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by Ryan “ElfMaster” O’Neill

This paper is going to shed some insights into
the more obscure security weaknesses of statically
linked executables: the glibc initialization process,
what the attack surface looks like, and why the secu-
rity mitigation known as RELRO is as equally im-
portant for static executables as it is for dynamic
executables. We will discuss some solutions, and
explore the experimental software that I have pre-
sented as a solution for enabling RELRO binaries
that are statically linked, usually to avoid complex
dependecy issues. We will also take a look at ASLR,
and innovate a solution for making it work on stat-
ically linked executables.

Standard ELF Security Mitigations

Over the years there have been some innovative and
progressive overhauls that have been incorporated
into glibc, the linker, and the dynamic linker, in
order to make certain security mitigations possible.
Firstly there was Pipacs who decided that making
ELF programs that would otherwise be ET_EXEC
(executables) could benefit from becoming ET_DYN
objects, which are shared libraries. if a PT_INTERP
segment is added to an ET_DYN object to specify an
interpreter then ET_DYN objects can be linked as ex-
ecutable programs which are position independent
executables, “-fPIC -pie” and linked with an ad-
dress space that begins at 0x0. This type of exe-
cutable has no real absolute address space until it
has been relocated into a randomized address space
by the kernel. A PIE executable uses IP relative
addressing mode so that it can avoid using absolute
addresses; consequently, a program that is an ELF
ET_DYN can make full use of ASLR.

(ASLR can work with ET_EXEC’s with PaX using
a technique called VMA mirroring,29 but I can’t say
for sure if its still supported and it was never the
preferred method.)

When an executable runs privileged, such as
sshd, it would ideally be compiled and linked into
a PIE executable which allows for runtime reloca-
tion to a random address space, thus hardening the
attack surface into far more hostile playing grounds.

Try running readelf -e /usr/sbin/sshd |
grep DYN and you will see that it is (most likely)

built this way.
Somewhere along the way came RELRO (read-

only relocations) a security mitigation technique
that has two modes: partial and full. By default
only the partial relro is enforced because full-relro
requires strict linking which has less efficient pro-
gram loading time due to the dynamic linker bind-
ing/relocating immediately (strict) vs. lazy. but full
RELRO can be very powerful for hardening the at-
tack surface by marking specific areas in the data
segment as read-only. Specifically the .init_array,
.fini_array, .jcr, .got, .got.plt sections. The
.got.plt section and .fini_array are the most fre-
quent targets for attackers since these contain func-
tion pointers into shared library routines and de-
structor routines, respectively.

What about static linking?

Developers like statically linked executables because
they are easier to manage, debug, and ship; every-
thing is self contained. The chances of a user run-
ning into issues with a statically linked executable
are far less than with a dynamically linked exe-
cutable which require dependencies, sometimes hun-
dreds of them. I’ve been aware of this for some time,
but I was remiss to think that statically linked ex-
ecutables don’t suffer from the same ELF security
problems as dynamically linked executables! To my
surprise, a statically linked executable is vulnera-
ble to many of the same attacks as a dynamically
linked executable, including shared library injection,
.dtors (.fini_array) poisoning, and PLT/GOT
poisoning.

This might surprise you; shouldn’t a static exe-
cutable be immune to relocation table tricks? Let’s
start with shared library injection. A shared library
can be injected into the process address space us-
ing ptrace injected shellcode for malware purposes,
however if full RELRO is enabled coupled with PaX
mprotect restrictions this becomes impossible since
the PaX feature prevents the default behavior of al-
lowing ptrace to write to read-only segments and
full RELRO would ensure read-only protections on
the relevant data segment areas. Now, from an ex-
ploitation standpoint this becomes more interest-

29VMA Mirroring by PaX Team: unzip pocorgtfo18.pdf vmmirror.txt
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ing when you realize that the PLT/GOT is still a
thing in statically linked executables, and we will
discuss it shortly, but in the meantime just know
that the PLT/GOT contains function pointers to
libc routines. The .init_array/.fini_array func-
tion pointers respectively point to initialization and
destructor routines. Specifically .dtors has been
used to achieve code execution in many types of ex-
ploits, although I doubt its abuse is ubiquitous as
the .got.plt section itself. Let’s take a tour of
a statically linked executable and analyze the finer
points of the security mitigations–both present and
absent–that should be considered before choosing to
statically link a program that is sensitive or runs
privileged.

Demystifying the Ambiguous

The static binary in Figure 17 was
built with full RELRO flags, gcc -static
-Wl,-z,relro,-z,now. And even the savvy re-
verser might be fooled into thinking that RELRO
is in-fact enabled. partial-RELRO and full-RELRO
are both incompatible with statically compiled bi-
naries at this point in time, because the dynamic
linker is responsible for re-mapping and mprotecting
the common attack points within the data segment,
such as the PLT/GOT, and as shown in Figure 17
there is no PT_INTERP to specify an interpreter nor
would we expect to see one in a statically linked
binary. The default linker script is what directs
the linker to create the GNU_RELRO segment, even
though it serves no current purpose.

Notice that the GNU_RELRO segment points to
the beginning of the data segment which is usu-
ally where you would want the dynamic linker to
mprotect n bytes as read-only. however, we really
don’t want .tdata marked as read-only, as that will
prevent multi-threaded applications from working.

So this is just another indication that the stati-
cally built binary does not actually have any plans
to enable RELRO on itself. Alas, it really should, as
the PLT/GOT and other areas such as .fini_array
are as vulnerable as ever. A common tool named
checksec.sh uses the GNU_RELRO segment as one of
the markers to denote whether or not RELRO is
enabled on a binary,30 and in the case of statically
compiled binaries it will report that partial-relro is
enabled, because it cannot find a DT_BIND_NOW dy-

namic segment flag since there are no dynamic seg-
ments in statically linked executables. Let’s take a
lightweight tour through the init code of a statically
compiled executable.

From the output in Figure 17, you will notice
that there is a .got and .got.plt section within
the data segment, and to enable full RELRO these
are normally merged into one section but for our
purposes that is not necessary since the tool I de-
signed ’relros’ marks both of them as read-only.

Overview of Statically Linked ELF

A high level overview can be seen with the ftrace
tool, shown in Figure 18.31

Most of the heavy lifting that would normally
take place in the dynamic linker is performed by the
function generic_start_main() which in addition
to other tasks also performs various relocations and
fixups to all the many sections in the data segment,
including the .got.plt section, in which case you
can setup a few watch points to observe that early
on there is a function that inquires about CPU in-
formation such as the CPU cache size, which allows
glibc to intelligently determine which version of a
given function, such as strcpy(), should be used.

In Figure 19, we set watch points on the GOT
entries for several shared library routines and notice
that generic_start_main() serves, in some sense,
much like a dynamic linker. Its job is largely to
perform relocations and fixups.

So in both cases the GOT entry for a given libc
function had its PLT stub address replaced with
the most efficient version of the function given the
CPU cache size looked up by certain glibc init code
(i.e. __cache_sysconf()). Since this a somewhat
high level overview I will not go into every function,
but the important thing is to see that the PLT/-
GOT is updated with a libc function, and can be
poisoned, especially since RELRO is not compati-
ble with statically linked executables. This leads
us into the solution, or possible solutions, including
our very own experimental prototype named relros,
which uses some ELF trickery to inject code that
is called by a trampoline that has been placed in
a very specific spot. It is necessary to wait until
generic_start_main() has finished all of its writes
to the memory areas that we intend to mark as read-
only before we invoke our enable_relro() routine.

30unzip pocorgtfo18.pdf checksec.sh # http://www.trapkit.de/tools/checksec.html
31git clone https://github.com/elfmaster/ftrace

38



$ gcc −s t a t i c −Wl,−z , r e l r o ,−z , now t e s t . c −o t e s t
$ r e a d e l f − l t e s t

E l f f i l e type i s EXEC ( Executable f i l e )
Entry po int 0x4008b0
There are 6 program headers , s t a r t i n g at o f f s e t 64

Program Headers :
Type Of f s e t VirtAddr PhysAddr

F i l e S i z MemSiz Flags Align
LOAD 0x0000000000000000 0x0000000000400000 0x0000000000400000

0x00000000000cbf67 0 x00000000000cbf67 R E 200000
LOAD 0x00000000000cceb8 0x00000000006cceb8 0x00000000006cceb8

0x0000000000001cb8 0x0000000000003570 RW 200000
NOTE 0x0000000000000190 0x0000000000400190 0x0000000000400190

0x0000000000000044 0x0000000000000044 R 4
TLS 0x00000000000cceb8 0x00000000006cceb8 0x00000000006cceb8

0x0000000000000020 0x0000000000000050 R 8
GNU_STACK 0x0000000000000000 0x0000000000000000 0x0000000000000000

0x0000000000000000 0x0000000000000000 RW 10
GNU_RELRO 0x00000000000cceb8 0x00000000006cceb8 0x00000000006cceb8

0x0000000000000148 0x0000000000000148 R 1

Sec t i on to Segment mapping :
Segment Sec t i on s . . .
00 . note .ABI−tag . note . gnu . bui ld−id . r e l a . p l t . i n i t . p l t . t ex t __libc_freeres_fn

__libc_thread_freeres_fn . f i n i . rodata __libc_subfreeres __libc_atexit
. s tapsdt . base __libc_thread_subfreeres . eh_frame . gcc_except_table

01 . tdata . in i t_ar ray . f i n i_ar ray . j c r . data . r e l . ro . got . got . p l t . data . bss
__libc_freeres_ptrs

02 . note .ABI−tag . note . gnu . bui ld−id
03 . tdata . tb s s
04
05 . tdata . in i t_ar ray . f i n i_ar ray . j c r . data . r e l . ro . got

Figure 17. RELRO is Broken for Static Executables

$ f t r a c e test_binary
LOCAL_call@0x404fd0 : __libc_start_main ( )
LOCAL_call@0x404f60 : get_common_indeces . constprop . 1 ( )
(RETURN VALUE) LOCAL_call@0x404f60 : get_common_indeces . constprop . 1 ( ) = 3
LOCAL_call@0x404cc0 : generic_start_main ( )
LOCAL_call@0x447cb0 : _dl_aux_init ( ) (RETURN VALUE) LOCAL_call@0x447cb0 :
_dl_aux_init ( ) = 7 f f e c 5 360b f 9
LOCAL_call@0x4490b0 : _dl_discover_osvers ion (0 x7 f f e c5360be8 )
LOCAL_call@0x46f5e0 : uname ( ) LOCAL_call@0x46f5e0 :__uname( )
<truncated>

Figure 18. FTracing a Static ELF
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( gdb ) x/gx 0x6d0018 /∗ . go t . p l t entry f o r s t r cpy ∗/
0x6d0018 : 0 x000000000043f600
( gdb ) watch ∗0x6d0018
Hardware watchpoint 3 : ∗0x6d0018
( gdb ) x/gx /∗ . go t . p l t entry f o r memmove ∗/
0x6d0020 : 0x0000000000436da0
( gdb ) watch ∗0x6d0020
Hardware watchpoint 4 : ∗0x6d0020
( gdb ) run
The program being debugged has been s t a r t ed a l r eady .
S ta r t i t from the beg inning ? (y or n) y
S ta r t i ng program : /home/ e l fma s t e r / g i t / l i b e l fma s t e r / examples / s ta t i c_b inary

Hardware watchpoint 4 : ∗0x6d0020

Old value = 4195078
New value = 4418976
0x0000000000404dd3 in generic_start_main ( )
( gdb ) x/ i 0x436da0

0x436da0 <__memmove_avx_unaligned>: mov %rdi ,%rax
( gdb ) c
Continuing .

Hardware watchpoint 3 : ∗0x6d0018

Old value = 4195062
New value = 4453888
0x0000000000404dd3 in generic_start_main ( )
( gdb ) x/ i 0 x43f600

0 x43f600 <__strcpy_sse2_unaligned >: mov %r s i ,%rcx
( gdb )

Figure 19. Exploring a Static ELF with GDB
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A Second Implementation

My first prototype had to be written quickly due to
time constraints. This current implementation uses
an injection technique that marks the PT_NOTE pro-
gram header as PT_LOAD, and we therefore create a
second text segment effectively.

In the generic_start_main() function (Fig-
ure 20) there is a very specific place that we must
patch and it requires exactly a five byte patch. (call
<imm>.) As immediate calls do not work when trans-
ferring execution to a different segment, an lcall
(far call) is needed which is considerably more than
five bytes. The solution to this is to switch to a
reverse text infection which will keep the enable_-
relro() code within the one and only code segment.
Currently though we are being crude and patching
the code that calls main().

Currently we are overwriting six bytes at
0x405b54 with a push $enable_relro; ret set
of instructions, shown in Figure 21. Our
enable_relro() function mprotects the part of the
data segment denoted by PT_RELRO as read-only,
then calls main(), then sys_exits. This is flawed
since none of the deinitilization routines get called.
So what is the solution?

Like I mentioned earlier, we keep the
enable_relro() code within the main programs
text segment using a reverse text extension, or a text
padding infection. We could then simply overwrite
the five bytes at 0x405b46 with a call <offset>
to enable_relro() and then that function would
make sure we return the address of main() which
would obviously be stored in %rax. This is perfect
since the next instruction is callq *%rax, which
would call main() right after RELRO has been en-
abled, and no instructions are thrown out of align-
ment. So that is the ideal solution, although it
doesn’t yet handle the problem of .tdata being
at the beginning of the data segment, which is a
problem for us since we can only use mprotect on
memory areas that are multiples of a PAGE_SIZE.

A more sophisticated set of steps must be taken
in order to get multi-threaded applications working
with RELRO using binary instrumentation. Other
solutions might use linker scripts to put the thread
data and bss into their own data segment.

Notice how we patch the instruction bytes start-
ing at 0x405b4f with a push/ret sequence, corrupt-

ing subsequent instructions. Nonetheless this is the
prototype we are stuck with until I have time to
make some changes.

– — — – — — — — – — –
So let’s take a look at this RelroS application.32

33 First we see that this is not a dynamically linked
executable.
$ r e a d e l f −d t e s t
There i s no dynamic s e c t i o n in t h i s f i l e .

We observe that there is only a r+x text seg-
ment, and a r+w data segment, with a lack of read-
only memory protections on the first part of the data
segment.
$ . / t e s t &
[ 1 ] 27891
$ cat /proc / ‘ p ido f t e s t ‘ /maps
00400000−004 cc000 r−xp 00000000 fd :01

4856460 /home/ e l fma s t e r / t e s t
006 cc000−006 c f000 rw−p 000 cc000 fd :01

4856460 /home/ e l fma s t e r / t e s t
. . .

We apply RelroS to the executable with a single
command.
$ . / r e l r o s . / t e s t
i n j e c t i o n s i z e : 464
main ( ) : 0x400b23

We observe that read-only relocations have been
enforced by our patch that we instrumented into the
binary called test.
$ . / t e s t &
[ 1 ] 28052
$ cat /proc / ‘ p ido f t e s t ‘ /maps
00400000−004 cc000 r−xp 00000000 fd :01

10486089 /home/ e l fma s t e r / t e s t
006 cc000−006cd000 r−−p 000 cc000 fd :01

10486089 /home/ e l fma s t e r / t e s t
006 cd000−006 c f000 rw−p 000 cd000 fd :01

10486089 /home/ e l fma s t e r / t e s t
. . .

Notice after we applied relros on ./test, it now
has a 4096 area in the data segment that has been
marked as read-only. This is what the dynamically
linker accomplishes for dynamically linked executa-
bles.

32Please note that it uses libelfmaster which is not officially released yet. The use of this library is minimal, but you will
need to rewrite those portions if you intend to run the code.

33unzip pocorgtfo18.pdf relros.c
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405b46 : 48 8b 74 24 10 mov 0x10(%rsp ) ,% r s i
405b4b : 8b 7c 24 0c mov 0xc(%rsp ) ,%ed i
405 b4f : 48 8b 44 24 18 mov 0x18(%rsp ) ,%rax /∗ s t o r e main () addr ∗/
405b54 : f f d0 c a l l q ∗%rax /∗ c a l l main () ∗/
405b56 : 89 c7 mov %eax ,% ed i
405b58 : e8 b3 de 00 00 c a l l q 413 a10 <ex i t>

Figure 20. Unpatched generic_start_main().

405b46 : 48 8b 74 24 10 mov 0x10(%rsp ) ,% r s i
405b4b : 8b 7c 24 0c mov 0xc(%rsp ) ,%ed i
405 b4f : 48 8b 44 24 18 mov 0x18(%rsp ) ,%rax
405b54 : 68 f4 c6 0 f 0c pushq $0xc0 f c6 f 4
405b59 : c3 re tq
/∗
∗ The f o l l ow i n g bad i n s t r u c t i o n s are never crashed on because
∗ the prev ious i n s t r u c t i on re turns in to enab le_re l ro () which c a l l s
∗ main () on b e h a l f o f t h i s funct ion , and then sys_ex i t ’ s out .
∗/

405b5a : de 00 f i add (%rax )
405b5c : 00 39 add %bh,(% rcx )
405b5e : c2 0 f 86 re tq $0x860f
405b61 : fb s t i
405b62 : f e ( bad )
405b63 : f f ( bad )
405b64 : f f ( bad )

Figure 21. Patched generic_start_main().
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– — — – — — — — – — –
So what are some other potential solutions for

enabling RELRO on statically linked executables?
Aside from my binary instrumentation project that
will improve in the future, this might be fixed either
by tricky linker scripts or by the glibc developers.

Write a linker script that places .tbss,
.tdata, and .data in their own segment and
the sections that you want readonly should be
placed in another segment, these sections include
.init_array, .fini_array, .jcr, .dynamic, .got,
and .got.plt. Both of these PT_LOAD segments will
be marked as PF_R|PF_W (read+write), and serve as
two separate data segments. A program can then
have a custom function–but not a constructor–that
is called by main() before it even checks argc and
argv. The reason we don’t want a constructor func-
tion is because it will attempt to mprotect read-
only permissions on the second data segment before
the glibc init code has finished performing its fixups
which require write access. This is because the con-
structor routines stored in .init section are called
before the write instructions to the .got, .got.plt
sections, etc.

The glibc developers should probably add a
function that is invoked by generic_start_main()
right before main() is called. You will notice there
is a _dl_protect_relro() function in statically
linked executables that is never called.

ASLR Issues

ASLR requires that an executable is ET_DYN unless
VMA mirroring is used for ET_EXEC ASLR. A stat-
ically linked executable can only be linked as an
ET_EXEC type executable.

$ gcc −s t a t i c −fPIC −p i e t e s t 2 . c −o t e s t 2
ld : x86_64−l inux−gnu/5/ crtbeginT . o :
r e l o c a t i o n R_X86_64_32 aga in s t ‘__TMC_END__’
can not be used when making a shared ob j e c t ;
r ecompi l e with −fPIC
x86_64−l inux−gnu/5/ crtbeginT . o : e r r o r adding
symbols : Bad value
c o l l e c t 2 : e r r o r : ld returned 1 e x i t s t a tu s

This means that you can remove the -pie flag
and end up with an executable that uses position
independent code. But it does not have an address
space layout that begins with base address 0, which
is what we need. So what to do?

ASLR Solutions
I haven’t personally spent enough time with the
linker to see if it can be tweaked to link a static
executable that comes out as an ET_DYN object,
which should also not have a PT_INTERP segment
since it is not dynamically linked. A quick peak in
src/linux/fs/binfmt_elf.c, shown in Figure 22,
will show that the executable type must be ET_DYN.

A Hybrid Solution
The linker may not be able to perform this task yet,
but I believe we can. A potential solution exists
in the idea that we can at least compile a stati-
cally linked executable so that it uses position in-
dependent code (IP relative), although it will still
maintain an absolute address space. So here is the
algorithm as follows from a binary instrumentation
standpoint.

First we’ll compile the executable with
-static -fPIC, then static_to_dyn.c ad-
justs the executable. First it changes the
ehdr->e_type from ET_EXEC to ET_DYN. It then
modifies the phdrs for each PT_LOAD segment,
setting phdr[TEXT].p_vaddr and .p_offset
to zero, phdr[DATA].p_vaddr to 0x200000 +
phdr[DATA].p_offset. It sets ehdr->e_entry to
ehdr->e_entry - old_base. Finally, it updates
each section header to reflect the new address range,
so that GDB and objdump can work with the bi-
nary.

$ gcc −s t a t i c −fPIC t e s t 2 . c −o t e s t 2
$ . / static_to_dyn . / t e s t 2
Se t t i ng e_entry to 8b0
$ . / t e s t 2
Segmentation f a u l t ( core dumped)

Alas, a quick look at the binary with objdump
will prove that most of the code is not using IP rel-
ative addressing and is not truly PIC. The PIC ver-
sion of the glibc init routines like _start lives in
/usr/lib/X86_64-linux-gnu/Scrt1.o, so we may
have to start thinking outside the box a bit about
what a statically linked executable really is. That is,
we might take the -static flag out of the equation
and begin working from scratch!

Perhaps test2.c should have both a
_start() and a main(), as shown in Figure 23.
_start() should have no code in it and use
__attribute__((weak)) so that the _start() rou-
tine in Scrt1.o can override it. Or we can compile
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916 } else i f ( loc−>el f_ex . e_type == ET_DYN) {
/∗ Try and ge t dynamic programs out o f the way o f the

918 ∗ d e f a u l t mmap base , as we l l as whatever program they
∗ might t r y to exec . This i s because the brk w i l l

920 ∗ f o l l ow the loader , and i s not movable . ∗/
load_bias = ELF_ET_DYN_BASE − vaddr ;

922 i f ( current−>f l a g s & PF_RANDOMIZE)
load_bias += arch_mmap_rnd ( ) ;

i f ( ! load_addr_set ) {
942 load_addr_set = 1 ;

load_addr = ( elf_ppnt−>p_vaddr − elf_ppnt−>p_of f s e t ) ;
944 i f ( loc−>el f_ex . e_type == ET_DYN) {

load_bias += e r r o r −
946 ELF_PAGESTART( load_bias + vaddr ) ;

load_addr += load_bias ;
948 reloc_func_desc = load_bias ;

}
950 }

Figure 22. src/linux/fs/binfmt_elf.c

Diet Libc34 with IP relative addressing, using it
instead of glibc for simplicity. There are multi-
ple possibilities, but the primary idea is to start
thinking outside of the box. So for the sake of a
PoC here is a program that simply does nothing
but check if argc is larger than one and then incre-
ments a variable in a loop every other iteration. We
will demonstrate how ASLR works on it. It uses
_start() as its main(), and the compiler options
will be shown below.

$ gcc −no s td l i b −fPIC t e s t 2 . c −o t e s t 2
$ . / t e s t 2 arg1

$ pmap ‘ p ido f t e s t2 ‘
17370 : . / t e s t 2 arg1
0000000000400000 4K r−x−− t e s t 2
0000000000601000 4K rw−−− t e s t 2
00007 f f c e f c c a 0 0 0 132K rw−−− [ s tack ]
00007 f f c e f d 20000 8K r−−−− [ anon ]
00007 f f c e f d 22000 8K r−x−− [ anon ]
f f f f f f f f f f 6 0 0 0 0 0 4K r−x−− [ anon ]
t o t a l 160K

$

ASLR is not present, and the address space is
just as expected on a 64 class ELF binary in Linux.
So let’s run static_to_dyn.c on it, and then try
again.

$ . / static_to_dyn t e s t 2
$ . / t e s t 2 arg1

$ pmap ‘ p ido f t e s t2 ‘
17622 : . / t e s t 2 arg1
0000565271 e41000 4K r−x−− t e s t 2
0000565272042000 4K rw−−− t e s t 2
00007 f f c 28 fda000 132K rw−−− [ s tack ]
00007 f f c 2 8 f f c 0 0 0 8K r−−−− [ anon ]
00007 f f c 2 8 f f e 0 0 0 8K r−x−− [ anon ]
f f f f f f f f f f 6 0 0 0 0 0 4K r−x−− [ anon ]
t o t a l 160K

Now notice that the text and data segments for
test2 are mapped to a random address space. Now
we are talking! The rest of the homework should be
fairly straight forward. Extrapolate upon this work
and find more creative solutions until the GNU folks
have the time to address the issues with some more
elegance than what we can do using trickery and
instrumentation.

34unzip pocorgtfo18.pdf dietlibc.tar.bz2
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1 /∗ Make sure we have a data segment f o r t e s t i n g purposes ∗/
stat ic int test_dummy = 5 ;

3
int _start ( ) {

5 int argc ;
long ∗ args ;

7 long ∗ rbp ;
int i ;

9 int j = 0 ;

11 /∗ Extrac t argc from s tack ∗/
asm __volatile__ ( "mov 8(%%rbp ) , %%rcx " : "=c" ( argc ) ) ;

13
/∗ Extrac t argv from s tack ∗/

15 asm __volatile__ ( " l e a 16(%%rbp ) , %%rcx " : "=c" ( args ) ) ;

17 i f ( argc > 2) {
for ( i = 0 ; i < 100000000000; i++)

19 i f ( i % 2 == 0)
j++;

21 }
return 0 ;

23 }

Figure 23. First Draft of test2.c

Improving Static Linking Techniques
Since we are compiling statically by simply cutting
glibc out of the equation with the -nostdlib com-
piler flag, we must consider that things we take for
granted, such as TLS and system call wrappers,
must be manually coded and linked. One potential
solution I mentioned earlier is to compile dietlibc
with IP relative addressing mode, and simply link
your code to it with -nostdlib. Figure 24 is an up-
dated version of test2.c which prints the command
line arguments.

Now we are actually building a statically linked
binary that can get command line args, and call stat-
ically linked in functions from Diet Libc.35

$ gcc −no s td l i b −c −fPIC t e s t 2 . c −o t e s t 2 . o
$ gcc −no s td l i b t e s t 2 . o \

/ usr / l i b / d i e t / l i b−x86_64/ l i b c . a −o t e s t 2
$ . / t e s t 2 arg1 arg2
. / t e s t 2
arg1
arg2
$

Now we can run static_to_dyn from Figure 25
to enforce ASLR.36 The first two sections are hap-
pily randomized!

$ . / static_to_dyn t e s t 2
$ . / t e s t 2 foo bar
$ pmap ‘ p ido f t e s t ‘
24411 : . / t e s t 2 foo bar
0000564 c f 542 f 000 8K r−x−− t e s t 2
0000564 cf5631000 4K rw−−− t e s t 2
00007 f f e 98 c8e000 132K rw−−− [ s tack ]
00007 f f e98d55000 8K r−−−− [ anon ]
00007 f f e98d57000 8K r−x−− [ anon ]
f f f f f f f f f f 6 0 0 0 0 0 4K r−x−− [ anon ]
t o t a l 164K

35Note that first I downloaded the dietlibc source code and edited the Makefile to use the -fPIC flag which will enforce
IP-relative addressing within dietlibc.

36unzip pocorgtfo18.pdf static_to_dyn.c
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#include <s td i o . h>
2

/∗ Make sure we have a data segment f o r t e s t i n g purposes ∗/
4 stat ic int test_dummy = 5 ;

6 int _start ( ) {
int argc ;

8 long ∗ args ;
long ∗ rbp ;

10 int i ;
int j = 0 ;

12
/∗ Extrac t argc from s tack ∗/

14 asm __volatile__ ( "mov 8(%%rbp ) , %%rcx " : "=c" ( argc ) ) ;

16 /∗ Extrac t argv from s tack ∗/
asm __volatile__ ( " l e a 16(%%rbp ) , %%rcx " : "=c" ( args ) ) ;

18
for ( i = 0 ; i < argc ; i++) {

20 s l e ep (10) ; /∗ l ong enough fo r us to v e r i f y ASLR ∗/
p r i n t f ( "%s \n" , args [ i ] ) ;

22 }
e x i t (0 ) ;

24 }

Figure 24. Updated test2.c.

Summary
In this paper we have cleared some misconceptions
surrounding the attack surface of a statically linked
executable, and which security mitigations are lack-
ing by default. PLT/GOT attacks do exist against
statically linked ELF executables, but RELRO and
ASLR defenses do not.

We presented a prototype tool for enabling full
RELRO on statically linked executables. We also
engaged in some work to create a hybridized ap-
proach between linking techniques with instrumen-
tation, and together were able to propose a solution
for making static binaries that work with ASLR.
Our solution for ASLR is to first build the binary
statically, without glibc.
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1 #define _GNU_SOURCE
#include <std i o . h>

3 #include <s t d l i b . h>
#include <e l f . h>

5 #include <sys / types . h>
#include <search . h>

7 #include <sys / time . h>
#include <f c n t l . h>

9 #include <l i nk . h>
#include <sys / s t a t . h>

11 #include <sys /mman. h>

13 #define HUGE_PAGE 0x200000

15 int main ( int argc , char ∗∗argv ) {
ElfW(Ehdr ) ∗ehdr ;

17 ElfW(Phdr ) ∗phdr ;
ElfW( Shdr ) ∗ shdr ;

19 uint8_t ∗mem;
int fd ;

21 int i ;
struct s t a t s t ;

23 uint64_t old_base ; /∗ o r i g i n a l t e x t base ∗/
uint64_t new_data_base ; /∗ new data base ∗/

25 char ∗Str ingTable ;

27 fd = open ( argv [ 1 ] , O_RDWR) ;
i f ( fd < 0) {

29 per ro r ( "open" ) ;
goto f a i l ;

31 }

33 f s t a t ( fd , &s t ) ;

35 mem = mmap(NULL, s t . st_size , PROT_READ|PROT_WRITE, MAP_SHARED, fd , 0) ;
i f (mem == MAP_FAILED ) {

37 per ro r ( "mmap" ) ;
goto f a i l ;

39 }

41 ehdr = (ElfW(Ehdr ) ∗)mem;
phdr = (ElfW(Phdr ) ∗)&mem[ ehdr−>e_phoff ] ;

43 shdr = (ElfW( Shdr ) ∗)&mem[ ehdr−>e_shof f ] ;
Str ingTable = ( char ∗)&mem[ shdr [ ehdr−>e_shstrndx ] . sh_of f s e t ] ;

45
p r i n t f ( "Marking e_type to ET_DYN\n" ) ;

47 ehdr−>e_type = ET_DYN;

49 p r i n t f ( "Updating PT_LOAD segments to become r e l o c a t ab l e from base 0\n" ) ;
for ( i = 0 ; i < ehdr−>e_phnum ; i++) {

51 i f ( phdr [ i ] . p_type == PT_LOAD && phdr [ i ] . p_of f set == 0) {
old_base = phdr [ i ] . p_vaddr ;

53 phdr [ i ] . p_vaddr = 0UL;
phdr [ i ] . p_paddr = 0UL;

55 phdr [ i + 1 ] . p_vaddr = HUGE_PAGE + phdr [ i + 1 ] . p_of f set ;
phdr [ i + 1 ] . p_paddr = HUGE_PAGE + phdr [ i + 1 ] . p_of f se t ;

57 } else i f ( phdr [ i ] . p_type == PT_NOTE) {
phdr [ i ] . p_vaddr = phdr [ i ] . p_of f set ;

59 phdr [ i ] . p_paddr = phdr [ i ] . p_of f se t ;
} else i f ( phdr [ i ] . p_type == PT_TLS) {

61 phdr [ i ] . p_vaddr = HUGE_PAGE + phdr [ i ] . p_of f set ;
phdr [ i ] . p_paddr = HUGE_PAGE + phdr [ i ] . p_of f se t ;

63 new_data_base = phdr [ i ] . p_vaddr ;
}

65 }
/∗

67 ∗ I f we don ’ t update the sec t i on headers to r e f l e c t the new address
∗ space then GDB and objdump w i l l be broken with t h i s binary .

69 ∗/
for ( i = 0 ; i < ehdr−>e_shnum ; i++) {

71 i f ( ! ( shdr [ i ] . sh_f lags & SHF_ALLOC) )
continue ;

73 shdr [ i ] . sh_addr = ( shdr [ i ] . sh_addr < old_base + HUGE_PAGE)
? 0UL + shdr [ i ] . sh_of f s e t

75 : new_data_base + shdr [ i ] . sh_of f s e t ;
p r i n t f ( " Se t t ing %s sh_addr to %#lx \n" , &Str ingTable [ shdr [ i ] . sh_name ] , shdr [ i ] . sh_addr ) ;

77 }
p r i n t f ( " Se t t ing new entry point : %#lx \n" , ehdr−>e_entry − old_base ) ;

79 ehdr−>e_entry = ehdr−>e_entry − old_base ;
munmap(mem, s t . s t_s i z e ) ;

81 ex i t (0) ;
f a i l :

83 ex i t (−1) ;
}

Figure 25. static_to_dyn.c
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