
18:03 Fun Memory Corruption Exploits for Kids with Scratch!
by Kev Sheldrake

Introduction
When my son graduated from Scratch Junior on the
iPad to full-blown Scratch on a desktop computer, I
opted to protect the Internet from him by not giving
him a network interface. Instead I installed the of-
fline version of Scratch on his computer that works
completely stand-alone. One of the interesting dif-
ferences between the online and offline versions of
Scratch is the way in which it can be extended; the
offline version will happily provide an option to in-
stall an ‘Experimental HTTP Extension’ if you use
the super-secret ‘shift click’ on the File menu instead
of the regular, common-all-garden ‘click’.

These extensions allow Scratch to communicate
with another process outside the sandbox through a
web service; there is an abandoned Python mod-
ule that provides a suitable framework for build-
ing them. While words like ‘experimental’ and ‘a-
bandoned’ don’t appear to offer much hope, this is
all just a facade and the technology actually works
pretty well. Indeed, we have interfaced Scratch to
Midi, Arduino projects and, as this essay will ex-
plain, TCP/IP network sockets because, well, if a
language exists to teach kids how to code then I
think it [c|sh]ould also be used to teach them how
to hack.

Scratch Basics
If you’re not already aware, Scratch is an IDE and a
language, all wrapped up in a sandbox built out of
Squeak/Smalltalk (v1.0 to v1.4), Flash/Adobe Air
(v2.0) and HTML5/Javascript (v3.0). Within it,
sprite-based programs can be written using prim-
itives that resemble jigsaw pieces that constrain
where or how they can be placed. For example, an
IF/THEN primitive requires a predicate operator,
such as X=Y or X>Y; in Scratch, predicates have
angled edges and only fit in places where predicates
are accepted. This makes it easier for children to
learn how to combine primitives to make statements
and eventually programs.

All code lives behind sprites or the stage (back-
ground); it can sense key presses, mouse clicks,
sprites touching, etc, and can move sprites and
change their size, colour, etc. If you ever wanted
to recreate that crappy flash game you played in
the late 90s at university or in your first job then
Scratch is perfect for that. You could probably get
something that looks suitably pro within an after-
noon or less. Don’t be fooled by the fact it was
made for kids, Scratch can make some pretty cool
things and is fun; but also be aware that it has its
limitations, and lack of networking is one of them.

The offline version of Scratch relies on Adobe Air
which has been abandoned on Linux. An older 32-
bit version can be installed, but you’ll have much
better results if you just try this on Windows or
MacOS.

Scratch Extensions
Extensions were introduced in Scratch v2.0 and dif-
fer between the online and offline versions. For the
online version extensions are coded in JS, stored on
github.io and accessed via the ScratchX version of
Scratch. As I had limited my son to the offline ver-
sion, we were treated to web service extensions built
in Python.

On the face of it a web service seems like an obvi-
ous choice because they are easy to build, are asyn-
chronous by nature and each method can take multi-
ple arguments. In reality, this extension model was
actually designed for controlling things like robot
arms rather than anything generic. There are com-
mands and reporters, each represented in Scratch
as appropriate blocks; commands would move robot
motors and reporters would indicate when motor
limits are hit. To put these concepts into more stan-
dard terms, commands are essentially procedures.

10

They take arguments but provide no responses, and
reporters are essentially global variables that can be
affected by the procedures. If you think this is a
weird model to program in then you’d be correct.

In order to quickly and easily build a suitable
web service, we can use the off-the-shelf abandon-
ware, Blockext.7 This is a python module that pro-
vides the full web service functionality to an object
that we supply. It’s relatively trivial to build meth-
ods that create sockets, write to sockets, and close
sockets, as we can get away without return values.
To implement methods that read from sockets we
need to build a command (procedure) that does the
actual read, but puts the data into a global variable
that can be read via a reporter.

At this point it is worth discussing how these re-
porters / global variables actually function. They
are exposed via the web service by simply report-
ing their values thirty times a second. That’s right,
thirty times a second. This makes them great for
motor limit switches where data is minimal but la-
tency is critical, but less great at returning data
from sockets. Still, as my hacky extension shows,
if their use is limited they can still work. The block-
ext console doesn’t log reporter accesses but a web
proxy can show them happening if you’re interested
in seeing them.

7git clone https://github.com/blockext/blockext

11

Scratch Limitations
While Scratch can handle binary data, it doesn’t re-
ally have a way to input it, and certainly no C-style
or pythonesque formatting. It also has no complex
data types; variables can be numbers or strings, but
the language is probably Turing-complete so this
shouldn’t really stop us. There is also no random
access into strings or any form of string slicing; we
can however retrieve a single letter from a string by
position.

Strings can be constructed from a series of joins,
and we can write a python handler to convert from
an ASCIIfied format (such as ‘\xNN’) to regular bi-
nary. Stripping off newlines on returned strings re-
quires us to build a new (native) Scratch block. Just
like the python blocks accessible through the web
service, these blocks are also procedures with no re-
turn values. We are therefore constrained to return-
ing values via (sprite) global variables, which means
we have to be careful about concurrency.

Talking of concurrency, Scratch has a handy
message system that can be used to create paral-
lel processing. As highlighted, however, the lack of
functions and local variables means we can easily
run into problems if we’re not careful.

Blockext
The Python blockext module can be obtained from
its GitHub and installed with a simple sudo python
setup.py install.

My socket extension is quite straight forward.
The definition of the object is mostly standard
socket code; while it has worked in my limited test-
ing, feel free to make it more robust for any produc-
tion use—this is just a PoC after all.

12

1 #!/ usr/ bin/python

3 from blockext import ∗
import socket

5 import s e l e c t
import u r l l i b

7 import base64

9 c lass SSocket :
def __init__(s e l f) :

11 s e l f . s o cke t s = {}

13 def _on_reset (s e l f) :
print ’ r e s e t ! ! ! ’

15 for key in s e l f . s o cke t s . keys () :
i f s e l f . s o cke t s [key] [’ socket ’] :

17 s e l f . s o cke t s [key] [’ socket ’] . c l o s e ()
s e l f . s o cke t s = {}

19
def add_socket (s e l f , type , proto , sock , host , port) :

21 i f s e l f . i s_connected (sock) or s e l f . i s_ l i s t e n i n g (sock) :
print ’ add_socket : socket a l ready in use ’

23 return
s e l f . s o cke t s [sock] = { ’ type ’ : type , ’ proto ’ : proto , ’ host ’ : host , ’ port ’ : port , ’ reading ’ : 0 , ’ c l o s ed ’ : 0}

25
def set_socket (s e l f , sock , s) :

27 i f not s e l f . i s_connected (sock) and not s e l f . i s_ l i s t e n i n g (sock) :
print ’ set_socket : socket doesn \ ’ t e x i s t ’

29 return
s e l f . s o cke t s [sock] [’ socket ’] = s

31
def se t_contro l (s e l f , sock , c) :

33 i f not s e l f . i s_connected (sock) and not s e l f . i s_ l i s t e n i n g (sock) :
print ’ s e t_contro l : socket doesn \ ’ t e x i s t ’

35 return
s e l f . s o cke t s [sock] [’ c on t ro l ’] = c

37
def set_addr (s e l f , sock , a) :

39 i f not s e l f . i s_connected (sock) and not s e l f . i s_ l i s t e n i n g (sock) :
print ’ set_addr : socket doesn \ ’ t e x i s t ’

41 return
s e l f . s o cke t s [sock] [’ addr ’] = a

43
def create_socket (s e l f , proto , sock , host , port) :

45 i f s e l f . i s_connected (sock) or s e l f . i s_ l i s t e n i n g (sock) :
print ’ c reate_socket : socket a l ready in use ’

47 return
s = socket . socket (socket .AF_INET, socket .SOCK_STREAM)

49 s . connect ((host , port))
s e l f . add_socket (’ socket ’ , proto , sock , host , port)

51 s e l f . set_socket (sock , s)

53 def c r e a t e_ l i s t e n e r (s e l f , proto , sock , ip , port) :
i f s e l f . i s_connected (sock) or s e l f . i s_ l i s t e n i n g (sock) :

55 print ’ c r e a t e_ l i s t e n e r : socket a l ready in use ’
return

57 s = socket . socket ()
s . bind ((ip , port))

59 s . l i s t e n (5)
s e l f . add_socket (’ l i s t e n e r ’ , proto , sock , ip , port)

61 s e l f . s e t_contro l (sock , s)

63 def accept_connection (s e l f , sock) :
i f not s e l f . i s_ l i s t e n i n g (sock) :

65 print ’ accept_connection : socket i s not l i s t e n i n g ’
return

67 s = s e l f . s o cke t s [sock] [’ c on t ro l ’]
c , addr = s . accept ()

69 s e l f . set_socket (sock , c)
s e l f . set_addr (sock , addr)

71
def c lose_socket (s e l f , sock) :

73 i f s e l f . i s_connected (sock) or s e l f . i s_ l i s t e n i n g (sock) :
s e l f . s o cke t s [sock] [’ socket ’] . c l o s e ()

75 del s e l f . s o cke t s [sock]

77 def i s_connected (s e l f , sock) :
i f sock in s e l f . s o cke t s :

79 i f s e l f . s o cke t s [sock] [’ type ’] == ’ socket ’ and not s e l f . s o cke t s [sock] [’ c l o s ed ’] :
return True

81 return False

83 def i s_ l i s t e n i n g (s e l f , sock) :
i f sock in s e l f . s o cke t s :

85 i f s e l f . s o cke t s [sock] [’ type ’] == ’ l i s t e n e r ’ :
return True

87 return False

89 def write_socket (s e l f , data , type , sock) :
i f not s e l f . i s_connected (sock) and not s e l f . i s_ l i s t e n i n g (sock) :

91 print ’ wr ite_socket : socket doesn \ ’ t e x i s t ’
return

93 i f not ’ socket ’ in s e l f . s o cke t s [sock] or s e l f . s o cke t s [sock] [’ c l o s ed ’] :
print ’ wr ite_socket : socket fd doesn \ ’ t e x i s t ’

95 return
buf = ’ ’

97 i f type == "raw" :
buf = data

99 e l i f type == "c enc" :
buf = data . decode (’ s t r ing_escape ’)

101 e l i f type == " ur l enc" :
buf = u r l l i b . unquote (data)

13

103 e l i f type == "base64 " :
buf = base64 . b64decode (data)

105
t o t a l s e n t = 0

107 while t o t a l s e n t < len (buf) :
sent = s e l f . s o cke t s [sock] [’ socket ’] . send (buf [t o t a l s e n t :])

109 i f sent == 0 :
s e l f . s o cke t s [sock] [’ c l o s ed ’] = 1

111 return
t o t a l s e n t += sent

113
def c lear_read_f lag (s e l f , sock) :

115 i f not s e l f . i s_connected (sock) and not s e l f . i s_ l i s t e n i n g (sock) :
print ’ r ead l ine_socket : socket doesn \ ’ t e x i s t ’

117 return
i f not ’ socket ’ in s e l f . s o cke t s [sock] :

119 print ’ r ead l ine_socket : socket fd doesn \ ’ t e x i s t ’
return

121 s e l f . s o cke t s [sock] [’ read ing ’] = 0

123 def reading (s e l f , sock) :
i f not s e l f . i s_connected (sock) and not s e l f . i s_ l i s t e n i n g (sock) :

125 return 0
i f not ’ r eading ’ in s e l f . s o cke t s [sock] :

127 return 0
return s e l f . s o cke t s [sock] [’ read ing ’]

129
def r ead l ine_socket (s e l f , sock) :

131 i f not s e l f . i s_connected (sock) and not s e l f . i s_ l i s t e n i n g (sock) :
print ’ r ead l ine_socket : socket doesn \ ’ t e x i s t ’

133 return
i f not ’ socket ’ in s e l f . s o cke t s [sock] or s e l f . s o cke t s [sock] [’ c l o s ed ’] :

135 print ’ r ead l ine_socket : socket fd doesn \ ’ t e x i s t ’
return

137 s e l f . s o cke t s [sock] [’ read ing ’] = 1
str = ’ ’

139 c = ’ ’
while c != ’ \n ’ :

141 read_sockets , write_s , error_s = s e l e c t . s e l e c t ([s e l f . s o cke t s [sock] [’ socket ’]] , [] , [] , 0 . 1)
i f read_sockets :

143 c = s e l f . s o cke t s [sock] [’ socket ’] . recv (1)
str += c

145 i f c == ’ ’ :
s e l f . s o cke t s [sock] [’ c l o s ed ’] = 1

147 c = ’ \n ’ # end the whi le loop
else :

149 c = ’ \n ’ # end the whi le loop with empty or p a r t i a l l y rece ived s t r i n g
s e l f . s o cke t s [sock] [’ readbuf ’] = str

151 i f str :
s e l f . s o cke t s [sock] [’ read ing ’] = 2

153 else :
s e l f . s o cke t s [sock] [’ read ing ’] = 0

155
def recv_socket (s e l f , length , sock) :

157 i f not s e l f . i s_connected (sock) and not s e l f . i s_ l i s t e n i n g (sock) :
print ’ recv_socket : socket doesn \ ’ t e x i s t ’

159 return
i f not ’ socket ’ in s e l f . s o cke t s [sock] or s e l f . s o cke t s [sock] [’ c l o s ed ’] :

161 print ’ recv_socket : socket fd doesn \ ’ t e x i s t ’
return

163 s e l f . s o cke t s [sock] [’ read ing ’] = 1
read_sockets , write_s , error_s = s e l e c t . s e l e c t ([s e l f . s o cke t s [sock] [’ socket ’]] , [] , [] , 0 . 1)

165 i f read_sockets :
str = s e l f . s o cke t s [sock] [’ socket ’] . recv (length)

167 i f str == ’ ’ :
s e l f . s o cke t s [sock] [’ c l o s ed ’] = 1

169 else :
str = ’ ’

171
s e l f . s o cke t s [sock] [’ readbuf ’] = str

173 i f str :
s e l f . s o cke t s [sock] [’ read ing ’] = 2

175 else :
s e l f . s o cke t s [sock] [’ read ing ’] = 0

177
def n_read (s e l f , sock) :

179 i f not s e l f . i s_connected (sock) and not s e l f . i s_ l i s t e n i n g (sock) :
return 0

181 i f s e l f . s o cke t s [sock] [’ reading ’] == 2 :
return len (s e l f . s o cke t s [sock] [’ readbuf ’])

183 else :
return 0

185
def readbuf (s e l f , type , sock) :

187 i f not s e l f . i s_connected (sock) and not s e l f . i s_ l i s t e n i n g (sock) :
return ’ ’

189 i f s e l f . s o cke t s [sock] [’ reading ’] == 2 :
data = s e l f . s o cke t s [sock] [’ readbuf ’]

191 buf = ’ ’
i f type == "raw" :

193 buf = data
e l i f type == "c enc" :

195 buf = data . encode (’ s t r ing_escape ’)
e l i f type == " ur l enc" :

197 buf = u r l l i b . quote (data)
e l i f type == "base64 " :

199 buf = base64 . b64encode (data)
return buf

201 else :
return ’ ’

14

The final section is simply the description of the
blocks that the extension makes available over the
web service to Scratch. Each block line takes 4 ar-
guments: the Python function to call, the type of
block (command, predicate or reporter), the text
description that the Scratch block will present (how
it will look in Scratch), and the default values. For
reference, predicates are simply reporter blocks that
only return a boolean value.

The text description includes placeholders for
the arguments to the Python function: %s for a
string, %n for a number, and %m for a drop-down
menu. All %m arguments are post-fixed with the
name of the menu from which the available values
are taken. The actual menus are described as a dic-
tionary of named lists.

Finally, the object is linked to the description
and the web service is then started. This Python
script is launched from the command line and will
start the web service on the given port.

d e s c r i p t o r = Desc r ip to r (
2 name = "Scratch Sockets " ,

port = 5000 ,
4 b locks = [

Block (’ c reate_socket ’ , ’command ’ , ’ c r e a t e %m. proto conx %m. sockno host %s port %n ’ ,
6 d e f a u l t s =[" tcp " , 1 , " 1 2 7 . 0 . 0 . 1 " , 0]) ,

Block (’ c r e a t e_ l i s t e n e r ’ , ’command ’ ,
8 ’ c r e a t e %m. proto l i s t e n e r %m. sockno ip %s port %n ’ ,

d e f a u l t s =[" tcp " , 1 , " 0 . 0 . 0 . 0 " , 0]) ,
10 Block (’ accept_connect ion ’ , ’command ’ , ’ accept connect ion %m. sockno ’ ,

d e f a u l t s =[1]) ,
12 Block (’ c l o s e_socket ’ , ’command ’ , ’ c l o s e socke t %m. sockno ’ ,

d e f a u l t s =[1]) ,
14 Block (’ i s_connected ’ , ’ p r ed i c a t e ’ , ’ s ocke t %m. sockno connected ? ’) ,

Block (’ i s_ l i s t e n i n g ’ , ’ p r ed i c a t e ’ , ’ s ocke t %m. sockno l i s t e n i n g ? ’) ,
16 Block (’ wr i te_socket ’ , ’command ’ , ’ wr i t e %s as %m. encoding to socket %m. sockno ’ ,

d e f a u l t s =[" h e l l o " , "raw" , 1]) ,
18 Block (’ r ead l ine_socke t ’ , ’command ’ , ’ read l i n e from socket %m. sockno ’ ,

d e f a u l t s =[1]) ,
20 Block (’ recv_socket ’ , ’command ’ , ’ read %n bytes from socket %m. sockno ’ ,

d e f a u l t s =[255 , 1]) ,
22 Block (’ n_read ’ , ’ r e po r t e r ’ , ’ n_read from socket %m. sockno ’ ,

d e f a u l t s =[1]) ,
24 Block (’ readbuf ’ , ’ r e po r t e r ’ , ’ r e c e i v ed buf as %m. encoding from socket %m. sockno ’ ,

d e f a u l t s =["raw" , 1]) ,
26 Block (’ read ing ’ , ’ r e po r t e r ’ , ’ read f l a g f o r socket %m. sockno ’ ,

d e f a u l t s =[1]) ,
28 Block (’ c l ear_read_f lag ’ , ’command ’ , ’ c l e a r read f l a g f o r socke t %m. sockno ’ ,

d e f a u l t s =[1]) ,
30] ,

menus = dict (
32 proto = [" tcp " , "udp"] ,

encoding = ["raw" , "c enc" , " u r l enc" , " base64 "] ,
34 sockno = [1 , 2 , 3 , 4 , 5] ,

) ,
36)

38 extens i on = Extension (SSocket , d e s c r i p t o r)

40 i f __name__ == ’__main__ ’ :
ex tens i on . run_forever (debug=True)

15

Linking into Scratch

The web service provides the required web ser-
vice description file from its index page. Simply
browse to http://localhost:5000 and download
the Scratch 2 extension file (Scratch Scratch Sock-
ets English.s2e). To load this into Scratch we need
to use the super-secret ‘shift click’ on the File menu
to reveal the ‘Import experimental HTTP extension’
option. Navigate to the s2e file and the new blocks
will appear under ‘More Blocks’.

Fuzzing, crashing, controlling EIP, and
exploiting

In order to demonstrate the use of the extension,
I obtained and booted the TinySploit VM from
Saumil Shah’s ExploitLab, and then used the given
stack-based overflow to gain remote code execution.
The details are straight forward; the shell code by
Julien Ahrens came from ExploitDB and was modi-
fied to execute Busybox correctly.8 Scratch projects
are available as an attachment to this PDF.9

Scratch is a great language/IDE to teach cod-
ing to children. Once they’ve successfully built a
racing game and a PacMan clone, it can also be
used to teach them to interact with the world out-
side of Scratch. As I mentioned in the introduc-
tion, we’ve interfaced Scratch to Midi and Arduino
projects from where a whole world opens up. The
above screen shots show how it can also be inter-
faced to a simple TCP/IP socket extension to allow
interaction with anything on the network.

From here it is possible to cause buffer over-
flows that lead to crashes and, through standard
stack-smashing techniques, to remote code execu-
tion. When I was a child, Z-80 assembly was the
second language I learned after BASIC on a ZX
Spectrum. (The third was 8086 funnily enough!)
I hunted for infinite lives and eventually became a
reasonable C programmer. Perhaps with a (slightly
better) socket extension, Scratch could become a
gateway to x86 shell code. I wonder whether IT
teachers would agree?

—Kev Sheldrake

8https://www.exploit-db.com/exploits/43755/
9unzip pocorgtfo18.pdf scratchexploits.zip

16

