
12/23/2017 Travis Goodspeed's Blog: Promiscuity is the nRF24L01+'s Duty

http://travisgoodspeed.blogspot.com/2011/02/promiscuity-is-nrf24l01s-duty.html 1/9

M O N D A Y , F E B R U A R Y 7 , 2 0 1 1

Promiscuity is the nRF24L01+'s Duty
by Travis Goodspeed <travis at radiantmachines.com>
extending the work of Thorsten Schröder and Max Moser
of the KeyKeriki v2.0 project.

Similar to Bluetooth, the protocols of the Nordic VLSI nRF24L01+ chip
are designed such that the MAC address of a network participant
doubles as a SYNC field, making promiscuous sniffing difficult both by
configuration and by hardware. In this short article, I present a nifty
technique for promiscuously sniffing such radios by (1) limiting the
MAC address to 2 bytes, (2) disabling checksums, (3) setting the MAC
to be the same as the preamble, and (4) sorting received noise for valid
MAC addresses which may later be sniffed explicitly. This method
results in a rather high false-positive rate for packet reception as well
as a terribly high drop rate, but once a few packets of the same address
have been captured, that address can be sniffed directly with normal
error rates.

As proof of concept, I present a promiscuous sniffer for the Microsoft

B L O G A R C H I V E

► 2013 (1)

► 2012 (3)

▼ 2011 (7)

► Dec (1)

► Sep (2)

► May (1)

► Mar (1)

▼ Feb (1)
Promiscuity is the nRF24L01+'s

Duty

► Jan (1)

► 2010 (12)

► 2009 (29)

► 2008 (39)

► 2007 (5)

A B O U T M E

TRAVIS GOODSPEED

VIEW MY COMPLETE

PROFILE

T R A V I S G O O D S P E E D ' S B L O G

 More Next Blog» Create Blog Sign In

12/23/2017 Travis Goodspeed's Blog: Promiscuity is the nRF24L01+'s Duty

http://travisgoodspeed.blogspot.com/2011/02/promiscuity-is-nrf24l01s-duty.html 2/9

Comfort Desktop 5000 and similar 2.4GHz wireless keyboards. This
vulnerability was previously documented at CanSecWest by Thorsten
Schröder and Max Moser, and an exploit has been available since then
as part of the KeyKeriki v2.0 project. My implementation differs in that
it runs with a single radio and a low-end microcontroller, rather than
requiring two radios and a high-end microcontroller. My target
hardware is the conference badge that I designed for the Next Hope,
running the GoodFET Firmware.

Part 1: or, Why sniffing is hard.

Radio packets usually begin with a preamble, followed by a SYNC field.
In the SimpliciTI protocol, the SYNC is 0xD391, so the radio packets
will begin with {0xAA,0xD3,0xD91} or {0x55,0xD3,0x91}. The AA or
55 in the beginning is a preamble, which is almost universally a byte of
alternating 1's and 0's to note that a packet is beginning, followed by
the SYNC field which makes sure that the remainder of the packet is
byte-aligned.

In the case of the Nordic radios, there is no SYNC pattern unique to the
radio. Instead, the MAC address itself serves this purpose. So an
OpenBeacon packet will begin with {0x55, 0x01, 0x02, 0x03, 0x02,

12/23/2017 Travis Goodspeed's Blog: Promiscuity is the nRF24L01+'s Duty

http://travisgoodspeed.blogspot.com/2011/02/promiscuity-is-nrf24l01s-duty.html 3/9

0x01} while a Turning Point Clicker's packets will begin with {0x55,

0x12, 0x34, 0x56}. The preamble in this case will be 0x55 if the first bit

of the SYNC/MAC is a 0 and 0xAA if the first bit is a 1. To make

matters worse, the chip does not allow a MAC shorter than three bytes,

so previously it was believed that at least so many bytes of the

destination address must be known in order to receive a packet with

this chip.

Moser and Schröder solved this problem by using an AMICCOM A7125

chip, which is a low-level 2FSK transceiver, to dump raw bits out to an

ARM microcontroller. The ARM has just enough time to sample the

radio at 2Mbps, looking for a preamble pattern. If it finds the pattern, it

fills the rest of register memory with the remaining bits and then

dumps them to the host by USB. In this manner, every prospective

MAC address can be found. Once the address is known, KeyKeriki

places that address in its second radio, an nRF24L01+, which is used to

sniff and inject packets.

A similar solution is used in Michael Ossmann's Project Ubertooth

sniffer for Bluetooth. See that project's documentation and Ossmann's

Shmoocon 2011 video for a more eloquent explanation of why sniffing

without a known SYNC is so hard.

Part 2: or, Sniffing on the cheap.
My trick for sniffing promiscuously involves a few illegal register

settings and the expectations of background noise. You can find code

for this in the AutoTuner() class of the goodfet.nrf client.

First, the length of the address to sniff must be reduced to its absolute

minimum. The datasheet claims that the lowest two bits of register

0x03 are responsible for address width, and that the only valid lengths

at 3 bytes (01b), 4 bytes (10b), or 5 bytes (11b). Setting this value to 00b

gives a 2 byte match, but when checksums are disabled, this results in a

deluge of false-positive packets that appear out of background noise.

Second, it is necessary to begin receiving before the SYNC field

appears, as the Nordic chips drop the address of incoming packets,

leaving only the payload. By looking at the noise returned when the

address is at its shortest length, it is clear that background noise

includes a lot of 0x00 and 0xFF packets as well as 0xAA and 0x55

packets, which are likely feedback from an internal clock. What then

would happen if the address were to be 0x00AA or 0x0055?

What happens is that noise activates the radio a bit early, which then

12/23/2017 Travis Goodspeed's Blog: Promiscuity is the nRF24L01+'s Duty

http://travisgoodspeed.blogspot.com/2011/02/promiscuity-is-nrf24l01s-duty.html 4/9

syncs to the real preamble, leaving the SYNC field as the beginning of
the packet payload! This is because the preamble and SYNC do not
need to be immediately adjacent; rather, the SYNC can be delayed for a
few bytes from the preamble in order to allow for longer preambles in
noisy environments.

As a concrete example, an OpenBeacon packet looks something like the
following. The SYNC field is 0x0102030201, so the packet will be
cropped from that point backward. 0xBEEF is all that will be returned
to the application, with everything prior to that cropped.

By making the address be 0x0055 and disabling checksums, that same
packet will sometimes be interpreted as shown on the bottom. The
preamble will be mistaken for a SYNC, causing the real SYNC value to
be returned as the beginning of the payload. In that way, I am able to
determine the SYNC/MAC field without any prior knowledge or brute
force exploration.

This does depend upon the preamble being preceded by 0x00, which
occurs often in background noise but is not broadcast by the attacker.
So the odds of receiving a packet, while significantly worse than we'd
like, are much better than the 1/2^16 you might assume. In
experiments, one in twenty or so real packets arrive while a significant
number of false positives also sneak in.

Recalling that the MAC addresses are three to five bytes long, and that
radio noise is rather distinct, it stands to reason that noise can easily by
separated from real packets by either manually checksumming to
determine packet correctness or simply counting the occurrences of
each address and taking the most popular. You will find an example log
of OpenBeacon packets and false positives at
http://pastebin.com/8CbxHzJ9. Sorting the list reveals that the MAC
address 0x0102030201 is the most popular, which is in fact the
address used by OpenBeacon tags.

12/23/2017 Travis Goodspeed's Blog: Promiscuity is the nRF24L01+'s Duty

http://travisgoodspeed.blogspot.com/2011/02/promiscuity-is-nrf24l01s-duty.html 5/9

Rather than rely on packet dumps and sorts, there is an autotune script
that identifies network participants and prints their MAC addresses.
Simply run 'goodfet.nrf autotune | tee autotune.txt' and go out for a
coffee break while your device is transmitting. When you come back,
you'll find logs like the following, which has identified a nearby
OpenBeacon transmitter.

As low data-rate devices require significantly more time than high-rate
devices to identify, such devices will either require undue amounts of
patience or a real KeyKeriki. In the case of a Nike+ foot pod, I'm
resorting to using loud hip hop music to trigger the sensor, which is left
inside a pair of headphones. My labmates are not amused, but it is a
great way to reveal the radio settings when syringe probes aren't
convenient.

Part 3: or, Sniffing a keyboard effectively.

Having a class to identify channels and MAC addresses is most of the
problem, but there are remaining issues. First, the packets themselves
are encrypted, and that cryptography must be broken.

Fear not! We won't need to do any fancy math to break this
cryptography, as the key is included at least once in every packet.
Moser and Schröder's slides explain that the packet's header is
cleartext, while the payload is XOR encrypted with the MAC address.

12/23/2017 Travis Goodspeed's Blog: Promiscuity is the nRF24L01+'s Duty

http://travisgoodspeed.blogspot.com/2011/02/promiscuity-is-nrf24l01s-duty.html 6/9

Applying an XOR to the proper region yields decrypted packets such as
the following. Because these contain USB HID events, key-up HID
events quite often include long strings of 0x00 bytes. When XOR'ed
with the key, those zeroes produce the key, so some packets contain the
XOR key not just once, but twice!

Finally, the USB HID events need to be deciphered to get key positions.
Mapping a few of these yields meaningful text, with bytes duplicated in
the case of retransmissions and omitted in the case of lost packets.
Disabling checksums will allow the dropped packets to be converted to
a smaller number of byte errors, while tracking sequence numbers will
prevent retransmitted keys from being displayed twice. Regardless, the
results are quite neighborly, as you can make out the sentence typed
below in its packet capture.

12/23/2017 Travis Goodspeed's Blog: Promiscuity is the nRF24L01+'s Duty

http://travisgoodspeed.blogspot.com/2011/02/promiscuity-is-nrf24l01s-duty.html 7/9

Part 4; or, Reproducing these results.

All of the code for this article is available in the GoodFET Project's

repository, as part of GoodFETNRF.py and its goodfet.nrf client script.

The hardware used was an NHBadge12, although an NHBadge12B or a

GoodFET with the SparkFun nRF24L01+ Transceiver Module will

work just as well.

To identify a nearby Nordic transmitter, run 'goodfet.nrf autotune'.

Keyboards can be identified and sniffed with 'goodfet.nrf sniffmskb',

while a known keyboard can be sniffed and decoded by providing its

address as an argument, 'goodfet.nrf sniffmskb aa,c10ac074cd,17,09'.

The channel--0x17 in this case--will change for collision avoidance, but

channel hopping is slow and resets to the same starting channel.

Identification of the broadcast channel is faster when the receiver is not

plugged in, as that causes the keyboard to continuously rebroadcast a

keypress for a few seconds.

All code presently in the repository will be refactored and rewritten, so

revert to revision 885 or check the documentation for any changes.

Conclusions

12/23/2017 Travis Goodspeed's Blog: Promiscuity is the nRF24L01+'s Duty

http://travisgoodspeed.blogspot.com/2011/02/promiscuity-is-nrf24l01s-duty.html 8/9

Contrary to prior belief, the nRF24L01+ can be used to promiscuously
sniff compatible radios, allowing for keyboard sniffing without special
hardware. It's also handy for figuring out the lower levels of the
otherwise-documented ANT+ protocol, and for reverse engineering
vendor-proprietary protocols such as Nike+.

Additionally, it should be emphasized that the security of the Microsoft
keyboards in this family is irreparably broken, and has been since
Moser and Schröder published the vulnerability at CanSecWest. (It's a
shame, because the keyboards are quite nicer than most Bluetooth
ones, both in pairing delay and in battery life.) Do not purchase these
things unless you want to broadcast every keystroke.

While I have not yet written code for injecting new keystrokes, such
code does exist in the KeyKeriki repository and would not be difficult to
port. Perhaps it would be fun to build stand-alone firmware for the
Next Hope badge that sniffs for keyboards, broadcasting Rick Astley
lyrics into any that it finds?

Please, for the love of the gods, use proper cryptography and double-
check the security your designs. Then triple-check them. There is no
excuse for such vulnerable garbage as these keyboards to be sold with
neither decent security nor a word of warning.

POSTED BY TRAVIS GOODSPEED AT 1:09 AM

LABELS: KEYKERIKI, MICROSOFT, NORDIC, NRF24L01+

8 COMMENTS :

XTL said...

I love it.

FEBRUARY 7, 2011 AT 6:55 AM

Nelson Lombardo said...

brootal!

FEBRUARY 7, 2011 AT 2:10 PM

Anushka Sharma said...

nice article… simple and useful :).... Plz visit my site...! Thanks
Technical Support Engineering Services in Delhi,

AUGUST 21, 2015 AT 6:36 AM

_ Яafild _ said...

fantastic

OCTOBER 17, 2015 AT 10:34 AM

