called the crowbar injection technique. The use of this

technique against several platforms, including devices used in previous publications,

has been presented. In addition several platforms are standard ‘off-the-shelf’ boards,

showing how the crowbar technique can be used on real embedded systems.

The crowbar technique takes advantage of the properties of the power distribution

networks on printed circuit boards to generate ringing in these networks. This ringing

is presumed to perturb the power distribution networks on the target chip itself, which

is known to cause faulty operations [149].

The use of fine control over the fault timing has also demonstrated that faults with

very high reliability can be inserted, determining for example if a single- or multi-bit

fault should be introduced, or to fault a single byte out of a larger array operation.

Currently this ‘high-precision’ faulting has only been demonstrated on simple 8-bit

Atmel AVR microcontrollers. Future work is needed to test larger platforms such as

embedded Linux computers to determine the reliability of high-precision fault attacks,

and their ability to target very specific instructions or data.
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Bit-set Faults on ATMega328P

No Effect Single-bit Fault Multi-bit Fault Device Reset

Figure 8.9: Bit-set faults mean at least one bit that should have been a ‘0’ was read
as a ‘1’. It can be seen both single-bit and multi-bit faults can be injected depending
on the phase and starting offset.
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Bit-reset Faults on ATMega328P

No Effect Single-bit Fault Multi-bit Fault Device Reset

Figure 8.10: Bit-reset faults mean at least one bit that should have been a ‘1’ was read
as a ‘0’. It can be seen both single-bit and multi-bit faults can be injected depending
on the phase and starting offset.
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Figure 8.11: A 64-bit number is manipulated, and the reliability of fault insertion on
each bit for different glitch locations is graphed. Squares indicate a single bit fault,
horizontal lines indicate a device reset. The color of the square (or line) indicates
empirical probability of that fault result for a given offset. For example at an offset
of 16.25 clock cycles results in the same four bits located within the second byte of
the copy operating being marked as incorrect for 100% of observations. As the data
being copied is 10101010 binary, this may indicate only those bits set to ‘1’ were
affected by a bit-reset fault.



Chapter 9

Conclusions and Future Work

9.1 Concluding Remarks

Embedded computers already exist in many devices we own or use, and this trend

looks only to accelerate in future years. These computers are becoming ever more

powerful and interconnected, making them valuable targets for hackers. In the past

few years ransomware has become a popular method of extorting consumers, by de-

manding payment to unlock their data [51]. Similar attacks may come to hardware

devices – attackers have already demonstrated an ability to remotely reprogram em-

bedded computers in cars, and it’s not a stretch to imagine attackers using this to

prevent the car from working unless a special unique key is entered. This key is

produced to the consumer only after payment on a ransomware website.

Solving this problem requires fundamental shifts in the design process of embed-

ded systems. Security must be a continuous consideration, and must be something

that becomes part of the training of any engineer designing embedded systems. Ac-

complishing this requires a more fluid transfer of knowledge from academia – who has

known about these attacks for 18 years – to industry.

The novel architecture for a new capture hardware, and the open-source Chip-

Whisperer project presented in this thesis, are another step towards this goal. The

ChipWhisperer project is already used in a number of universities, by companies run-

ning internal training courses, and by open training courses that can be taken by

embedded engineers.

This thesis also includes several demonstrations of the tool against hardware and

software used in (or similar to those used in) real applications. Many devices include

an encrypted bootloader for example, and I’ve worked to demonstrate this may be

considerably less secure than marketing material suggests. Similarly, be breaking the

hardware AES used on the ATMega128RFA1 device, it can help designers understand

the true vulnerability of these devices. Only with this knowledge can the correct

158
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decisions about system-level functionality such as how to distribute the AES keys

and how often to update them be made.

The open-source ChipWhisperer fits within a variety of other open-source tools.

In particular, other work such as the FOBOS [138] and GIAnT [108] have also worked

on providing a platform for other researchers to use. The ChipWhisperer presented

here more closely aims to bridge between academia and industry by providing an ”all

in one” solution including both hardware and software, such that working engineers

can easily learn how power analysis attacks work and where they apply.

A considerably body of previous work has detailed experimental setup as part

of work on power analysis, for example detailing oscilloscopes, sampling rates, and

probes being used for a given paper. My work specifically looks at how sample rates

and clock synchronization may change the results of attacks on specific targets. This

can be useful when attempting to duplicate results published elsewhere, by providing

information on the effects of various sample rates and capture strategies on attack

results.

9.2 Future Work

The open-source ChipWhisperer project has only basic attacks implemented currently.

Future work in implementing more advanced attack modules will continue to make

this tool useful for both groups in academia and industry. In particular, demonstrat-

ing more advanced attacks may encourage authors of new work to directly contribute

a working version of their attack. This would greatly help with the transfer of knowl-

edge of academia to industry, as recreating an algorithm from published papers can

be very intensive work.

Demonstrating the platform against more advanced devices is also of importance

– for example demonstrating it against a multicore ARM device. This is of particular

importance as the cost of such devices falls, and these devices will be more common in

embedded systems. Demonstrations against higher-performance embedded systems

are also required, such as very fast hardware AES cores.

Documentation on both the tool usage and the attacks themselves is also critical to

help disseminate the knowledge of embedded hardware security threats and solutions.

As part of my open-source ChipWhisperer project I’ve documented much of this in
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hands-on tutorials at http://www.ChipWhisperer.com, but this is ongoing work to

expand this knowledge base.

9.3 Beyond Power Analysis and Glitching

The ChipWhisperer project currently performs power-analysis and glitch attacks on

embedded computers as a method of validating security algorithms and protocols. Be-

yond these tasks, the ChipWhisperer can be used as a base for performing real-time

detection of abnormal behaviour on embedded systems. The same power measure-

ments being used in this work to break cryptographic algorithms can also be used

to help fingerprint certain operations within an embedded computer. This type of

work will become more relevant as embedded systems become increasingly complex,

and they are subject to the same type of virus and worm attacks that often plague

desktop computers.

It may be desired to build embedded systems that have a completely separate

monitoring process (similar to a watchdog timer), rather than relying on an anti-

virus or similar task running on the embedded computer itself. In this case the

capture architecture presented in this thesis serves as a reference for building a very

low-cost capture system which can perform the power measurement in real-time at a

reasonable cost and complexity.

This can also be applied to the field of detecting counterfeit or abnormal devices.

While the majority of this work has concentrated on an attacker attempting to break

the security of a system, we can also consider an ‘attacker’ simply a supplier in

a supply chain looking to increase their profit. Rather than supplying a certain

grade of parts to a manufacture, they may try to substitute a lower-cost part which

performs ‘mostly’ the same functions. Detecting such a swap may be difficult, but

power analysis can be used to provide unique fingerprints that a manufacture can use

to confirm a supplied part matches the expected signature.

http://www.ChipWhisperer.com
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[97] E. Nascimento, J. López, and R. Dahab. Efficient and Secure Elliptic Curve
Cryptography for 8-bit AVR Microcontrollers, pages 289–309. Springer Interna-
tional Publishing, Cham, 2015.

[98] M. Neve and K. Tiri. On the complexity of side-channel attacks on aes-256
– methodology and quantitative results on cache attacks. Cryptology ePrint
Archive, Report 2007/318, 2007. http://eprint.iacr.org/.

[99] D. North. An analysis of the factors which determine signal/noise discrimination
in pulsed-carrier systems. RCA Labs., 1943.

[100] C. O’Flynn and Z. D. Chen. Side channel power analysis of an aes-256 boot-
loader. In 2015 IEEE 28th Canadian Conference on Electrical and Computer
Engineering (CCECE), pages 750–755, May 2015.

[101] C. O’Flynn and C. Zhizhang. A case study of Side-Channel Analysis using
Decoupling Capacitor Power Measurement with the OpenADC. In Proceedings
of Workshop on Foundations and Practices of Security (FPS ’13), volume 7743,
pages 328–344. Springer, 2013.

[102] C. O’Flynn. A lightbulb worm? In Proceedings of Black Hat 2016, August
2016.

[103] C. O’Flynn and Z. Chen. Synchronous sampling and clock recovery of internal
oscillators for side channel analysis and fault injection. Journal of Cryptographic
Engineering, 5(1):53–69, 2015.

[104] C. O’Flynn and Z. Chen. Power Analysis Attacks Against IEEE 802.15.4 Nodes,
pages 55–70. Springer International Publishing, Cham, 2016.

[105] C. O’Flynn and Z. Chen. ChipWhisperer: An Open-Source Platform for Hard-
ware Embedded Security Research. In Proceedings of 5th Workshop on Con-
structive Side-Channel Analysis and Secure Design (COSADE ’14), volume
8622 of Lecture Notes in Computer Science, pages 243–260. Springer Inter-
national Publishing, 2014.

http://eprint.iacr.org/2016/923


170

[106] J. Olivares, J. Hormigo, J. Villalba, and I. Benavides. Minimum Sum of Ab-
solute Differences Implementation in a Single FPGA Device. In Proceedings
of 14th Conference on Field Programmable Logic and Application (FPL ’04),
volume 3203 of Lecture Notes in Computer Science, pages 986–990. Springer
Berlin Heidelberg, 2004.

[107] D. Oswald. Implementation Attacks: From Theory to Practice. PhD thesis,
Ruhr-Universitat Bochum, 2013.

[108] D. Oswald, T. Kasper, S. Markhoff, and C. Paar. FPGA-based Implementation
Attacks with GIAnT, November 2011. 9th CrypArchi Workschop, Bochum.

[109] D. Oswald and C. Paar. Breaking Mifare DESFire MF3ICD40: Power Analysis
and Templates in the Real World. In Proceedings of 13th Workshop on Crypto-
graphic Hardware and Embedded Systems (CHES ’11), volume 6917 of Lecture
Notes in Computer Science, pages 207–222. Springer Berlin Heidelberg, 2011.

[110] D. Oswald, B. Richter, and C. Paar. Side-Channel Attacks on the Yubikey 2
One-Time Password Generator. In Proceedings of 16th Symposium on Research
in Attacks, Intrusions, and Defenses (RAID ’13), volume 8145 of Lecture Notes
in Computer Science, pages 204–222. Springer Berlin Heidelberg, 2013.

[111] D. Oswald, D. Strobel, F. Schellenberg, T. Kasper, and C. Paar. When Reverse-
Engineering Meets Side-Channel Analysis – Digital Lockpicking in Practice. In
Proceedings of 20th Conference on Selected Areas in Cryptography (SAC ’13),
volume 8282 of Lecture Notes in Computer Science, pages 571–588. Springer
Berlin Heidelberg, 2014.

[112] E. Oswald. OpenSCA: A Matlab-based open source framework for side-channel
attacks, 2009. http://opensca.sourceforge.net/.

[113] H. Pahlevanzadeh, J. Dofe, and Q. Yu. Assessing cpa resistance of aes with
different fault tolerance mechanisms. In Proceedings of 2016 21st Asia and
South Pacific Design Automation Conference (ASP-DAC), pages 661–666, Jan
2016.

[114] J.-J. Quisquater and D. Samyde. Eddy current for Magnetic Analysis with
Active Sensor. In Proceedings of Esmart Conference ’02, 9 2002.
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B.3 Synchronous sampling and clock recovery of internal oscillators for

side channel analysis and fault injection [103]
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