
17:08 Murder on the USS Table
by Soldier of Fortran

concerning an adventure with Bigendian Smalls

The following is a dramatization of how I learned
to write assembler, deal with mainframe forums, and
make kick-ass VTAM USS Tables. Names have been
fabricated, and I won’t let the truth get in the way
of a good story, but the information is real.

It was about eleven o’clock in the evening, early
summer, with the new moon leaving an inky dark-
ness on the streets. The kids were in bed dreaming
of sweet things while I was nursing a cheap bour-
bon at the kitchen table. Dressed in an old t-shirt
reminding me of better days, and cheap polyester
pants, I was getting ready to call it a night when I
saw trouble. Trouble has a name, Bigendian Smalls.
A tall, blonde, drink of water who knows more about
mainframe hacking than anyone else on the planet,
with a penchant for cargo shorts. I could never say
no to cargo shorts.

The notification pinged my phone before it made
it to Chrome. I knew, right then and there I wasn’t
calling it a night. Biggie needed something, and he
needed it sooner rather than later. One thing you
should know about me, I’m no sucker, but when a
friend is in need I jump at the chance to lend a hand.

Before opening the message, I poured myself an-
other glass. The sound of the cheap, room temper-
ature bourbon cracking the ice broke the silence in
my small kitchen, like an e-sport pro cracking her
knuckles before a match. I opened the message:

“Hey, I need your help. Can you make a main-
frame logon screen for Kerberos? But can you add
that stupid Windows 10 upgrade popup when some-
one hits enter?”

“Yeah,” I replied. I’m not known for much. I
don’t have money. I’m as cheap as a Garfield joke
in the Sunday papers. But I can do one thing well:
Mainframe EBCDIC Art.

I knew It was going to be a play on Cerberus, the
three-headed dog. Finding that ASCII was the easy
part. ASCII art has been around since the creation
of the keyboard. People need to make art, regard-
less of the tool. Finding ASCII art was going to be
simple. Google, DuckDuckGo, or in desperate times
and lots of good scotch, Bing, will supply the base
that I need to create my master piece. The first
response for a search for “Cerberus” and “ASCII”
yielded my three-headed muse.

1 /_/____,
,___/_/\ \ ~ /

3 \ ~ \) XXX
XXX / /_/___,

5 \o−o/−o−o/ ~ /
) / \ XXX

7 _| / \ _/
,−/ _ _/ \

9 / (/____,__|)
(|_ () \) _|

11 _/ _) \ __/ (_
(, − (, (, (, / \ ,) ,) ,)

13 http :// ce rbe rus . a s c i i . uk/

The rest, however would require a friend’s pre-
vious work, as well as a deep understanding of the
TN3270 protocol and mainframe assembler.

– — — – — — — — – — –
When I got in to this game six years ago it was

because I was tired of looking at the red “Z.”

That red was rough, as though accessing this
mainframe was going to lead me right to Satan him-
self. (Little did I know I’d actually be begging to
get by Cerberus.)

The world of mainframes, it’s a different world.
A seedier world. One not well-travelled by the
young, and often frequented by the harsh winds of
corporate rule. Nothing on the mainframe comes
easy or free. If you want to make art, you’ll need
more than just a keyboard.

I started innocently enough, naively searching
simple terms like “change mainframe logon screen.” I
stumbled around search results, and into chatrooms
like a newborn giraffe learning to walk. You know
the type, a conversation where everyone is trying to

42

prove who’s the smartest in the room. While ulti-
mately useless, those initial searches taught me three
things: I needed to understand the TN3270 pro-
tocol, z/OS High Level Assembler (HLASM), and
what the hell a VTAM and the USS Table were.

– — — – — — — — – — –
I always knew I would have to learn TN3270.

It’s the core of mainframe–user interaction. That
green screen you see in movies when they say some-
one “just hacked a mainframe.” I just never thought
it would be to make art for my friends. TN3270
is based on Telnet. Or put another way, Telnet is
to TN3270 as a bike is to an expensive motorcycle.
They sort of start out the same but after you make
the wheels and frame they’re about as different as
every two-bit shoe shine.

Looking at the way mainframes and their clients
talk to one another is easy enough to understand,
at first. Take a look at Figure 18.

For anyone who understood telnet like I did, this
handshake was easy enough to understand.

IAC : Telnet Command
2 DO/WILL: Do t h i s ! I w i l l !

SB : sub command

But that’s where it ended. Once the client was
done negotiating the telnet options, the rest of the
data looked garbled if you weren’t trained to spot
it.

You see, mainframes came from looms. Looms
spoke in punchcards which eventually moved to
computers speaking EBCDIC. So, mainframes kept
the language alive, like a small Quebec town trying
to keep French alive. That TN3270 data was now
going to be driven by an exclusively EBCDIC char-
acter set. All the rest of the options negotiated, and
commands sent, would be in this strange, ancient
language. Lucky for me, my friend Tommy knows all
about TN3270 and EBCDIC.25 And Tommy owed
me a favor.

– — — – — — — — – — –
Just past a Chinese restaurant’s dumpster was

the entrance to Tommy’s place. You’d never know
it even existed unless you went down the alleyway
to relieve yourself. As I approached the dark green
door, I couldn’t help but notice the pungent smell
of decaying cabbage and dreams, steam billowing
out of a vent smelled vaguely of pork dumplings. I
knocked three times. The door opened suddenly and

I was ushered in. I felt Tommy slam the door shut
and heard no fewer than three cheap chain-locks set
in to place.

Tommy’s place was stark white, like a website
from the early 90s. No art, no flashing neon, just
plain white with some printouts stuck on the white
walls and the quiet hum of an unseen computer. The
kind of place that makes you want to slowly wander
around an Ikea. Tommy liked to keep things clean
and simple and this place reflected that.

Tommy, in his white lab coat, was a just a reg-
ular man. As regular and boring as a vodka with
lime and soda, if vodka, with lime and soda, wore
large rimmed glasses. But he knew his way around
TN3270, and that’s what I needed right now.

“So, I hear you need some help with TN3270?”
Tommy asked. He already knew why I was there.

“Yeah, I can’t figure this garbage out and I need
help writing my own,” I replied.

Tommy sighed and began explaining what I
needed to know. He walked over to one of three
whiteboards in the room.

“The key thing you need to know is that after
you negotiate TN3270 there are seven control char-
acters. But if all you want to do it make art, you
only need to know these four:

1 SF − "\x1D" − aka Star t F i e ld
SBA − "\x11" − aka Set Buf f e r Att r ibute

3 IC − "\x13" − aka I n s e r t Cursor
SFE − "\x29" − aka Star t F i e ld Extended

“Unlike telnet, TN3270 is a basically 1920 char-
acter string, for the original 24×80 size. The ter-
minal knows you’re starting ’cuz the first byte you
send is a command (i.e. \x05) followed by a Write
Control Character (WCC). For you, sir artist, you’ll
want to send ‘Erase/Write/Alternate.’ or \xF5\x7A.
This gives you a blank canvas to work with by clear-
ing the screen and resetting the terminal.

“The remaining makeup of the screen is up to
you. You use SBA to tell the terminal where
you want your cursor to be, then use the ‘Start
Field’/‘Start Field Extended’ commands to tell the
terminal what kind of field it is going to be, also
known as an attribute. Start field is used to lock
and unlock the screen, but for your art it doesn’t
matter.

“One thing you’ll need to watch out for, anytime
you use SF/SFE, is that it takes up one byte on the

25http://www.tommysprinkle.com/mvs/P3270/ctlchars.htm

43

1 TN3270(KINGPIN, 2 3) : << IAC DO TN3270
TN3270(KINGPIN, 23) : >> IAC WILL TN3270

3 TN3270(KINGPIN, 2 3) : Enter ing TN3270 Mode :
TN3270(KINGPIN, 23) : Creat ing Empty IBM−3278−2 Buf f e r

5 TN3270(KINGPIN, 2 3) : Created bu f f e r s o f l ength : 1920
TN3270(KINGPIN, 23) : Current State : ’TN3270E mode ’

7 TN3270(KINGPIN, 2 3) : << IAC SB TN3270 TN3270E_SEND TN3270E_DEVICE_TYPE SE
TN3270(KINGPIN, 23) : >> IAC SB TN3270 TN3270E_DEVICE_TYPE TN3270E_REQUEST IBM−3278−2−E IAC SE

9 TN3270(KINGPIN, 2 3) : << IAC SB TN3270 TN3270E_DEVICE_TYPE TN3270E_IS I B M − 3 2 7 8 − 2 − E
TN3270E_CONNECT S M O G L U 0 2 SE

11 TN3270(KINGPIN, 2 3) : Confirmed Terminal Type : IBM−3278−2−E
TN3270(KINGPIN, 23) : LU Name : SMOGLU02

13 TN3270(KINGPIN, 2 3) : >> IAC SB TN3270 TN3270E_FUNCTIONS TN3270E_REQUEST IAC SE
TN3270(KINGPIN, 23) : << IAC SB TN3270 TN3270E_FUNCTIONS TN3270E_IS SE

15 TN3270(KINGPIN, 2 3) : >> IAC SB TN3270 TN3270E_FUNCTIONS TN3270E_REQUEST IAC SE
TN3270(KINGPIN, 23) : Proce s s ing TN3270 Data

Figure 18. TN3270 Packet Trace

screen. Setting the buffer location does not. Once
you’re done with your art, you’ll need to place the
cursor somewhere, using IC.”

Starting to understand, I headed to the white
board and wrote Figure 19 in black marker.

“Yes! That’s it!” exclaimed Tommy. “With what
you have now, you could make a monochrome mas-
terpiece! Keep in mind that the SF eats up one
space. So basically you could fill out the rest of the
screen’s 1,919 characters, remembering that the line

wraps at every 80 characters. But let’s talk about
SF and SFE.”

“In your, frankly simple, example,” Tommy con-
tinued, “you’d never get any color. To do that, we
need to talk about the Start Field Extended (\x29)
command. That command is made up of the SFE
byte itself, followed by a byte for the number of at-
tributes, and then the attributes themselves.

“There’s two attributes we care about: SF
(\xC0), and the most important one, which I’ll get
to in a minute. SF is what we use like above to con-
trol the screen. If we wanted to protect the screen
from being edited we could set it to \xF8.

“Now, you’ll want to listen closely because this
attribute is arguably the most important to you.
The color attribute (\x42) lets you set a color. Your
choices are \xF1 through \xF7.”

F1 Blue
2 F2 Red

F3 Pink
4 F4 Green

F5 Turquoise
6 F6 Yellow

F7 White

\x05 WCC SBA 0 0 SF 0 Here L i e s Trouble IC
2 \x05 \x7A \x11 \x00 \x00 \x1D \x00 Here L i e s Trouble \x13

Figure 19. Placing the cursor after drawing.

44

1 \x05 WCC SBA 0 0 SF 0 Here L i e s Trouble SFE 1 COLOR WHITE Double IC
\x05 \x7A \x11 \x00 \x00 \x1D \x00 Here L i e s Trouble \x29 \x01 \x42 \xF7 Double \x13

Tommy grabs the black marker from my hand
and begins adding to my simple example.

“So, with a bit of this code, we can add a color
statement to your commands. Remember to move
the cursor to the end though.

“There’s one last thing you should know, but it’s
a little advanced. You can set the location using
SBA followed by a row/column value. Right now,
you’ve set the buffer to 0/0. But using this special
table,” Tommy pointed to a printout he had lam-
inated and stuck to his wall,26 “we can point the
buffer anywhere we—”

Just then the door burst open, the sounds of
those cheap locks breaking and hitting the floor
echoed through the room. A dark figure stood in
the doorway holding some type of automatic gun,
which I couldn’t place. Tommy quickly took cover
behind a desk and I followed suit. I heard a voice
yell out “How dare you teach him the way! He might
not have the access he needs! Did you ask if he’s al-
lowed to make the kind of changes you’re teaching?
He should’ve spoken to his system programmer and
read the manuals!”

Tommy, visibly shaken, shouted, “Rico! I’m
sorry! I owed someone a favor and. . . ”

Rico opened fire. Little pieces of shattered
whiteboard hitting me in the face. He wasn’t aim-
ing for us, but had destroyed our notes on the white
board. I looked over and saw Tommy cowering un-
der his desk, I had figured ‘Tommy’ was a nickname

for a favorite firearm, guess I was wrong.
“You’ve given out free TN3270 help for the last

time Tommy!” Rico shouts, and I heard the familiar
sound of a gun being reloaded. I took a quick peek
from my hiding place and noticed that Rico hadn’t
even bothered to take cover, still standing in the
doorway. Not wanting my epitaph to read, “Here
lies a coward who died learning TN3270 behind a
Chinese restaurant,” I pulled out my Colt detective
special and opened fire. My aim had always been
atrocious, but I fired blindly in the direction of the
door, heard a yelp, and then silence.

Tommy popped his head above the desk, “He’s
gone, looks like he ran off, you better get out of here
in case he and his goons return.”

I took this as my cue and headed towards the
door. I noticed part of the frame had splintered,
and in the center of those splinters was my slug.
looks like I just missed Rico.

Tommy grabbed my arm as I’m about to leave,
“You still need to learn some assembler and VTAM,
go talk to Dave at The Empress, he can help you
out. But never come back here again, you’re too
much trouble.”

– — — – — — — — – — –
The Empress. On the books it was a hotel. Off

the books it’s where you went when you wanted
help forgetting about the outside world. The lobby
looked and smelled like a cheap computer case that
hadn’t been cleaned out for years. Half the lights in
the chandelier didn’t work, and it cast odd shadows
on the furniture, giving the impression someone was
there, watching you. It was the kind of place Euro-
pean tourists booked because Travelocity got them a
great deal, but the price would immediately change
once they arrived. No one came to the Empress for
its good looks. Not-quite-top-40 music emanated
from the barroom.

I walked to the front desk, where a young man
with a name tag that said “No Name” looked me up
and down. “Can I help you?” Millennial sarcasm
dripped off of every syllable. “I need to speak to
Dave,” I replied. The clerk’s eyes widened a little,
he quickly looked around and whispered “follow me.”

26http://www.tommysprinkle.com/mvs/P3270/bufaddr.htm

45

The clerk walked me past the kitchen, through
the back hallways, in to the laundry room. He ush-
ered me in, then abruptly left. A sole person was
folding linens in front of an industrial washing ma-
chine, a freshly lit cigarette hung loosely from his
lips. The fluorescent light turned his skin a pale
shade of blue. “Dave?” I called out.27 Dave put the
bed sheet down and walked over. ‘Who wants to

know?” he asked.
“Tommy sent me,” I replied.
Dave takes a long pull on his coffin nail, “Shit,”

he says exhaling a large puff, “you tell Tommy that
we’re square after this. I assume you’re here to learn
HLASM? Can I ask why?”

“I’m trying to make some my mainframe look
beter.” I replied.

Dave wasn’t a tall man, but his stature, deep
voice, and frame more than made up for it. The
type of man you could trust to knock you out in one
punch. His white hotel uniform was stained with
what I hoped wasn’t blood.

He sighed and said “this way.”
Dave led me to a small room off the laundry area

with some books on the wall, lit by a single, bare
bulb in the ceiling fixture. A black chalkboard stood
in one corner, an old terminal on a standing desk, all
the rage these days, at in the other. The walls were
bare concrete. “I assume you already know JCL?”
queried Dave.

“Yes” I replied with a failed attempt at sarcasm,
“of course I know JCL.”28

“Good, this will be easy then.” He took another
pull of his smoke and began writing on the black-
board, “There’re four executables available to you
to compile an HLASM program on the mainframe.
They are:

ASMAC − Assembles only
2 ASMACL − Assembles and l i n k e d i t s
ASMACLG − Assembles , l i n k s and runs

4 ASMACG − Assembles , uses a l oade r to run

Dave walked over to the terminal and pulled up
a file on the screen. “You need to pass it some op-
tions, like this,” he said, pointing to a line on the
screen:

//BUILD EXEC ASMACL
2 //C. SYSLIB DD DSN=SYS1 .SISTMAC1,DISP=SHR

// DD DSN=SYS1 .MACLIB,DISP=SHR
4 //C. SYSIN DD ∗

“Anything you type on the next line, after the
* must be in HLASM and will be compiled by AS-
MACL. Don’t worry about finding it, ASMACL is
given to us by Big Blue.” Dave’s calloused fingers
flew over the keyboard and a moment later I was
staring at a blank file with the JCL job card and

27http://csc.columbusstate.edu/woolbright/WOOLBRIG.htm
28PoC‖GTFO 12:6, a JCL Adventure with Network Job Entries

46

compiler stuff filled out. “First, there’re some rules
with HLASM you should know. Each line can either
be an instruction, continuation, or comment. Com-
ments start with ‘*’. A Continuation line means
that in the previous line there’s a character (any
character, doesn’t matter which) in column 72, and
the continued line itself must start on column 16.”

“You with me so far?”
I nodded.
“Good. Now, If it’s not a comment or a contin-

uation, the line can be broken down like so:
“The first 10 characters can be empty or be a

name/label. Following that you have your instruc-
tion, a space, then your operands for that instruc-
tion. Anything after the operands is a comment un-
til the 71st column. Here’s a dirty example.” (Fig-
ure 20.)

“Every line can have a name. In HLASM you can
create basic variables with an & in front of them.
But not every line needs a name. Take a look at
these three lines:

&BLUE SETC ’X’ ’290142F1 ’
2 DC &BLUE Make i t b lue !

DC C’ Big Blue ’ Simple t ext

“Line one sets a symbol/label to &BLUE. If
Tommy did his job right you should be able to recog-
nize what it is supposed to do. The next line is DC,
Declare Constant. Notice &BLUE has an X. That
means it’s in hex. When we want to send text, we
can use ‘C’ for CHAR. If we wanted we could’ve writ-
ten the above like this.” I watched as his fingers
danced across the keyboard.

1 DC X’290142F1 ’
DC C’ Big Blue ’

“But you’ll likely be switching colors, so setting
them all to variables makes your life easier. One

caveat with using variables in HLASM: The assem-
bler will replace any value you have with the vari-
able, take a look at this:
&KINGPIN SETC ’BOSS’

2 &BOSSBEGN SETC ’B’ . ’&KINGPIN’
&BOSSEND SETC ’E’ . ’&KINGPIN’

4 &BOSSBEGN EQU ∗
∗ SOME CODE

6 &BOSSEND EQU ∗

“Lets break this down so you can see what the
compiler would do:
&KINGPIN = ’BOSS’

2 &BOSSBEGN = BBOSS
&BOSSEND = EBOSS

4
BBOSS EQU ∗

6 ∗ SOME CODE
EBOSS EQU ∗

“This understanding will come in handy when
you’re making a USS Table.” I still didn’t know
what a USS Table was, but I let him go on. “If you
have stuff you’re going to do over and over again, it
would be easier to make a function, or in HLASM a
macro, to handle the various request types. Macros
are easy. On a single line you declare ‘MACRO’ in col-
umn 10. The next line you give the macro a name,
and it’s operands. You end a macro with the word
‘MEND’ in column 10 on a single line. For example:”

1 MACRO
&NAME SCREEN &MSG=.,&TEXT=.

3 DC &MSG
DC &TEXT

5 MEND
∗

7 SCREEN MSG=03,TEXT=’Big Blue ’

I thought I was starting to get it, so I decided to
ask a question. “How would we do an IF statement?”
I asked.

1−−−−−−−−10−−−−−−−−20−−−−−−−−30−−−−−−−−40−−−−−−−−50−−−−−−−−60−−−−−−−−70−−−−−−−−80
2 SYMBOL DC X’DEADBEEF’ A comment
∗ Another comment

4 DC C’ He l lo World ’ I ’m a s i n g l e l i n e
DC C’HELLO X

6 WORLD’ I ’m a cont inuat i on

Figure 20. Dave’s Example

47

Dave smiles, but only a little, and walks back
over to the blackboard and scribbles out the follow-
ing:

1 &MSG SETC C’04 ’
AIF (’&MSG’ NE ’02 ’) . SKIP

3 DC C’ Not Equal to 2 ’
. SKIP ANOP

5 DC C’End o f Line ’

“In HLASM you can use the AIF instruction. It’s
kind of like an IF. Here we have some code that will
print ‘Not Equal to 2’ and ‘End of Line.’ If we set
&MSG to ‘02’ it would jump ahead to .SKIP, what
Big Blue would call a label.

“I see you staring at that ANOP. I know what
you’re thinking, and the answer is yes. It’s exactly
like a NOP in x86. Except it’s not an opcode, but
a HLASM assembler instruction.”

Dave headed back to the terminal and quickly
scrolled to the bottom. “There’s one last thing, since
we’re using ASMACL you need to tell the compiler
where to put the compiled files. Take a look at this.”

1 //L .SYSLMOD DD DISP=SHR,DSN=USER.VTAMLIB
//L . SYSIN DD ∗

3 NAME USSCORP(R)

Dave tapped on the glowing screen. “This line
right here. This tells the compiler to make a file
USSCORP in the folder USER.VTAMLIB.” I knew
he meant Member and Partitioned Dataset but I
figured Dave was dumbing things down for me and
didn’t want to interrupt. “That’s where your new
USS Table goes,” he continued.

I jumped as someone softly knocked on the door,
guess I was still a little jumpy from my encounter
at Tommy’s. I saw through the round window in
the door that the clerk had returned. Dave headed
over and opened the door. I couldn’t quite make out
what they were saying to each other. Dave looked
at his watch and turned to me, “Look, this has been
swell, but you gotta get outta here. If my boss finds
out I taught you this there’ll be hell to pay and I’m
not looking to sleep with the fishes tonight—or any
night. Sorry we’re cutting this short, normally I’d
be teaching you about the 16 registers and program
entrance and exit, but we don’t have time for that.
And besides, you don’t need it to be a VTAM artist,
but if you want to learn, read this.” And he shoved

a rather large slide deck in to my chest, at least 400
pages thick.29

No Name told me to follow him yet again. As
we left the laundry room I saw Dave stuffing soiled
linens in to one of those washers; this time there’s no
wondering if it was blood or not. No Name ushered
me down a different hallway than the one we came
in. He walked quickly, with purpose. I struggle to
keep up.

We ended up at a door labeled ‘Emergency Exit.’
No Name opened the door and I headed through.
Before I could turn around to say thanks, the big
metal door slammed closed. I found myself in an-
other dead-end alleyway. The air was cool now, the
wind moist, betraying a rain fall that was yet to
start.

I began heading towards the road when a shad-
owy figure stepped into the alley. I couldn’t make
out what he looked like, the neon signs behind him
made a perfect silhouette. But I could already tell
by his stance I was in trouble.

“So,” the figure called out, “the boss tells me
you’re trying to change the USS Table eh?” I figured
this must be one of Rico’s goons.

“I don’t mean nothing by it,” I replied, “I’m just
trying to make my mainframe nicer.”

“Rico has a message for you ‘if you’re trying to
change the mainframe you should be talking to the
people who run your mainframe, I’ve had enough of
this business.’ ”

The gunshot echoed through the alleyway, the
round hitting me square in the chest like a gamer
punching his monitor in a rage quit. I landed on
flat my back, smacked my head on the cold concrete,
and sent pages of assembler lessons flying through
the air. The wind knocked out of me, I felt the
blackness take hold as I lay on the sidewalk. I could
barely make out the figure standing over me, whis-
pering “when you get to the pearly gates, tell ’em
the EF Boys sent ya.”

29unzip pocorgtfo17.pdf Asm-1.PPTx

48

You know those dreams you have. The kind
where you’re in a water park, floating along a lazy
river, or down a waterslide. I was having one of
those. It was nice. Until I realized why I was dream-
ing of getting wet. I woke face up, in an alleyway,
the rain pounding me mercilessly. My trench coat
was drenched by the downpour. I stood up, slowly,
still dizzy from getting knocked out.

How had I survived? I looked around and saw
papers strewn about the alley. Something shiny, just
next to where I took my forced nap, caught my eye.
It was a neat pile of papers, held together by a dim-
ple on the top sheet. I took a closer look and picked
up the pages.

Well I’ll be damned, the 400+ pages of assem-
bler material took the bullet for me. Almost square
in the middle was the bullet meant to end my jour-
ney. I eternally grateful that Dave had given me
those pages. Now, determined more than ever to
finish what I started, I headed towards the street.
I had two of the three pieces to the puzzle, but I
needed dry clothes and my office was closer than
going home.

– — — – — — — — – — –
Nestled above a tech start-up on its last legs was

a door that read ’Soldier of FORTRAN: Mainframe
Hacker Extraordinaire.’ Inside was a desk, a chair,
an LCD monitor and a PC older than the startup. A
window, a quarter of the Venetian blinds torn free,
looked out over the street. I didn’t bother turning
on the lights. The orange light that bled in from
the lamppost on the street was enough. I pulled out
my phone, put it on the desk, and started changing
in to my dry clothes. The clothes were for when I
hoped I would start biking to work which, as with
all new year’s resolutions, were yesterday’s dream.

Now dry, I decided to power on my PC and
take some notes. I wrote down what I knew about
TN3270 thanks to Tommy and HLASM courtesy of
Dave. I was still missing a big piece. Where could
I learn about this USS Table. My searches all led
to the same place: The Mailing-List. A terrible bar
on the other side of town I had no desire to visit.
The Mailing-List, or ‘Dash L’ as some people called
it, was filled with some of the meanest, least helpful
individuals on this Big Blue planet. I was likely to
get chased out of the place before I was even done
asking my question, let alone receiving an answer.

Don’t get me wrong, sometimes Dash L had some
great conversations, I know because I often lurk
there for information I can use. But I had never

worked up the courage to ask a question there, lest
I be banned for life. But, with nothing else to go on
I grabbed my coat and umbrella and headed for the
door.

Just then, my phone rang. I didn’t recognize the
name-Nigel, or the number. I decided to answer the
phone. “Who’s this, how’d you get my private num-
ber?” No reply. I went to hang up the phone when I
heard, “try searching for USSTAB and MSG10.” My
phone vibrated, letting me know the call was over.
I ran to the window and peered out in to the rainy
night. The street was empty except for a man with
an umbrella putting his phone away. I ran down the
stairs and caught a glimpse of the man as he got
into his Tesla and sped off.

Back at my desk, I searched for USSTAB and
MSG10 and one name kept coming back: Big John.
I knew Big John, of course. Anyone who did main-
frame hacking knew him. He now played the ivories
over at a fancy new club, the Duchess. My dusty
work clothes would have to be fancy enough.

– — — – — — — — – — –
You wouldn’t know the Duchess was much, just

by looking at it. A single purple bulb above a bright
red vinyl entrance. The lamp shade cast a triangle of
light over the door. The only giveaway that this was
a happening place was the sound of 80s Synth rolling
down the streets. Not the cheap elevator synth you
get while waiting for your coffee, this was real synth:
soulful and painful. The kind that made you doubt
yourself and your life choices.

I walked to the door and knocked. A slit opened
up, “Can we help you?” a woman’s voice asked. I
couldn’t wait for this new speakeasy revival trend
to die. “Yes,” I replied, “I’m here to see Big John.”

“You have a reservation?” she asked.
“Nope, just here to see Big John.”
“Honey, you outta luck. We got a whole room of

people here to see Big John, and they got reserva-
tions!”

“How much sweetener to see him play tonight?”
I ask.

A second slot near my dad gut opened up, and a
drawer popped out, almost like the door was happy
to see me. I placed the only fifty I had in the tray.
The drawer and slit closed and the door opened.

A young woman took my coat and brought me to
a table. I took my seat and casually looked around.
The room was dimly lit, with most of the light com-
ing from the stage. Smoke hung in the air like a
summer haze waiting for a good thunderstorm. A

49

waitress asked, “Drink sir?” I ordered a dirty mar-
tini and enjoyed the rest of the show. It’d been a
shit day, I needed a break.

Once the show was done and the band started
to pack up, I walked up to Big John. “Appar-
ently you’re a man who can help me with USSTAB
and some TN3270 animations.” I say. He finished
putting away his keytar in its carrying case. “I could
be, what’s in it for me?” My wallet was empty so
I figured a play on his emotional side might work,
“You’d get a chance to piss off Rico and the EF
Gang.”

Big John looked at me and smiled. “Anything to
piss of that hothead, follow me.” I grabbed my coat
from the front and followed him.

Big John was the type of guy who lived up to
the name. He was massive. Use to play professional
football before he got injured and went back to his
original loves: hacking and piano. Long dark hair
and an even longer and darker beard made him look
menacing. But if you ever knew Big John, you’d
know he was just a big ‘ol softy.

John led me to another alleyway behind the
Duchess. What was it with this city and alleyways?
It looked like the rain had let up, but it had left a
cold, damp feeling in the air. Parked in the alley was
a van, with a wizard riding a corvette painted on the
side. Big John opened the back, set his keytar down
and motioned for me to get in the van.

Inside was a nicer office space than I have. Ex-
pensive, custom mechanical keyboards lined one
wall. Large 4k monitors hung on moveable arms.
An Aeron chair was bolted to the floor. Somewhere,
invisible to me, was a computer powerful enough to
drive this setup.

“So, I take it you’ve been to both Tommy and
Dave already?” he asked over the clicking of his me-
chanical keyboard as he logged on.

“Yes,” I reply. “I think I understand enough to
get started making my own logon screens. I can con-
trol the flow and color of a TN3270 session, and I
know how to use HLASM to do so. But Dave kept
referring to things like MSGs and a USS Table which
makes no sense to me.”

Big John chuckled and sat down, lighting what
looked like a hand-rolled cigarette but smelled like
a skunk. “Don’t worry about Dave,” he said, taking
a few puffs, “he’s an ex-EF Boy, he’s still trying to
get use to sharing information that people can un-
derstand. Sometimes he’s still a little cryptic. Let’s
get started.”

“When you connect to a mainframe, nine times
outta ten its going to be VTAM,” Big John explains.

“VTAM is like the first screen of an infocom
game. It lets you know where you are, but from
there it’s up to you where you go, you get me?” he
asks between puffs.

I did, and I didn’t. All I wanted to do was make
pretty mainframes.

“First thing you gotta know about VTAM is
that it uses what it calls Unformatted System Ser-
vices tables. Or USS tables for short. This file
is normally specified in your TN3270 configuration
file.” Big John swiveled his chair and launched his
TN3270 client, connected, and opened a file labeled
‘USER.TCPPARMS(TN3270)’ He pointed to a spe-
cific line:

1 USSTCP USSECORP

“This line right here tells TCP to tell VTAM
to use the file ’USSECORP’ when a client con-
nects.” he said, closing the file. He then opened
’USER.PROCLIB(TN3270)’ and pointed at a dif-
ferent line:

1 //STEPLIB DD DSN=USER.VTAMLIB,DISP=SHR

“And that right there is where we’re gonna find
USSECORP,” again he closed the current file and
opened another folder: ‘USER.VTAMLIB’. And
sure enough, glowing a deep blue, in the back of
this van was USSECORP:

50

“So now you know where to send your compiled
HLASM, your ’L.SYSLMOD’. Just overwrite that
file and you’ll be good to go. Oh wait!” John
laughed, “I haven’t explained how you can use the
USS Table to make it less boring. Right, well it’s
easy—ish.

“The USS Table is basically a set of macros you
call to tell VTAM what to do on each message or
command it receives. Let’s take a look at this ex-
ample.” He pointed to the other screen.

1 USSN TITLE ’GROOVY SCREEN’
USSTAB FORMAT=DYNAMIC

3 USSMSG MSG=10,BUFFER=(BUF010 ,SCAN)
BUF010 DS 0H

5 DC AL2(END010−BUF010)
DC X’F57A ’

7 DC X’2902C0F842F1 ’
DC C’ He l lo Flynn ’

9 DC 10C’ ’
DC X’13 ’ I n s e r t Cursor

11 END010 EQU ∗
END USSEND

13 END

“We start the USS Table with the Macro
’USSTAB’ passing it the argument FORMAT. Just
always set it to DYNAMIC. This is saying, from
here on out we’re in USSTAB. The next line”

1 USSMSG MSG=10,BUFFER=(BUF010 ,SCAN)

“This calls the USSMSG macro, which you can
read in SYS1.SISTMAC1(USSMSG). You can pass
it a bunch of variables, but for you, just pass it
the MSG= and BUFFER= variables. MSG=10
in our case is the default ‘hey you just connected’
message. BUFFER takes two arguments. SCAN
will look through and replace any instance of key-
words with the actual variable. Some examples
would be @@@@DATE and @@@@TIME. Which

would replace those items with the actual date/time.
BUF010 is a pointer. It points to a data structure.
The first thing BUFFER expects is the length of
the buffer. Since we might add/remove more to our
screen we can use just get the total size by subtract-
ing the location of END010 by BEGIN010. Every-
thing else inside there is what will be sent to VTAM
to send to your TN3270 emulator. You keepin’ up
my man?”

“Yeah,” I replied. “I think I got it. That line
X’2902C0F842F1’ is a TN3270 command setting the
text blue (\x42 \xF1) and that other line, two down,
with 10C, just means to repeat that space ten times
before we insert the cursor.”

John smirked, “well look at you, the artist. When
you’re done setting USS Tab stuff you just end
it with USSEND. Keep in mind, there’re fourteen
MSGs, not that you’ll need to deal with them if you
don’t want to.”

Big John got up and settled into the driver’s seat,
“Where ya headin?” he asked. I guess he was done
teaching me what I needed to learn. “Fifth and Gib-
son,” I replied. Back to my office. I was eager to get
started on my own screen now that I knew what I
was doing. I buckled in next to Big John and got
to the office, thankfully no sight of Rico or his EF
Boys.

– — — – — — — — – — –

Back at my desk I created two things. First,
I made a quick and dirty python script so I could
rapidly prototype TN3270 command ideas I had (in-
cluded). Second I decided to code up a macro to
handle all the MSG types:

First we needed that sweet, sweet JCL header:

1 //COOLSCRN JOB ’ bu i ld t so screen ’ , ’ IBMUSER’ ,
NOTIFY=&SYSUID,

// MSGCLASS=H, MSGLEVEL=(1 ,1)
3 //BUILD EXEC ASMACL

//C. SYSLIB DD DSN=SYS1 .SISTMAC1,DISP=SHR
5 // DD DSN=SYS1 .MACLIB,DISP=SHR

//C. SYSIN DD ∗

51

Next, I needed a way to handle all the messages.
I whipped up a quick macro, with all the colors I
might need.

MACRO
2 &NAME SCREEN &MSG=.,&TEXT=.

AIF (’&MSG’ EQ ’ . ’ OR ’&TEXT’ EQ
’ . ’) .END

4 LCLC &BFNAME,&BFSTART,&BFEND
&BLUE SETC ’X’ ’290142F1 ’ ’ ’

6 &RED SETC ’X’ ’290142F2 ’ ’ ’
&PINK SETC ’X’ ’290142F3 ’ ’ ’

8 &GREEN SETC ’X’ ’290142F4 ’ ’ ’
&TURQ SETC ’X’ ’290142F5 ’ ’ ’

10 &YELLOW SETC ’X’ ’290142F6 ’ ’ ’
&WHITE SETC ’X’ ’290142F7 ’ ’ ’

12 &BFNAME SETC ’BUF’ . ’&MSG’
&BFBEGIN SETC ’&BFNAME’ . ’ B’

14 &BFEND SETC ’&BFNAME’ . ’ E’
.BEGIN DS 0F

16 &BFNAME DC AL2(&BFEND−&BFBEGIN)
&BFBEGIN EQU ∗

18 DC X’05F7 ’
DC X’110000 ’

20 ∗ Fancy ar t goes here
DC X’13 ’

22 &BFEND EQU ∗
.END MEND

I needed to address each of the messages, so I
did that here. STDTRANS I copied from Big Blue
themselves.

1 USSTAB USSTAB TABLE=STDTRANS,FORMAT=DYNAMIC
USSMSG MSG=00,BUFFER=(BUF00 ,SCAN)

3 USSMSG MSG=01,BUFFER=(BUF01 ,SCAN)
USSMSG MSG=02,BUFFER=(BUF02 ,SCAN)

5 USSMSG MSG=03,BUFFER=(BUF03 ,SCAN)
USSMSG MSG=04,BUFFER=(BUF04 ,SCAN)

7 USSMSG MSG=05,BUFFER=(BUF05 ,SCAN)
USSMSG MSG=06,BUFFER=(BUF06 ,SCAN)

9 USSMSG MSG=08,BUFFER=(BUF08 ,SCAN)
USSMSG MSG=10,BUFFER=(BUF10 ,SCAN)

11 USSMSG MSG=11,BUFFER=(BUF11 ,SCAN)
USSMSG MSG=12,BUFFER=(BUF12 ,SCAN)

13 USSMSG MSG=14,BUFFER=(BUF14 ,SCAN)
STDTRANS DC X’000102030440060708090A0B0C0D0E0F ’

15 DC X’101112131415161718191A1B1C1D1E1F ’
DC X’202122232425262728292A2B2C2D2E2F ’

17 DC X’303132333435363738393A3B3C3D3E3F ’
DC X’404142434445464748494A4B4C4D4E4F ’

19 DC X’505152535455565758595A5B5C5D5E5F ’
DC X’604062636465666768696A6B6C6D6E6F ’

21 DC X’707172737475767778797A7B7C7D7E7F ’
DC X’80C1C2C3C4C5C6C7C8C98A8B8C8D8E8F ’

23 DC X’90D1D2D3D4D5D6D7D8D99A9B9C9D9E9F ’
DC X’A0A1E2E3E4E5E6E7E8E9AAABACADAEAF’

25 DC X’B0B1B2B3B4B5B6B7B8B9BABBBCBDBEBF’
DC X’C0C1C2C3C4C5C6C7C8C9CACBCCCDCECF’

27 DC X’D0D1D2D3D4D5D6D7D8D9DADBDCDDDEDF’
DC X’E0E1E2E3E4E5E6E7E8E9EAEBECEDEEEF’

29 DC X’F0F1F2F3F4F5F6F7F8F9FAFBFCFDFEFF ’
END USSEND

After that I call the macro for every msg type
and end the HLASM.

SCREEN MSG=00,TEXT=’Launchin your program , see ’
2 SCREEN MSG=01,TEXT=’ I doubt you meant to do that ’

SCREEN MSG=02,TEXT=’No , s e r i ou s l y ’
4 SCREEN MSG=03,TEXT=’Parameter i s unrecognized ! ’

SCREEN MSG=04,TEXT=’Parameter with value i s inva l id
’

6 SCREEN MSG=05,TEXT=’The key you pressed i s inac t i ve
’

SCREEN MSG=06,TEXT=’There i s not such s e s s i o n . ’
8 SCREEN MSG=08,TEXT=’Command f a i l e d as s to rage

shortage . ’
SCREEN MSG=10,TEXT=’ ’

10 SCREEN MSG=11,TEXT=’Your s e s s i o n has ended ’
SCREEN MSG=12,TEXT=’Required parameter i s missing ’

12 SCREEN MSG=14,TEXT=’There i s an undef ined USS
message ’

END

Finally, I added the JCL footer.

1 /∗
//L .SYSLMOD DD DSN=USER.VTAMLIB,DISP=SHR

3 //L . SYSIN DD ∗
NAME USSN(R)

5 //∗

Happy with the code I’d just written I made my-
self a screen I’d be happy to see each and every day:

I shut down my computer, ordered an Uber, and
headed out of the office.

A car pulled up as I looked up from my phone.
This wasn’t my Uber, this was a Tesla, a black Tesla.
The back door opened. Rico sat in the back, his one
eye covered with a patch, gave him the look of a
pirate, as did the gun he had pointed at my face.
“Get in,” he said, motioning with the large revolver.
Having no other option, I shrugged and got in the
back of this Tesla-and wondered how much a no-
show was gonna cost me on Uber. The Tesla sped
off, and slammed me in to the back of my seat.

After a few moments of silence, “Just who the
fuck do you think you are?” Rico asked.

“Hey, Rico, all I wanted to do was make a nice lo-
gon screen for my mainframe.” I quipped. This vis-
ibly upset Rico. The driver quietly snickered in the

52

front seat, then said “This guy thinks he’s a sysprog
now?”

“Shut up Oren!” Rico turned to me, “It works
like this: we control the information. We decide
who knows what. You’re wastin’ everyone’s time
over some aesthetic changes. The very fact that you
phrase it as ‘logon screen’ means you’re not ready
to know this information!”

I stammered a response, “Look, I don’t get what
the big deal is, if you don’t want to help who cares?”
and I showed him a screenshot of my mainframe.

This was not a good idea. Rico’s face turned
bright red. “BULLSHIT! You’ve wasted plenty of
people’s time! Tommy, Dave, John. You should’ve
gone back and read the manuals, like I had to. All
14,000 pages. Instead, you want a short cut. A
hand out. Well, sonny, nothing comes easy. There
is no possible way your system didn’t come with cus-
tomization rules, documentation and changes. That
just not how it’s done!”

I realized at this point Rico had never heard
about the fact that you can emulate your own main-
frame at home.30 Oren, turned his head to look at
me, “Yeah, there ain’t no way you get to run your
own system and do what you want all willy-nilly.”

I noticed the red light before Oren and Rico, and
got ready to put a dumb plan in to action. Oren
slammed on the brakes and sent Rico flying in to the
seat in front of him. Why don’t bad guys ever wear
their seatbelts? While Rico was slightly stunned, I
lunged and wrestled the gun free from his hands. At
the same time, I grabbed my own pea shooter and
pointed one each at Oren and Rico.

“Enough of this shit,” I yelled, “you’re too late
anyway, I’ve already built and replaced my USS Ta-
ble.” I made sure to use the correct terminology
now. “I already shot and missed you once today
Rico, I won’t miss a second time. Now let me out of
this car!”

“Ok, ok. Cool it.” said Oren as he slowed the
car. Rico just sat and stewed.

I stepped out of the car. “This isn’t the last
you’ve heard from us!” Rico yelled, and the black
Tesla sped off in to the night.

He was right, of course. It wouldn’t be the last
time I clashed with the EF gang and lived to tell
about it.

30https://www.ibm.com/us-en/marketplace/z-systems-development-test-environment

53

– — — – — — — — – — –
I couldn’t believe that was six years ago. Bigen-

dian knew to reach out to me because I had done
some nice screens for him in the past. My skills at
making EBCDIC art since then had improved vastly.

Thanks to another meeting years later with Big
John, I learned you can add lines and graphics to
make shapes using the rarely documented SFE GE
SHAPE (\x08) command. At this point, I had the
three-headed beast as a rough idea in my head what
I wanted the screen to look like. But, I needed a
way to animate the Windows 10 update nag screen.

Like a small dog running in to a screen door, it
hit me. I could use the MSGs and an AIF to display
the nag screen!

You see, when you first connect, that’s a MSG10
screen. If you hit enter, to the user it appears as
though the screen just refreshed. But what’s really
happening is VTAM loads a MSG02 screen. Because
you entered an invalid command (nothing). I could
use an AIF statement to only show the Windows 10
nag screen if an invalid command was entered.

Above, where I declared the colors, I could also
declare some shapes:

1 &UPRIGHT SETC ’X’ ’ 0 8D5 ’ ’ ’
&DOWNRIGHT SETC ’X’ ’ 0 8D4 ’ ’ ’

3 &UPLEFT SETC ’X’ ’ 0 8C5 ’ ’ ’
&DOWNLEFT SETC ’X’ ’ 0 8C4 ’ ’ ’

5 &HBAR SETC ’X’ ’ 0 8A2 ’ ’ ’
&VBAR SETC ’X’ ’ 0 885 ’ ’ ’

And, with the help of Tommy’s table, the one
that gave me the coordinates for screen positions,
and Big John’s graphics, I could overlay the nag
box on the screen. But only if the MSG is type 02.
See Figure 21.

With that final piece of the puzzle I gave Bigen-
dian Smalls a short demo.

Then I hit <enter>, and it all came together.

“Wow, that’s really awesome.” he replied over
ICQ. It sure was.

54

AIF (’&MSG’ NE ’02 ’) . SKIP
2 ∗ TOP BAR

DC X’11C76D’ SBA, 1050 ROW 10 COL 13
4 DC &COLOR&BG&TURQ

DC &UPLEFT
6 DC 52&HBAR

DC &UPRIGHT
8 ∗ BOX WALLS

DC X’11C87D’ SBA, ROW 11 COL 13
10 DC &COLOR&BG&TURQ

DC &VBAR
12 DC 52C’ ’

DC X’11C9F3 ’ SBA, ROW 11 COL 66
14 DC &VBAR

DC X’114A4D’ SBA, ROW 11 COL 13
16 DC &COLOR&BG&TURQ

DC &VBAR
18 DC 52C’ ’

DC X’114BC3’ SBA, ROW 11 COL 66
20 DC &VBAR

DC X’114B5D’ SBA, ROW 11 COL 13
22 DC &COLOR&BG&TURQ

DC &VBAR
24 DC 52C’ ’

DC X’114CD3’ SBA, ROW 11 COL 66
26 DC &VBAR

DC X’114C6D’ SBA, ROW 11 COL 13
28 DC &COLOR&BG&TURQ

DC &VBAR
30 DC 52C’ ’

DC X’114DE3’ SBA, ROW 11 COL 66
32 DC &VBAR

DC X’114D7D’ SBA, ROW 11 COL 13
34 DC &COLOR&BG&TURQ

DC &VBAR
36 DC 52C’ ’

DC X’1103B3 ’ SBA, ROW 11 COL 66
38 DC &VBAR

DC X’114F4D’ SBA, ROW 12 COL 13
40 DC &COLOR&BG&TURQ

DC &VBAR
42 DC 52C’ ’

DC X’110403 ’ SBA, ROW 12 COL 66
44 DC &VBAR

DC X’11505D’ SBA, ROW 13 COL 13
46 DC &COLOR&BG&TURQ

DC &VBAR
48 DC 52C’ ’

DC X’110453 ’ SBA, ROW 13 COL 66
50 DC &VBAR

DC X’11D16D’ SBA, ROW 14 COL 13
52 DC &COLOR&BG&TURQ

DC &VBAR
54 DC 52C’ ’

DC X’1104A3 ’ SBA, ROW 14 COL 66
56 DC &VBAR

DC X’11D27D’ SBA, ROW 15 COL 13
58 DC &COLOR&BG&TURQ

DC &VBAR
60 DC 52C’ ’

DC X’1104F3 ’ SBA, ROW 15 COL 66
62 DC X’0885 ’

∗ BOTTOM BAR
64 DC X’11050D’ SBA, ROW 16 COL 13

DC &COLOR&BG&TURQ
66 DC &DOWNLEFT

DC 52&HBAR
68 DC &DOWNRIGHT

∗ INSIDE BOX
70 DC X’114A50 ’ SBA, ROW 11 COL 16

DC &COLOR&BG&TURQ
72 DC C’ Windows 10 ’

DC X’114CF1 ’ SBA, ROW 13 COL 16
74 DC C’Don ’ ’ t miss out . Free upgrade o f f e r ends July 29 . ’

∗ ACCEPT LINE
76 DC X’1150E3 ’ SBA, ROW 15 COL 18

DC C’ x Upgrade now Accept f r e e o f f e r ’
78 ∗ UNDERLINES

DC X’1150E2 ’ SBA, ROW 15 COL 18
80 DC X’290341F442F5C0C8 ’ SFE, UNPROTECTED/UNDL/TURQ

DC C’ x ’
82 DC &COLOR&BG&TURQ

DC X’11507A’ SBA, ROW 15 COL 42
84 DC X’290341F442F5C0C8 ’ SFE, UNPROTECTED/UNDL/TURQ

DC X’40 ’
86 DC &COLOR&BG&TURQ

. SKIP ANOP

Figure 21. Upgrade Offer

55

17:09 Protecting ELF Files by Infecting Them
by Leandro “acidx” Pereira

Writing viruses is a sure way to learn not only
the intricacies of linkers and loaders, but also tech-
niques to covertly add additional code to an existing
executable. Using such clever techniques to wreck
havoc is not very neighborly, so here’s a way to have
some fun, by injecting additional code to tighten the
security of an ELF executable.

Since there’s no need for us to hide the payload,
the injection technique used here is pretty rudimen-
tary. We find some empty space in a text seg-
ment, divert the entry point to that space, run a
bit of code, then execute the program as usual. Our
payload will not delete files, scan the network for
vulnerabilities, self-replicate, or anything nefarious;
rather, it will use seccomp-bpf to limit the system
calls a process can invoke.

Caveats

By design, seccomp-bpf is unable to read memory;
this means that string arguments, such as in the
open() syscall, cannot be verified. It would other-
wise be a race condition, as memory could be mod-
ified after the filter had approved the system call
dispatch, thwarting the mechanism.

It’s not always easy to determine which system
calls a program will invoke. One could run it under
strace(1), but that would require a rather high
test coverage to be accurate. It’s also likely that
the standard library might change the set of system
calls, even as the program’s local code is unchanged.
Grouping system calls by functionality sets might be
a practical way to build the white list.

Which system calls a process invokes might
change depending on program state. For instance,
during initialization, it is acceptable for a program
to open and read files; it might not be so after the
initialization is complete.

Also, seccomp-bpf filters are limited in size.
This makes it more difficult to provide fine-grained
filters, although eBPF maps31 could be used to
shrink this PoC so slightly better filters could be
created.

Scripting like a kid

Filters for seccomp-bpf are installed using the
prctl(2) system call. In order for the filter to be
effective, two calls are necessary. The first call will
forbid changes to the filter during execution, while
the second will actually install it.

The first call is simple enough, as it only has nu-
meric arguments. The second call, which contains
the BPF program itself, is slightly trickier. It’s not
possible to know, beforehand, where the BPF pro-
gram will land in memory. This is not such a big
issue, though; the common trick is to read the stack,
knowing that the call instruction on x86 will store
the return address on the stack. If the BPF program
is right after the call instruction, it’s easy to obtain
its address from the stack.

31man 2 bpf

56

