
18:02 An 8 Kilobyte Mode 7 Demo for the Apple II
by Vincent M. Weaver

While making an inside-joke filled game for my
favorite machine, the Apple][, I needed to cre-
ate a Final-Fantasy-esque flying-over-the-planet se-
quence. I was originally going to fake this, but why
fake graphics when you can laboriously spend weeks
implementing the effect for real. It turns out the Ap-
ple][is just barely capable of generating the effect
in real time.

Once I got the code working I realized it would be
great as part of a graphical demo, so off on that tan-
gent I went. This turned out well, despite the fact
that all I knew about the demoscene I had learned
from a few viewings of the Future Crew Second Re-
ality demo combined with dimly remembered Com-
modore 64 and Amiga usenet flamewars.

While I hope you enjoy the description of the
demo and the work that went into it, I suspect
this whole enterprise is primarily of note due to the
dearth of demos for the Apple][platform. For those
of you who would like to see a truly impressive Ap-
ple][demo, I would like to make a shout out to
FrenchTouch whose works put this one to shame.

The Hardware

CPU, RAM and Storage:
The Apple][was introduced in 1977 with a 6502

processor running at roughly 1.023MHz. Early mod-
els only shipped with 4k of RAM, but in later years,
48k, 64k and 128k systems became common. While
the demo itself fits in 8k, it decompresses to a larger
size and uses a full 48k of RAM; this would have
been very expensive in the seventies.

In 1977 you would probably be loading this from
cassette tape, as it would be another year before
Woz’s single-sided 5 1

4” Disk II came around. With
the release of Apple DOS3.3 in 1980, it offered 140k
of storage on each side.

Sound:
The only sound available in a stock Apple][is

a bit-banged speaker. There is no timer interrupt;
if you want music, you have to cycle-count via the
CPU to get the waveforms you needed.

The demo uses a Mockingboard soundcard, first
introduced in 1981. This board contains dual AY-3-
8910 sound generation chips connected via 6522 I/O

chips. Each sound chip provides three channels of
square waves as well as noise and envelope effects.

Graphics:
It is hard to imagine now, but the Apple][had

nice graphics for its time. Compared to later com-
petitors, however, it had some limitations: No hard-
ware sprites, user-defined character sets, blanking
interrupts, palette selection, hardware scrolling, or
even a linear framebuffer! It did have hardware page
flipping, at least.

The hi-res graphics mode is a complex mess
of NTSC hacks by Woz. You get approximately
280x192 resolution, with 6 colors available. The col-
ors are NTSC artifacts with limitations on which
colors can be next to each other, in blocks of 3.5
pixels. There is plenty of fringing on edges, and col-
ors change depending on whether they are drawn
at odd or even locations. To add to the madness,
the framebuffer is interleaved in a complex way, and
pixels are drawn least-significant-bit first. (All of
this to make DRAM refresh better and to shave a
few 7400 series logic chips from the design.) You
do get two pages of graphics, Page 1 is at $2000
and Page 2 at $4000.1 Optionally four lines of text
can be shown at the bottom of the screen instead of
graphics.

The lo-res mode is a bit easier to use. It pro-
vides 40 × 48 blocks, reusing the same memory as
the 40×24 text mode. (As with hi-res you can switch
to a 40 × 40 mode with four lines of text displayed
at the bottom.) Fifteen unique colors are available,
plus a second shade of grey. Again the addresses are
interleaved in a non-linear fashion. Lo-res Page 1 is
at $400 and Page 2 is at $800.

Some amazing effects can be achieved by cycle
counting, reading the floating bus, and racing the
beam while toggling graphics modes on the fly.

1On 6502 systems hexadecimal values are traditionally indicated by a dollar sign.

4

Figure 1. Colorful View of Executable Code

------------- $ffff
| ROM/IO |
------------- $c000

| |
| Uncompressed|
| Code/Data |
| |
------------- $4000

| Compressed |
| Code |
------------- $2000

| free |
------------- $1c00

| Scroll |
| Data |
------------- $1800

| Multiply |
| Tables |
------------- $1000

| LORES pg 3 |
------------- $0c00

| LORES pg 2 |
------------- $0800

| LORES pg 1 |
------------- $0400

|free/vectors |
------------- $0200

| stack |
------------- $0100

| zero pg |
------------- $0000

Figure 2. Memory Map

Development Toolchain

I do all of my coding under Linux, using the ca65
assembler from the cc65 project. I cross-compile the
code, constructing AppleDOS 3.3 disk images using
custom tools I have written. I test first in emula-
tion, where AppleWin under Wine is the easiest to
use, but until recently MESS/MAME had cleaner
sound.

Once the code appears to work, I put it on a
USB stick and transfer to actual hardware using a
CFFA3000 disk emulator installed in an Apple IIe
platinum edition.

Bootloader

An Applesoft BASIC “HELLO” program loads the
binary automatically at bootup. This does not
count towards the executable size, as you could man-
ually BRUN the 8k machine-language program if
you wanted.

To make the loading time slightly more interest-
ing the HELLO program enables graphics mode and
loads the program to address $2000 (hi-res page1).
This causes the display to filled with the color-
ful pattern corresponding to the compressed image.
(Figure 1.) This conveniently fills all 8k of the dis-
play RAM, or would have if we had poked the right
soft-switch to turn off the bottom four lines of text.
After loading, execution starts at address $2000.

Decompression

The binary is encoded with the LZ4 algorithm. We
flip to hi-res Page 2 and decompress to this region
so the display now shows the executable code.

The 6502 size-optimized LZ4 decompression
code was written by qkumba (Peter Ferrie).2 The
program and data decompress to around 22k start-
ing at $4000. This overwrites parts of DOS3.3, but
since we are done with the disk this is no problem.

If you look carefully at the upper left corner of
the screen during decompression you will see my tri-
angular logo, which is supposed to evoke my VMW
initials. To do this I had to put the proper bit pat-
tern inside the code at the interleaved addresses of
$4000, $4400, $4800, and $4C00. The image data
at $4000 maps to (mostly) harmless code so it is left
in place and executed.

2http://pferrie.host22.com/misc/appleii.htm

5

Figure 3. The title screen.

Optimizing the code inside of a compressed im-
age (to fit in 8k) is much more complicated than reg-
ular size optimization. Removing instructions some-
times makes the binary larger as it no longer com-
presses as well. Long runs of a single value, such as
zero padding, are essentially free. This became an
exercise of repeatedly guessing and checking, until
everything fit.

Title Screen

Once decompression is done, execution continues at
address $4000. We switch to low-res mode for the
rest of the demo.

FADE EFFECT: The title screen fades in from
black, which is a software hack as the Apple][does
not have palette support. This is done by loading
the image to an off-screen buffer and then a lookup
table is used to copy in the faded versions to the
image buffer on the fly.

TITLE GRAPHICS: The title screen is shown in
Figure 3. The image is run-length encoded (RLE)
which is probably unnecessary in light of it being
further LZ4 encoded. (LZ4 compression was a late
addition to this endeavor.)

Why not save some space and just loading our
demo at $400, negating the need to copy the im-
age in place? Remember the graphics are 40 × 48
(shared with the text display region). It might be
easier to think of it as 40 × 24 characters, with the
top / bottom nybbles of each ASCII character be-
ing interpreted as colors for a half-height block. If
you do the math you will find this takes 960 bytes
of space, but the memory map reserves 1k for this

mode. There are “holes” in the address range that
are not displayed, and various pieces of hardware
can use these as scratchpad memory. This means
just overwriting the whole 1k with data might not
work out well unless you know what you are doing.
Our RLE decompression code skips the holes just to
be safe.

SCROLL TEXT: The title screen has scrolling
text at the bottom. This is nothing fancy, the text
is in a buffer off screen and a 40× 4 chunk of RAM
is copied in every so many cycles.

You might notice that there is tearing/jitter in
the scrolling even though we are double-buffering
the graphics. Sadly there is no reliable cross-
platform way to get the VBLANK info on Apple
][machines, especially the older models.

Mockingbird Music

No demo is complete without some exciting back-
ground music. I like chiptune music, especially the
kind written for AY-3-8910 based systems. During
the long wait for my Mockingboard hardware to ar-
rive, I designed and built a Raspberry Pi chiptune
player that uses essentially the same hardware. This
allowed me to build up some expertise with the soft-
ware/hardware interface in advance.

The song being played is a stripped down and
re-arranged version of “Electric Wave” from CC’00
by EA (Ilya Abrosimov).

Most of my sound infrastructure involves YM5
files, a format commonly used by ZX Spectrum and
Atari ST users. The YM file format is just AY-3-
8910 register dumps taken at 50Hz. To play these
back one sets up the sound card to interrupt 50 times
a second and then writes out the fourteen register
values from each frame in an interrupt handler.

Writing out the registers quickly enough is a
challenge on the Apple][, as for each register you
have to do a handshake and then set both the reg-
ister number and the value. It is hard to do this in
less than forty 1MHz cycles for each register. With
complex chiptune files (especially those written on
an ST with much faster hardware), sometimes it is
not possible to get exact playback due to the de-
lay. Further slowdown happens as you want to write
both AY chips (the output is stereo, with one AY on
the left and one on the right). To help with latency
on playback, we keep track of the last frame written
and only write to the registers that have changed.

The demo detects the Mockingboard in Slot 4

6

at startup. First the board is initialized, then one
of the 6522 timers is set to interrupt at 25Hz. Why
25Hz and not 50Hz? At 50Hz with fourteen registers
you use 700 bytes/s. So a two minute song would
take 84k of RAM, which is much more than is avail-
able! To allow the song to fit in memory, without a
fancy circular buffer decompression routine, we have
to reduce the size.3

First the music is changed so it only needs to be
updated at 25Hz, and then the register data is com-
pressed from fourteen bytes to eleven bytes by strip-
ping off the envelope effects and packing together
fields that have unused bits. In the end the sound
quality suffered a bit, but we were able to fit an ac-
ceptably catchy chiptune inside of our 8k payload.

Drawing the Mode7 Background

Mode 7 is a Super Nintendo (SNES) graphics mode
that takes a tiled background and transforms it
by rotating and scaling. The most common effect
squashes the background out to the horizon, giv-
ing a three-dimensional look. The SNES did these
transforms in hardware, but our demo must do them
in software.

Our algorithm is based on code by Martijn van
Iersel which iterates through each horizontal line on
the screen and calculates the color to output based
on the camera height (spacez) and angle as well as
the current coordinates, x and y.

First, the distance d is calculated based on fixed
scale and distance-to-horizon factors. Instead of a
costly division operation, we use a pre-generated
lookup table for this.

d =
z × yscale
y + horizon

Next we calculate the horizontal scale (distance be-
tween points on this line):

h =
d

xscale

Then we calculate delta x and delta y values between
each block on the line. We use a pre-computed sine/-
cosine lookup table.

∆x = − sin(angle)× h

∆y = cos(angle)× h

The leftmost position in the tile lookup is calculated:

tilex = x +
(
d cos(angle)− width

2

)
∆x

tiley = y +
(
d sin(angle)− width

2

)
∆y

Then an inner loop happens that adds ∆x and ∆y as
we lookup the color from the tilemap (just a wrap-
around array lookup) for each block on the line.

color = tilelookup(tilex, tiley)

plot(x, y)

tilex += ∆x, tiley += ∆y

Optimizations: The 6502 processor cannot do
floating point, so all of our routines use 8.8 fixed
point math. We eliminate all use of division, and
convert as much as possible to table lookups, which
involves limiting the heights and angles a bit.

Some cycles are also saved by using self-
modifying code, most notably hard-coding the
height (z) value and modifying the code whenever
this is changed. The code started out only capable
of roughly 4.9fps in 40 × 20 resolution and in the
end we improved this to 5.7fps in 40×40 resolution.
Care was taken to optimize the innermost loop, as
every cycle saved there results in 1280 cycles saved
overall.

Fast Multiply: One of the biggest bottlenecks in
the mode7 code was the multiply. Even our opti-
mized algorithm calls for at least seven 16-bit by
16-bit to 32-bit multiplies, something that is really
slow on the 6502. A typical implementation takes
around 700 cycles for an 8.8× 8.8 fixed point multi-
ply.

We improved this by using the ancient quarter-
square multiply algorithm, first described for 6502
use by Stephen Judd.

This works by noting these factorizations:

(a + b)2 = a2 + 2ab + b2

(a− b)2 = a2 − 2ab + b2

If you subtract these you can simplify to

a× b =
(a + b)2

4
− (a− b)2

4
3For an example of such a routine, see my Chiptune music-disk demo.

7

Figure 4. Bouncing ball on infinite checkerboard.

Figure 5. Spaceship flying over an island.

For 8-bit values if you create a table of squares
from 0 to 511, then you can convert a multiply
into two table lookups and a subtraction.4 This
does have the downside of requiring two kilobytes
of lookup tables, but it reduces the multiply cost to
the order of 250 cycles or so and these tables can be
generated at startup.

BALL ON CHECKERBOARD

The first Mode7 scene transpires on an infinite
checkerboard. A demo would be incomplete with-
out some sort of bouncing geometric solid, in this
case we have a pink sphere. The sphere is repre-
sented by sixteen sprites that were captured from
a twenty year old OpenGL example. Screenshots

were reduced to the proper size and color limita-
tions. The shadows are also sprites, and as the Ap-
ple][has no dedicated sprite hardware, these are
drawn completely in software.

The clicking noise on bounce is generated by ac-
cessing the speaker port at address $C030. This
gives some sound for those viewing the demo with-
out the benefit of a Mockingboard.

TFV SPACESHIP FLYING
This next scene has a spaceship flying over an is-
land. The Mode7 graphics code is generic enough
that only one copy of the code is needed to generate
both the checkerboard and island scenes. The space-
ship, water splash, and shadows are all sprites. The
path the ship takes is pre-recorded; this is adapted
from the Talbot Fantasy 7 game engine with the
keyboard code replaced by a hard-coded script of
actions to take.

4All 8-bit a+ b and a− b fall in this range.

8

Figure 6. Spaceship with starfield.

Figure 7. Rasterbars, stars, and credits.

STARFIELD
The spaceship now takes to the stars. This is typical
starfield code, where on each iteration the x and y
values are changed by

∆x =
x

z
,∆y =

y

z

In order to get a good frame rate and not clutter
the lo-res screen only sixteen stars are modeled. To
avoid having to divide, the reciprocal of all possible
z values are stored in a table, and the fast-multiply
routine described previously is used.

The star positions require random number gener-
ation, but there is no easy way to quickly get random
data on the Apple][. Originally we had a 256-byte
blob of pre-generated “random” values included in
the code. This wasted space, so instead we use our
own machine code at address at $5000 as if it were
a block of random numbers!

A simple state machine controls star speed, ship
movement, hyperspace, background color (for the
blue flash) and the eventual sequence of sprites as
the ship vanishes into the distance.

RASTERBARS/CREDITS

Once the ship has departed, it is time to run the
credits as the stars continue to fly by.

The text is written to the bottom four lines of the
screen, seemingly surrounded by graphics blocks.
Mixed graphics/text is generally not be possible on
the Apple][, although with careful cycle counting
and mode switching groups such as FrenchTouch
have achieved this effect. What we see in this demo
is the use of inverse-mode (inverted color) space
characters which appear the same as white graphics
blocks.

The rasterbar effect is not really rasterbars, just
a colorful assortment of horizontal lines drawn at a
location determined with a sine lookup table. Hori-
zontal lines can take a surprising amount of time to
draw, but these were optimized using inlining and a
few other tricks.

The spinning text is done by just rapidly rotating
the output string through the ASCII table, with the
clicking effect again generated by hitting the speaker
at address $C030. The list of people to thank ended
up being the primary limitation to fitting in 8kB, as
unique text strings do not compress well. I apologize
to everyone whose moniker got compressed beyond
recognition, and I am still not totally happy with
the centering of the text.

A Parting Gift

Further details, a prebuilt disk image, and full
source code are available both online and attached
to the electronic version of this document.5 6

5unzip pocorgtfo18.pdf mode7.tar.gz
6http://www.deater.net/weave/vmwprod/mode7_demo/

9

